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Abstract. We study axial core oscillations due to xenon poisoning in thermal neutron nuclear reactors with
simple 1D models: a linear one-group model, a linear two-group model, and a non-linear model taking the
Doppler effect into account. Even though nuclear reactor operators have some 3D computer codes to simulate
such phenomena, we think that simple models are useful to identify the sensitive parameters, and study the
efficiency of basic control laws. Our results are that, for the one-group model, if we denote the migration area by
M2 and by H the height of the core, the sensitive parameter is H/M. H being fixed, for the 2 groups model, there
are still 2 sensitive parameters, the first one being replaced byM2

1 þM2
2 whereM

2
1 denotes themigration area for

fast neutrons and M2
2 the migration area for thermal neutrons. We show that the Doppler effect reduces the

instability of xenon oscillations in a significant way. Finally, we show that some proportional/integral/
derivative (PID) feedback control law can damp out xenon oscillations in a similar way to the well-known
Shimazu control law [Y. Shimazu, Continuous guidance procedure for xenon oscillation control, J. Nucl. Sci.
Technol. 32, 1159 (1995)]. The numerical models described in our paper have been applied
to PWR.
1 Introduction

A lot of publications can be found in the literature on
the problem of xenon oscillations in nuclear reactors
[1–10].

As reported in [1] xenon oscillations have occurred in
Savannah River as early as in 1955.

The fact is that 54
135Xe is the fission product with the

highest capture cross section and that it can be produced
either directly or via beta-decay of another fission product
which is 54

135I .
Axial core oscillations have been first studied with two

zones lumped models, and then by a one group diffusion
model coupled to the evolution equations for xenon and
iodine.

The first question is whether we should use a
time dependent diffusion equation like in [11] or a
stationary diffusion equation like in [1] and many other
References

With the former approach, we benefit from theoretical
results on the Hopf bifurcation on non linear systems.With
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the latter it seems possible to prove theoretical results on
the linearized system only.

More precisely, mathematical criteria have been found
for the sign of the real part of the eigenvalues of the
linearized system (see e.g. [4]).

Physically, there are at least three time scales in the
core of a nuclear reactor: the prompt neutrons life time
(∼20ms), the delayed neutrons time scale (∼1 s), and the
time scale for xenon oscillations (∼5 h).

A two-group time-dependent model taking the delayed
neutrons into account is described in Ponçot’s thesis [10].

Practically, in a PWR, criticality of the core is ensured
by adjusting either the Boron concentration or by using
the control rods. At the time scale of xenon oscillations, we
can assume that the core is critical, so that there is no need
to consider a time-dependent equation for the neutron
flux.

Rather, at each time step, the xenon concentration
being given, it is appropriate to solve an eigenvalue
problem.

The second question is whether we should use a one-
group model or a two-group model (one group for fast
neutrons, one group for thermal neutrons) like the one
considered in [10].
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
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Indeed, since the xenon capture cross section is
significant for thermal neutrons only, one might think
that it is more appropriate to introduce a two-group
model.

In the present paper, we show that it is possible to
derive a one-group model with the same behavior as our
two-group model provided that, in the one-group model,
the diffusion equation holds for the thermal neutron flux
only and that the migration area is selected in an adequate
way.

We show that for both one-group and two-group
models, the height of the core and the magnitude of the
neutron flux are sensitive parameters.

In [12], we have shown that, as far as xenon oscillations
are concerned, introducing a reflector is equivalent to
increasing the height of the core.

After showing that the one-group model is possible, we
add a nonlinear term in the diffusion equation to take the
Doppler effect into account: like in [1], we find that it helps
damping out the oscillations.

Finally, we address the question, which is of primary
importance, of how to better control the oscillations.

We test the well-known Shimazu control law [13–15].
We check that it is efficient as expected, but we show

that a PID control strategy can also be applied.
Our models are presented in a mathematical way, and

we use adequate rescaling methods both to reduce the
number of parameters and to facilitate their application
(which is outside the scope of this work) to other thermal
neutron reactors like CANDUorHTR. The results we show
below are related to PWR.
2 The 1 group diffusion model

According to the neutron transport theory and the
diffusion theory, the one group diffusion equation for a
homogeneous reactor can be written, in the uniaxial case,
as:

�M2F00 þ F ¼ k∞F; 0 < z < H; ð1Þ
whereH is the height of the core.F is the neutron flux of the
core in n/cm2/s and M2 denotes the migration area in cm2.
This differential equation should be completed by some
boundary conditions (BC). In the following we shall choose
the Dirichlet BC:

Fð0Þ ¼ FðHÞ ¼ 0: ð2Þ
We refer the reader to [3] for the Fourier BC.
In a one group model, the migration area is arbitrarily

evaluated by taking into account both fast and thermal
neutrons.

In the present section which is dedicated to the
one-group model, the solution F to equation (2) will
be assumed to be the thermal neutron flux in the
core.

We remind the reader that (1) and (2) is an eigenvalue
problem and then that F is defined up to a multiplicative
factor.
2.1 Introduction of iodine and xenon

We have the following evolution equations:
dY

dt
¼ gSfF� lY ; ð3Þ

dX

dt
¼ g 0 SfFþ lY � ðmþ sFÞX; ð4Þ

where:

–
 Y (resp.X) is the concentration of 53

135I (resp. 54
135Xe) in the

fuel evaluated in at/cm3 of fuel;

–
 s is the microscopic capture cross section for xenon in the
thermal domain (evaluated in barns);
–
 Sf is the macroscopic fission cross section of the fuel in
the thermal domain;
–
 g the iodine fission yield (about equal to 0.064 for UO2
fuel);
–
 g 0 the xenon fission yield (about equal to 0.001 for UO2
fuel);
–
 l (resp. m) the time constant for the b � decay of 53
135I

(resp. 54
135Xe).

For the sake of simplicity, in the following, we shall
neglect xenon generation from fission reaction directly,
which is possible since g 0≪ g.

Note that in (3) and (4) Sf is evaluated in cm�1 and F
in n/cm2/s.

The core is assumed to be homogenized so that, in each
cm3 of core, there are v cm3 of fuel and (1� v) cm3 of
moderator. In a PWR we have v ∼ 1/3 so that the
moderation ratio (1� v)/v∼ 2.

Since there are vX at/cm3 of 54
135Xe in the core, the

xenon macroscopic cross section is equal to vsX Once
taking into account the neutron capture by 54

135Xe equation
(1) has to be replaced by

�M2 ∂2

∂z2
Fþ ð1þ aXÞF ¼ k∞F; 0 < z < H; ð5Þ

where a=vs/ S andS is the absorption cross section of the
core.

Inviewof (3)and(4)weshallhaveY=Y(z, t),X=X(z, t)
and then F=F(z, t) from (5).
2.2 Rescaling of the one group model

Following [16] we let

Fðz; tÞ ¼ F�’ðz; tÞ;

Xðz; tÞ ¼ X�xðz; tÞ;

Y ðz; tÞ ¼ Y �yðz; tÞ:
Wealso replace t by t= lt, andwe letF�=l/s, a =m/l

and X� ¼ gSfF�
l

¼ gSf

s
. We get the simpler system



Table 1. Typical numerical data for our one-group model
(see [11] p. 382).

l 2.92 � 10�5 s�1 Sf 0.246 cm�1

m 2.12 � 10�5 s�1 S 0.115 cm�1

a 0.725 F� 1.459 � 1013 n/cm2/s
g 0.064 Y* 7.87 � 1015 at/cm3

s 2 � 106 barns X* 7.87 � 1015 at/cm3

v 1/3 a� 0.0452
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dy

dt
¼ ’ � y; ð6Þ

dx

dt
¼ y � ðaþ ’Þx: ð7Þ

Finally, let a� ¼ aX� ¼ vs

S
:
gSf

s
¼ v:

gSf

S
, we get

�M2 ∂2

∂z2
’þ ð1þ a�xÞ’ ¼ k∞’; 0 < z < H: ð8Þ

X� has the following interpretation: it is the equilibrium
value for the concentration of 135Xe atoms when the
neutron flux is infinitely large.

Equations (6)–(8) completed with Dirichlet BC is the
one-group system which we shall solve.

We could have also changed the space variable z→ Z/M
to prove that the main parameter is H/M.

Typical values of the parameters to be selected for
PWR reactors are shown in Table 1.
2.3 Space approximation

We introduce a discretization stepDz=H / (N+1) whereN
is the number of discretization points. We now denote by ’
the column-vector of values or the rescaled thermal
neutron flux at the discretization points i Dz, 1 � i � N.
(Our numerical results will be obtained with N=39, but
this is not a sensitive parameter.)

We introduce the tridiagonal matrix A such that

ðA’Þi ¼ ð�’i�1 þ 2’i � ’iþ1Þ=Dz2;

where we assume that ’0= 0 and ’N+1=0 which
corresponds to the Dirichlet boundary conditions.

We shall make the following convention : (x’)i= xi’i,
which means that, depending on the context x may
denote either a vector inℝN or the N�N diagonal matrix
containing the components of x on its main diagonal.

Let {y∞, x∞, ’∞} be a steady solution of (6)–(8)
satisfying

ðaþ ’∞Þx∞ ¼ y∞ ¼ ’∞ ; ð9Þ

M2A’∞ þ ð1þ a�x∞Þ’∞ ¼ k∞’∞: ð10Þ
We note that the solution {y∞, x∞, ’∞} of (9) and (10)

cannot be unique: in fact x∞ being given, (10) is an
eigenvalue problem (which means that the core is critical)
so that ’∞ is defined up to a multiplicative constant and we
fix this constant so that the core power is given.

In the case where our steady solution {y∞, x∞, ’∞} is
not stable, if we start from {ya, xa} close to {y∞, x∞} we
shall activate an oscillation. This means that the reactor
core is unstable.

2.4 Time discretization: semi implicit scheme

We denote the time step by d. We let tn=nd.
We use the following semi implicit scheme:
First step, solve

yn � d ’n�1 � yn
� �� yn�1 ¼ 0;

xn � d yn � ðaþ ’n�1Þxn
� �� xn�1 ¼ 0:

Second step, solve

M2Aþ ðI þ a�xnÞ� �
’n ¼ k∞’

n:

Which produces both a value for kn∞ (the smallest
eigenvalue) and a (non-unique) value for ’n.

Then we replace ’n by ’n times’ = averageð’nÞ, where ’
is a prescribed value for the average of the (normalized)
flux.
2.5 Results with the one group model

When the average flux is sufficiently high the flux
oscillations are first growing and then stabilize.

A typical result is given in Figure 1 for which ’ ¼ 3,
which is a rather high value since 3F* = 4.38 �
1013 n/cm2/s.

To illustrate the evolution of the oscillations we shall
use the Axial Offset AOp defined by AOp=(Pt � Pb)/
(Pt+Pb) where Pt (resp. Pb) is the average power (or
neutron thermal flux) in the upper (resp. lower) half part of
the core.

Figure 2 shows the evolution of AOp with the reduced
time t.

We see that the oscillations are

–
 damped out when M2 = 100 cm2 and ’ ¼ 1:5;

–
 stable when M2 = 64 cm2 and ’ ¼ 1:1;

–
 growing when M 2 = 100 cm2 and ’ ¼ 2:35 or 3 or M 2 =
64 cm2 and ’ ¼ 3.

When the oscillations are growing they reach a limit
cycle, and this is because we ensure criticality at all times.
Now from the operator’s point of view these oscillations are
instabilities.

On a standard PWRwe know that the migration area is
more like 64 cm2. Note that the period of oscillations
depends both on the migration area and on ’: it can
range between 28 and 36 h, which is consistent with the
measurements made in actual PWR [17] (∼30 h for a
900 MWe [5]).



Fig. 1. The oscillation of neutron flux in 1 group model with M2= 64 cm2.

Fig. 2. Evolution of the axial offset AOp for various values of ’ ¼ P and M2=M2.
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In Figure 3 we show the influence of the height of the
core on the oscillations.

When the reactor core is lower than 250 cm, no
oscillation is activated. Once the height is more than
300 cm, a growing oscillation can be produced. Moreover,
the higher the height is, the bigger AOp is.
3 The 2-group model

There are many neutrons with different energy in a reactor
core. It is usually considered that the fast neutrons possess
an energy more than 0.625 eV, and on the contrary, that
the thermal neutrons have an energy less than 0.625 eV.



Fig. 3. Evolution of AOp for various values of height.
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Applying the data in [11], the thermal neutron flux is
equal to 3.7� 1013 n/cm2/s in average in the fuel pins of a
PWR. In addition, the fast neutron flux is almost 7 times as
high as the thermal neutron flux. It’s then approximately
equal to 2.7� 1014 n/cm2/s in average in the fuel. Even
though the highest flux in a PWR core corresponds to the
fast domain, more than 80% of the fissions happen in the
thermal domain. For a 1300 MWe PWR, there are
about 1.1� 1013 fissions/cm3/s in the fuel at nominal
power (3800 MWth).

LetC (resp. F) denote the fast (resp. thermal) neutron
flux, we shall use the following system of coupled diffusion
equations

�D1
∂2

∂ z2
Cþ S1C ¼ n vSf2Fþ n vSf1C; ð11Þ

�D2
∂2

∂ z2
Fþ S2Fþ vsXF ¼ pS1C: ð12Þ

Like in Section 2,vsX is the xenonmacroscopic capture
cross section : it should be added to S2.

In the same way, if Sf1 (resp. Sf2) denotes the
macroscopic fission cross section of the fuel in the fast
(resp. thermal) neutron domain, vS f1C (resp. vS f2F)
denotes the number of fast (resp. thermal) fission per cm3

per s in the core.
Note that the xenon capture cross section is negligible

for fast neutrons.
Now, S1C is the number of fast neutrons which

disappear per cm3 per s. Some of them are physically
absorbed but a fraction p of them reappear, after slowing
down, in the thermal neutron group.
The factor p appears to be the resonance escape
probability from Enrico Fermi’s four factors formula.

For the sake of simplicity, we shall assume that the
diffusion coefficients do not depend on the space variable z.

Even though (11) and (12) are stationary diffusion
equations, we may have X = X(z, t).

The xenon evolution is coupled to the iodine evolution
through

dY

dt
¼ g Sf1Cþ Sf2F

� �� lY ; ð13Þ

dX

dt
¼ lY � ðmþ sFÞX: ð14Þ

Such an evolution is rather slow at the scale of one hour,
so there is no need to consider the neutron evolution at the
timescale of delayed neutrons.

The 2 groups model will be complemented by some
boundary conditions for the neutron flux.

We shall mainly consider the Dirichlet boundary
conditions

Cð0Þ ¼ CðHÞ ¼ Fð0Þ ¼ FðHÞ ð15Þ
but it is also possible to consider the Fourier boundary
conditions.

Remark: The number of neutrons produced by fast
fission of 92

235U is actually 2.8, but, for the sake of simplicity,
we choose n=2.4 both for 92

238U and 92
235U . However, it

would be easy to change the term nvS f1C in (11) by
n1vS f1C where n1 is some appropriate average of 2.4
and 2.8.
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3.1 Rescaling of the 2-group model

Like in Section 2 the system (11)–(14) can be simplified.

At first, let

M2
1 ¼

D1

S1
, M2

2 ¼
D2

S2
, k∞;1 ¼ n vSf1

S1
,

k∞;2 ¼ n vpSf2

S2
and a ¼ vs

S2
.

Then, we rewrite the variables F=F�’,C = C�c,
X=X�x, Y=Y�y, t = lt.

And we obtain

�C�M2
1

∂2

∂ z2
c þC�c ¼ k∞;1C�c þ k∞;2

S2

pS1
F�’

�F�M2
2

∂2

∂ z2
’ þ F�’ þ aX�F�x’ ¼ pS1

S2
C�c

lY �
dy

dt
¼ g Sf1C�cþ Sf2F�’

� �� lY �y

lX�
dx

dt
¼ lX�y � ðmþ sF�’ÞX�x:

To simplify the above equations, we chooseX*=Y* and

F� ¼ pS1

S2
C�

�M2
1

∂2

∂z2
cþc ¼ k∞;1cþ k∞;2’

�M2
2

∂2

∂z2
’þð1þ aX�xÞ’ ¼ c

lY �
dy

dt
¼ g Sf1C�cþ Sf2F�’

� �� lY �y

l
dx

dt
¼ ly� ðmþ sF�’Þx:

If we choose

F� ¼ l

s
, a ¼ m

l
, X� ¼ gSf2F�

l
¼ gSf2

s
,

z ¼ gSf2C�
lX�

¼ Sf1S2

pS1Sf2
¼ k∞;1

k∞;2
,

a� ¼ aX� ¼ vs

S2

gSf2

s
¼ g vSf2

S2
.

We can simplify the system one more time and we have

�M2
1

∂2

∂ z2
cþ c ¼ k∞;1cþ k∞;2’ ¼ k∞;2 ðz cþ ’Þ;

ð16Þ
�M2
2

∂2

∂ z2
’þ 1þ a�xð Þ’ ¼ c; ð17Þ

dy

dt
¼ zcþ ’ � y; ð18Þ

dx

dt
¼ y� ðaþ ’Þx: ð19Þ

3.2 Space approximation

We introduce the tridiagonal matrix A as in Section 2.
Let {y∞, x∞,’∞,c∞} be a steady solution of (16)–(19)

satisfying

ðaþ ’∞Þx∞ ¼ y∞ ¼ zc∞ þ ’∞; ð20Þ

M2
1Ac∞ þ ð1� k∞;1Þc∞ � k∞;2’∞ ¼ 0 ð21Þ

M2
2A’∞ þ ð1þ a�x∞Þ’∞ � c∞ ¼ 0: ð22Þ

The parameter k∞,1 being given, let B=B(x, k∞, 2)
denote the 2N � 2N matrix defined by

B ¼ M2
2Aþ ðI þ a�xÞ �I

�k∞;2 M2
1Aþ ð1� k∞;1ÞI

 !
:

The solution {y∞, x∞,’∞,c∞} of (20), (21) and (22)

cannot be unique:
’∞
c∞

� �
does not vanish only if

KerB(x∞,k∞,2) is not reduced to
0
0

� �
, which means that

the core is critical, in which case

’∞

c∞

 !
∈ KerBðx∞;k∞;2Þ

(NB. Applying the Perron-Frobenius theorem to matrix
(aI+B)�1 we see that dim(Ker B) = 1).

After elimination of c∞ thanks to (22) we find that k∞,2
is the smallest eigenvalue of

M2
1Aþ ð1� k∞;1ÞI

� �
M2

2Aþ ðI þ a�xÞ
� �

’∞ ¼ k∞;2’∞.

And this is the way we compute k∞,2.
As in the one-group model, if our steady solution is not

stable, even if we start from {ya, xa} close to {y∞, x∞} we
may activate an oscillation. Like above this means that the
reactor is unstable.

To simulate such a perturbation, the xenon concen-
tration will be increased by 10% in the half lower part of
the core. In the half upper part, it will be decreased by 10%.

3.3 Time discretization: semi implicit scheme

Weproceed as in Section 2 and introduce the following semi
implicit scheme:



Table 2. Typical numerical data for our 2-group model.

Sf1 0.007 cm�1 k∞;2 1.017
Sf2 0.246 cm�1 a* 0.0452
S1 0.025 cm�1 z 0.274
S2 0.119 cm�1 a 0.725
n 2,4 C� 9.870 × 1013 n/cm2/s
p 0.616 F� 1.459 × 1013 n/cm2/s
k∞,1 0.224

Fig. 4. The oscillation of neutron flux in the 2-group model with M2
1 ¼ 55 cm2; M2

2 ¼ 9 cm2.
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First step, solve

yn � d zcn�1 þ ’n�1 � yn
� �� yn�1 ¼ 0;

xn � d yn � ðaþ ’n�1Þ� �
xn � xn�1 ¼ 0:

Second step, solve

M2
1Aþ ð1� k∞;1ÞI

� �
M2

2Aþ ðI þ a�xnÞ� �
’n ¼ k∞;2’

n;

which produces both a value for kn∞ and a (non-unique)
value for ’n.

Then we replace ’n by ’n times’=average ð’nÞ, where
’ is a prescribed value for the average of the (normalized)
flux.

Typical values of the parameters to be selected for
PWR reactors are shown in Table 2.
3.4 Numerical results

The power of the reactor will be maintained constant which
means the average neutron flux is fixed. ’ave ¼ ’ ¼ 3 so
that F�,ave = 3F*= 4.38 � 1013 n/cm2/s. (This is some-
what too high for a PWR reactor).

In Figure 4 we give the thermal flux profile as a function
of time. This should be compared to Figure 1. We notice
that when M2 ¼ M2

1 þM2
2 (which is the case here) the

results given by the one group and the two-group models
look pretty much the same.

(We have observed in our results that ’ ≅ c, but this is
no surprise when we consider (17): this results from a�x≪ 1
and from M2 ≪H.)

In Figure 5 we compare one group and two-group
results. We plot AOp as a function of the reduced time t.
We see that the behavior of one and two group model is
very much the same. This is because we have selected the
same (Dirichlet) boundary for both fluxes.

We check again that themigration area has a significant
influence on the time-period of oscillations.
4 The non-linear model (power feedback
effect)

Most water moderated reactors have a negative moderator
temperature coefficient, which means that when the
moderator temperature increases, the reactivity of the
core decreases (see e.g. [6]).

For lightly enriched Uranium fuel there is also a
negative fuel temperature coefficient which is due to the



Fig. 5. One group vs two-group.
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Doppler effect which leads to a broadening of isotope
capture resonances of U238.

Controlling the chain reaction is obviously of primary
importance for nuclear safety.

Such negative temperature effects are then very
useful.

Like in [3] we shall use the following nonlinear
model:

�M2 ∂2

∂z2
’ þ ð1þ a�xÞ’ ¼ k∞ð1� b’Þ’; ð23Þ

dy

dt
¼ ’ � y; ð24Þ

dx

dt
¼ y� ðaþ ’Þx: ð25Þ

b is the prompt power feedback coefficient. It takes the
Doppler effect into account and is determined by the
temperature difference between the actual reactor shut-
down and full power operation, independent of other
parameters (time, boron, flux etc.).

This model accurately describes what happens with the
fuel (Doppler) temperature effect.

To take into account the moderator temperature effect,
we should compute the moderator temperature locally,
which would mean coupling neutron diffusion equations
and thermal hydraulics.

To keep simplemodels, we shall not do that andwe refer
the reader to [18] for a simplified approach.
4.1 Space approximation

Proceeding like in Section 3, we obtain the following system

dy

dt
¼ ’ � y; ð26Þ

dx

dt
¼ y � ða þ ’Þx; ð27Þ

A’ þ ð1 þ a� xÞ’ ¼ k∞ð1 � b’Þ’ : ð28Þ
Algorithm : we notice that (26)–(28) is a particular case

of the following differential system:

_y ¼ Eðy; x; ’Þ; ð29Þ

_x ¼ Fðy; x; ’Þ; ð30Þ

0 ¼ Gðy; x; ’Þ; ð31Þ
where

y(t), x(t), ’(t) ∊ ℝN

E : ℝN�ℝN�ℝN → ℝN,

F : ℝN�ℝN�ℝN → ℝN,

G : ℝN�ℝN�ℝN → ℝN,

which we should complement with initial conditions:

y(0)= ya; x(0)= xa.

When we do not take the temperature effect into
account (i− ewhenb = 0) the RHS of (28) is just equal to



Fig. 6. The oscillation of neutron flux in 1 group model with the
Doppler effect b = 0.01/3.
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k∞’ which means that (28) is an eigenvalue problem.
Therefore, it has a solution ’≥ 0 only if k∞ is equal to the
smallest eigenvalue of matrix

C ¼ CðxÞ ¼ Aþ ð1 þ a� xÞ:
In the nonlinear case (b> 0) we can hope (and that’s

what we see in our simulations) that if k∞ is larger than this
smallest eigenvalue, (28) will have a solution ’, and that
this solution is larger if k∞ increases.

To identify (26)–(28) and (29)–(31) we need to
choose

Eðy; x; ’Þ ¼ ’ � y;

Fðy; x; ’Þ ¼ y� ðaþ ’Þx;

Gðy; x; ’Þ ¼ A’ þ ð1þ a�xÞ’ � k∞ð1� b ’Þ’:

4.2 Time discretization: fully implicit scheme

We have used successfully the following fully implicit
scheme.

yn � yn�1
� �

=d ¼ E yn; xn; ’nð Þ; ð32Þ

xn � xn�1
� �

=d ¼ F yn; xn; ’nð Þ; ð33Þ

0 ¼ G yn; xn; ’nð Þ: ð34Þ
This seems quite obvious, however we note that in a

nuclear reactor, when the power is given, it means
the average value of the flux is equal to ’, the reactivity
is adjusted to zero not by the Doppler effect, but by
the boron concentration, which means that the control
system selects kn∞ as the smallest eigenvalue of
matrix.

Aþ ð1þ a�xnÞ þ kn�1
∞ b’� ð35Þ

where ’�=mn’
n and mn ¼ ’=averageð’nÞ. We leave to the

reader the details of implementation of Newton’s method
to solve the non-linear system (32)–(34) of 3N equations for
3N unknowns.
4.3 Time discretization: semi implicit scheme

Step 1: Like in the fully implicit scheme, we evaluate the
smallest eigenvalue kn∞ of the matrix A defined in (35).

Step 2: Knowing yn, xn we compute ’n by solving the
N � N non-linear system

G yn; xn; ’nð Þ ¼ 0:

(For this, we use Newton’s method).
Step 3: We compute yn+1, xn+1 with:

ynþ1 � yn
� �

=d ¼ E ynþ1; xnþ1; ’n
� �

;

xnþ1 � xn
� �

=d ¼ F ynþ1; xnþ1; ’n
� �

:

Remarks:

–
 the algorithm we use in the linear case (b=0) is basically
the same, except that we avoid step 2;
–
 the results we obtained with both algorithms are almost
the same.

4.4 How to choose b?

In PWR1300MWe, the rated reactor power corresponds to
’ ∼ 3.

The “power defect” in the EDF terminology is of the
order of 2000 pcm. But we’re only going to take the Doppler
effect which is of the order of 1000 pcm. (In fact, differing
from the Doppler effect, the moderator effect is not a local
effect because of the water circulation in the core, and
therefore an increase in its temperature certainly reduces
the reactivity of the core, but over much of its height).

This means that we consider bFmoy ≅ 0.01.
Even with the Doppler effect, some oscillations can be

observed in Figure 6. From Figure 7, we see that, with
the Doppler effect, the amplitude of the oscillation
decreases.

4.5 Shimazu’s representation

Like Shimazu [13] we introduce another axial offset for
iodine

AOY= (Yt � Yb)/(Yt+Yb).



Fig. 7. Evolution of AOp with/without Doppler effect (b = 0.01/3).

Fig. 8. Shimazu’s representation with/without Doppler effect.
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And a different one for xenon

AOx=(Xt � Xb)/(Xt +Xb � 2. * Xt * Xb).

NB. Note that at constant power the normalized xenon
level should be< 1 so that we have bothXt < 1 andXb> 1,
which proves that

Xt+Xb � 2.* Xt * Xb=Xt (1 – Xb)+Xb(1 – Xt) > 0.

Shimazu’s ellipses are a special representation of
the results where we plot AOY � AOX with respect to
AOp � AOX. Here is what we get withM2 =100 cm2, ’ ¼ 3
and a�=0.0386. The initial point starts from the horizontal
axis. It turns in the trigonometric sense. Note that the
curve looks more like a divergent spiral than an ellipse in
case there is no Doppler effect in Figure 8. However, as can
be seen in Figure 9 it converges to a limit ellipse if we follow
it on a sufficient period of time. When we take the Doppler
effect into account the spiral is convergent to origin which
means that the oscillations are killed.

Comparing with the diverging curve of the model
without the Doppler effect, we can draw a conclusion: the
Doppler effect effectively weakens the oscillation. Actually,
the Doppler effect plays an important role in the inherent
safety of reactor.

However, even if the oscillations are more limited than
without Doppler effect, they still need to be controlled, and
that is what we study in the next section.
5 Control laws

5.1 Shimazu’s control method

Shimazu has been the first to use the axial offsets AOp, AOx
and AOy to control the xenon instability.



Fig. 9. Effect of Shimazu’s control method.
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As has been seen previously, in some circumstances, the
powermay oscillate from the lower part to the upper part of
the core. Now, boron concentration is not the only way to
control reactivity of the core, we also have the control rods.
A natural idea is to insert the control rods when the
neutron flux is high in the upper part of the core, and at the
same time, decrease the boron concentration to avoid shut-
down. Now we should not wait for the time when the power
is maximum in the upper part of the core to insert the
control rods. Rather we should anticipate. Shimazu’s
representation gives a way to do so.

When we drop the control rods, the representative
point will move to the left because AOp will decrease,
however, if we raise the control bars, it will move right.

Note that we use lightly absorbing control rods, which
means that when they are fully inserted, they reduce the
reactivity of the core by 1100 pcm.

As in [16], we select 10 cm for a step.
Here are the criterions:

AO �AO

–
 If AOy � AOx > 0 and y x

AOp�AOx
< tanð’RÞ we raise the

control rods for a step.

To improve the result, if AOy � AOx > 0.2 we raise the
control rods for two steps.

–
 If AOy � AOx < 0 and AOy�AOx

AOp�AOx
< tanð’RÞ we drop the

control rods for a step.

To improve the result, if AOy � AOx < �0.2 we drop
the control rods for two steps.

To calculate ’R, we should use the following formula:

’R ¼ 1

2
arctan

2rsinð’pÞ
1� r2

� �
r¼ AMC

AMp þ AMx

AMC ¼ � AMy:cosð’iÞ þ AMx:cosð’pÞ
� 	2
þ AMy:sinð’iÞ þ AMx:sinð’pÞ
� 	2�1=2

AOx�AOp ¼ AMp þAMx

� �
e�gtcosðvtþ’pÞ

AOy�AOx ¼ AMCe�gtsinðvtÞ
’i et ’p: phase at the initial time of AOy and AOp
respectively.

AMp, AMy, AMx: amplitude of AOp, AOy and AOx
respectively.

g: stability index of the xenon oscillation v: angular
velocity of oscillation.

At the initial moment, it has an oscillation because
there is the disturbance and we used an application named
Origin (https://www.originlab.com/) to get the sinusoidal
functions of AOP and AOI, then we know ’i et ’p and
finally ’R.

We can see in Figure 9 that Shimazu’s method
eliminates the xenon oscillation quite well. (The computa-
tion is carried out with M2= 100 cm2).

5.2 PID method

We wanted to try a more standard PID regulator.
PID is a proportional–integral–derivative controller

which is widely used in industrial control systems.
To regulate a process it has been noticed that the

control should not depend only on the gap between the
observation and the target. Here the control is the rod’s
insertion U(t), the observation is the axial offset AOp, and
the target is zero. In the following, we shall say that the
error is AOp − 0 = AOp.

In the real system we can only compute the controlU(t)
at some discrete times.

Following the PID principle, to define U(t) we shall
combine a proportional term, a derivative term and an
integral term:

UðtÞ ¼ Kp errðtÞ þ 1

Ti

Z
errðtÞdtþ Td � errðtÞ

dt

� �
ð36Þ

After time discretization, we can obtain a new formula

UðkÞ ¼ KpeðkÞ þ KpT

Ti
S
k
n¼0eðnÞ

þKpTd

T
eðkÞ � eðk� 1Þ½ �; ð37Þ

https://www.originlab.com/


Fig. 10. Effect of our PID control strategy (38) with Kp = −75, Ti = 50, Td = 0.01.

Fig. 11. Effect of our PID control strategy (39) with Kd = 130.
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where:
U: variable that can be controlled
err (or e): error (that is AOp)
T: control period (in the following T = 0.02 in reduced

units)
Kp: proportional coefficient.
In the following, we let Ki ¼ KpT

Ti
and Kd ¼ KpTd

T .
Since U denotes the control rod’s position and e the

axial offset AOp, we can describe the position of control
bars by this equation:

x1ðkÞ ¼ 10 30 þ Kp:AOp þKiS
k
n¼0eðnÞ



þKd: eðkÞ � eðk� 1Þ½ �

�
: ð38Þ

Note that we have selected x1 ¼ 300 as the initial
position of our control bars.

Figure 10 shows the results obtained with PID when
M2 = 100 cm2; Kp = �75, Ti = 50, Td = 0.01.

When we use PID regulator to control the system, we
found that Td is a sensitive parameter. Let’s just consider
the differential item: Kd · [e(k) � e(k – 1)].
We let Ti=0 and we neglect the proportional item,
then we can describe the position of control bars by this
equation:

x1ðkÞ ¼ x1ðk� 1Þ þ 10Kd: eðkÞ � eðk� 1Þ½ �; ð39Þ
which means, practically, that when AOp increases, the
control bars should be inserted.

We note that Kd is the more sensitive parameter.
Figure 11 corresponds to Kd = 130.

We can conclude that an adequate PID regulator can
also control the system quite well.
6 Conclusion

Even though Shimazu’s control law has been designed by
using a simple 2 nodes lumped model of the core, it works
well also when applied to a more detailed one group finite
element model of the core.

This is well known by nuclear reactor operators
like EDF who developed the COCCINELLE code
[10,17].
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In our paper, we study in Section 3 a two-group model
and show that it gives basically the same trend as the one
group model, but the choice of physical parameters is more
obvious with the two group model.

Both models show that xenon oscillations are signifi-
cant on large PWR cores.

The oscillations are reduced when some nonlinear
effects like the Doppler effect are taken into account (see
Sect. 4).

However, the xenon oscillations still need to be
controlled.

In Section 5, we show that Shimazu’s method is
efficient, but more standard methods like the widely used
PID regulator are also efficient.

We have applied our numerical models to PWR.
They could be easily applied to BWR since we adjust

criticality at each time by means of a homogeneous type of
control of reactivity (Boron concentration adjustment for a
PWR, recirculation pumps for a BWR). For other reactors
like HTR where criticality is adjusted by means of control
bars only, our python programs should be adapted, but this
is feasible.

The authors would like to thank the referee for clever remarks and
careful reading.
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