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ABSTRACT

Context. The improvement of large size detectors permitted the development of integral field spectrographs (IFSs) in astronomy.
Spectral information for each spatial element of a two-dimensional field of view is obtained thanks to integral field units that spread
the spectra on the 2D grid of the sensor.
Aims. Here we aim to solve the inherent issues raised by standard data-reduction algorithms based on direct mapping of the 2D+λ data
cube: the spectral cross-talk due to the overlap of neighbouring spectra, the spatial correlations of the noise due to the re-interpolation
of the cube on a Cartesian grid, and the artefacts due to the influence of defective pixels.
Methods. The proposed method, Projection, Interpolation, and Convolution (PIC), is based on an “inverse-problems” approach. By
accounting for the overlap of neighbouring spectra as well as the spatial extension in a spectrum of a given wavelength, the model
inversion reduces the spectral cross-talk while deconvolving the spectral dispersion. Considered as missing data, defective pixels un-
detected during the calibration are discarded on-the-fly via a robust penalisation of the data fidelity term.
Results. The calibration of the proposed model is presented for the Spectro-Polarimetric High-contrast Exoplanet REsearch in-
strument (SPHERE). This calibration was applied to extended objects as well as coronagraphic acquisitions dedicated to exoplanet
detection or disc imaging. Artefacts due to badly corrected defective pixels or artificial background structures observed in the cube
reduced by the SPHERE data reduction pipeline are suppressed while the reconstructed spectra are sharper. This reduces the false
detections by the standard exoplanet detection algorithms.
Conclusions. These results show the pertinence of the inverse-problems approach to reduce the raw data produced by IFSs and to
compensate for some of their imperfections. Our modelling forms an initial building block necessary to develop methods that can
reconstruct and/or detect sources directly from the raw data.

Key words. techniques: image processing – techniques: imaging spectroscopy – methods: numerical

1. General context
The pertinence of single-field spectroscopy has been demon-
strated in numerous fields in astrophysics, such as stellar classifi-
cation, chemical analysis, velocity measurement, magnetic field
probing, and so on. In recent decades, a requirement has emerged
to complement this method with increased sampling on extended
objects. While the use of long-slit spectrographs is possible by
scanning the field of view in one direction, this technique is time
consuming and requires precise control of the position in the field
being sampled.

An integral field spectrograph (IFS) combines this spatial
sampling of an object with its spectral information resolved in
different points of the field of view in a single exposure to obtain
2D + λ data. This new technique became available with the rise
of large detectors. Indeed, if the 2D + λ information is three-
dimensional, the detectors remain bi-dimensional. The technique
consists in using an integral field unit (IFU) coupled with a
dispersing element to “unfold” the 3D spatiospectral informa-
tion onto the 2D surface of a sensor of sufficient size. Different
unfolding techniques with dedicated optical components have
been deployed in different kinds of IFSs: fibre bundles, lenslet
arrays and image slices.

Firstly, Vanderriest (1980) proposed the use of an IFU com-
posed of fibre bundles, eventually coupled with a lenslet array to
maximise the flux entering in the cores of the fibres, to conjugate
positions in the field of view with a long slit that disperses their
spectrum. Mapping Nearby Galaxies at Apache Point Observa-
tory (MaNGA) implements this design (Drory et al. 2015).

Secondly, to improve the spatial resolution and limit the light
loss, Courtes (1982) proposed the concept of the Traitement Inté-
gral des Galaxies par l’Étude de leurs Raies (TIGER, Bacon
et al. 1995), which uses a grism behind an IFU composed of
a lenslet array. Many IFSs are based on this principle, such as
for example the Optically Adaptive System for Imaging Spec-
troscopy (OASIS), the Spectrographic Areal Unit for Research
on Optical Nebulae (SAURON, Bacon et al. 2001), the Super-
Novae Integral Field Spectrograph (SNIFS, Lantz et al. 2004),
and the OH-Suppressing Infrared Integral Field Spectrograph
(OSIRIS, Larkin et al. 2006).

Thirdly, to go beyond the limited spectral resolution of the
lenslet arrays, recent instruments based on image slicing IFU, as
proposed by Bowen (1938), were developed such as the Spec-
trograph for INtegral Field Observations in the Near Infrared
(SINFONI, Eisenhauer et al. 2003), the Multi Unit Spectroscopic
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Explorer (MUSE, Bacon et al. 2006), and the Near-Infrared Spec-
trograph (NIRspec, Bagnasco et al. 2007).

These instruments provide a new window onto many astro-
physical phenomena, such as planets and comets of the solar
system, stellar jets, stellar population dynamics, protostars,
galactic X-ray sources, the nuclei of galaxies, active nuclei, inter-
acting galaxies (active galactic nuclei (AGNs) and starbursts),
radiogalaxies, quasar environments, gravitational lenses, and so
on (Vanderriest et al. 1994).

With the development of extreme adaptive optics (Jovanovic
et al. 2015), in the last few years we have witnessed the results of a
new generation of IFSs, such as those incorporated into the Project
1640 IFS (Hinkley et al. 2011, Hale Telescope), the Gemini Planet
Imager (GPI, Macintosh et al. 2008, Gemini South Telescope), the
Spectro-Polarimetric High-contrast Exoplanet REsearch instru-
ment (SPHERE, Beuzit et al. 2019, Very Large Telescope; VLT),
and the Coronagraphic High Angular Resolution Imaging Spec-
trograph (CHARIS, Groff et al. 2016, Subaru Telescope). These
are based on lenslet arrays that limit the non-common path aber-
rations compared to slicer concepts. Coupled with a coronagraph,
they are dedicated to high-contrast and high-resolution imaging
of the surroundings of stars. These IFSs acquire a large number
of monochromatic images simultaneously, which are then used to
retrieve the spectral features of substellar companions, but also to
calibrate and then to reduce the impact of the speckle noise that
is induced by the stellar leakages through the coronagraph. Such
instruments consequently represent a powerful technique to detect
and characterise exoplanets (Vérinaud et al. 2006) by achieving
higher contrasts (Sparks & Ford 2002; Marois et al. 2014).

A common point of all these IFSs is their global optical
scheme: the target object is sampled at specific points in the
field of view, each point producing a spectrum that is dispersed
onto the sensor. The raw data consequently consist of hundreds
to tens of thousands of spectra rearranged compactly on one or
several 2D detectors. Dedicated codes are therefore needed to
reduce this large amount of 2D data into a spatiospectral 2D + λ
datacube exploitable for astrophysical analyses.

In this paper we describe PIC (Projection, Interpolation, and
Convolution), a reduction technique of the 2D+λobject of interest
based on a forward model of the instrument. The reduction per-
formed by PIC amounts to solving the inverse problem of retriev-
ing the 2D + λ object given the instrument model and the data.
Such an “inverse-problems” approach is fairly general and can
readily be adapted to any kind of IFS. In addition, PIC automati-
cally detects damaged pixels and copes with them in a consistent
way. Compared to existing methods, PIC produces 2D+λ reduced
data of better quality with almost no artifacts. As shown by our
work, this improved quality is also beneficial to post-processing
methods.

Section 2 details the motivation behind the proposed method
and details the mathematical formalism of the forward model of
an IFS instrument as well as the detector model. The inversion
uses adequately chosen regularisations and constraints as well as
robust penalisation to identify on-the-fly defective pixels missed
during the calibration or cosmic rays hitting the detector during
the science acquisitions.

In Sect. 3, PIC is applied to SPHERE-IFS data for two typical
kinds of target: extended objects (Ganymede and Io, Sect. 3.1) and
coronagraphic data (dedicated to the exoplanets and disc detec-
tion and characterisation around HR 8799 and RY lup; Sect. 3.2).
Comparisons with the reductions performed with the SPHERE
pipeline as well as angular differential imaging (ADI) post-
processing on the reduced datacubes (Sect. 3.5) highlight the ben-
efits of the proposed approach.

Appendices A–D focus on the tuning of the method with the
available SPHERE calibration files associated to the reduced sci-
ence data. Special care is taken on the detector characterisation
(Appendix A) and on the chromatic model of the spectral disper-
sion (Appendix B).

2. Proposed method

2.1. Motivation of the inverse-problems approach

Beyond calibration considerations, the main feature of data-
reduction algorithms dedicated to IFSs is the mapping of the raw
data measured on the 2D sensor to the targeted 2D + λ hyper-
spectral cube. Different approaches are implemented depending
on the instrument.

A straightforward extraction consists in a direct read of the
raw data. Indeed, whatever the optical design of the IFS (fibre
bundle, slicer, or lenslet array), the spectra are generally dis-
persed along an axis of the 2D sensor. After a wavelength cali-
bration step, it is possible to link, via the so-called “pixel associ-
ation map” (SPHERE, Pavlov et al. 2008; Mesa et al. 2015; GPI,
Perrin et al. 2016), or “pixel table” (SINFONI, Modigliani et al.
2007; MUSE, Weilbacher et al. 2012), each spectrum on the 2D
sensor to a given position in the 2D+λ hyperspectral cube. Each
spectrum is then independently extracted by integrating pixels in
small segments perpendicular to the dispersion direction.

While this direct mapping is conceptually easy to grasp
and computationally fast, it suffers from several limitations. In
particular, pixels flagged as defective in the calibration step
are replaced by interpolating the values of their neighbours
on the sensor, which introduces spurious correlations in the
reconstructed hyperspectral cube. Furthermore, many pixels not
detected as defective during calibration are corrupted and lead
to aberrant values in the reconstructed cube. In addition, the
method does not account for the spectral cross-talk-induced
overlapping of neighbouring spectra. And finally, in order to pro-
duce a hyperspectral cube, it is necessary to re-interpolate spatial
locations on a regular rectangular grid and according to a com-
mon spectral sampling. The interpolation operations introduce
spatial and spectral correlations due to the linear combination
of the spatially and spectrally closest measurements. These spa-
tial and spectral correlations are generally ignored by the down-
stream processing methods.

For spectrographs with high spectral resolution such as
Elodie (Baranne et al. 1996) and SpeX (Cushing et al. 2004), the
general approach for the extraction of the spectra is the optimal
method proposed by Horne (1986). Most of the IFS reduction
pipelines (TIGER and OASIS, Bacon et al. 1995, and their suc-
cessors, SAURON and SNIFS, Bacon et al. 2001; MaNGA, Law
et al. 2016; and OSIRIS, Lockhart et al. 2019), also implement
this technique. It is based on a chromatic model of the transverse
profile of each spectrum. Combining this line-spread function
with the measurement errors to weight the pixels, it solves the
first previously mentioned problem by avoiding the interpola-
tion of the defective pixels. It is also possible to use additional
weighting coefficients to partially correct the effect of the cross-
talk among neighbouring spectra (SPHERE, Pavlov et al. 2008).
Nonetheless, this approach assumes that the pixel variance is
known and that the defective pixels are correctly identified. Fur-
thermore, this model of adjacent 1D line-spread functions does
not account for the spectral response of the instrument, which is
along the direction of the spectral dispersion.

For the GPI instrument, Draper et al. (2014) proposed an
improvement of this method, which was further refined by
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Brandt et al. (2017) for the CHARIS instrument. The general
method comprises aχ2-based extraction of the spectra, previously
proposed by Zimmerman et al. (2011) for the calibration of the
Project 1640 IFS. Each spectrum is described by a super-resolved
model combining wavelength-dependent point spread functions
(PSFs) found by weighted least-squares fitting with weights given
by the inverse variance of each pixel. By setting their weights to
zero, this approach can correctly deal with defective pixels. As the
individual spectrum model can be computed with a wavelength
sampling common to all wavelengths, this method also solves the
spectral interpolation issue and performs a deconvolution by the
instrument line spread function. Finally, the spectral cross-talk is
reduced by running the extraction twice after data cleaning by the
model after the first estimation. Nonetheless, by extracting the
spectra separately, this method does not address the previously
raised problem of spatial interpolations that are still needed to
obtain a datacube on a regular grid.

In this work, we implement a method that goes a step fur-
ther by jointly reconstructing the whole 2D + λ datacube using
a general framework based on an inverse-problems approach to
reduce IFS 2D raw data. In this approach, the reconstructed dat-
acube x is the minimum of a global cost function:

x̃ = argmin
x∈D

D (y,M x,W) +R (x), (1)

where D (y,M x,W) is the data-fidelity term that penalises how
“far” the modelled intensity M x, which is predicted by the lin-
ear model of the instrument M for a given object x, is from the
data y according to the confidence on the data, which itself is
characterised by the precision matrix W. Further, R (x) denotes
the regularisation term implemented to enforce spatial and spec-
tral priors on the hyperspectral cube x, and D is the admis-
sible domain for the spatiospectral cube x to reconstruct (e.g.
x ≥ 0). In terms of notation, the object x ∈ Rn1×n2×nλ is a dat-
acube in arbitrary units defined by the value xθ,` at each dis-
crete element of this volume; each element is referred to as a
voxel in the following. Each voxel has a 2D angular position
of θ = (θ1, θ2) ∈ ~1, n1� × ~1, n2� and a wavelength index
of ` ∈ ~1, nλ�. The raw data, denoted by y ∈ Rm1×m2 , are the
intensities in analog-digital units (adu), the same units as given
by the detector, sampled at the 2D positions of the sensor pix-
els yk indexed by k = (k1, k2) ∈ ~1,m1� × ~1,m2�.

2.2. Forward model

The critical point of any inverse-problems approach is the forward
model M that predicts the data y for a given object x, or in the
present case, the pixelated intensities measured by the sensor and
the 2D+λ hyperspectral cube of the object. Figure 1 is the general
optical scheme of an IFS, exemplified using the SPHERE instru-
ment (SPHERE-IFS, Claudi et al. 2008), presented in Fig. 1b. It
emphasises the different steps to convert the coloured image of
the object presented in Figs. 1a,d to the spectral projection on the
2D sensor of each of its spatial elements, presented in Figs. 1c,g:

– C: Rn1×n2×nλ → Rn1×n2×nλ , a convolution operator: the
entrance of the instrument is composed of an IFU array that
performs a convolution C of the input signal by the pupil
entrance of its sub-elements, as illustrated in Fig. 1e;

– I: Rn1×n2×nλ → Rnh×nλ , a sampling operator: the integration
of the signal by the IFU induces a loss of its spatial informa-
tion, performing its interpolation I on the positions of the nh
hexagonal lenslets, as illustrated in Fig. 1f;

– P: Rnh×nλ → Rm1×m2 , a sparse matrix projection operator:
the sampled coloured signal is dispersed over the sensor

onto neighbouring spectra following the IFU array geome-
try modelled by a projection matrix P. As the elementary
monochromatic PSF of a single lenslet impacts only a por-
tion of the detector, which is as small as possible to reduce
inter-spectra cross-talk, this projection matrix is sparse.

In the present work, C is a convolution by the hexagonal pupil
shape of the lenslets and is performed by a simple component-
wise multiplication in the Fourier space. Here, I is a linear inter-
polation of the Cartesian grid of the hyperspectral cube on the
lenslet positions, assumed to be identical to the spectra posi-
tions on the sensor given by the dispersion model. Finally, for
a given interpolated spectrum sampled at the wavelengths of the
reconstructed hyperspectral cube, the projection matrix P con-
sists in a linear combination of axisymmetric Gaussian patterns
whose position and size depend on the considered lenslet and
wavelength. Considering a super-resolved model such as the one
proposed by Brandt et al. (2017) would be straightforward in
our framework but would require further calibration steps that
are not available in the European Southern Observatory (ESO)
calibration framework of SPHERE, as discussed in Appendix B.
Thus, the global optical forward model of an IFS is linear and is
synthesised by the following equation, using a compact matrix
notation:

M x = P I C x. (2)

This gives the name of the proposed method, mentioned as PIC
in the following. These operators are tuned from calibration
exposures in different calibration steps described in Appendix B
for the SPHERE instrument.

We would like to mention here that one could use this model
to inject artificial planet signals directly in the raw data rather
than in the reduced hyperspectral cubes in order to provide an
end-to-end characterisation of the IFS performance that includes
the reduction and post-processing algorithms.

2.3. Detector model

Beyond the effect due to the optical elements of the IFS, the
recorded raw signal yraw presents additional contributions.
Indeed, in practice, each pixel of the detector records only an
affine transform of the modelled signal [M x]k corrupted by
additive noise:

yraw
k = gk [M x]k + bk + εk, (3)

where gk ' 1 is a correction factor accounting for the vari-
ability of the quantum efficiency and of the electronic gain, and
accounting for the optical throughput such as vignetting or mask-
ing by dust particles; bk is a bias term accounting for a constant
offset set by the detector and all the background signals that are
proportional to the integration time: the dark current of the sen-
sor, the thermal background of the instrument, and the contribu-
tion of the sky; and εk is a centred additive noise of variance vk
which accounts for the detector read-out noise of variance v0

k
at null flux, and the photon noise of the incident flux. Assuming
that the forward model M x correctly predicts the intensity on the
sensor in adu, the variance of the photon noise is proportional to
the incident flux and the total pixel variance is

vk = ηk
(
[M x]k + g−1

k

(
bk − yb

k

))
+ v0

k, (4)

where ηk, in adu, accounts for the unit conversion from the num-
ber of photons to adu and yb

k is the bias of the detector (see
Eq. (A.1)) at pixel k.
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Fig. 1. Forward model M x = P I C x of an integral field spectrograph with the example of the SPHERE-IFS instrument (b). The telescope forms
an image of the targeted object x (a,d) on the instrument that projects a spectrum of each of its spatial elements onto the sensor (c,g). The low-
crosstalk BIGRE design of the IFU (b) proposed by Antichi et al. (2009) is based on two hexagonal lenslet arrays whose effect is first modelled
as a convolution C by their pupil shape, averaging the light received by a single lenslet (d→e). An interpolation I then accounts for the sampling
performed by the first array of lenslets of the IFU (red) at the lenslet positions (green dots) (e→ f ). Finally, their spectrum is dispersed by prisms
on the sensor, corresponding to a sparse matrix P linking the different wavelengths seen by a given lenslet to the location of their projection on the
detector ( f→g). Photo Credit: Lucasfilm Ltd.

Like any other inverse approach, the proposed method relies
on precise modelling of the recorded raw signal yraw to trustfully
retrieve all the information contained in the data. It is therefore
mandatory to have good knowledge of the gain g, the bias b, and
the noise parameters ηk and v0

k for each pixel k. These parame-
ters are estimated from calibration exposures in different calibra-
tion steps described in Appendix A for the SPHERE instrument.

After the calibration step, to perform the data reduction, the
raw data are preprocessed, leading to the calibrated data y con-
sidered in Eq. (1):

yk = g−1
k

(
yraw

k − bk
)
. (5)

2.4. Robust penalisation for the data fidelity
The role of the data fidelity term D (y,M x,W) in Eq. (1) is
to ensure that the retrieved object x produces via the forward
model M an intensity that is as “close” as possible to the calibrated
data y. In this section, we describe what we mean by “close”.

The precision matrix W is the inverse of the covariance of
the errors due to noise and approximations of the model (see e.g.,
Mugnier et al. 2004). Assuming uncorrelated noise, this matrix
is diagonal and is comprised of coefficients (or weights) w that
are the inverse of the pixel variance: wk = v−1

k . These weights
represent the confidence on each measured pixel k. Nonetheless,
during the instrument calibration, some defective pixels, such as
those that are hot or dead, can be identified and discarded. Their
precision is set to wk = 0, that is, their variance is considered
infinite. We cope with these discarded pixels by introducing a
mask δ defined by:

δk
def
=

{
0 if yk isdiscarded
1 otherwise

, (6)

and rewrite the weighting coefficients w as:

wk = δk v−1
k , (7)

where the variance vk of the kth pixel is given by Eq. (4).

Owing to the high number of photons per pixel in a
frame, independent but non-homogeneous Gaussian noise can
be assumed. The data fidelity is then defined as the sum of the
weighted square residuals between the data and the predicted
intensity:

D (y,M x,w) =

m1,m2∑
k=(1,1)

wk (yk − [M x]k)2 . (8)

Nonetheless, this method is not robust to outliers. Indeed,
some defective pixels that have an erratic behaviour are missed
during the sensor calibration. In addition, energetic particles may
hit the detector during an exposure and impact several pixels.

To reduce the incidence of these erroneous measurements,
robust penalisation approaches have been developed (Hogg
1979; Huber 1996). The general idea is to replace the quadratic
penalisation of the residuals of Eq. (8) by a function ρ that
is approximately quadratic around zero and that grows sub-
quadratically for large values. Adapting Eq. (8) to account for
a robust penalisation leads to:

D (y,M x,w) def
=

m1,m2∑
k=(1,1)

ρ
(√

wk s−1
k (yk − [M x]k)

)
, (9)

where sk is a scaling factor on the residuals that characterises
how “far” from a normal Gaussian distribution the whitened
residual statistics can be.

With sk = 1 and ρ (r) = r2, Eq. (9) is equivalent to the stan-
dard least-squares cost of Eq. (8).

Several robust penalisation functions ρ exist in the literature
for which the equivalent weight wρ of a least-squares minimisa-
tion can be computed (Holland & Welsch 1977). In the follow-
ing, the Cauchy function is used:

ρ (r) def
=
γ

2
log

(
1 + r2/γ2

)
⇒ wρ (r) =

(
1 + r2/γ2

)−1
, (10)

with γ = 2.385.
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Such a robust penalisation is pertinent in the case of IFS
imaging since according to our forward model, a given voxel
xθ,` has an impact on several regions of the detector. It is unlikely
that these regions are all polluted by many defective pixels. This
redundancy coupled with the robust penalisation avoids most
artefacts due to outliers.

2.5. Regularisations and constraints

There is no guarantee that the model M defined in Sect. 2.2 is
a well-conditioned and full-rank matrix. This implies that min-
imising Eq. (9) may be an ill-posed and ill-conditioned prob-
lem leading to noise amplification. Introducing the regularisation
function R (x) in Eq. (1) is a means of coping with these issues
by accounting for some prior knowledge about the observed
object x (Titterington 1985). Two kinds of regularisations are
implemented in the proposed inversion method.

A first regularisation favours sharp-edged objects to con-
trol the spatial continuity and smoothness of the reconstruc-
tion. Enforcing such an edge-preserving smoothness is done by
encouraging the sparsity of spatial gradients (Rudin et al. 1992;
Charbonnier et al. 1997). In addition, it can be expected that
the edges of the reconstructed objects are co-localized accord-
ing to the wavelength. Similarly, we are more likely to have a full
spectrum in a given position than fragmented spectra spread on
neighbouring positions. This prior about the spectral behaviour is
implemented by means of a structured norm (Blomgren & Chan
1998):

R2D (x) =

n1,n2∑
θ=(1,1)


√√ nλ∑

`=1

([
∇θ1 x

]2
θ,` +

[
∇θ2 x

]2
θ,`

)
+ ε2 − ε

 , (11)

where ∇θ1 and ∇θ2 correspond to finite difference operators
along the first and second spatial dimensions, respectively, and
ε > 0 is a threshold corresponding to the smallest gradient at
a sharp edge and ensures that this hyperbolic approximation of
the Euclidean norm is differentiable at zero. Because of the sum-
mation over ` under the square root, hyperspectral images with
edges co-localised at all wavelengths are favoured.

A second regularisation ensures that the reconstructed spec-
tra are smooth. Indeed, with the limited spectral resolution of the
instruments, no extremely thin emission or absorption lines are
expected to be reconstructed. This also prevents the apparition of
the high-frequency noise mentioned by Draper et al. (2014) and
Brandt et al. (2017) in the super-resolved reconstructed spectra.
We chose to implement this spectral regularisation by the fol-
lowing quadratic penalty:

Rλ (x) =

n1,n2,nλ∑
(θ,`)=(1,1,1)

[∇λx]2
θ,` , (12)

where ∇λ is the finite difference operator along the spectral
dimension.

The two chosen regularisations are combined in the term
R (x) in Eq. (1) with respective hyperparameters µ2D and µλ to
weight the priors relative to the data fidelity term:

R (x) = µ2DR2D (x) + µλRλ (x) . (13)

Combined with the robust penalisation, the chosen regu-
larisation helps to identify corrupted pixels that were not yet
detected as such. Indeed, to obtain a good fit with an outlier, the
estimated hyperspectral cube would necessarily involve a value
at a given spatial location and wavelength that significantly dif-
fers from its spatial and spectral neighbours. Such a situation

is penalised by the regularisation in order to reject outliers and
obtain a more meaningful estimation.

In addition to the “loose” constraints imposed by the regular-
isation, two “tight” constraints are applied to x. Firstly, the spec-
tra can only have positive intensities. Secondly, to ensure that the
whole spectral extension is accounted for by the forward model,
the reconstructed wavelengths go slightly beyond the instrument
spectral sensitivity range. Thus, the extreme wavelengths are
forced to be null. Combined with the previously defined regular-
isations, this forces the spectra to smoothly drop to zero at their
edges.

In summary, the feasible domain D is:

D =
{
x ∈ Rn1×n2×nλ | ∀ (θ, `) , xθ,` ∈ R+, xθ,1 = xθ,nλ = 0

}
. (14)

2.6. Reconstruction algorithm
After the calibration of the detector (to get a preliminary list
of defective pixels and determine ηk, gk, and bk irrespective of
k) and of the instrument (to code M = P I C), the reduction
algorithm consists in recovering x by minimising the objective
function defined in Eq. (1) and updating the factors δk. This is
implemented by the iterative Algorithm 1.

Algorithm 1 Data-reduction algorithm
1: x← 0 . Initialisation of the object
2: ∀k, yk ←

Eq. (5)
g−1

k

(
yraw

k − bk

)
. Preprocessing

3: ym ← medfilter (y) . Initialisation of the model
4: for i from 1 to nit do . nit optimisations
5: ∀k, δk ← δcal

k . Initialisation of δ in w
6: if i ≥ 3 and wρ (rk) <

Eq. (10)
wth then . Equivalent weight

7: δk ← 0 . δ update in w

8: ∀k,wk ←
Eq. (7)

δk

(
ηk

(
ym

k + g−1
k bk

)
+ v0

k

)−1
. w update

9: x ←
Eq. (1)

argmin
x∈D

D (y,M x,w) +R (x) . x update, w fixed

10: ym ←
Eq. (2)

M x . Update of the model

11: ∀k, rk ←
Eq. (9)

√
wk s−1

k

(
yk − ym

k

)
. Weighted residuals

12: return x

Strictly, looking at Eq. (7), the weights w in Eq. (9) depend
on the current value of x during the optimisation of the cost func-
tion Eq. (1), increasing its complexity and raising potential con-
vergence issues. To overcome this limitation, the reconstruction
of x is subdivided into a loop of nit optimisations. At a given
iteration of the loop, the weighting coefficients are assumed to
be constant, computed via Eq. (7) based on the forward model
given by the solution of the previous iteration ym = M x.

At the initialisation, for the first estimation of the weighting
coefficients w, the predicted model is approximated by a median
filter of the preprocessed data y to diminish the influence of the
defective pixels. If some of them have been detected during the
calibration, the map δ is initialised with the flagged pixels δcal.
Otherwise, it is set to δk = 1, for all k.

At each loop after the second loop i ≥ 3, the map of dis-
carded pixels δcal is updated using a threshold wth on the equiv-
alent weight wρ given by the robust penalisation on the residuals
of the previous loop.

3. Results
SPHERE (Beuzit et al. 2019) is a second-generation VLT instru-
ment optimised for high-contrast imaging. Its IFS is based on
a new optical concept proposed by Antichi et al. (2009) to
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overcome the limitations affecting a 3D spectrograph working
in diffraction-limited regime (Claudi et al. 2011). BIGRE is an
evolution of the classical TIGER design, optimised for seeing-
limited conditions in the SAURON instrument (Bacon et al.
1995, 2001). The micro-lenses composing the lenslet array of the
IFU are smaller than the full width at half maximum (FWHM)
of the projected PSF of the telescope, and therefore provide
resolved images of the PSF and the speckle patterns produced
by the stellar leakage in the coronagraphic mode of the instru-
ment. To limit the cross-talk between the lenslets, the BIGRE
design improves the TIGER concept by adding a second lenslet
array as schemed in Fig. 1b.

The BIGRE SPHERE-IFS provides low-resolution spec-
troscopy (R ∼ 50) in the near-infrared (0.95−1.7 microns), an
ideal spectral range for the detection of exoplanets and the char-
acterisation of their features. Its IFU is composed of 145 × 145
lenslets and covers a field of view of about 1.8 × 1.8 square arc-
seconds (Claudi et al. 2008; Dohlen et al. 2016). The spatial
dimension of the raw data taken on the Hawaii-2RG sensor is
equal to m1 × m2 = 2048 × 2048 pixels.

This section presents the results of the proposed PIC method
on representative datasets of the SPHERE-IFS instrument com-
pared to the reduction obtained with the SPHERE reduction
pipeline (Delorme et al. 2017) used to date. Two situations are
considered: the direct imaging of extended objects, and the coro-
nagraphic mode of SPHERE dedicated to exoplanet detection
and characterisation. The output cubes of the SPHERE reduction
pipeline are composed of n1 × n2 × nλ = 291 × 291 × 39 voxels.
The proposed reduction pipeline provides cubes of n1 ×n2 ×nλ =
300×300×nλ voxels with nλ = 44 for the YH-mode and nλ = 47
for the YJ-mode, which represents a ratio of approximately eight
between the pitch of the angular position θ of the lenslets in the
reduced cube and the pitch of their position k on the sensor in
terms of pixel. An important component of our method is the
calibration of the parameters of the forward model. We describe
the methodology to estimate those parameters in Appendices A
and B.

The code is implemented in MatlabTM and uses the open-
source GlobalBioIm framework (Soubies et al. 2019). The opti-
misation problem (1) is solved by the VMLM-B algorithm
(Thiébaut 2002), a limited-memory quasi-Newton method with
BFGS updates (Nocedal 1980) that handles bound constraints.
The version of the code used in this paper can found at
https://doi.org/10.5281/zenodo.3585632. All the data
and reductions presented in this papers can be downloaded at
https://doi.org/10.5281/zenodo.3585656.

3.1. Extended-object imaging

Even if SPHERE-IFS is mainly used in its coronagraphic mode
and the exoplanet search, it is also suitable for the observation
of extended objects (see e.g., Hanus et al. 2017; King et al.
2019). To highlight the pertinence of the proposed method for
the imaging of such targets, we reduced two Jovian moons with
the SPHERE reduction pipeline (Delorme et al. 2017) and the
proposed PIC method: Ganymede (60.A-9372 – 1 Feb. 2015,
298th out of 300 acquisitions) and Io (60.A-9357 – 6 Dec. 2014,
2nd out of 8 acquisitions), both acquired in YH mode. The
results are given in Figs. 2 and 3.

For each reduced cube, spectra are extracted along three
positions θ of interest. For comparison, the transmission tatm of
the Earth’s atmosphere, computed via the software “HITRAN on
the Web” proposed by Rothman et al. (2013), is given in green
along with the extracted spectra.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 2. Comparison between the SPHERE reduction pipeline (RP,
Delorme et al. 2017) (a,c,e) and the proposed method (PIC) (b,d,f)
on the Jovian moon Ganymede (square stretch of the intensity, colour
bar: arbitrary unit). a,b: coloured projection 〈x〉λ of the reconstructed
hyperspectral cube (square stretch of the intensity). c–f: slices of the
reconstructed hyperspectral cube (at λ = 1018 nm and λ = 1556 nm).
g: spectra extracted from the reduced hyperspectral cubes at the circled
positions. The two vertical dashed lines indicate the wavelengths of the
monochromatic images shown in (c–f).

Several remarks can be made about the colour coding in
Figs. 2a,b and 3a,b. The colour intensity reflects the spectral
average 〈x〉λ, the colour hue indicates the wavelengths that devi-
ate from this projection, and the colour saturation represents the
magnitude of this deviation.

The colour variations at the Ganymede’s surface shown by
Figs. 2a,b suggest that the reconstructed cubes contain informa-
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3. Comparison between the SPHERE reduction pipeline (RP,
Delorme et al. 2017) (a,c,e) and the proposed method (PIC) (b,d,f) on
the Jovian moon Io (square stretch of the intensity, colour bar: arbi-
trary unit). a,b: coloured projection 〈x〉λ of the reconstructed hyper-
spectral cube (square stretch of the intensity). c–f: slices of the recon-
structed hyperspectral cube (at λ = 1068 nm and λ = 1353 nm). g:
spectra extracted from the reduced hyperspectral cubes at the circled
positions. The two vertical dashed lines indicate the wavelengths of the
monochromatic images shown in (c–f).

tion of spatial variations of the surface spectrum. While smooth
regions are favoured, the proposed regularisation does not pre-
vent spatial structures with small contrasts and spectral varia-
tions from being restored.

This spectral diversity can be seen in the extracted spectra in
Fig. 2g. The black spectrum is close to the average spectrum of
the reduced cube. The red (resp. blue) spectrum is extracted in
an area where the spectrum is attenuated (resp. enhanced) in the
shorter wavelengths and enhanced (resp. attenuated) at longer

wavelengths. This diversity is also visible on the two extracted
slices at λ = 1018 nm in Figs. 2c,d and λ = 1556 nm in Figs. 2e,f
and which show very different spatial structures. These spectral
contrasts are less pronounced on Io’s surface.

In terms of reconstruction quality, the cubes reduced by the
SPHERE reduction pipeline exhibit vertical artefacts that are vis-
ible in the spectral projections in Figs. 2a and 3a and on the slices
in Figs. 2c and 3c. At low fluxes, horizontal artefacts are also vis-
ible in the Io cube in Fig. 3e.

In addition to these large-scale structures, the reduced cubes
produced by the SPHERE pipeline are corrupted by many arte-
facts due to defective pixels, most of them leading to dark vox-
els, as visible in the slices in Figs. 2c,e and 3c,e. These artefacts
leave a strong distortion in the extracted spectra, as visible in
the black spectra in Figs. 2g and 3g. A defective pixel on the
sensor plane impacts several wavelengths in the cube reduction.
This can also lead to misinterpretations, as in the case of the red
spectrum in Fig. 3g where the absorption bands of the Earth’s
atmosphere are shifted from their actual positions, for instance,
at ∼1100 nm for the blue spectrum and at ∼1350 nm for the red
spectrum. With the proposed calibration and regularised recon-
struction, these artefacts are corrected in the reduced cubes as
visible in Figs. 2a,c,e and 3a,c,e. The striped pattern has dis-
appeared and no strong artifacts are visible. Moreover, qualita-
tively, the spatial regularisation reduces the noise in the recon-
struction and improves the contrast of the geological formations,
even at very low flux such as in Figs. 3e,f.

3.2. Coronagraphic imaging

SPHERE-IFS is mainly used for high-contrast observation with
a coronagraph. To directly image an extrasolar planet, the light
from its host star must be reduced by several orders of magni-
tude. Associated with dedicated detection algorithms, SPHERE
as well as other instruments of its generation such as GPI
and CHARIS, allow the spectral characterisation of the imaged
exoplanets at low resolution (R ∼ 30−50) and achieve typically
planet-to-star contrast ratios down to 10−6 at 0.2′′ angular sepa-
ration (see e.g., Currie et al. 2015; Macintosh et al. 2015; Ruffio
et al. 2018; Mesa et al. 2019).

To illustrate the present method when SPHERE-IFS operates
in its coronagraphic mode, we considered two datasets: one on
the HR 8799 star that hosts a cortege of exoplanets (Marois et al.
2008) and that was observed in YH mode (095.C-0298 – 4 Jul.
2015, 38th out of 56 acquisitions), and one on the RY lup star
that hosts a bright transition disc (Langlois et al. 2018) and was
observed in YJ mode (097.C-0865 – 15 Apr. 2016, 50th out of
80 acquisitions). A comparison between the reduced cubes with
the SPHERE reduction pipeline is given in Figs. 4 and 5.

The reduced HR 8799 cube is dominated by the speckles
produced by the stellar leakage. The coloured spectral projec-
tion 〈x〉λ emphasises that this is a chromatic effect with the
speckle structure scaling with the wavelength from the shorter
wavelengths represented in blue to the longer wavelengths rep-
resented in red. Without further processing, no exoplanet is vis-
ible. On the contrary, the signal of the reduced RY lup cube is
dominated by the signal of the accretion disc that is visible at
all wavelengths as a well-contrasted structure. Contrary to the
speckles, the location of an object imaged by the IFS does not
scale with the wavelength and thus appears in white.

Concerning the reduction quality, similar conclusions for the
reduction of extended objects can be drawn. The HR 8799 cube
presents the same striped artefacts that are corrected by the pro-
posed method. The important noise of the RY lup cube due to
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Fig. 4. Comparison between the SPHERE reduction pipeline (Delorme
et al. 2017) (a,c,e,g) and the proposed PIC method (b,d,f,h) on the
HR 8799 dataset from a single IFS exposure. The proposed method
removes artificial background structures. a,b: coloured projection of the
reconstructed hyperspectral cube (cubic root stretch of the intensity).
c,d: slice of the reconstructed hyperspectral cube (at λ = 1068 nm, cubic
root stretch of the intensity, colour bar: arbitrary unit). e–h: zooms on
(a–d).

the small exposure time is smoothed by the regularisation of the
proposed method.

The zooms of Figs. 5a,c given in Figs. 5e,f highlight
the necessity to correct the “remnant signal”, as presented in
Fig. A.2. The subtraction of this unwanted signal, a ghost of a
previous high dynamic acquisition on the sensor, in the sky back-
ground correction step produces the artificial dark spot visible
in the cube reduced by the standard method. With the proposed
method, this region is correctly reconstructed.

These same zooms show the effectiveness of the robust
penalisation in discarding defective pixels or pixels hit by ener-
getic particles based on the spatial and spectral regularisations
of the reconstructed cube. Indeed, as visible in Figs. 6a,e, such a
particle leaves a long trace on the sensor. Looking at the equiva-
lent weights wρ in Figs. 6c,g, these aberrant measures are clearly
identified as detector pixels with very low statistical weights
below the threshold wth. These can be discarded by the reduction
procedure. They are identified in blue in Figs. 6d,h. In addition,
defective pixels missed during the calibration are also flagged in
red among the already discarded pixels in green.

The comparison between the data in Figs. 6a,e and the inten-
sity predicted by the model in Figs. 6b,f show that the coupling
of the redundancy of the hyperspectral information on an IFS

(a) (b)

(c) (d)

(e) (f) (g) (h)

Fig. 5. Comparison between the SPHERE reduction pipeline (Delorme
et al. 2017) (a,c,e,g) and the proposed PIC method (b,d,f,h) on
the RY lup dataset from a single IFS exposure. The proposed sky
background estimation removes the host star remnant and the pro-
posed reconstruction algorithm is robust to aberrant measurements (see
Fig. 6). a,b: coloured projection of the reconstructed hyperspectral cube
(cubic root stretch of the intensity). c,d: slice of the reconstructed hyper-
spectral cube (at λ = 1165 nm, cubic root stretch of the intensity, colour
bar: arbitrary unit). e–h: zooms on (a–d).

(a) (b)

(c) (d)

(e) (f) (g) (h)

Fig. 6. Robust defective-pixel identification on the sensor region corre-
sponding to the region of interest of Figs. 5 and 7b. In addition to the
known defective pixels (green), the robust penalisation can flag addi-
tional unusable pixels in a given acquisition that are blinking (red) or hit
by an energetic particle (blue). a,b: raw data (a) and intensity (b) pre-
dicted by the model (colour bar: adu). c: equivalent weights obtained by
the robust penalisation (cubic stretch). d: new map of the unconsidered
pixels. e–h: zooms on (a–d).

field with adequate regularisation allows the estimation of the
signal even under high levels of noise.

A90, page 8 of 21

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936890&pdf_id=4
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936890&pdf_id=5
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936890&pdf_id=6


A. Berdeu et al.: PIC: a data reduction algorithm for integral field spectrographs

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

(o) (p)

Fig. 7. Residuals of the model on the HR 8799 (on the left column) and
the RY lup (on the right column) datasets (square root stretch, colour
bar: adu). a,b: raw data. c–f: zooms on the regions framed in (a,b).
g–j: model prediction on the same regions of interest. k–n: residuals
on the same regions of interest. o,p: statistics of the residuals. For com-
parison, Gaussian profiles of standard deviation σ = 47 adu (HR 8799)
and σ = 23 adu (RY lup) are plotted. The region of interest framed in
orange in (b) is the region detailed in Fig 6.

3.3. Statistics of the residuals

The reconstructed model compared to the raw data is fur-
ther detailed in Fig. 7 for the two datasets. The zooms in
Figs. 7d,h,l,f,j,n correspond to regions of interest previously
identified in the calibration because of their high density of
defective pixels (Fig. A.4d) or because of the presence of a dust
particle (Fig. A.4c).

Despite the numerous discarded pixels in the raw data
flagged in Figs. 7d,f, the algorithm predicts a model, as shown
in Figs. 7h,j, where no structure is visible in the residuals dis-
played in Figs. 7l,n, except for the defective pixels and the pixels
masked by a dust particle.

The zooms in Figs. 7c,g,k,e,i,m focus on regions closer to the
coronagraph mask where the flux is the highest. No structure is
visible in the residuals of Fig. 7m. On the contrary, on the limit of

the coronagraph mask in Fig. 7k, vertical blue and red structures
can still be discerned. This is because of a slight lateral shift of
the spectra in the raw data compared to the positions predicted by
the calibrated forward model. This phenomenon is also visible
on the reduction of the star PSF acquisitions (not presented here).
In these two cases, the object inducing these shifts is a star, that
is, an unresolved and coherent object inducing stronger coherent
cross-talk effects that are not totally suppressed by the BIGRE
design, as described by Antichi et al. (2009). These effects can-
not be estimated by the calibration acquisitions or accounted for
by the forward model which considers only incoherent cross-
talk.

Figures 7o,p compare the histogram of the raw data (red), the
histogram of the residuals between the data and the model pre-
diction (blue), and a Gaussian profile (dashed black). The statis-
tics of the raw data are correctly matched by the statistics of the
model prediction. The residuals have approximately Gaussian
distributions.

3.4. Image registration and pixel scale calibration

In coronagraphic mode, the centre of the field of view is given
by the position of the masked star. In order to determine the star
position behind the coronagraph’s mask, specific acquisitions are
obtained by applying a periodic phase pattern on the deformable
mirror of the instrument. This induces four first-order diffraction
patterns of the masked star as presented in Fig. 8b. The star is at
the centre of the square formed by these four satellite images, as
presented by the black dots and dashed lines on the figure.

With the SPHERE reduction pipeline, the centre of the field
of view is determined after the reduction of all the acquisi-
tions. Once the centre is known, all the reduced cubes are
re-interpolated to centre the star on a given pixel. With the pro-
posed method, this shift between the centre of the field and the
centre of the IFS can be taken into account by the forward model.
This is done by adapting the sampling positions of the interpo-
lation operator I in the cube x. Doing so, the reduced cube is
by construction centred on the host star. This avoids performing
any further interpolation of the reduced data that would imply
a slight loss in spatial resolution and stronger noise correlations
due to the re-interpolation operation.

In the proposed method, the centre of the field of view is
determined by the centres of the square diffraction patterns fit
at each wavelength of the cube. To be robust to outliers, we first
take the centroid of all the square centres and then iteratively take
the centroid of the subset of square centres that are at a distance
from the previous centroid of less than 0.4 voxels ('2.6 mas).
The results are shown in Fig. 8d for the two datasets and for
two different acquisitions in the same night. Most of the centres
are within 0.25 voxels ('1.7 mas) of the estimated centre. No
noticeable difference can be seen in the estimated parameters
according to the dataset or the acquisition date.

Being a diffraction-driven phenomenon, these square pat-
terns should scale with the wavelength. This can be seen by
the four radial rainbow-coloured features on the coloured pro-
jection 〈x〉λ in Fig. 8a. To study this scaling law, the square
best-fitting the four spots in the reconstructed cube is estimated
at each wavelength. The slope ξ of the linear law that best fits
the diagonal s according to the wavelength s ≈ ξ λ is given
in Fig. 8c for the two datasets (blue and red) for each acquisi-
tion date in the observation night (squares and circles). Table 1
summarises the fitted parameters for the two datasets and their
two acquisition dates. The standard deviation of the chromatic
slope is 0.02 voxel µm−1 for all datasets. This linear law is used
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(a) (b)

(c) (d)

Fig. 8. Study of the chromatic scaling of the diffraction images of the host
star for the two datasets. a: coloured projection of the HR 8799 recon-
structed hyperspectral cube (cubic root stretch of the intensity). b: slice
of the HR 8799 reconstructed hyperspectral cube (λ = 1486 nm, cubic
root stretch of the intensity, colour bar: arbitrary unit). The five black
dots represent the fitted positions of the four images of the star and of
the centre of the fitted square (dashed lines). c: linear fits of the square
diagonals according to the wavelength for each dataset at two different
times in the night with the proposed PIC method and, for the first time
in the night, with the SPHERE reduction pipeline (RP, Delorme et al.
2017). d: fitted positions of the squares at each wavelength compared to
the estimation of the star position. Only the wavelengths whose position
falls inside the grey circle of 0.4 voxels radius are used to fit the linear
laws.

Table 1. Estimation of the chromatic slope ξ of the linear law linking the
diagonal s of the diffracted square pattern with the wavelength λ and the
corresponding relative error on the spectral calibration σλ for the differ-
ent datasets and their acquisition dates with the proposed method and,
for the first acquisition date, with the SPHERE reduction pipeline (RP,
Delorme et al. 2017).

Dataset HR 8799 RY lup

t1 t2 RP t1 t2 RP

voxel µm−1 54.83 54.95 49.00 54.70 54.56 48.57
σλ (%) 0.25 0.26 0.33 0.16 0.22 0.25

to estimate a relative error on the spectral calibration given by
the sample standard deviation σλ of

(
s`
ξ λ`
− 1

)
computed on all

spectral channels `.
As for the centre determination, no noticeable difference can

be seen in the estimated parameters according to the dataset or
the acquisition dates.

The differences in the chromatic slope are due to the choice of
smaller pixels in the reconstructions in the proposed method com-
pared to the SPHERE reduction pipeline. We note here that this
is not a measure of the spatial resolution of the reduced datacubes
that would be different with the SPHERE reduction pipeline or

PIC. Indeed, the SPHERE-IFS instrument resolution is fixed and
is given by the pitch of the lenslets in the array. With the chosen
reduction parameters, there are roughly two voxels per lenslet.

The small standard deviations on the estimated chromatic
slope (≈0.02 voxel µm−1 for all datasets) reflect the good spectral
calibration of both PIC and the SPHERE pipeline. The residuals
in Fig. 8c were used to estimate the relative spectral calibration
errors given in Table 1 that are well under 1%. This supports the
quality of the wavelength calibration procedure.

Nevertheless, the residuals in Fig. 8c worsen around λ =
1.4 µm. This corresponds to the main atmosphere absorption
band in Figs. 2g and 3g. As a consequence, the signal-to-noise
ratio to estimate the positions of the four diffraction patterns is
worse and degrades the square estimation.

On the spectral range edges, in addition to the limited recon-
structed flux, the wavelengths are extrapolated beyond the cal-
ibration laser wavelengths, as mentioned in the description of
the model calibration in Appendix B. This may explain why the
residuals are also worse at short and large wavelengths.

3.5. Post-processing examples

As seen above, residual starlight is present in the form of speck-
les which limit the detection of faint point-source objects. Such
residuals can be suppressed by adopting different strategies
based for example on the polarisation of the residual speckle pat-
tern (differential polarimetric imaging; DPI) or assuming that it
scales with the wavelength (spectral differential imaging; SDI) or
that it is stable in time (angular differential imaging; ADI). These
techniques are used in dedicated post-processing algorithms
such as cADI (Marois et al. 2006), LOCI (Lafreniere et al. 2007),
KLIP (Soummer et al. 2012), ANDROMEDA (Cantalloube et al.
2015), or PACO (Flasseur et al. 2018), which are used to detect
the faint signal of the exoplanets hidden in this speckle noise.

We chose to run a Template Locally Optimized Combina-
tion of Images (TLOCI) detection algorithm (Marois et al. 2013,
2014) on the hyperspectral cubes of the 46 best dates (among the
56 acquisitions) reduced with the SPHERE reduction pipeline
and the proposed method.

TLOCI is an evolved version of the LOCI algorithm that is
based on ADI where the intrinsic field-of-view rotation during
the acquisitions is used to separate the residual light from the
star masked by the coronagraph and the light coming from off-
axis sources, that is, the objects of interest, for each wavelength
of the reduced hyperspectral cube. Further, TLOCI uses a tem-
plate for the spectrum of the sought-after point sources in the
hyperspectral cube to combine images along the spectral dimen-
sion.

Figure 9 gives the comparison between the results obtained
with the SPHERE reduction pipeline and PIC. The global detec-
tion maps presented in Figs. 9e,f combine the S/N maps obtained
at all wavelengths as well as the S/N derived for the detection of
each planet as given in Table 2. If σ+ is the list of the nλ positive
S/N of a planet or a position in the detection map, the global S/N
is computed as follows:

σ̃ =

√
〈σ+2
〉λ, with

{
σ+
λ = σλ if σλ ≥ 0

σ+
λ = 0 if σλ < 0

, (15)

where 〈·〉λ denotes spectral averaging.
At short wavelengths, as in Figs. 9a,b, the planet fluxes are

too low to be seen. The suppression of the vertically striped arte-
facts with the proposed method leads to a better speckle removal
by the TLOCI algorithm. This is especially striking close to the
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Comparison between a TLOCI post-processing of the SPHERE
reduction pipeline (Delorme et al. 2017) (left column) and the pro-
posed PIC method (right column) on the HR 8799 dataset. The contrast
of the planet closest to the star is increased by the PIC method and
several false positives are avoided. a–d: monochromatic images of the
post-processed hyperspectral cube and planet detection S/N (square root
stretch of the intensity, colour bar: arbitrary unit) at λ = 972 nm (a,b)
and λ = 1636 nm (c,d). e,f: maps of planet detection S/N combining all
wavelengths (red circles: true positives, blue boxes: false positives with
the SPHERE pipeline, colour bar: S/N).

Table 2. Comparison between the S/N of the innermost planet at large
wavelengths for the SPHERE reduction pipeline (RP, Delorme et al.
2017) and the proposed method (PIC).

λ (nm) RP PIC λ (nm) RP PIC

1556 4.4 <3 1605 5.8 12.1
1573 4.9 10.5 1621 6.4 15.0
1589 5.5 11.1 1636 6.7 18.4

host star at longer wavelengths, as in Figs. 9c,d where the S/N of
the innermost planet is strongly increased. This S/N gain can be
observed at all wavelengths (except the shortest); see Table 2. In
addition, the better reduction of the datacubes reduces the arte-
facts of post-processing algorithms such as TLOCI, removing
potential false detections (in the blue squares) and enlarging the
usable area of the field of view.

The reductions on the RY lup dataset are compared by
averaging the 80 temporal acquisitions after rotating them to

(a) (b)

Fig. 10. Coloured projection of the post-processing of the SPHERE
reduction pipeline (Delorme et al. 2017) (a) and of the proposed PIC
method (b) on the RY lup dataset (cubic root stretch of the intensity).

compensate for the time-varying field rotation. These averaged
reduced data are presented in Fig. 10. As a consequence of
the imposed angular correction, the speckle pattern rotates and
is averaged out while the accretion disc remains fixed and is
enhanced. The coloured projections show that the disc is globally
white without notable spectral variations. As previously noted,
the edge of the field of view is better reconstructed with the pro-
posed method (absence of outliers).

4. Discussion and conclusions

Here, we propose a new algorithm named PIC designed to
reduce the raw data of an IFS in order to produce a 2D + λ cube.
Based on an inverse problem approach implementing a robust
penalisation, the proposed method directly reconstructs the full
hyperspectral cube.

Our method amounts to solving an inverse problem which
provides a number of advantages compared to previous methods.
The direct object extraction avoids a posteriori interpolation of
the extracted spectra on a Cartesian spatial grid or a common
wavelength sampling. Modelled by the forward model, the spec-
tral cross-talk between neighbouring spectra is reduced and the
spectral response of the instrument is deconvolved in the reduc-
tion. This framework also provides a natural and consistent way
to deal with corrupted measurements (e.g. defective pixels or
cosmic particles) so as to avoid artefacts in the result.

Contrary to other methods, the proposed algorithm explicitly
introduces a spatiospectral regularisation. Our results demon-
strate that this regularisation improves the quality of the reduced
data by limiting the incidence of the noise and of outlier pixels
which are automatically detected during the reduction.

In addition to this new reduction algorithm, we also describe
an improved calibration procedure for the SPHERE-IFS instru-
ment. A model of the statistics of the noise in the raw data
provided by the sensor is obtained from the calibrations files.
Defective pixels are also flagged to be discarded in the reduction
procedure. Polynomial laws for the positions and the dispersion
are robustly fitted for each lenslet, providing a model that is as
close as possible to the instrument physics. An autocalibration
step is added to correct for possible shifts between the calibra-
tion and the science acquisitions.

The reconstructed spectra, in particular from the calibration
observations presented in Appendix B, show a slight improve-
ment of the spectral resolution due to the spectral deconvolution
performed by the proposed data-reduction method. The results
on extended objects show that such a regularised method and
careful calibration enhances the spatial contrast while reducing
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the impact of defective pixels along the spectral dimension.
Some artefacts visible in some SPHERE reductions in the form
of large-scale structures (vertical bands) are also suppressed.

Applied to coronagraphic acquisitions, the method provides
reconstructed hyperspectral cubes of improved quality and with
fewer artefacts, which in turn lead to detection maps with bet-
ter separation between sources (like exoplanets) and background
speckle. In the quest to detect very faint exoplanets by direct
imaging, the proposed reconstruction may contribute to improv-
ing the achievable contrast.

The forward model could be further refined while keeping
the same general structure in order to account for non-Gaussian
microlense PSFs. Another refinement would be to account for
the small spatial shifts of the spectra in the area that surrounds
the coronagraph mask. However, this would, require a more
complex calibration procedure, with a step where a refinement
is computed directly on the science data. Finally, the method
should be tested and certified routinely on a large amount of data.

This work can be considered as a preliminary building block
from which more accurate and more complete reconstruction
algorithms can be be built. Currently, only the IFS instrument is
accounted for in the forward model. The next step is to include
the telescope response via its chromatic PSF. This would allow
an end-to-end deconvolution of the reduced cube directly from
the raw data. Our model could also be included in detection or
imaging algorithms to separate the stellar leakages from the off-
axis objects in high-contrast imaging.
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Appendix A: Detector calibration

Each SPHERE-IFS scientific acquisition comes with a set of cal-
ibration files described in Pavlov et al. (2008). These files are
split into two subsets: one dedicated to the calibration of the sen-
sor and the other dedicated to the calibration of the lenslet array,
that is, the spectral dispersion. In each configuration, a set of na
acquisitions are performed for various exposure times τ ∈ Rnt .
The calibration files that we use in our calibration of the sensor
are the following:

– detector flat-field acquisitions yf performed with an integrat-
ing sphere producing a uniform light in the optical system
after the lenslet array for different light sources (lasers or
broadband sources);

– background acquisitions ybg performed without any flux of
interest reaching the sensor. The recorded signal is then
mainly due to the thermal background. These measurements
are performed in three different configurations: (a) ybg/c ∈

Rm1×m2×nt×na with part of the instrument optical path closed
(i.e. same optical path as for the flat-field acquisitions, with-
out the lenslet array); (b) ybg/o ∈ Rm1×m2×nt×na with opened
optical path (i.e. complete optical path of the instrument from
the entrance focus, including the lenslet array); (c) ybg/s ∈

Rm1×m2×nt×na with the shutter of the instrument opened, the
telescope pointing at a dark region of the sky to record the
thermal emission of the atmosphere.

In the following, we describe how these different images are
combined in order to estimate the parameters that characterise
the detector. We first introduce notations for generic operations
on images:

– 〈a〉i is the empirical mean of a along the dimension indexed
by the letter i,

– Vi(a) is the empirical variance of a along the dimension
indexed by the letter i,

– Mi(a) is the median of a along the dimension indexed by the
letter i,

– Ai(a) = Mi(|a −Mi(a)|) is the median absolute deviation
of a along the dimension indexed by the letter i. It is often
used as a robust estimator of the standard deviation, see
Huber (2011).

The calibration procedures are illustrated using the two datasets
HR 8799 and RY lup introduced in the main text.

A.1. Bias calibration

The bias term bk in Eq. (3) is the sum of different contributions:

b = yb + ydc + yth + ysky, (A.1)

with yb the bias of the detector, ydc the dark current, yth the ther-
mal emission of the instrument and ysky the thermal emission of
the sky. All these contributions but the detector bias yb are pro-
portional to the exposure time. Hence the bias in the raw data
shall follow an affine law of the exposure time. The coefficients
of this law can be estimated from the background calibration
data given by:

ybg
k,a,t = yb

k + f bg
k τt + εk,a,t, (A.2)

where f bg is the background flux in adu s−1 accounting for the
dark current and the thermal emission, τt is the exposure time
and εk,a,t is the noise supposed to be independent.

Due to the high level of instrumental thermal emission, the
term f bg

k τt is predominant even at short exposure times and the
constant bias is negligible. In the following, we therefore assume

(a) (b) (c)

(d) (e)

Fig. A.1. Estimation of the temporal background flux f̃ bg/o
on the

RY lup dataset, with the shutter opened (cubic stretch, colour bar:
adu s−1). b–e: regions of interest of (a).

that: yb = 0. The estimated flux f̃ bg
k at a given pixel k is then

obtained by a simple linear fit of the averaged background cali-
bration data qbg = 〈ybg〉a ∈ R

m1×m2×nt weighted by their empiri-
cal precision wbg

k,t =
[
Va(ybg)

]−1

k,t
(∀k, t):

f̃ bg
k = argmin

f

nt∑
t=1

wbg
k,t

(
qbg

k,t − f τt

)2
=

∑nt
t=1 qbg

k,t wbg
k,t τt∑nt

t=1 τ
2
t wbg

k,t

· (A.3)

Finally, in Eq. (5), the term bk is estimated by b̃k = τexp f̃ bg/s
k

or by b̃k = τexp f̃ bg/o
k with τexp the exposure time and depending

on whether the sky contribution must be removed or not.
Figure A.1 shows the estimated flux f̃ bg/o for the RY lup

dataset with the shutter opened. It is very similar to the estimated
flux with the shutter closed (not presented here), meaning that
the thermal background is mainly due to the internal components
of the instrument. The figure also highlights some regions of the
sensor where some dust masks the thermal emission, such as
Figs. A.1b,c, and other regions with a high density of anomalous
pixels, such as Fig. A.1d.

A.2. Remnant signal

During a night-time calibration procedure, it happens that the
sky background ybg/s is polluted by a remnant signal from a pre-
vious acquisitions f pa, as seen in Figs. A.2a,b. This is typically
the case in high contrast imaging mode when the target star is
decentred in order to measure the off-axis PSFs and the spectral
energy distribution of the star, just before a sky background is
acquired, as shown in Fig. A.2c on RY lup.

As several sky background acquisitions are performed, the
remnant signal flux f̃ rs decreases while the background flux f̃ bg

remains constant. These two contributions are iteratively split
under the following assumptions:

– f pa
≈ f̃ bg

+ f̃ rs
,

– ∀a ∈ ~1, na�, f bg/s
a ≈ f̃ bg

+ βa f̃ rs
,

– ∀a ∈ ~1, na − 1�, βa ≥ βa+1 ≥ 0,
– ∀k, f̃ bg

k ≥ 0,
where the ≈ sign indicates that some discrepancy is expected
because of noise.

Algorithm 2 implements a simple iterative method to esti-
mate the background f̃ bg with a reduced contribution of the
remnant signal f̃ rs. Figures A.2d,e show that this algorithm is
effective and that the two contributions can be correctly identi-
fied. The remnant artefact is strongly attenuated in the estimated
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(a) (b) (c)

(d) (e)

Fig. A.2. Illustration of the remnant signal suppression from the sky
background acquisitions (RY lup dataset, colour bar: adu s−1). a,b: aver-
aged sky background fluxes 〈 f bg/s

〉a. c: previous acquisition flux f pa.
d: corrected sky background flux f̃ bg

. e: estimated remnant signal f̃ rs

in (c).

background flux f̃ bg while the remnant signal contribution f̃ rs is
not polluted by an offset due to the background.

Algorithm 2 Remnant-free background flux f̃ bg estimate

1: f̃ bg
← 〈 f bg/s

〉a . Initial background estimate
2: for i from 1 to nrs do
3: f̃ rs

← f pa
− f̃ bg

. Update foreground estimate
4: for a from 1 to na do . Loop over calibration backgrounds

5: βa ←

(
f bg/s

a − f̃ bg
)t
· f̃ rs

‖ f̃ rs
‖22

. Least-squares estimate of βa

6: βa ←

{
max(min(βa, βa−1), 0) ifa > 1
max(βa, 0) else

. Apply constraints

7: ∀(k, a), rk,a ← f bg/s
k,a − βa f̃ rs

k . Subtract remnant signal

8: f̃ bg
←Ma(r) . Update background estimate

9: ∀k, f̃ bg
k ← max

(
f̃ bg
k , 0

)
. Apply constraints

10: return f̃ bg

A.3. Gain calibration

The factor gk in Eq. (3) is a gain converting the signal of inter-
est [M x]k at pixel k into digital values. This gain accounts for
the quantum efficiency, for the optical throughput and for the
electronic gain. The pixelwise gain is estimated from flat-field
acquisitions yf obtained under a flux that is made as uniform as
possible over the whole sensor. These acquisitions must first be
pre-corrected from the background corresponding to the situa-
tion where the shutter is closed:

ỹf
k,a,t = yf

k,a,t − τt f̃ bg/c
k . (A.4)

To account for the fact that the flat-field calibrations were
acquired under different illuminations, the estimated gain g̃ is
then given by fitting the averaged (background compensated)
flat-field calibrations qf = 〈ỹf〉a ∈ R

m1×m2×nt as a linear func-
tion of their median intensity pf = Mk(qf) ∈ Rnt weighted by
their empirical precisions wf

k,t = [Va(ỹf)]−1
k,t (∀k, t):

g̃k = argmin
g

nt∑
t=1

wf
k,t

(
qf

k,t − g pf
t

)2
=

∑nt
t=1 qf

k,t wf
k,t pf

t∑nt
t=1

(
pf

t

)2
wf

k,t

· (A.5)

Figure A.3 shows the gain g̃ calibrated on the RY lup dataset.
Contributions from the optics and from the electronics can be

(a) (b) (c)

(d) (e)

Fig. A.3. Estimation of the flat-field correction factor g̃ on the RY lup
dataset. b–e: regions of interest of (a).

(a) (b) (c)

(d) (e)

Fig. A.4. Identified defective pixels in the RY lup dataset. White: Pix-
els out of the lenslet array field. Green: pixels flagged by the median
filter on the dark acquisitions. Red: pixels flagged by their anomalous
variance in the dark acquisitions. Blue: pixels flagged by the median
filter on the flat-field acquisitions. Dark blue: pixels flagged by their
anomalous variance in the flat-field acquisitions. Grey: unflagged pix-
els. b–e: regions of interest of (a).

identified. The vertical stripes are due to the gain differences
between the 32 reading channels of the sensor. The curved hor-
izontal lines are probably artefacts due to parallel plates on the
optical path. Large darker areas are attributable to dust particles
on the optics. The dust particles directly laying on the sensor
and already visible in the calibrated background flux, such as in
Figs. A.1b,c, are now clearly visible, as shown in the zooms of
Figs. A.3b,c.

A.4. Defective pixels identification

The different calibration files can be used to form a first esti-
mate of the map of defective pixels, noted δcal in Algorithm 1.
Figure A.4 represents the discarded pixels for the RY lup dataset
as well as the reason of their flagging.

The spectral flat-field, which is discussed in more detail in
Appendix B and in Fig. C.1a, is first used to identify the active
area of the sensor (the grey area of Fig. A.4). Outside of this area
the pixels are discarded. In addition we discard also the first four
and the last four columns and rows of the sensor. This active area
corresponds to the grey square region in the figure.

The defective pixels are then identified by analysing the
statistics of the different calibration datasets yc ∈ Rm1×m2×na×nt

and their model yc
k,a,t ≈ pc

k uc
t (∀a) with a pixel-wise map

pc ∈ Rm1×m2 and exposure-wise factors uc ∈ Rnt respectively
given by:

(yc, pc,uc) ∈
{
(ybg/o, f̃ bg/o

, τbg/o), (ybg/c, f̃ bg/c
, τbg/c), (yf , g̃, pf)

}
,

A90, page 14 of 21

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936890&pdf_id=12
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936890&pdf_id=13
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936890&pdf_id=14


A. Berdeu et al.: PIC: a data reduction algorithm for integral field spectrographs

where we recall that pf =Mk(〈ỹf〉a). For each of these three sets,
a map of defective pixels is built as presented in Algorithm 3.

Algorithm 3 Defective pixel identification on a set (yc, pc,uc)
1: p̄c ← pc − medfilter(pc) . Difference with a 5 × 5 median filter

2: ∀k, δa
k ←

{
0 if | p̄c

k| > α
aAk( p̄c)

1 else
. Threshold on the tolerance

3: nw ←
∑m1 ,m2

k=(1,1)

(
1 − δa

k

)
. Count of the discarded pixels

4: ∀(k, t), rk,t ←
[
〈yc〉a

]
k,t − pc

k uc
t . Residuals of the linear fit

5: ∀k, ck ←
∑nt

t=1 r2
k,t/

[
Va(yc)

]
k,t . Weighted cost of the residuals

6: ∀k, ck ← ck δ
a
k . Discard already flagged pixels

7: ∀k, δv
k ← 1 . Init. of the map on the statistics of yc

8: for nw worst ck do . Discarding nw worst statistics
9: δv

k ← 0 . δv update

10: ∀k, δcal
k ← δa

k δ
v
k . Global map on u

11: return δcal

A first set δa of nw defective pixels is built by forming a resid-
ual map p̄c by subtracting to pc its local median in a 5 × 5 pix-
els neighbourhood and identifying as defective the pixels whose
absolute value in p̄c is greater than a tolerance αa multiplied by
the median absolute deviation Ak( p̄c). In Fig. A.4, such defec-
tive pixels are marked in green if they are found via the back-
ground calibration files (shutter opened or closed) and in blue if
they are found via the detector flat-field acquisitions.

In a second step, the statistics of the residuals of the linear
fit pc in the averaged acquisitions 〈yc〉a, according to uc weighted
by their empirical variance Va(yc), are analysed. The nw pixels
with the worst costs (nw corresponds to the number of defective
pixels previously detected), that is to say, an anomalous vari-
ance, are discarded among the remaining pixels not yet flagged
as defective. This gives a second map δv of defective pixels. In
Fig. A.4, such defective pixels are marked in red if they are found
via the background calibration files (shutter opened or closed)
and in dark blue, if they are found via the detector flat-field
acquisitions.

The maps δa and δv built for the three sets are then com-
bined to obtain the final map of discarded pixels δcal This method
clearly identifies the pixels impacted by the presence of dust
particles laying on the sensor, as shown in blue the zooms of
Figs. A.4b,c.

As one would expect, looking at the red-flagged pixels, it
appears that some of the pixels with an anomalous variance clus-
ter around defective pixels. This is because, at high fluxes, defec-
tive pixels overflow and corrupt surrounding pixels. This justi-
fies the choice of discarding the nw worst variances. Some areas,
such as the one of Fig. A.4d, have a high density of discarded
pixels.

The zooms of Figs. A.4b–e must be compared with the
ones of Figs. A.1b–e and A.3b–e: some of the discarded pixels
would have been hardly identifiable in the estimated background
fluxes f̃ bg or in the gains g̃.

A.5. Noise variance estimation

In this section, we describe how to estimate the variance vk of the
additive noise used in Eq. (4) on each pixel k, namely the vari-
ance at null flux v0

k, the so-called readout noise, and ηk, which
contains the conversion from the number of photons to adu in
the Poisson noise term of this equation.

As the different calibration images are not sufficient to esti-
mate these parameters independently for each pixel k, they are

(a)

(b)

Fig. A.5. Estimation of the noise model v = η̃.Iadu + ṽ0 for the
HR 8799 (a) and RY lup (b) datasets. The model is fitted on the median
fluxes and the median variances of the different calibration files: the
dark currents with the shutter close (red) and open (green) and the flat-
fields (blue). The error bars are obtained by the median absolute devi-
ation on all the sensor pixels for each acquisition set. The grey law is
fitted without taking into account the errors. The black law is fitted by
accounting for the errors. The red and blue insets are zooms on regions
of low incident fluxes.

assumed to be constant on the whole sensor:

∀k, ηk = η̃ and v0
k = ṽ0. (A.6)

This approximation holds if all the pixels behave similarly and
if gk ' 1 whatever k.

The coefficients (η̃, ṽ0) are estimated using all the calibration
files yc ∈ {ybg/o, ybg/c, yf}. An affine law is fitted to their median
empirical variances qc = Mk(Va(yc)) ∈ Rnt : qc ≈ η pc + v0 1,
where pc =Mk(〈yc〉a) ∈ Rnt is the median flux in the calibration
images yc. Here, η pc is consequently the variance associated
with the Poisson noise induced by the median flux. Weights wc =
[Ak(Va(yc))]−2 ∈ Rnt , corresponding to the inverse of the square
of the median absolute deviation are used to weight each sample
of the fit:(
η̃, ṽ0

)
= argmin

η,v0

∑
c∈{bg/o,bg/c,f}

‖qc −
(
η pc + v0 1

)
‖2wc , (A.7)

η̃ =

(∑
c,t wc

t

) (∑
c,t wc

t pc
t qc

t

)
−

(∑
c,t wc

t pc
t

) (∑
c,t wc

t qc
t

)
(∑

c,t wc
t

) (∑
c,t wc

t
(
pc

t
)2
)
−

(∑
c,t wc

t pc
t

)2 , (A.8)

ṽ0 =

(∑
c,t wc

t
(
pc

t
)2
) (∑

c,t wc
t qc

t

)
−

(∑
c,t wc

t pc
t

) (∑
c,t wc

t pc
t qc

t

)
(∑

c,t wc
t

) (∑
c,t wc

t
(
pc

t
)2
)
−

(∑
c,t wc

t pc
t

)2 ·

(A.9)

Results obtained on HR 8799 and RY lup calibration files are
given in Fig. A.5 and in Table A.1.
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Table A.1. Estimation of the coefficients
(
η̃, ṽ0

)
for the two datasets,

when accounting for the median absolute deviation of the empirical
variances (weighted least squares) or not (standard least squares).

Dataset HR 8799 RY lup

Fit Weighted Standard Weighted Standard

η̃ (adu) 47.69 45.58 51.19 52.44
ṽ0 (adu2) 21.48 21.24 20.91 45.80

Accounting for the median absolute deviation σ̃ of the
empirical variance improves the estimation: the estimated line
(in black) is less affected by values with large uncertainty than
an unweighted least square fit (grey line).

It appears that the smaller errors on the low values help to
counterbalance the lever arm effect on the large fluxes that are
noisier. In the case of the RY lup dataset, the weighted fit reduces
the influence of an outlier point around a flux of 2750 adu whose
variance exceeds 4000 adu2. This can be seen in the estimation
of ṽ0 presented in Table A.1: as expected the weighted least
squares gives more similar coefficients for the two datasets than
the standard least square estimation.

Appendix B: Spectral dispersion calibration

This appendix describes the calibration of the lenslet array, that
is, how to determine the operator P: Rnh×nλ → Rm1×m2 that repre-
sents the spectral dispersion produced by the individual lenslets
projected on the sensor.

To build this operator, several calibration files are used:
– Spectral flat-field acquisitions ys are obtained when an inte-

grating sphere produces a uniform light upstream of the
lenslet array with a broadband lamp. These images help to
calibrate the 2D location of each spectrum and the lenslet
transmissions as well as to identify defective lenslets.

– Laser acquisitions yw are obtained with ncal
λ = 4 calibrated

lasers placed upstream of the lenslet array. Their wavelengths
are λcal

∈ {987.72, 1123.71, 1309.37, 1545.10} nm. Only the
first three lasers are used for the YJ band calibrations (ncal

λ =
3).

For each of these files, a set of several acquisitions a ∈ ~1, na�
are performed for a given exposure time τ. In the following, only
their average, corrected for the background and the gain, is con-
sidered:

∀ι ∈ {s,w} , yιk ← g−1
k

([
〈yι〉a

]
k − τ

ι f̃ bg/o
k

)
. (B.1)

B.1. Dispersion model

As previously described, after dispersion, the spectrum produced
by a given lenslet is modelled as a weighted sum of elementary
normalised Gaussian patterns, one for each reconstructed wave-
length. For a pattern of size σ ∈ R+, centred on κ ∈ R2 in pixel
coordinates, the value at a given pixel k is:

ξk (κ1, κ2, σ) =
1

2 πσ2 exp
(
−

(k1 − κ1)2 + (k2 − κ2)2

2σ2

)
· (B.2)

In practice, to save memory and computational time, the
Gaussian patterns are truncated outside a region of a few pixels.
As a consequence, P is a sparse matrix.

The reduced hyperspectral cube produced by the stan-
dard reduction pipeline of SPHERE (Pavlov et al. 2008) pos-
sesses nλ = 39 wavelengths. In our calibration method, the lists
of reconstructed wavelengths λ are extended beyond the edges
of the spectrum:

– for the YH-mode, nλ = 44 wavelengths are reconstructed
(and the ncal

λ = 4 calibration lasers are used);
– for the YJ-mode, nλ = 47 wavelengths are reconstructed (and

the first ncal
λ = 3 calibration lasers are used).

Thus, if κ ∈ R2×nλ is the list of the positions of the elementary
Gaussian patterns in a spectrum and σ ∈ Rnλ the list of their
sizes, the light incoming from a given lenslet h is dispersed to
form a spectrum u on the sensor, whose value at pixel k is:

uk =

nλ∑
`=1

Λ` γh ξk
(
κ1,`, κ2,`, σ`

)
, (B.3)

where Λ is the spectrum of the lamp and γh is the transmission
of lenslet h.

For each lenslet, the position κ and the widthσ of each Gaus-
sian pattern are assumed to follow a polynomial law of degree d
as a function of the wavelength. At wavelength λ`, the value of
the polynomial p` defined by the coefficients c ∈ Rd+1 is:

p`(c) =

d+1∑
j=1

c j λ
j−1
`
. (B.4)

The spectral projection operator P is defined based on the
list γ ∈ Rnh of the lenslet transmissions, the list cκ ∈ Rnh×2×(dk+1)

of the coefficients of the polynomial law of degree dk describ-
ing the positions of the elementary patterns for each lenslet, and
the list cλ ∈ Rnh×(dλ+1) describing the coefficients of the polyno-
mial law of degree dλ of the size of the elementary patterns for
each lenslet. With these notations, the model of the spectrum at
a given pixel k produced by the lenslet h is:

uk
(
cκh, c

λ
h, γh,Λ, λ

)
=

nλ∑
`=1

Λ` γh ξk
(
p`(cκh,1), p`(cκh,2), p`(cλh)

)
· (B.5)

In practice, the degree of the polynomial model is dictated by
the number of calibration spots in each spectrum: dk = ncal

λ − 1
i.e. dk = 3 in the YH-mode and dk = 2 in the YJ-mode. For both
cases, we use dλ = 2.

B.2. Dispersion calibration

With the notations defined for the robust penalisation, the esti-
mation of these dispersion coefficients is obtained by minimising
the following data fidelity term for a given lenslet h:

S

(
y, cκh, c

λ
h, γh,Λ, λ

)
def
=

m1,m2∑
k=(1,1)

ρ
(
δcal

k scal−1 (
yk − uk

(
cκh, c

λ
h, γh,Λ, λ

)))
, (B.6)

applied on the spectral flat-field {ys,Λ, λ} or on the wavelength
calibration

{
yw,Λcal

h , λcal
}
, where Λcal

h ∈ R
nh×ncal

λ is the list of the
amplitudes of the spots for each lenslet.

Estimating the dispersion parameters from the laser calibra-
tion images yw is not suitable because some laser spots may fall
into regions with many defective pixels, or be totally hidden by
a dust particle. Using the spectral flat-field images ys is more
adapted since the signal covers many more pixels, but is very
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limited in terms of wavelength characterisation. It is best to com-
bine the two calibration files via a global data fidelity term:

F

(
ys, yw, cκh, c

λ
h , γh,Λ,Λ

cal
h

) def
= S

(
ys, cκh, c

λ
h , γh,Λ, λ

)
+ µwS

(
yw, cκh, c

λ
h , γh,Λ

cal
h , λcal

)
, (B.7)

where the hyperparameter µw balances the influence of the wave-
length calibration compared to the spectral flat-field.

Minimising Eq. (B.7) to determine the dispersion parame-
ters of a given lenslet h implies knowledge of the spectrum Λ of
the lamp. This spectrum can be robustly estimated from all the
lenslets by minimising the following data fidelity term:

L

(
cκh, c

λ
h , γh,Λ

) def
= µΛRλ (Λ)

+

m1 ,m2∑
k=(1,1)

ρ

δcal
k scal−1

ys
k −

nh∑
h=1

uk
(
cκh, c

λ
h , γh,Λ, λ

) , (B.8)

regularised by the smoothing term µΛRλ (Λ) previously defined
in Eq. (12) and constrained to the domain:

DΛ =
{
Λ ∈ Rnλ/∀`,Λ` ∈ R

+, Λ1 = Λnλ = 0
}
. (B.9)

The spectrum of the lamp is initialised on a few neighbouring
spectra at the centre of the sensor field. Each lenslet spectrum
and its dispersion coefficients

(
cκh, c

λ
h, γh,Λ

cal
h

)
are then identified

neighbour after neighbour by minimising Eq. (B.7).
This first estimation can be refined to account for the over-

lap of neighbouring spectra. If the impact on the position
coefficients cκ is minor, it influences the size coefficients cλ in
particular on the spectra edges. That is why the first set of param-
eters is refined nc times by Algorithm 4 by iteratively working
on the residuals.

Algorithm 4 Spectral dispersion calibration algorithm
1: for i from 1 to nc do . nc refinement loops
2: Λ ←

Eq. (B.8)
argmin
Λ∈DΛ

L
(
cκh, c

λ
h , γh,Λ

)
. Λ update,

(
cκh, c

λ
h , γh

)
fixed

3: ∀k, rk ←
Eq. (B.5)

ys
k −

∑nh
h=1 uk

(
cκh, c

λ
h , γh,Λ, λ

)
. Global residuals

4: for h from 1 to nh do . Loop on the lenslets
5: ∀k, rh

k ←
Eq. (B.5)

rk + uk

(
cκh, c

λ
h , γh,Λ, λ

)
. hth lenslet residuals

6:
(
cκh,Λ

cal
h

)
←

Eq. (B.7)
argmin

cκh ,Λ
cal
h

F
(
rh, yw, cκh, c

λ
h , γh,Λ,Λ

cal
h

)
.
(
cκh,Λ

cal
h

)
update on

(
rh, yw

)
,
(
cλh , γh,Λ

)
fixed

7:
(
cλh , γh

)
←

Eq. (B.6)
argmin

cλh ,γh

S
(
rh, cκh, c

λ
h , γh,Λ, λ

)
.
(
cλh , γh

)
update on rh,

(
cκh,Λ

)
fixed

8: return
(
cκh, c

λ
h , γh,Λ,Λ

cal
h

)
At each iteration of the refinement loop, the parameters of

the model are alternatively estimated. First, the lamp spectrum
is robustly fitted on all the lenslets by minimising Eq. (B.8) with
the VMLM-B algorithm.

The positions cκh and amplitudes Λcal
h of each spot are then

estimated, one lenslet after another, after the contributions of all
other lenslets have been removed from the data. These estima-
tions are also performed with VMLM-B. In a third step, the size
cλh of the patterns and the lenslet transmissions γh are estimated
using a simplex search method (Lagarias et al. 1998).

Doing so, the estimation of the position parameters is split
from the pattern size law fit. Thus, cλh is not influenced by the
monochromatic spots size in yw whereas they are supposed to fit
continuous spectra in ys.

B.3. A super-resolved model for the lenslet PSF?

Considering a super-resolved model, as proposed by Brandt et al.
(2017), is straightforward in the proposed framework. It consists
in replacing the Gaussian patterns ξk with a more accurate model
of the lenslet PSFs. The real difficulty comes from the calibra-
tion of this model. In particular, the calibration files available for
the SPHERE instrument are not sufficient to derive an accurate
super-resolved PSF model for several reasons.

Firstly, the calibration lasers simultaneously illuminate the
IFU. Thus, the foot of the PSF produced by one laser overlaps
with the PSFs of the other wavelengths. A sequential acquisi-
tion (one wavelength at a time) would be necessary to directly
recover the whole support of the PSFs without requiring to
unmix the PSFs. Secondly, even with a single monochromatic
illumination, all lenslets are illuminated at once, which leads
to two issues. The spots produced by the different lenslets lie
on a regular grid and slightly overlap, which creates a degener-
acy of the super-resolved model. Some interference also occurs
between patterns which are not representative of the PSFs
obtained with incoherent light. The selective illumination of
one lenslet at a time would solve these issues but would be
time consuming and would raise technical instrumental issues.
Finally, the number of distinct wavelengths used in the calibra-
tion procedure is too low to allow a fine parameterisation of
a PSF model, and in particular to address the variability from
one lenslet to another. A larger set of wavelengths, covering the
whole spectrum (to prevent extrapolations on the edges of the
spectral domain) would be necessary. For these different reasons,
such a super-resolved model was not implemented in the present
paper.

Appendix C: Results of the dispersion calibration

C.1. Dispersion

Results of Algorithm 4 are illustrated in Fig. C.1 for the calibra-
tion in the YH-mode of the HR 8799 dataset.

The ncal
λ = 4 laser spots are visible in the wavelength calibra-

tion acquisition yw for each lenslet in Figs. C.1a,c. The coloured
dots mark the positions of the spots fitted by the Algorithm 4.
The radii of the dark circles indicate the size of the Gaussian pat-
terns. The chromatic evolution of the fitted size is visible with a
minimal spot extension around the third calibration wavelength.

The residuals in Fig. C.1g of the first iteration of the wave-
length calibration present a strong diversity due to inaccurate
values of the size of the Gaussian patterns and incorrect ampli-
tudes for the spots Λcal. Some patterns are not well-aligned with
the laser spots, as suggested by nonsymmetric residuals on some
spots (which indicates a bad wavelength calibration). The final
residuals in Fig. C.1h, after nc = 10, are more homogeneous,
with centred residuals on each spot. Nonetheless, all the spots
present red ring-shaped residuals and seem to worsen. This sug-
gests that the pattern size given by cλ is overestimated when
applied to the laser spots. This is expected as these spots are
monochromatic whereas the dispersion law is fitted on the con-
tinuous spectra of the spectral flat-field file ys. This also implies
that a wavelength calibration only performed on the wavelength
calibration file yw underestimates the size parameters.

The spectra of the nh ≈ 19 000 lenslets of the spectral flat-
field acquisition ys are visible in Figs. C.1b,d. The coloured dots
represent the positions of the nλ = 44 wavelengths of the for-
ward model. It can be seen that the spectral range goes beyond
the calibration laser spots, especially in the longer wavelengths
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k)

Fig. C.1. Calibration of the spectral projection for the HR 8799 dataset
(square root stretch, colour bar: adu). a: averaged wavelength calibra-
tion acquisition yw. b: averaged spectral flat-field calibration acqui-
sition ys. c: zoom of (a). The found positions for the calibration
wavelengths are highlighted by coloured dots. The black circles are pro-
portional to the size of the Gaussian patterns. d: simulation of the wave-
length calibration by the projection model. e: zoom of (b). The positions
of the wavelengths simulated in the forward model are highlighted by
coloured dots. f: simulation of the spectral flat by the projection model.
g: residuals of the first estimation of the wavelength calibration. h: final
residuals of the wavelength calibration. i: residuals of the first estima-
tion of the spectral flat calibration. j: final residuals of the spectral flat
calibration. k: histogram of the residuals of the spectral flat calibration
along the iterations. For comparison purposes, a Gaussian profile of
standard deviation σ = 175 adu is plotted.

(red dots). The extrapolation of the positions beyond these cali-
brated spots leads to wider spatial steps in the short wavelengths
(blue dots) while the positions are more packed in the longer
wavelengths (red dots). This may lead to a degraded wavelength
calibration in the outer regions of the spectral range (see Fig. 8
and associated discussion).

In the residuals of the first calibration of the spectral flat cal-
ibration in Fig. C.1i, it appears that the overall signal is over-
estimated. This may be due to the fact that the overlap of the
spectra is not taken into account at this first iteration. The dust

presents in Fig. A.3c is clearly identifiable. After the nc = 10
refinements, the residuals in Fig. C.1j improve, especially on
the spectra edges, to fall below ∼2.5% of the lamp spectrum
intensity. This is confirmed by the curves of Fig. A.3k that
show the evolution of the histogram of the residuals along with
the refinement iterations. Starting from a spread distribution,
the residuals squeeze towards a Gaussian curve with smaller
dispersion.

Blue structures in Fig. C.1j indicate that some regions are
still slightly underestimated by the model, leading to positive
residuals. This corresponds to the small bump around 400 adu
in the residue distribution. This is due to the fact that the Gaus-
sian pattern model is an approximation of the spots diffracted
by the hexagonal apertures of the lenslets. They have “feet”
in privileged directions that are not fitted by an axisymmetric
pattern, to which optical aberrations may be added. This also
explains the blue positive background around the laser spots in
Figs. C.1a,c.

In terms of wavelength centring of the forward model,
as mentioned by Vigan et al. (2015), the SPHERE reduction
pipeline (Pavlov et al. 2008) needs an extra-patch to correct
its wavelength calibration. To check our calibration, the wave-
length calibration file yw is reconstructed using Algorithm 1. The
results are given in Fig. C.2 for the two datasets.

The coloured projections of Figs. C.2a,b and the mono-
chromatic slices given in Figs. C.2c,d show that the recon-
structed laser illuminations are not uniform but are characteristic
of speckle noise.

The median intensityMθ(x), computed on each slice of the
reconstructed hyperspectral cube, is shown in Fig. C.2e for each
dataset. Maxima match well the wavelength of the calibration
lasers, represented by vertical dashed lines. The effective reso-
lution is estimated from the full width at half maximum of each
laser. The average resolution of the YJ-mode and YH-mode is
R = 57 and R = 31 respectively. These values are compared to
the standard reduction method based on a direct mapping (Vigan
et al. 2015) in the YH-mode from which the estimated average
spectral resolution is R = 20. The better spectral resolution using
PIC is close to the SPHERE-IFS theoretical resolution R = 30
of Beuzit et al. (2019) and shows the impact of the spectral
deconvolution performed by the inverse problems approach (this
deconvolution is possible because the forward model accounts
for the spectral mixing).

C.2. Transmission

The calibration procedure also gives the achromatic transmission
map γ of the IFU, including the lenslet array, the prism, and the
other associated lenses; it is shown in Fig. C.3a, with a median
transmission ofMh(γ) = 1.

It can be seen that the transmission map γ further corrects
the effect of the dust particles on the optical path that cannot
be suppressed only by the sensor flat-field correction factor g̃.
Indeed, comparing Figs. A.3a and C.3a, it appears that these dust
particles have a counterpart in the transmission map γ. Even if
the effect is minor, Fig. C.3b shows that the lamp spectrum Λ is
refined with the iterations of the calibration loop. The corrections
are mainly due to the refinement of the dispersion law cλ. Indeed,
the dilution of the intensity in a Gaussian pattern according to its
size must be counterbalanced by its amplitude. Some features
are visible in the lamp spectra that can participate to the robust
wavelength calibration.
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(a) (b)

(c) (d)

(e)

Fig. C.2. Wavelength calibration of the model on the HR 8799 (YH-
mode, on the left panel) and the RY lup (YJ-mode, on the right panel)
datasets (colour bar: arbitrary unit). a,b: coloured projection 〈x〉λ of the
reconstructed hyperspectral cube. c,d: slice of the reconstructed hyper-
spectral cube (λ = 1314 nm for the HR 8799 dataset, λ = 1122 nm for
the RY lup dataset). e: median intensityMθ(x) computed on each slice
of the reconstructed hyperspectral cube for each dataset compared with
the reduction proposed by Vigan et al. (2015). The wavelengths of the
calibration lasers are highlighted by dashed grey lines).

C.3. Autocalibration

A last correction must be added in the calibration of the forward
model. Indeed, it appears that the data on the sky are not per-
fectly aligned with the calibration files. This is emphasised in
Figs. C.4a–d that presents a region of interest of an acquisition
on the sky (a), the fit of the model obtained before the autocal-
ibration (b), and the corresponding residuals (d). The difference
between the model before and after the alignment is shown in
Fig. C.4c.

To perform this alignment, nr regions of interest, equally
spread on the sensor and of mr × mr pixels, are extracted from
the raw science data to perform an autocalibration. The regions
are small and the spectra Λa ∈ Rnr×nλ of the lenslets are consid-
ered to be equal on these reduced fields.

(a) (b)

Fig. C.3. a: transmission map γ of the IFU estimated for the HR 8799
dataset. b: fitted spectrum of the lamp for the two datasets HR 8799
(YH-mode) and RY lup (YJ-mode) along the iterations of Algorithm 4.

(a) (b)

(c) (d)

(e)

Fig. C.4. Autocalibration for the HR 8799 dataset (square root stretch,
colour bar: adu). a: zoom on a region of interest. b: model before the
alignment. c: difference between the model prediction before and after
the alignment. d: residuals after the alignment. e: statistics before (red)
and after (black) the autocalibration step.

Table C.1. Estimation of the shift δk in pixel to apply on the coeffi-
cients cκ for the two datasets.

Dataset HR 8799 RY lup

δk
1 (pix) −2.55 × 10−2 +1.90 × 10−2

δk
2 (pix) −5.90 × 10−2 +2.61 × 10−1

Then an algorithm similar to Algorithm 4 is applied. A
refinement loop is performed to compute the global shift δk

∈ R2

that is assumed to be constant for all the coefficients cκ. Each
iteration alternates two steps:

– the spectrum Λa
r of each of the nr regions is fitted via

Eq. (B.8), applied on the region of interest, assuming that
the shift δk is known;

– the shift δk is fitted by combining all the regions of interest
by adapting Eq. (B.6), for fixed spectra Λa

r .
The histograms of the residuals before and after the alignment
are compared in Fig. C.4e. After the alignment they are less dis-
persed and more symmetrical. The estimated shifts for the two
datasets are given in Table C.1. The shifts are small, of the order
of a quarter of a pixel for the strongest correction in the case of
the RY lup dataset. For the HR 8799 dataset, the correction is just
a few percent of a pixel. Nonetheless, this shift corresponds to a
measurable signal as seen in Fig. C.4c that compares the inten-
sity predicted by the model before and after the autocalibration
step.
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Appendix D: Numerical value of the different
parameters

Table D.1 summarises the different parameters and hyperparam-
eters of the different algorithms. The numerical values were the
ones used to obtain the results presented in this paper.

The scaling factors sk applied on the pixels k of the data
are chosen to be constant all over the field: ∀k, sk = s0. As
the role of s0 is to discriminate the data that deviate compared
to the expected values, it depends on the overall data dynam-
ics and must be adapted to each dataset. This can be done by
looking at the distribution of the residuals such as the ones given
in Figs. 7o,p: s0 is proportional to their standard deviation. The
RY lup dataset having a low dynamics, this explains why its s0
is smaller.

The hyperparameters µλ, µ2D and µΛ introduced in Eqs. (13)
and (B.8) are normalised as follows:

µλ =
1
%

µ0
λ

s2
0

, µ2D =
1
%

µ0
2D

s2
0

and µΛ =
1
%Λ

µ0
Λ

s2
0

, (D.1)

where % is a normalisation factor to scale the number of
unknowns in the regularisation terms with the measurements in
the data fidelity term. In other words, it accounts for the num-
ber of reconstructed spectra and wavelengths compared to the
number of pixels in the forward model. The normalisation by
s2

0 accounts for the quadratic development of the Cauchy func-
tion close to zero. It ensures that the regularisation scales coher-
ently with the scaling coefficient s0. µ0

λ and µ0
2D are manually set.

Here, µ0
λ is chosen to be as small as possible while rejecting the

high-frequency modes that appear in the reduced spectra due to
the oversampling of the forward model as mentioned by Draper
et al. (2014). Also, µ0

2D must be high enough to participate in the
outlier pixel detection while avoiding adding too much smooth-
ing in the reduced cubes. To do so, it is placed at the limit at
which the acquisition noise starts to pollute the reduced cubes,
and consequently depends on the data dynamic range.

For the refinement of the spectral dispersion model, to refine
the parameters of each lenslet, the local spectra are extracted and
analysed on their region of interest. These regions are defined as
the window that encompasses the position of the different Gaus-
sian patterns, extended on each side by 2 pixels, leading to a
window of roughly 5 × 45 pixels for each spectrum. In addition,
at each loop, of the calibration, the parameter µw in Eq. (B.7)
is updated so that the cost on the spectral flat-field acquisition,
defined as

S
s

h = S
(
ys, cκh, c

λ
h, γh,Λ, λ

)
, (D.2)

is balanced with the cost on the wavelength calibration file,
defined as

S
w

h = S
(
yw, cκh, c

λ
h, γh,Λ

cal
h , λcal

)
, (D.3)

to favor the wavelength calibration file as follows:

µw = 50Mh

(
S s

h

S w
h

)
· (D.4)
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Table D.1. Numerical values of the parameters and hyperparameters used in the different algorithms.

Parameter Value Description

Algorithm 1: Data reduction
medfilter 3 × 3 Window size of the median filter
nit 6 Number of optimisation loops
− 20 Number of iterations of the VMLM-B algorithm to solve Eq. (1)
wth 0.5 Threshold on the equivalent weights defined in Eq. (10) to identify outlier pixels
∀k, sk = s0 5 for RY lup/25 for others Scaling factor of the robust penalisation in Eq. (9) (∝ the standard deviation of the

residuals as seen on Figs. 7o,p for the HR 8799 and RY lup datasets)
∀k, ηk, v0

k Eq. (A.7), η̃, ṽ0 Noise model used in Eq. (4) (Readout noise and Poisson noise)
%

n1 n2 nλ
m1 m2

Normalisation factor of the hyperparameters to balance the unknowns and the mea-
surements

µ0
λ 5 × 10−6 Hyperparameter of the spectral regularisation defined in Eq. (13)
µ0

2D 2.5 × 10−2 Hyperparameter of the spatial regularisation defined in Eq. (13)
ε 10−16 Spatial regularisation threshold defined in Eq. (11)

Algorithm 2: Remnant signal estimation
nrs 100 Number of iterations of the algorithm for the HR 8799 and RY lup datasets (the

algorithm is not run for Ganymede and Io, the background obtained with the shutter
opened is used instead).

Algorithm 3: Defective pixel identification
medfilter 5 × 5 Window size of the median filter
αa 15 Tolerance factor

Algorithm 4: Spectral dispersion calibration
nc 10 Number of optimisation loops
− 30 Number of iterations of the VMLM-B algorithm to minimize Eq. (B.8)
− 100 Number of iterations of the VMLM-B algorithm to minimize Eqs. (B.6) and (B.7)
scal 350 Scaling factor of the robust penalisation in Eqs. (B.6)–(B.8)
∀k, ηk|v0

k 0|1 No noise model used in Eqs. (B.6)–(B.8)
%Λ

nλ
m1 m2

Normalisation factor of the hyperparameters to balance the unknowns and the mea-
surements

µ0
Λ

1.5 × 10−3 Hyperparameter of the spectral regularisation defined in Eq. (B.8)

µw 50Mh

(
S s

h

S w
h

)
Hyperparameter to balance the spectral flat-field acquisition with the wavelength
calibration file in Eq. (B.7)

Autocalibration algorithm
nr 3 × 3 Number of regions of interest
mr 61 Size of the regions of interest
− 3 Number of optimisation loops
− 100 Number of iterations of the VMLM-B algorithm to estimate Λa

r via the adapted
Eq. (B.8)

− 100 Number of iterations of a simplex search method to estimate δk via the adapted
Eq. (B.6)

scal 350 Scaling factor of the robust penalisation in Eqs. (B.6) and (B.8)
∀k, ηk|v0

k 0|1 No noise model used in Eqs. (B.6) and (B.8)
%Λ

nλ
mr mr

Normalisation factor of the hyperparameters to balance the unknowns and the mea-
surements

µ0
Λ

8 × 10−4 Hyperparameter of the spectral regularisation defined in Eq. (B.8)

Notes. The parameters that are unnamed in the text are noted “−”.
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