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Article
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Abstract

The ubiquitin–proteasome system degrades ubiquitin-modified
proteins to maintain protein homeostasis and to control signalling.
Whole-genome sequencing of patients with severe deafness and
early-onset cataracts as part of a neurological, sensorial and cuta-
neous novel syndrome identified a unique deep intronic homozygous
variant in the PSMC3 gene, encoding the proteasome ATPase subunit
Rpt5, which lead to the transcription of a cryptic exon. The protea-
some content and activity in patient’s fibroblasts was however unaf-
fected. Nevertheless, patient’s cells exhibited impaired protein
homeostasis characterized by accumulation of ubiquitinated proteins
suggesting severe proteotoxic stress. Indeed, the TCF11/Nrf1 tran-
scriptional pathway allowing proteasome recovery after proteasome
inhibition is permanently activated in the patient’s fibroblasts. Upon
chemical proteasome inhibition, this pathway was however impaired
in patient’s cells, which were unable to compensate for proteotoxic

stress although a higher proteasome content and activity. Zebrafish
modelling for knockout in PSMC3 remarkably reproduced the human
phenotype with inner ear development anomalies as well as catar-
acts, suggesting that Rpt5 plays a major role in inner ear, lens and
central nervous system development.
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Introduction

Early-onset deafness is one of the most common causes of develop-

mental disorder in children (prevalence rate of 2–4/1,000 infants),
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and identically, early-onset cataract is the most important cause of

paediatric visual impairment worldwide (prevalence form 2–13.6/

10,000 according to regions) accounting for 10% of the causes of

childhood blindness. Each condition can be attributed to environ-

mental causes (intrauterine infections, inflammation, trauma or

metabolic diseases) or to genetic causes with a well-recognized very

high level of genetic heterogeneity with 59 known genes causing

early-onset cataracts and 196 genes known to cause severe deafness

(Azaiez et al, 2018; Reis & Semina, 2018). Patients presenting both

entities simultaneously, early-onset severe deafness and congenital

cataracts, are thought to be mainly due to teratogenic exposure

during pregnancy especially infections and are, nowadays, consid-

ered to be very rare. Indeed, only very few genetic inherited entities

associating both congenital cataracts and deafness have been

reported so far. The Aymé-Gripp syndrome (cataract, deafness,

intellectual disability, seizures and Down syndrome like facies) has

been recently linked to de novo pathogenic variants in the MAF

gene, a leucine zipper-containing transcription factor of the AP1

superfamily (Niceta et al, 2015). In addition, dominant pathogenic

variants in WFS1 (recessive loss-of-function variants are responsible

for Wolfram syndrome) have been described in children with

congenital cataracts and congenital deafness presenting in the

context of neonatal/infancy-onset diabetes (De Franco et al, 2017).

Herein, using whole-genome sequencing, we describe a novel

homozygous non-coding pathogenic variant in PSMC3 associated

with severe congenital deafness and early-onset cataracts and vari-

ous neurological features in three patients from a very large consan-

guineous family. PSMC3 encodes the 26S regulatory subunit 6A also

known as the 26S proteasome AAA-ATPase subunit (Rpt5) of the

19S proteasome complex responsible for recognition, unfolding and

translocation of substrates into the 20S proteolytic cavity of the

proteasome (Tanaka, 2009). The proteasome is a multiprotein

complex involved in the ATP-dependent degradation of ubiquiti-

nated proteins to maintain cellular protein homeostasis and to

control the abundance of many regulatory molecules. The 26S

proteasome consists of two complexes: a catalytic 28-subunit barrel

shaped core particle (20S) that is capped at the top or the bottom by

one 19 subunit regulatory particle (19S). The core particle contains

the catalytic subunits b1, b2 and b5 exhibiting caspase-, trypsin-

and chymotrypsin-like activities, respectively. Recognition of a

substrate with the requisite number and configuration of ubiquitin

is mediated principally by both Rpn10 and Rpn13 subunits, which

act as ubiquitin receptors (Deveraux et al, 1994; Husnjak et al,

2008). To allow substrate degradation, ubiquitin is first removed by

Rpn11, a metalloprotease subunit in the lid (Yao & Cohen, 2002).

The globular domains of a substrate are then unfolded mechanically

by a ring-like heterohexameric complex consisting of six distinct

subunits, Rpt1 to Rpt6, which belong to the ATPases associated with

diverse cellular activities (AAA) family (Chen et al, 2016). PSMC3

encodes for Rpt5 involved in the substrate unfolding and transloca-

tion, which are then presumably catalysed (Lam et al, 2002;

Tanaka, 2009).

In mammalian cells, a major compensation mechanism for

proteasome dysfunction is governed by the ER membrane-resident

TCF11/Nrf1 protein (Radhakrishnan et al, 2010; Steffen et al,

2010; Sotzny et al, 2016). Typical stimuli for TCF11/Nrf1 activa-

tion include proteasome inhibition and/or impairment, which

results in the release of C-terminal processed TCF11/Nrf1

fragment from the ER membrane following a complex series of

molecular events involving the enzymes NGLY1 and DDI2. The

cleaved TCF11/Nrf1 fragment enters then into the nucleus and

acts as a transcription factor to promote the expression of ARE-

responsive genes including 19S and 20S proteasome subunits,

thereby augmenting the pool of proteasomes so that protein

homeostasis can be preserved (Radhakrishnan et al, 2010; Steffen

et al, 2010; Sotzny et al, 2016).

We suggest that biallelic loss of PSMC3 causes a novel autosomal

recessive syndrome with varying degrees of neurosensorial dysfunc-

tions including the combination of cataract and deafness. Functional

analysis of patient’s cells revealed that although normal amount of

proteasome proteins can be observed in steady-state conditions, the

cells are unable to adapt to proteotoxic stress. The use of zebrafish

morpholinos and CRIPSR-Cas9 assays confirmed the same combina-

tion of sensory phenotypes upon inactivating PSMC3 expression.

Results

Patient phenotypes

Three patients with a novel syndromic neurosensory-cutaneous

presentation consulted independently to our clinical centre over a

period of 15 years. Careful analysis revealed that they originated

from the same small village (Amarat) in the Kayseri region of

Turkey and belong to the same large extended consanguineous

family (Fig 1A). The proband is a male individual (II.4) diagnosed

at the age of 8 months with profound perceptive deafness and

subsequently benefited from a cochlear implantation. He was

referred at the age of 2 years old to our centre because of visual

impairment due to bilateral cataracts for which he underwent bilat-

eral lensectomies. With years, he developed severe developmental

delay and severe intellectual deficiency (no words, limited compre-

hension). Several facial features were noted (Table 1 and Fig 1B).

In addition, severe autistic features were revealed at the age of

2.5 years old (Table 1). A full metabolic exploration was normal. At

the age of 5, he developed subcutaneous deposits at the level of the

knees and elbows (Fig 1C). At the age of 10, he developed white

hair at the level of the two legs as opposed to the dark pigmented

hair on the rest of the body. More recent examination revealed also

a peripheral polyneuropathy of lower limbs. The two other patients

(II.2 and II.7) were referred at the age of 1 year old and share the

same severe perceptive deafness (for which they also benefited from

a cochlear implantation), visual impairment due to bilateral obstru-

ent cataracts (for which they also had bilateral lensectomies) and

subcutaneous deposits. Patient II.2 did not present with autistic

features but had moderate developmental delay (able to read and

write few words, but no understanding of complex sentences) and a

significative polyneuropathy of the lower limbs (more pronounced

that II.4). Patient II.7 did not present with polyneuropathy as

opposed to the other patient, but like patient II.4, he presented

severe developmental delay with autistic features. For each patient,

otoacoustic emissions were positive at birth. However, deafness

was suspected for all of them within the early months of life, respec-

tively, 8 months (II.4) and 1 year and 3 months (II.2, II.7). Auditory

brainstem response was in favour of profound deafness (no

response at 110 dB). The MRI did not reveal any anomalies of the
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cochleovestibular nerves or labyrinthitis. However, the temporal

bone CT scan analysis of patient II.7 revealed lateral semicircular

canal malformations with the absence of the bony island in the right

ear and a small bony island in the left ear (Fig 1D).

Identification of a rare deep intronic variation in PSMC3

During the years of follow-up, each patient was explored for known

deafness and cataract genes by Sanger sequencing (in particular for

A

E F

B

a

g h i j

b c d e f

C

D

Figure 1. Family pedigree and cDNA analysis.

A Family pedigree. Variant segregation analysis of PSMC3. Electropherogram of a part of intron 10 of PSMC3 encompassing the identified variation (c.[1127 + 337A>G];
[1127 + 337A > G], p.[(Ser376Arg15*)];[(Ser376Arg15*)]) in the affected individuals, their unaffected parents and siblings. The variation was found at the homozygous
state in the affected individuals (II.2, II.4, II.7) and at the heterozygous state in the parents (I.1, I.2, I.3, I.4, I.5, I.6) and was either at the heterozygous state (II.5) or
absent in the unaffected siblings (II.1, II.3, II.6).

B Face (up) and profile (down) photographs for patients II.4 (a: 8 yo, b: 16 yo), II.2 (c: 6 yo, d: 14 yo) and II.7 (e: 1 yo, f: 7 yo) over time. One can observe prominent
supraciliary arches, synophrys, sunken cheeks, short philtrum and retrusion in the malar region.

C Subcutaneous calcifications found only on knees (g: 9 yo and h: 16 yo) and on elbows (i: 9 yo) of patient II.4. White hair were present only on the legs of the 3
patients as illustrated for patient II.4 (j: 16 yo).

D Temporal bone CT scan from patient II.7 (left column) and a control (right column) showing malformation of the semicircular canal. The left ear is shown on the
upper panels while the right ear on the lower panels.

E Amplification of the cDNA fragment between exons 9–10 and 11 of PSMC3 showing the abnormally spliced RNA fragment. One band at 180 bp representing the
normal allele is seen for the control and two bands for the individual II.4 (pathologic allele at 300 bp).

F Schematic representation for the incorporation of the 114 bp intronic sequence resulting from the c.1127 + 337A > G deep intronic variation on the mRNA. Sanger
sequencing of the fragment between exons 9–10 and 11 of the PSMC3 cDNA obtained from patient II.4 fibroblasts’ RNA, showing the insertion of the 114 bp cryptic
exon. As a comparison, the schematic representation and sequence from a control individual are shown above.

Source data are available online for this figure.
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GJB2, one of the patient being an heterozygous carrier of the

c.30delG well-known recurrent pathogenic variant) but also using

larger assays such as whole-exome sequencing (WES) with a

specific focus on known deafness and cataract genes (Appen

dix Table S1) and standard chromosomal explorations (karyotype

and chromosomal microarray analysis), but all were negative (see

Appendix Supplementary Methods). Considering that affected indi-

viduals may harbour pathogenic variants in a region not covered by

the WES (i.e. intronic and intergenic) or not well detected (i.e. struc-

tural variations) (Geoffroy et al, 2018b), we applied whole-genome

sequencing (WGS) to the three affected individuals (II.2, II.4 and

II.7) and two healthy individuals (II.1 and II.3). Given the known

consanguinity in the family, our analysis was focused on homozy-

gous variations and more specifically within homozygous regions

defined by the SNP arrays (Appendix Fig S1). In addition to the clas-

sical filtering strategy including functional criteria, frequency in

population-based databases and cosegregation analysis (see Materi-

als and Methods), we defined a list of 4,846 potentially interacting

genes with the already known human cataract (59) and deafness

genes (196) (Appendix Fig S2). This strategy allowed us to identify

from the ~5,000,000 variations per WGS, six variations out of which

a unique homozygous variant in the intron 10 of the PSMC3 gene

(c.1127 + 337A>G, p. (?)) remained of interest (Appendix Table S2

and Fig S3). This variant was not present in any variation database

(e.g. gnomAD) and is predicted to create a new donor splice site.

Interestingly, among others PSMC3 was shown to interact

(Appendix Tables S3 and S4, and Fig S4) with CHMP4B (MIM

610897), ACTG1 (MIM 102560) and GJB6 (MIM 604418) involved in

cataract and deafness.

Effect of the variation on PSMC3 expression and localization

In order to assess the effect of this deep intronic variation, we inves-

tigated the expression of the gene in the patient’s fibroblasts. The

suspected new donor site could be associated with multiple acceptor

sites within intron 10 (Appendix Fig S5). RNA analysis revealed an

additional band specific to the affected patient that was further

explored by Sanger sequencing (Fig 1E). The consequence of this

variation is the inclusion of a cryptic 114 bp exon during the splic-

ing process based on the intronic sequence (r.1127_1127+1insACTC-

CACCCCTCATCTGAAGGCACAGAGGCTGGAGGCACTTAGTTTCCT

GGCCTCACACCTCAGCCCATTAACACACGCCAGGAATGGCCGGGAC

CAGATGGACTTGAGTTCAG) (Fig 1F) that is predicted to add 15aa

(LeuHisProSerSerGluGlyThrGluAlaGlyGlyThr) at position 376

followed by a stop (p.(Ser376Argfs15*)). Analysis at the RNA level

showed a significantly reduced level of PSMC3 mRNA as well as the

presence of an additional truncated form (Appendix Fig S6).

However, no difference in expression or localization of the PSMC3

protein could be detected between the control and the patient cells

under normal condition, indicating that the truncated form is proba-

bly not stable (Appendix Fig S7).

Functional effect of the PSMC3 variant to the proteasome
function and assembly

Given the role of PSMC3 in protein degradation, we determined the

intracellular level of ubiquitinated proteins in patient cells compared

to controls. Our results show an increased level of ubiquitinated

proteins in patient cells (Fig 2A and B), suggesting that the protea-

somal proteolysis is less efficient. Having shown a possible effect on

proteasome function, we next investigated how the variant could

affect the proteasome assembly and dynamics. First, in standard

condition, PSMC3 protein and its partners were immunoprecipitated

from either controls’ or patient’s fibroblasts and revealed by mass

spectrometry (Fig 2C). The PSMC3 protein was detected in the input

control and patient, indicating that the variant does not affect the

protein stability of the remaining wild-type allele confirming the

Western blot analysis. Looking at the interacting partners, one can

notice that each proteasome subunit could be detected revealing no

apparent defect in the general organization of the proteasome.

However, protein abundance of each proteasome subcomplex esti-

mated from the number of mass spectrometry spectra observed

between the controls and the patient (Appendix Table S5) shows a

general increase of the proteasome subunits (approximately 20%).

Looking more specifically at each subcomplex, the increase is

mainly due to the core particle including the alpha and beta sub-

units with 1.5-fold for all PSMA proteins and most PSMB protein

and even a 2.0-fold increase for PSMB2/4/6, while PSMC and PSMD

remain at the same ratio.

To further characterize the consequences of the PSMC3 variant

on the functionality of the ubiquitin–proteasome system (UPS), cell

lysates derived from control and patient primary fibroblasts were

analysed by non-denaturing PAGE with proteasome bands being

visualized by their ability to hydrolyse the Suc-LLVY fluorogenic

peptide. As shown in Fig 3A, gel overlay assay for peptidase activity

revealed two strongly stained bands corresponding to the positions

of the 20S and 26S proteasome complexes, respectively. However,

no discernible differences could be detected in the chymotrypsin-

like activity of both 20S and 26S complexes between control and

patient cells, suggesting that peptide hydrolysis in the 20S prote-

olytic core is not substantially impaired by the PSMC3 pathogenic

variant. The notion that proteasome activity does not vary between

these two samples was further confirmed by monitoring the degra-

dation rate of the Suc-LLVY peptide directly in whole-cell extracts

from control and patient fibroblasts over a 180-min period that was

almost identical in both samples (Fig 3B). In order to characterize

the proteasome populations in cells carrying the deep intronic

PSMC3 homozygous variant, samples separated by non-denaturing

PAGE were subsequently analysed by Western blotting. As

expected, using an antibody against the proteasome subunit a6, two

major bands were observed in the 20S and 26S regions (Fig 3C).

Interestingly, the signal intensity for both proteasome complexes

was significantly stronger in patient fibroblasts, suggesting that the

amount of intracellular proteasome pools in these cells was higher

than those of control fibroblasts. Western blotting against the

PSMC3 subunit revealed two bands in the 26S proteasome area and

corresponding to single and double-capped proteasomes (19S-20S

and 19S-20S-19S, respectively) and confirmed the higher amount of

these complexes in patient cells (Fig 3C); however, there are some

lower bands corresponding to 19S precursor intermediates, indicat-

ing that assembly of 19S complexes is affected. As shown in Fig 3C,

staining for PA28-a, a subunit of the alternative proteasome regula-

tor PA28, revealed one major band corresponding to the position of

the 20S proteasome, indicating the 20S proteasomes in these

samples mainly consist of PA28-20S complexes. Again, patient

fibroblasts exhibited a stronger expression level of such homo-PA28
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complexes than their wild-type counterparts. To validate the notion

that the homozygous pathogenic variant results in increased assem-

bly of newly synthetized proteasome complexes, patient fibroblasts

were compared to control ones for their content in various protea-

some subunits using SDS–PAGE followed by Western blotting. As

illustrated in Fig 3D, the steady-state expression level of most of the

b, a and Rpt subunits was substantially higher in the patient’s cells.

A minor band corresponding to the expected size of the truncated

RPT5 variant (i.e. 43,548.95 Da) was observed in the patient’s

sample (Fig 3D, long exposure time). Unexpectedly, the increased

proteasome content was accompanied by a parallel rise of ubiquitin-

modified proteins in these cells, suggesting that proteasomes from

patients bearing the homozygous PSMC3 pathogenic variant,

although being in greater number, are ineffective. Altogether, these

results point to a defective proteasome function in subjects carrying

the deep intronic homozygous PSMC3 pathogenic variant, which

seems to be compensated by an ongoing assembly of newly synthe-

tized 20S and 26S complexes.

We next sought to determine the impact of this variant on the

ability of the cells to respond to perturbed protein homeostasis

following proteasome dysfunction. To this end, both control and

patient cells were subjected to a 16-h treatment with the b5/b5i-
specific inhibitor carfilzomib in a non-toxic concentration prior to

SDS–PAGE and Western blotting analysis using various antibodies

specific for proteasome subunits. As shown in Fig 4, PSMC3 mutant

cells were endowed with higher amounts of immunoproteasome

subunits and proteasome activator PA28-a in untreated conditions

when compared to their wild-type counterparts. Most importantly,

control cells exposed to carfilzomib could successfully compensate

the applied proteotoxic stress by increasing their pools of intracellu-

lar proteasomes, as evidenced by elevated expression of all investi-

gated b- and Rpt subunits. As expected, this process was preceded

by the processing of the ER membrane-resident protein TCF11/Nrf1

(Fig 4), which is the transcription factor acting on nuclear genes

encoding 19S and 20S proteasome subunits (Radhakrishnan et al,

2010; Steffen et al, 2010; Sotzny et al, 2016). Strikingly, the level of

processed TCF11/Nrf1 in response to carfilzomib was much lower

in cells carrying the homozygous PSMC3 pathogenic variant than

that observed in control cells. Accordingly, the patient’s fibroblasts

were unable to upregulate their proteasome subunits following

proteasome inhibition, as determined by decreased expression levels

of proteasome subunits and PA28-a (Fig 4).

To confirm that the cellular phenotype of patient fibroblasts was

due to the homozygous PSMC3 variant, we next conducted rescue

experiments in which these cells were subjected to 24-h transfection

with an expression vector encoding wild-type PSMC3. As shown in

Fig 5A, patient cells overexpressing intact PSMC3 exhibited a dimin-

ished accumulation of K48-linked ubiquitin–protein conjugates when

compared to control cells or empty-vector cells, as determined by

Western blotting. Densitometry analysis of the ubiquitin band inten-

sities reveals that the pool of ubiquitin-modified proteins was signifi-

cantly reduced by about 20% in PSMC3-rescued patient fibroblasts at

24-h post-transfection (Fig 5B). In addition, introducing wild-type

PSMC3 into patient cells resulted in a decreased activation of TCF11/

Nrf1, as evidenced by the absence of the TCF11/Nrf1 processed form

under normal conditions (Fig 5C). Most importantly, overexpression

of wild-type PSMC3 successfully prevented the loss of proteasome

subunits and PA28-a in patient fibroblasts following carfilzomib

treatment (Fig 5C). Altogether, these data clearly identified the

homozygous PSMC3 mutant as the genetic cause of proteasome fail-

ure affecting protein homeostasis under stress conditions.

Effect of PSMC3 loss of function in zebrafish similar to
patients’ phenotype

To establish a functional link between the observed decreased

proteasome activity and the phenotype observed in the patients, we

next assessed the lens and the ear in the zebrafish model. The

zebrafish orthologue (Ensembl, ENSDARG00000007141) of human

PSMC3 is located on chromosome 7 with two predicted protein-

coding splice variants (404 and 427 amino acids). Both zebrafish

psmc3 isoforms share 83% sequence identity with the human ortho-

logue. We confirmed by in situ hybridization that psmc3 is mater-

nally expressed and not spatially restricted (Appendix Fig S8; Data

ref: Thisse & Thisse, 2004). Injection of morpholinos against psmc3

generated zebrafish morphants embryos that were examined at

4 days post-fertilization (dpf) for lens or ear abnormalities. The lens

size of morphants was slightly smaller than in control or uninjected

embryos (Appendix Fig S9A). For cataract detection, we used a

protocol based on confocal reflection microscopy, a labelling-free

non-invasive imaging method that enables the detection of abnor-

mal light reflection in the lens of living embryos (Fig 6A; Takamiya

Table 1. Clinical description of the patients with PSMC3 pathogenic
variants.

II.4 II.2 II.7

Birth date 24/12/2003 02/02/2005 15/03/2012

Neurosensorial features

Congenital cataract + + +

Strabismus + � +

Congenital deafness + + +

Facial dysmorphism features

Round ears + � �
Synophrys + � �
Short philtrum + + �
Malar region retrusion + + +

Prominent supraciliary arches + + +

Sunken cheeks + + +

Preauricular fibrochondroma � � +

Thin upper lip + + �
Neurologic features

Developmental delay S M S

Autistic features + � +

Peripheral polyneuropathy
of lower limbs

+ + �

Cutaneous features

Calcifications of elbows and
knees

+ + +

Depigmented hairs of
lower limbs

+ + �

M, moderate; S, severe.
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A

C

B

Figure 2. Effect of the deep intronic PSMC3 variant on the proteasome function.

A Anti-ubiquitin Western blot in control and patient fibroblasts and total amount of proteins loaded (stainfree) showing increased ubiquitination in patient cells
(lane 4).

B Histogram showing the quantification of ubiquitin with Western blot assays. The data shown correspond to the sum of all bands detected by the anti-ubiquitin
antibody expressed as a percentage of the amount of ubiquitin in “Control 1” cells. Bars show mean of ten independent experiments � SD (n = 10, t-test *P < 0.01,
**P < 0.05).

C Mass spectrometry results from the co-immunoprecipitation with PSMC3 are displayed as the normalized total number of spectra count of each protein computed as
the mean from 3 controls (x axis) vs. the mean of patient II.4 triplicate. Proteasome subcomplexes are coloured according to the displayed legend, and standard ratio
lines are drawn.
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et al, 2016). Morpholino injections revealed significant abnormal

lens reflections in 95% of the morphants (n = 55), whereas only

2% of 5 bp mismatched morpholino-injected controls (n = 45) and

none of the uninjected embryos (n = 20) showed cataract (Fig 6B

and B0). The observed cataract was not due to increased apoptosis,

as TUNEL staining did not reveal more positive nuclei in the

morphant compared to wild-type embryos (Appendix Fig S10).

As deafness has been reported for all three human patients, we

subsequently examined the inner ear development of 4 dpf zebra-

fish morphants (Fig 6C). psmc3 morphants displayed a smaller ear

compared to control or uninjected embryos (Appendix Fig S9C).

Interestingly, the majority of morphants presented anomalies during

the semicircular canal morphogenesis. While the epithelium projec-

tions of all uninjected (n = 20) and all control-injected (n = 45)

embryos were fused and formed pillars after 4 dpf, the canal projec-

tions of morphants failed to fuse in 79% of the cases (n = 58,

Fig 6D and D0). The specificity of the morpholino was confirmed by

a rescue experiment by co-injecting the full-length splice morpho-

lino-resistant zebrafish psmc3 mRNA. The cataract phenotype was

rescued in ~ 58% of the cases (n = 60), while the ear phenotype

A C D

B

Figure 3. Fibroblasts derived from patient carrying the c.1127 + 337A>G homozygous PSMC3 variation exhibit an increased amount of both proteasome
complexes and ubiquitin–protein conjugates.

A Whole-cell lysates from control and patient (case index, CI) fibroblasts were assessed by 3–12% native-PAGE gradient gels with proteasome bands (30S, 26S and 20S
complexes) visualized by their ability to cleave the Suc-LLVY-AMC fluorogenic peptide.

B Ten micrograms of control and patient cell lysates was tested for their chymotrypsin-like activity by incubating them with 0.1 mM of the Suc-LLVY-AMC substrate at
37°C over a 180-h period of time in quadruplicates on a 96-well plate. Indicated on the y-axis are the raw fluorescence values measured by a microplate reader and
reflecting the AMC cleavage from the peptide. Bars show the mean of 4 independent experiments � SD.

C Proteasome complexes from control and patient fibroblasts separated by native-PAGE were subjected to Western blotting using antibodies specific for a6, Rpt5
(PSMC3) and PA28-a, as indicated.

D Proteins extracted from control and CI PSMC3 were separated by 10 or 12.5% SDS–PAGE prior to Western blotting using primary antibodies directed against ubiquitin
and several proteasome subunits and/or components including a6, b1, b; b5, b5i, Rpt2 (PSMC1), Rpt5 (PSMC3), Rpt3 (PSMC4), Rpt4 (PSMC6) and PA28-a, as indicated.
For the PSMC3 staining, two exposure times are shown. Arrow indicates an additional PSMC3 species corresponding to the expected size of the truncated PSMC3
variant. Equal protein loading between samples was ensured by probing the membrane with an anti-a-Tubulin antibody.

Source data are available online for this figure.
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was rescued in 76% of the cases (n = 60; Fig 6B0 and D0). The

outgrowth of the epithelial projections of the developing anterior

and posterior semicircular canals begins around 48 hpf. From 57 to

68 hpf, the projections fuse in the centre of the ear and form the

pillars. This is followed by the outgrowth of the projection of the

lateral semicircular canal around 57 hpf and completed by the

fusion with the other two pillars in the centre around 70 hpf (Geng

et al, 2013). To analyse the semicircular canal morphogenesis in

psmc3 morphants, life imaging was performed between 56 and

72 hpf in the transgenic line gSAIzGFF539A expressing a GFP signal

in all three pillars. In all morphants (n = 9), the projections failed to

fuse and form pillars during the observed time frame. In two

morphants (22%), the outgrowth of epithelial projections even

failed completely. In contrast, the projections of uninjected (n = 2)

and control-injected (n = 2) embryos fused during the observed

period in the centre of the ear and formed canal pillars (Movie

EV1). Previous studies showed that a reduced number or a smaller

size of otoliths, crystal-like structures required for the transmission

of mechanical stimuli to the hair cells, can lead to deafness and

balancing difficulties in zebrafish (Han et al, 2011; Stooke-Vaughan

et al, 2015). psmc3 morphants did not present any otolith defect

(Appendix Fig S11A–C). In addition, expression of otopetrin, a gene

required for proper otolith formation, was unaffected at 28 hpf and

4 dpf (Appendix Fig S9D).

As autism has been reported for one of the patients and brain

malformation has been reported previously in some autistic

patients and autistic zebrafish morphants (Elsen et al, 2009), we

investigated possible morphological brain changes in psmc3

morphants. In situ hybridization targeting brain markers such as

krox20, msxc, her8a and sox19b was performed on 24 hpf embryos

but did not reveal any obvious differences in their expression

patterns (Appendix Fig S12).

To confirm these results, we additionally used the CRISPR/Cas9

system to knockdown psmc3 (Fig 6B–D). The high cutting effi-

ciency of the CRISPR/Cas9 founders (F0) was evaluated to 55.2%

(gRNA1) and 53.7% (gRNA2) (Appendix Fig S13) (Etard et al,

2017). CRISPR/Cas9 founders (i.e. crispants) are often genetically

mosaics. However, in cases of highly efficient gRNAs, they have

been shown to recapitulate mutant phenotypes successfully (Küry

et al, 2017; Teboul et al, 2017; Paone et al, 2018). Both psmc3 cris-

pants used in this study displayed a cataract phenotype (100% of

gRNA1 + Cas9 (n = 20) and 95% of gRNA2 + Cas9 (n = 20),

whereas none of the control embryos (injected with gRNA1

(n = 20) or gRNA2 (n = 10) without the Cas9 protein) showed

abnormal lens reflections (Fig 6B and B0, and Appendix S13A and

A0). Moreover, we recapitulated the ear phenotype seen in psmc3

morphants. While the ear pillars of uninjected (n = 10) and

control-injected (n = 20) embryos formed after 4 dpf, the projec-

tions of both crispants failed to fuse in 65% of gRNA1 (n = 10)-

and 93% of gRNA2 (n = 30)-injected embryos (Fig 6D and D0, and
Appendix S13B and B0). Co-injection of gRNA2, Cas9 and the

psmc3 mRNA also led to a partial rescue of the lens and ear

phenotype with only 63% of abnormal lens reflection instead of

100% (n = 19) and 37% of unfused canal projections instead of

93% (n = 30; Fig 6D0). Performing an in situ hybridization examin-

ing the mRNA expression of versican a and versican b, two genes

suggested to be required for a proper canal fusion event (Geng

et al, 2013), significant differences could be observed after 72 hpf.

Indeed, both genes were highly expressed in the whole ear tissue,

whereas versican a was not expressed and versican b was

restricted to the dorsolateral septum in wild-type or control-

injected embryos (Appendix Fig S14B–D).

Figure 4. Patient fibroblasts carrying the c.1127 + 337A>G homozygous
PSMC3 variation exhibit an exhausted TCF11/Nrf1 processing pathway,
which prevents them to upregulate proteasome subunits in response to
proteotoxic stress.

Control and patient (index case, IC PSMC3) fibroblasts were exposed to a 16-h
treatment with 30 nM of the proteasome inhibitor carfilzomib or left untreated
(as a negative control). Following treatment, cells were collected and subjected
to RIPA-mediated protein extraction prior to SDS–PAGE and subsequent
Western blotting using antibodies specific for ubiquitin, TCF11/Nrf1, Rpt1
(PSMC2), Rpt3 (PSMC4), Rpt5 (PSMC3), Rpt6 (PSMC5), b1, b2, b5, b5i, b1i, PA28-a
and a-Tubulin (loading control) as indicated. For the TCF11/Nrf1 staining, two
exposure times are shown.

Source data are available online for this figure.
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The inner ear possesses hair cells to sense both vestibular and

auditory stimuli. These apical structures consist of a bundle of

villi-like structures called stereocilia and kinocilia, collectively

referred to as a hair bundle. Because these cilia have been shown

to play a key role at least in mechanosensation during develop-

ment (Kindt et al, 2012), we immunostained crispants (sgRNA2

A C

B

Figure 5. Overexpression of wild-type PSMC3 in patient fibroblast restores intracellular protein homeostasis and prevents the loss of proteasome subunit
expression in response to proteasome inhibition.

A Control and/or patient (index case, IC PSMC3) fibroblasts were subjected to a 24-h transfection with pcDNA3.1/empty vector (mock) or pcDNA3.1/PSMC3 prior to
RIPA-mediated protein extraction and subsequent Western blotting using antibodies specific for ubiquitin, PSMC3 (i.e. Rpt5) and a-Tubulin (loading control).

B Densitometry analysis showing the relative ubiquitin contents detected by Western blotting in patient fibroblasts exposed to either pcDNA3.1/empty vector (mock) or
pcDNA3.1/PSMC3, as indicated. The y-axis represents the per cent changes in densitometry measurements (of pixel intensities using ImageJ), which are set as 100%
for cells transfected with the pcDNA3.1/empty vector (mock) at 24 post-transfection (n = 4, *P < 0.05, t-test). Bars show the mean � SEM.

C Patient (index case, IC PSMC3) fibroblasts transfected with either pcDNA3.1/empty vector (mock) or pcDNA3.1/PSMC3 were exposed to a 30-nM treatment of
carfilzomib or left untreated (as a negative control). After 16 h, cells were collected and subjected to RIPA-mediated protein extraction prior to SDS–PAGE and
subsequent Western blotting using antibodies specific for ubiquitin, TCF11/Nrf1, Rpt1 (PSMC2), Rpt3 (PSMC4), Rpt5 (PSMC3), Rpt6 (PSMC5), b1, b2, b5, b5i, PA28-a and
a-Tubulin (loading control), as indicated. For the TCF11/Nrf1 staining, two exposure times are shown.

Source data are available online for this figure.
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injected with Cas9) and control-injected embryos (sgRNA2 without

Cas9) at 5 dpf using anti-acetylated tubulin antibody. In 40% of

crispants (n = 15), a reduced number of cilia was observed while

their number in control-injected embryos (n = 10) was similar to

that of uninjected embryos (n = 10) (Fig 6E+E0). In order to exam-

ine the morphology of hair cells themselves, we used FM1-43. This

A

B

B’

C

D

D’

E E’

Figure 6. psmc3 morphants and F0 mosaic zebrafish exhibit cataract and show abnormalities during the semicircular canal development in the ear.

A Scheme of a zebrafish eye.
B, B0 Cataract detection revealed abnormal lens reflection in psmc3 morpholino (MO)-mediated knockdown but not in controls (uninj, ctrl-mo). Similarly, abnormal lens

reflection was also observed in embryos injected with sgRNA + Cas9 but not in sgRNA-injected embryos without Cas9 (sgRNA2). Co-injection of wt psmc3 mRNA
with either psmc3-mo or sgRNA2 + Cas9 reduced the number of embryos presenting abnormal lens reflection. Scale bar = 50 lm. (B0) Quantification of embryos
with abnormal lens reflection.

C Representative image of a zebrafish ear at 4 dpf. kc = kinocilia.
D, D0 Brightfield images of inner ear development (lateral position). (D) Epithelial projections were fused and formed canal pillars in 4-day-old uninjected and control-

injected fish (ctrl-mo, sgRNA2) but not in morphants (mo) and crispants (sgRNA2 + Cas9). Co-injection of wt psmc3 mRNA with psmc3-mo or sgRNA + Cas9
reduced the number of embryos presenting abnormal ear phenotype. Black asterisks indicate fused pillars. Red arrowheads mark unfused projections. Scale
bar = 100 lm. (D0) Quantification of embryos with abnormal projection outgrowth.

E, E0 An anti-acetylated tubulin antibody (green) staining revealed an abnormal amount of kinocilia in psmc3 crispants (sgRNA2 + Cas9) compared to uninjected and
control-injected embryos (sgRNA2). Nuclei are stained in blue with DAPI. Representative images show kinocilia of the lateral cristae. Scale bar = 20 lm. (E0)
Quantification of embryos with an abnormal amount of kinocilia.
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did not reveal any obvious difference between wild-type and

morphant embryos. However, we observed that the length of the

cilia was decreased when compared to wild-type embryos

(Appendix Fig S15).

Taken together, these zebrafish assays confirm that psmc3 plays

a very important role in the development of a transparent lens and

the semicircular canals of the inner ear—reminiscent of the human

phenotype described herein.

Discussion

In this study, we describe a novel homozygous deep intronic splice

variant, identified in three patients with an unusual neurosensorial

disease combining early-onset deafness, cataracts and subcutaneous

deposits, in PSMC3 encoding one of the proteasome subunit. Clinical

data and functional analysis in patient’s cells and zebrafish proved

the effect of the variation and the consequences leading to a reces-

sive form of proteasome deficit with a haploinsufficiency mecha-

nism. The observation of a neurosensory disease broadens the

spectrum of ubiquitin–proteasome system (UPS)-related disorders.

Sequencing the entire genome of patients gives access to the whole

spectrum of their variations and possibly disease-causing ones.

WGS is a powerful tool (Belkadi et al, 2015) helping to identify vari-

ations not covered or missed by WES such as structural variations

(Geoffroy et al, 2018b) or deep intronic variations (Vaz-Drago et al,

2017). Interestingly, in this study, we combined to WGS, homozy-

gosity mapping and in silico predicted interactors to narrow down to

the region of PSMC3. The three patients carried an homozygous

deep intronic variation (i.e. > 100 bases from the exon–intron

boundaries) (Vaz-Drago et al, 2017) with a predicted splicing effect

on the PSMC3 gene that we confirmed on the patient’s cells. We

then focused on demonstrating the effect of this variation at the

level of the proteasome.

To our knowledge, this is the first report of a human biallelic

pathogenic variant occurring in one of the ATPase Rpt subunits of

the base of the 19S regulatory particle. Recently, de novo pathogenic

variations in the non-ATPase subunit PSMD12 (Rpn5) of the 19S

regulator lid of the 26S complex have been reported in six patients

with neurodevelopmental disorders including mainly intellectual

disability (ID), congenital malformations, ophthalmic anomalies (no

cataracts), feeding difficulties, deafness (unspecified type for two

patients/6) and subtle facial features (Küry et al, 2017). PSMD12

variants have been also associated with a large family with ID and

autism and one simplex case with periventricular nodular hetero-

topia (Khalil et al, 2018). PSMD12 is highly intolerant to loss-of-

function (LoF) variations, and the most likely effect is haploinsuffi-

ciency due to the de novo heterozygote occurrence of loss-of-func-

tion truncating, non-sense or deletion variants. Interestingly,

according to the gnomAD and DDD data (Huang et al, 2010;

preprint: Karczewski et al, 2019), PSMC3 is also predicted to be

extremely intolerant to LoF variation. Indeed, the haploinsufficiency

score of PSMC3 is 4.76 that is within the high ranked genes (e.g. HI

ranges from 0 to 10%) from the DECIPHER data. The pLI score

(0.96) makes it among the highest intolerant genes (e.g. a score

> 0.9 defines the highest range) with only three observed LoF vari-

ants vs. 23.2 predicted and confidence interval = 0.13). This

explains also maybe the rarity of LoF variations found to date in this

gene. In our cases, this is the first time that biallelic class five varia-

tions are reported in one of the proteasome subunit delineating a

recessive mode of inheritance. Nevertheless, the fact that the

homozygous variation is affecting the splicing machinery and leads

to a reduced but not abolished expression of PSMC3 could mimic a

possible haploinsufficiency mechanism although we cannot rule out

a semi-dominant effect of the truncated Rpt5 form. It should also be

noted that the acquisition of neurodevelopmental phenotypes upon

proteasome dysfunction is not necessarily restricted to LoF varia-

tions in genes of the 19S regulatory particle, since recent work

demonstrated that biallelic variants in the PSMB1 subunit of the 20S

core particle were associated with intellectual disability and devel-

opmental delay (Ansar et al, 2020).

Both proteomic and biochemical approaches undertaken in this

study revealed that the deep intronic homozygous PSMC3 variation

is associated with increased amounts of 26S and 20S-PA28 protea-

some complexes (Figs 2C and 3). The observation that patient cells

concomitantly increase their intracellular pool of ubiquitin–protein

conjugates (Figs 2A and 3D) is surprising and strongly suggests that

such proteasomes are defective. In support of this notion, we found

that, although carrying greater amounts of proteasomes, patient

fibroblasts did not exhibit higher chymotrypsin-like activity

compared to control cells, which can be at least partly explained by

upregulation of PA28 and the concomitant increased peptide hydrol-

ysis (Ma et al, 1992; Fig 3A and B). The C-terminus of Rpt5, which

is supposed to be truncated in the patient due to the deep intronic

splice variant, has been shown to be important for gate opening of

the a-ring of the 20S proteasome core complex and for assembly of

the 19S complex (Smith et al, 2007; Singh et al, 2014). Thus, an

expression of this truncated Rpt5 variant even in low mounts may

disturb proteasome assembly and function. These data led us to

conclude that the increased steady-state expression level of the

proteasome subunits observed in patient fibroblasts might reflect a

constitutive de novo synthesis of proteasomes, which aims to

compensate the dysfunctional ones. Strikingly and in contrast to

control cells, TCF11/Nrf1 is constitutively processed in patient cells

(Fig 4), confirming that patients’ proteasomes were impaired. This,

in turn, gives rise to a pathological vicious circle of events in which

TCF11/Nrf1 and defective proteasomes stimulate each other (Fig 7).

We reasoned that such a process may result in a pathway overload,

which in turn reduces the ability of TCF11/Nrf1 to respond to

further proteotoxic stress. Consistent with this hypothesis and

unlike control cells, patient fibroblasts were not capable of upregu-

lating their proteasome subunits when challenged with proteasome

inhibitor carfilzomib (Fig 4). Importantly, overexpression of wild-

type PSMC3 could successfully rescue the phenotype of these cells

by (i) restoring ubiquitin homeostasis (Fig 5A and B), (ii) sparing

the TCF11/Nrf1 pathway (Fig 5C) and (iii) preserving proteasome

subunit expression following carfilzomib treatment (Fig 5C). This

result is of great importance, as it confirms that the deep intronic

homozygous PSMC3 variation in patient cells is responsible for their

inability to cope with proteotoxic stress. Because cataract and semi-

circular canal malformations are observed in zebrafish embryos

depleted with PSMC3, and a fortiori proteasomes, these data estab-

lished a clear cause and effect relationship between the deep

intronic PSMC3 variant and the acquisition of patients’ phenotype.

On the other hand, one cannot exclude that the pathogenesis of the

homozygous PSMC3 variation may involve additional mechanisms.
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Because target genes of TCF11/Nrf1 include anti-inflammatory

factors (Widenmaier et al, 2017; Yang et al, 2018), it is also conceiv-

able that inflammation might play a role in this process. This

assumption would be in line with the observation that subjects suf-

fering from other loss-of-function proteasome variations such as

PSMB8 (Agarwal et al, 2010; Arima et al, 2011; Liu et al, 2012),

PSMA3, PSMB4, PSMB9 (Brehm et al, 2015) and/or POMP (Poli

et al, 2018) exhibit an inflammatory phenotype including joint

contractures. This notion is further reinforced by the fact that

patient fibroblasts constitutively express type I and/or II interferon

(IFN) genes such as those encoding the immunoproteasome subu-

nits b5i, b1i as well as PA28-a (Fig 4). In any case, the potential

contribution of innate immunity to the pathogenesis of the homozy-

gous PSMC3 variant via TCF11/Nrf1 warrants further investigation

(Sotzny et al, 2016; Poli et al, 2018).

The ubiquitin–proteasome system (UPS) is a protein degradation

pathway that regulates the intracellular level of proteins involved in

a very wide variety of eukaryote cellular functions. Thus, it is not

surprising that this pathway is related to multiple human conditions

including cataract, where an overburden of dysfunctional and aggre-

gated proteins cannot be adequately removed by the UPS (Shang &

Taylor, 2012). Moreover, protein degradation dysfunction is recog-

nized as a widespread cause of neurodegenerative diseases such as

Parkinson, Huntington or Alzheimer diseases. Several inherited rare

disorders have been shown to be related to directly UPS dysfunction

in enzymes of the ubiquitin conjugation machinery: UBE3A in

Angelman syndrome (Kishino et al, 1997, p. 3), UBE2A in X-linked

syndromic ID (Nascimento et al, 2006), UBE3B in Kaufman oculo-

cerebrofacial syndrome (classified as blepharophimosis—mental

retardation syndrome) or other related enzymes such as HUWE1 an

ubiquitin ligase in X-linked for dominant ID syndrome (Froyen et al,

2008; Moortgat et al, 2018) and OTUD6B a deubiquitinating enzyme

for neurodevelopmental disability with seizures and dysmorphic

features (Santiago-Sim et al, 2017). The phenotypic tropism for

Figure 7. Schematic diagram depicting TCF11/Nrf1 processing pathway in response to proteasome dysfunction and/or proteotoxic stress in patient carrying
the deep intronic homozygous PSMC3 variation (left) and in healthy subjects (right).

Under normal conditions, TCF11/Nrf1 is a short-lived ER membrane (endoplasmic reticulum)-resident protein, which is rapidly subjected to proteasome-mediated
degradation following retro-translocation to the cytosol by ER-associated degradationmachinery (ERAD). In case of proteasome dysfunction (i.e. proteotoxic stress), the half-
life of TCF11/Nrf1 is prolonged and become then a substrate for the NGLY1 and DDI2, thereby giving rise to a C-terminal cleaved fragment that enters into the nucleus. After
nuclear translocation, cleaved TCF11/Nrf1 associates with Maf and promotes the expression of proteasomes genes, so that protein homeostasis can be restored. In patients
carrying the c.1127 + 337A>G homozygous PSMC3 variation, defective proteasomes promote a constitutive activation of TCF11/Nrf1, thereby resulting in increased assembly
of newly synthetized non-functional proteasomes, which in turn activate TCF11/Nrf1 again. Over-activation of TCF11/Nrf1 results in pathway exhaustion thus rendering
patient cells incapable of responding to further proteotoxic stress.
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neurodevelopmental disorders especially with intellectual disability

and other brain dysfunctions (autism, seizures, brain malforma-

tions) seems to be overall a hallmark of the gene alterations related

to the UPS inherited dysfunctions. In the family presented herein,

all three patients had various neurodevelopmental anomalies

(autism, ataxia, mild ID) and mild facial dysmorphism.

However, the striking clinical presentation of the cases reported

herein is the combination of early-onset deafness and early-onset

cataracts that motivated (independently) the referral of the three

cases. These features have not yet been related to this group of

disorders to date. Moreover, this association has only been reported

twice in larger syndromic forms such as the dominant form of WFS1

but in the context of neonatal/infancy-onset diabetes (De Franco

et al, 2017) and the Aymé-Gripp syndrome (including also intellec-

tual disability, seizures and Down syndrome like facies) with de

novo pathogenic variants in the MAF gene (Niceta et al, 2015). Vari-

ations in the later one were shown to impair in vitro MAF phospho-

rylation, ubiquitination and proteasomal degradation.

The zebrafish model was extremely useful to demonstrate the

effect of a reduced psmc3 expression leading to inner ear anomalies

and lens opacities. The overall development of the lens and inner

ear as well as the underlying gene regulatory networks are highly

conserved throughout evolution (Cvekl & Zhang, 2017). Pathogenic

variations or knockdown of genes implicated in human cataract

and/or deafness in zebrafish has been shown to recapitulate similar

phenotypes (Busch-Nentwich, 2004; Takamiya et al, 2016; Gao

et al, 2017; Mishra et al, 2018; Yousaf et al, 2018). Using two

strategies (morpholino and CRISPR/Cas9), the fish developed a

cataract and ear phenotype that could be rescued. We did not

observe other obvious anomalies. Interestingly, a reduction of

proteasome activity has previously been associated with lens

defects in zebrafish. The knockout of the zebrafish gene psmd6 and

the knock down of psmd6 and psmc2, both encoding for proteins of

the proteasome, resulted in a severe impairment of lens fibre devel-

opment. Cataract was also proposed as a consequence of disrupted

lens fibre differentiation (Richardson et al, 2017). The ear pheno-

type of the psmd6 mutant and both psmd6 morphants was not

assessed (Imai et al, 2010). A direct link between the UPS and audi-

tory hair cell death or impaired semicircular canal morphogenesis

has not been described in zebrafish yet. However, knockdown of

atoh1, a gene regulated by the UPS, has been shown to severely

affect hair cell development in the inner ear of zebrafish (Millimaki

et al, 2007). The malformation of canal pillars observed in zebrafish

psmc3 morphants and crispants might be also a secondary effect, as

abnormal sensory cristae with few hair cells have been previously

assumed to lead to an abnormal development of semicircular canals

(Haddon & Lewis, 1991; Cruz et al, 2009). Patients’ hearing loss

seems rapidly progressive—in the earlier months of life—rather

than congenital: OAE were present at birth but had disappeared

upon deafness diagnostic. Cochlear implant was possible in all

three patients and the results are correlated with the patients’

condition (autistic features) and time of implantation. Indeed,

patients II.4 and II.7 show severe autistic features and were

implanted late (i.e. after the age of 2 and more than a year after

deafness diagnostic). They did not develop language and do not use

their cochlear implant, and audiometric assessment is impossible.

Patient II.2 was implanted at the age of 22 months (i.e. 7 months

after deafness diagnostic), and his tone audiometry results are

excellent. Despite wearing his implant every day for 10 years, he

still shows severe language delay.

In conclusion, our work demonstrates the implication of a deep

intronic variant in a novel ultra-rare neurosensorial syndrome with

early-onset cataract and deafness in one of the proteasome subunit,

PSMC3. Although de novo dominant variations have been associated

with several proteasome-related disorders, we report for the first

time a biallelic pathogenic variant. Our observations strongly

suggest that the amount of PSMC3 is critically implied in the devel-

opment and maintenance of the inner ear and the lens.

Materials and Methods

Patients and ethics

The three cases have consulted independently and were enrolled

subsequently by the CARGO (reference centre for rare eye diseases

at the Strasbourg University Hospital, France). All participants were

assessed by a clinical geneticist, a neuropaediatrician, an Ear-Nose-

Throat specialist, a dermatologist and a paediatric ophthalmologist.

Written consent for research and publication (including photogra-

phy) was obtained for all study participants. This research followed

the tenets of the Declaration of Helsinki. Approval was obtained

from our institutional review board “Comité Protection des Person-

nes” (EST IV, N◦DC-20142222). The identified gene was submitted

to the GeneMatcher tool, but no other patient with the same pheno-

type could be identified (Sobreira et al, 2015).

Homozygosity regions

Three affected individuals (II.2, II.4 and II.7) and two unaffected

individuals (II.1 and II.3) were analysed with the Affymetrix

GeneChip� Mapping 250K Array Xba 240 (Affymetrix, Santa Clara,

CA). Sample processing and labelling were performed according to

the manufacturer’s instructions. Arrays were hybridized on a Gene-

Chip Hybridization Oven 640, washed with the GeneChip Fluidics

Station 450 and scanned with a GeneChip Scanner 3000. Data were

processed by the GeneChip DNA Analysis Software version 3.0.2

(GDAS) to generate SNP allele calls. An average call rate > 99% was

obtained. Homozygosity regions were identified as regions of

homozygosity longer than 25 adjacent SNPs. Shared regions of

homozygosity are visualized by the HomoSNP software (IGBMC,

Strasbourg), which displays one patient per line (Appendix Fig S1).

Three regions of homozygosity of, respectively, 0.3, 2.1 and 1.3 Mb

on chromosome 11 (11:44,396,024–44,668,374; 11:45,574,574–

47,684,908; 11:66,066,993–67,349,899) are shared between the

affected and not the healthy individuals.

Whole-exome sequencing

Whole-exome sequencing (WES) was performed in 2014 for the

three affected siblings (II.2, II.4, II.7) and one healthy brother (II.6)

by the IGBMC (Institut de Génétique et de Biologie Moléculaire et

Cellulaire, Illkirch-Graffenstaden, France) Microarray and Sequenc-

ing platform. Exons of DNA samples were captured using the in-

solution enrichment methodology (Agilent SureSelect All Exon XT2

50 Mb Kit) and sequenced with an Illumina HiSeq 2500 instrument
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to generate 100 bp paired-end reads. The reads were mapped to the

reference human genome (GRCh37/hg19) using the Burrows-

Wheeler Aligner (BWA v0.7.1) (Li & Durbin, 2009). The Haplo-

typeCaller module of the Genome Analysis ToolKit (GATK v3.4-46)

was used for calling both SNV and indel (DePristo et al, 2011).

Structural variations (SV) were called using CANOES (Backenroth

et al, 2014).

From 96,222 to 102,072 genetic variants (SNV/indel/SV) were

identified per individual from the WES analysis (Appendix

Table S1). Bioinformatics analyses (see Materials and Methods)

highlighted a unique homozygous missense variation in the DGKZ

gene (NM_001105540.1:c.1834G>A, p.Ala612Thr) encoding for the

Diacylglycerol Kinase Zeta, located in a homozygous region of inter-

est on chromosome 11 (Appendix Table S1). This variant, reported

previously with a gnomAD frequency of 0.018%, was predicted

tolerated by SIFT (Ng & Henikoff, 2003) and neutral by PolyPhen-2

(Adzhubei et al, 2010) and was finally manually ruled out, as we

were unable to explain the patients phenotype based on the gene

function.

Whole-genome sequencing

Whole-genome sequencing was performed in 2016 for the three

affected siblings (II.2, II.4, II.7) and two healthy brothers (II.1, II.6)

by the Centre National de Recherche sur le Génome Humain

(CNRGH, Evry France). Genomic DNA was used to prepare a library

for WGS using the Illumina TruSeq DNA PCR-Free Library Prepara-

tion Kit. After normalization and quality control, qualified libraries

were sequenced on a HiSeq2000 platform (Illumina Inc., CA, USA),

as paired-end 100 bp reads. At least three lanes of HiSeq2000 flow

cell were produced for each sample, in order to reach an average

sequencing depth of 30×. Sequence quality parameters were

assessed throughout the sequencing run, and standard bioinformat-

ics analysis of sequencing data was based on the Illumina pipeline

to generate FASTQ files for each sample. The sequence reads were

aligned to the reference sequence of the human genome (GRCh37)

using the Burrows-Wheeler Aligner (BWA V7.12) (Li & Durbin,

2009). The UnifiedGenotyper and HaplotypeCaller modules of the

Genome Analysis ToolKit (GATK) (DePristo et al, 2011), Platypus

(https://github.com/andyrimmer/Platypus) and Samtools (Li et al,

2009) were used for calling both SNV and indel. Structural Varia-

tions (SV) were called using SoftSV (Bartenhagen & Dugas, 2016).

Moreover, each known cataract and deafness genes were visually

inspected with IGV (Thorvaldsdóttir et al, 2013).

Bioinformatics analysis

Annotation and ranking of SNVs/indels and structural variations

were performed, respectively, by VaRank (Geoffroy et al, 2015) (in

combination with Alamut Batch, Interactive Biosoftware, Rouen,

France) and by AnnotSV (Geoffroy et al, 2018a). Variant effect on

the nearest splice site was predicted using MaxEntScan (Yeo &

Burge, 2004), NNSplice (Reese et al, 1997) and Splice Site Finder

(Shapiro & Senapathy, 1987). Very stringent filtering criteria were

applied to filter out non-pathogenic variants: (i) variants repre-

sented with an allele frequency of more than 1% in public variation

databases including the 1000 Genomes (1000 Genomes Project

Consortium et al, 2015), the gnomAD database (Lek et al, 2016),

the DGV (MacDonald et al, 2014) or our internal exome database,

and (ii) variants in 50 and 30 UTR, downstream, upstream, intronic

and synonymous locations without pathogenic prediction of local

splice effect. The PSMC3 nomenclature is based on the accession

number NM_002804.4 from the RefSeq database (O’Leary et al,

2016). Genomic coordinates are defined according to GRCh37/hg19

assembly downloaded from the University of California Santa Cruz

(UCSC) genome browser (Tyner et al, 2017).

Sanger confirmation and segregation

The variant confirmation and the cosegregation analysis with the

phenotype in the family member were performed by Sanger

sequencing after PCR amplification of 50 ng of genomic DNA

template. The primers were designed with Primer 3 (http://frodo.

wi.mit.edu/primer3) and are detailed in Appendix Table S6. Bidirec-

tional sequencing of the purified PCR products was performed by

GATC Sequencing Facilities (Konstanz, Germany).

Plasmid construction

The DNA sequence for PSMC3 encoding the full-length Rpt5 protea-

some subunit (NM_002804.4) was amplified by PCR from a pcDNA/

Zeo (+) expression vector encoding a N-terminally HA-tagged Rpt5

(kind gift from Dr. Richard Golnik, Charité Universitätsmedizin

Berlin) and cloned into pcDNA3.1/myc-HIS version B (Invitrogen)

to construct an untagged PSMC3/Rpt5 using the EcoRV and XhoI

restriction sites. The resulting pcDNA3.1/PSMC3 construct was

sequenced (Microsynth Seqlab, Göttingen) before being used for

transfection experiments.

RNA and protein analysis using the patient’s cells

Fibroblasts of patient II.4 and control individuals were obtained by

skin biopsy as previously described (Scheidecker et al, 2015). Three

sex and age matched controls were used.

RNA was extracted from skin fibroblasts of individual II.4 and a

healthy unrelated control using RNeasy RNA kit (Qiagen); then, we

performed reverse transcription using the iScriptTM cDNA Synthesis

Kit (Bio-Rad, Hercules, CA).

Protein analysis includes Western blot for which extracted

proteins using the RIPA Buffer (89901 Thermo Scientific) comple-

mented with protease inhibitor cocktail (Roche 06538282001) from

primary fibroblasts of affected and control individuals were loaded

onto Mini-PROTEAN TGX gels (Bio-Rad).

Immunofluorescence assays were performed using primary

fibroblasts from patient and control individuals grown in Nunc

Lab-Tek chamber slides (Thermo Scientific, Waltham, MA, USA)

fixed with 4% paraformaldehyde, incubated with PBS 0.5% Triton

X-100 for 10 min and blocked with PBS-20% FCS. Cells were then

incubated for 1 h with primary antibodies, washed three times in

PBS, incubated for 1 h with secondary antibody and DAPI, washed

again in PBS and mounted in Elvanol No-Fade mounting medium

before observation on a fluorescence microscope (Zeiss Axio

Observer D1) at a ×400 magnification. The primary antibodies

were directed against the N- and C-terminal part of PSMC3. The

secondary antibody was goat anti-mouse Alexa Fluor coupled 568

IgG (Invitrogen).
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Accumulation of ubiquitinated proteins has been observed using

a dedicated Western blot. Skin fibroblasts from three controls and

the affected individual were recovered in ice-cold RIPA buffer with

protease inhibitors (“Complete EDTA-free”; Roche Diagnostics, 1

tablet in 10 ml buffer) and 25 mM N-ethylmaleimide (NEM, diluted

freshly in ethanol to prevent artefactual deubiquitination), left on

ice for 45 min, centrifuged for 10 min at 13,360 g, supernatant

recovered and 5× Laemmli buffer added. Bands were quantified

relative to the total amount of protein loaded (stainfree) using Image

Lab. All bands corresponding to the various ubiquitinated proteins

were added and expressed relative to the amount of ubiquitinated

proteins in control 1 fibroblasts. The mean of six independent exper-

iments was calculated and represented as a histogram, and a

Student’s t-test was performed to determine the significance.

Primary and secondary antibodies used in these experiments study

as well as their dilution are described in Appendix Table S7.

Co-immunoprecipitation and mass spectrometry analysis

PSMC3 protein and its partners were immunoprecipitated from

patient’s fibroblasts using magnetic microparticles (MACS purifica-

tion system, Miltenyi Biotec) according to the manufacturer’s

instructions and as previously described (Stoetzel et al, 2016, 15).

Briefly, PSMC3 complexes were captured with an anti-PSMC3 anti-

body (Abcam ab171969) and the target and its associated proteins

were purified on the protein G microbeads (Miltenyi Biotec).

Proteins were eluted out of the magnetic stand with 1× Laemmli

buffer (Bio-Rad). To optimize reproducibility, co-immunoprecipita-

tion experiments were carried out in affinity triplicates on exactly

1.1 mg of proteins for each sample. For negative controls, halves of

each sample were pooled and immunoprecipitated with the protein

G beads, omitting the antibody.

Protein extracts were prepared as described in a previous study

(Waltz et al, 2019). Each sample was precipitated with 0.1 M

ammonium acetate in 100% methanol, and proteins were resus-

pended in 50 mM ammonium bicarbonate. After a reduction–alkyla-

tion step (dithiothreitol 5 mM–iodoacetamide 10 mM), proteins

were digested overnight with sequencing-grade porcine trypsin

(1:25, w/w, Promega, Fitchburg, MA, USA). The resulting vacuum-

dried peptides were resuspended in water containing 0.1% (v/v)

formic acid (solvent A). One fifth of the peptide mixtures were anal-

ysed by nanoLC-MS/MS an Easy-nanoLC-1000 system coupled to a

Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific, USA)

operating in positive mode. Five microlitres of each sample was

loaded on a C-18 precolumn (75 lm ID × 20 mm nanoViper, 3 lm
Acclaim PepMap; Thermo) coupled with the analytical C18 analyti-

cal column (75 lm ID × 25 cm nanoViper, 3 lm Acclaim PepMap;

Thermo). Peptides were eluted with a 160-min gradient of 0.1%

formic acid in acetonitrile at 300 nl/min. The Q-Exactive Plus was

operated in data-dependent acquisition mode (DDA) with Xcalibur

software (Thermo Fisher Scientific). Survey MS scans were acquired

at a resolution of 70K at 200 m/z (mass range 350–1,250), with a

maximum injection time of 20 ms and an automatic gain control

(AGC) set to 3e6. Up to 10 of the most intense multiply charged ions

(≥ 2) were selected for fragmentation with a maximum injection

time of 100 ms, an AGC set at 1e5 and a resolution of 17.5K. A

dynamic exclusion time of 20 s was applied during the peak selec-

tion process.

MS data were searched against the Swiss-Prot database (release

2019_05) with Human taxonomy. We used the Mascot algorithm

(version 2.5, Matrix Science) to perform the database search with a

decoy strategy and search parameters as follows: carbamidomethy-

lation of cysteine, N-terminal protein acetylation and oxidation of

methionine were set as variable modifications; tryptic specificity

with up to three missed cleavages was used. The mass tolerances in

MS and MS/MS were set to 10 ppm and 0.05 Da, respectively, and

the instrument configuration was specified as “ESI-Trap”. The

resulting “.dat” Mascot files were then imported into Proline v1.4

package (http://proline.profiproteomics.fr/) for post-processing.

Proteins were validated with Mascot pretty rank equal to 1, 1% FDR

on both peptide spectrum matches (PSM) and protein sets (based on

score). The total number of MS/MS fragmentation spectra was used

to quantify each protein in the different samples.

For the statistical analysis of the co-immunoprecipitation data,

we compared the data collected from multiple experiments against

the negative control IPs using a homebrewed R package as

described previously (Chicois et al, 2018) except that that the size

factor used to scale samples was calculated according to the DESeq

normalization method [i.e. median of ratios method (Anders &

Huber, 2010)]. The package calculates the fold change and an

adjusted P-value corrected by Benjamini–Hochberg for each identi-

fied protein (and visualizes the data in volcano plots).

Native-PAGE and proteasome in-Gel peptidase activity assay

Patient and control fibroblasts were lysed in equal amounts of TSDG

buffer (10 mM Tris pH 7.0, 10 mM NaCl, 25 mM KCl, 1.1 mM

MgCl2, 0.1 mM EDTA, 2 mM DTT, 2 mM ATP, 1 mM NaN3, 20%

Glycerol) prior to protein quantification using a standard BCA assay

(Pierce) following the manufacturer’s instructions. Twenty micro-

grams of whole-cell extracts were loaded on 3–12% gradient native-

PAGE gels (Invitrogen) and subsequently subjected to a 16-h elec-

trophoresis at 45 V using a running buffer consisting of 50 mM

BisTris/Tricine, pH 6.8. Chymotrypsin-like activity of the separated

proteasome complexes was then measured by incubating 0.1 mM of

the suc-LLVY-AMC substrate (Bachem) at 37°C for 20 min in a final

volume of 10 ml of overlay buffer (20 mM Tris, 5 mM MgCl2, pH

7.0). Proteasome bands were then visualized by exposure of the gel

to UV light at 360 nm and detected at 460 nm using an Imager.

Measurement of proteasome activity in crude extracts

Ten micrograms of whole-cell extracts deriving from control and

patient fibroblasts was tested for chymotrypsin-like activity by expos-

ing the cell lysates to 0.1 mM of the Suc-LLVY-AMC peptide. Assays

were carried out in a 100 ll reaction volume of ATP/DTT lysis buffer

at 37°C. The rate of cleavage of fluorogenic peptide substrate was

determined by monitoring the fluorescence of released aminomethyl-

coumarin using a plate reader at an excitation wavelength of 360 nm

and emission wavelength of 460 nm over a period of 120 min.

Western blot analysis

For Western blotting, equal amounts of RIPA (50 mM Tris pH 7.5,

150 mM NaCl, 2 mM EDTA, 1 mM N-ethylmaleimide, 10 lM MG-

132, 1% NP-40, 0.1% SDS) buffered protein extracts from control
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and patient fibroblasts were separated in SDS-Laemmli gels (12.5 or

10%). Briefly, following separation, proteins were transferred to

PVDF membranes (200 V for 1 h) blocked with 1× Roti�-Block (Carl

Roth) for 20 min at room temperature under shaking and subse-

quently probed overnight at 4°C with relevant primary antibodies.

The anti-Alpha6 (clone MCP20), anti-Beta1 (clone MCP421), anti-

Beta2 (clone MCP165), anti-Rpt1 (PSMC2, BML-PW8315), anti-Rpt2

(PSMC1, BML-PW0530), anti-Rpt3 (PSMC4, clone TBP7-27), anti-

Rpt4 (PSMC6, clone p42-23), anti-Rpt5 (PSMC3, BML-PW8310) and

anti-Rpt6 (PSMC5, clone p45-110) primary antibodies were

purchased from Enzo Life Sciences. The anti-Beta1i (LMP2, K221)

and anti-PA28-a (K232/1) are laboratory stocks and were used in

previous studies(Poli et al, 2018). Antibodies specific for Beta5

(ab3330) and a-tubulin (clone DM1A, ab7291) were purchased from

Abcam. Primary antibodies specific for TCF11/Nrf1 (clone D5B10)

and ubiquitin (clone D9D5) were obtained from Cell Signaling Tech-

nology. The anti-Beta5i antibody (LMP7, clone A12) was a purchase

from Santa Cruz Biotechnology Inc. After incubation with the

primary antibodies, membranes were washed three times with PBS/

0.4% Tween and incubated with anti-mouse or anti-rabbit HRP

conjugated secondary antibodies (1/5,000). Visualization of

immunoreactive proteins was performed with enhanced chemilumi-

nescence detection kit (ECL) (Bio-Rad). The ImageJ 1.48v software

was used for densitometry analysis of the ECL signals.

Zebrafish analysis

Zebrafish (Danio rerio) maintenance and husbandry
In this study, the zebrafish wild-type line AB2O2 (University of

Oregon, Eugene) and the transgenic line gSAIzGFF539A (National

Institute of Genetics, Mishima, Japan) were used and maintained at

28°C under a 14-h light and 10-h dark cycle as described previously

(Westerfield, 2000). When fish reached sexual maturity, zebrafish

couples were transferred to breeding tanks the day before and

crossed after the beginning of the next light cycle. Fertilized zebra-

fish eggs were raised at 28.5°C in 1× Instant Ocean salt solution

(Aquarium Systems, Inc.). Zebrafish husbandry and experimental

procedures were performed in accordance with German animal

protection regulations (Regierungspräsidium, Karlsruhe, Germany,

AZ35-9185.81/G-137/10). In all experiments, samples (n) represent

a random selection of a bigger cohort. The status of the zebrafish

was always known to the experimenters.

Microinjections
Injections were performed as described before (Müller et al, 1999).

Morpholinos psmc3-mo (TGTGAATCACAGTATGAAGCGTGCC, Gene-

tools LLC, Oregon) and ctrl-mo (5-bp mismatched) (TGTCAATGA-

GAGTATCAACCGTGCC, Genetools LLC, Oregon) were injected at

0.2 mM (Appendix Fig S16). CRISPR guide RNAs were designed with

ChopChop software (Labun et al, 2019) and synthesized with the

MEGAshortscript T7 Transcription Kit (Ambion) according to the

manufacturer’s instructions. For CRISPR/Cas9 injections, 300 ng/ll
of Cas9 protein (GeneArt Platinum Cas9 Nuclease, Invitrogen) and

300 ng/ll guide RNA were combined. Guide RNA1 (G1 binding

sequence: AGATCCTAATGACCAAGAGGAGG) targets exon 4, and

Guide RNA2 (G2 binding sequence: CAGGATATCCACCCTGTTAGT

GG) targets exon 9. The Web interface PCR-F-Seq q (http://iai-gec-se

rver.iai.kit.edu) was used to quantify the cutting efficiency of both

guide RNAs (Etard et al, 2017). For the life imaging experiment, the

transgenic line gSAIzGFF539A, marking the semicircular canals, was

generated using the Gal4-UAS system as described previously

(Asakawa et al, 2008). For rescue experiments, mRNA of zebrafish

psmc3 was synthesized using the mMESSAGE mMACHINE system

(Ambion). Zebrafish psmc3 mRNA was injected at a final concentra-

tion of 10 ng/ll.

PCR amplification and cloning
Total RNA from 24 to 72 hpf zebrafish embryos was extracted using

Tri-reagent (Invitrogen, Carlsbad, CA) and reverse transcribed using

M-MLV Reverse Transcriptase (Promega, Germany). To analyse the

expression pattern of psmc3 in zebrafish embryos, we amplified and

cloned a 956 bp psmc3 fragment into the pGEMT-easy vector

(Promega). For the synthesis of DIG-labelled RNA probes, we used

Apa1 to linearize the plasmid and SP6 to transcribe the anti-sense

RNA DIG probes. To exclude possible off-target effects caused by

morpholino or CRISPR/Cas9 injection, a rescue experiment was

performed. Full-length psmc3 was cloned into pCS2+ using EcoRI,

linearized with NotI and psmc3 full-length RNA synthesized using

the mMESSAGE mMACHINE SP6 Kit (Ambion). To verify the effi-

ciency of morpholino (psmc3-mo), we extracted total RNA from

morpholino-injected embryos using Tri-reagent (Invitrogen, Carls-

bad, CA), transcribed mRNA into cDNA using M-MLV Reverse Tran-

scriptase (Promega, Germany) and checked the effect on the psmc3

splice sites by RT–PCR using the amplification conditions as

described before (Appendix Fig S16B; Müller et al, 1999). Using

Sanger Sequencing, the CRISPR/Cas9 efficiency was assessed

(Appendix Fig S16C and D).

Whole-mount in situ hybridization
In situ hybridization was performed as previously described (Crow

& Stockdale, 1986; Oxtoby & Jowett, 1993; Costa et al, 2002). To

suppress melanogenesis, 20 hpf zebrafish embryos were transferred

and raised in water supplemented with 200 mM 1-phenyl 2-thiourea

(PTU). Probes targeting the messenger RNAs of the genes krox20,

msxc, her8a and sox19b were obtained from Armant et al (2013).

Plasmids to generate probes targeting otopetrin, versican and versi-

can b were provided by the laboratory of Tanya Whitfield.

Immunohistochemistry
Immunostaining of whole zebrafish embryos after 5 dpf was

performed as previously described (Leventea et al, 2016) and imaged

with Leica TCS SP5 confocal microscope. Antibodies are indicated in

Appendix Table S7. For TUNEL staining, we used the ApopTag� Red

In Situ Apoptosis Detection Kit (Millipore). For imaging the hair cells,

we incubated 5 dpf embryos in a solution of 6 lM of FM1-43 (Life

technology), for 1 min, wash them in E3 water, anaesthetized with

0.0168% (w/v) MESAB and embedded them into 0.5% (w/v) low

melting point agarose chilled to 37°C in a lateral position.

Microscopy
To examine the eye and ear phenotype in morphants and crispants,

we anaesthetized living embryos with 0.0168% (w/v) MESAB (tri-

caine methanesulfonate, MS-222; Sigma-Aldrich, Taufkirchen,

Germany) and embedded them into 0.5% (w/v) low melting point

agarose chilled to 37°C in a lateral position with one eye/ear facing

towards the objective. Confocal reflection microscopy was used to
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examine zebrafish eyes for abnormal light reflection evoked through

cataract as previously described (Takamiya et al, 2016) and imaged

with the Leica TCS SP2 confocal system with a 63× water immersion

objective. Brightfield and fluorescence real-time imaging of zebra-

fish ears were acquired using the Leica TCS SP5 confocal micro-

scope with a 63× and 40× water immersion objective.

Statistics

For in vitro and in vivo experiments, sample sizes were chosen

according to the standard practice in the field. For humans, sample

size was limited by the patient’s sample available. In all zebrafish

experiments, samples (n) represent a random selection of a bigger

cohort. The status of the zebrafish was always known to the experi-

menters. Results are reported as mean � standard deviation (SD) or

(SEM) for the number of experiments indicated in the legends of each

figure or table. Statistical analyses were performed using either Excel

(Microsoft, USA) or the Prism software (GraphPad, USA). In most of

the cases, we used a Student’s t-test to compare two groups of

normally distributed data. Significance levels and number of samples/

replicates are indicated in each figure legends. All P-values for main

Figures and appendix figures can be found in the Appendix Table S8.

Data availability

The data sets produced in this study are available in the following

databases:

• WGS sequences: European Genome-Phenome Archive (EGA)

EGAS00001003942 (https://ega-archive.org/studies/EGAS000010

03942)

• Protein interaction AP-MS data: Protein identifications database

(PRIDE) PXD015836 (http://www.ebi.ac.uk/pride/archive/projec

ts/PXD015836)

• Human variations: ClinVar SCV000864220.1 (https://www.ncbi.

nlm.nih.gov/clinvar/SCV000864220)

Expanded View for this article is available online.
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The paper explained

Problem
Early-onset deafness is one of the most common causes of develop-
mental disorder in children (prevalence of 2–4/1,000 infants), and
similarly, early-onset cataract is the most important cause of paedi-
atric visual impairment worldwide (prevalence 2–13.6/10,000)
accounting for 10% of the causes of childhood blindness. Many genes
have already been implicated for each of these conditions indepen-
dently but only very few genes identified when cataract and early-
onset deafness occur together. Indeed, patients with both conditions
are very rare and often linked to teratogenic exposure during preg-
nancy. In this study, we therefore aim at identifying the molecular
cause of cases with syndromic early-onset deafness and congenital
cataracts.

Results
Using whole-genome sequencing combined with homozygosity
mapping and bioinformatics prioritization, we uncovered a homozy-
gous deep intronic variation in the PSMC3 gene in three affected
patients from a very large consanguineous family presenting with
early-onset cataract and deafness. PSMC3 encodes one of the
proteasome subunits and more specifically Rpt5, the 26S proteasome
AAA-ATPase subunit of the 19S proteasome complex responsible for
recognition, unfolding and translocation of substrates into the 20S
proteolytic cavity of the proteasome. The ubiquitin–proteasome
system (UPS) is a major cellular system that degrades ubiquitin-
modified proteins to maintain protein homeostasis and to control
signalling including development. Using multiple approaches includ-
ing proteomics, cellular biology (on patient’s cells) and animal
modelling (zebrafish), we could confirm the impact of this variation
(transcription of a cryptic exon introducing a stop codon) on protea-
some function and linked this to the patients’ phenotype.

Impact
This is the first implication of the 26S proteasome AAA-ATPase
subunit in a disease with the description of biallelic pathogenic
variations in the context of the emerging proteasomopathies that
include PSMA3, PSMB1, PSMB4, PSMB8, PSMB9, PSMD12, PSMG2 and
POMP genes that are linked to loss-of-function variations. These
results open new insights into the role of the proteasome or at
least PSMC3 in inner ear, lens and central nervous system develop-
ment. Identifying novel genes implicated in such rare diseases will
improve the genetic counselling and give affected families the
opportunity to have access to preimplantation genetic diagnosis
and prenatal testing.
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