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ABSTRACT

Numerical simulations and observations show that galaxies are not uniformly distributed in the universe but, rather, they are spread
across a filamentary structure. In this large-scale pattern, highly dense regions are linked together by bridges and walls, all of them
surrounded by vast, nearly-empty areas. While nodes of the network are widely studied in the literature, simulations indicate that
half of the mass budget comes from a more diffuse part of the network, which is made up of filaments. In the context of recent and
upcoming large galaxy surveys, it becomes essential that we identify and classify features of the Cosmic Web in an automatic way
in order to study their physical properties and the impact of the cosmic environment on galaxies and their evolution. In this work,
we propose a new approach for the automatic retrieval of the underlying filamentary structure from a 2D or 3D galaxy distribution
using graph theory and the assumption that paths that link galaxies together with the minimum total length highlight the underlying
distribution. To obtain a smoothed version of this topological prior, we embedded it in a Gaussian mixtures framework. In addition to
a geometrical description of the pattern, a bootstrap-like estimate of these regularised minimum spanning trees allowed us to obtain
a map characterising the frequency at which an area of the domain is crossed. Using the distribution of halos derived from numerical
simulations, we show that the proposed method is able to recover the filamentary pattern in a 2D or 3D distribution of points with
noise and outliers robustness with a few comprehensible parameters.
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1. Introduction

Large galaxy surveys like the Sloan Digital Sky Survey (SDSS,
York et al. 2000) have confirmed the pattern drawn by matter
at very large scales, which was initially addressed in analyt-
ical works and the first N-body simulations (e.g. Zel’dovich
1970; Doroshkevich & Shandarin 1978) and which has also been
exhibited in early observations (see e.g. Joeveer et al. 1978;
Einasto et al. 1980). In a pattern that is commonly referred to
as the Cosmic Web (Bond et al. 1996), filaments act like cos-
mic highways, linking together large overdensities of matter and
playing a key role in the dynamics of the universe. Since these
early observations, the community has considerably enhanced
the quality and the resolution of simulations with, for example,
Millenium (Springel et al. 2005), Illustris (Vogelsberger et al.
2014), and Horizon-AGN (Dubois et al. 2014). These high-
resolution simulations of dark matter (DM) evolution, which
sometimes even include baryonic matter, have thus led to a
more accurate spatial distribution of matter and allowed us
to quantitatively characterise the different cosmic structures
in terms of morphology, density, composition, etc. (see e.g.
Colberg 2007; Aragon-Calvo et al. 2010a; Cautun et al. 2014;
Gheller et al. 2016; Gheller & Vazza 2019). Revealing the faint
filamentary pattern of the Cosmic Web in data often relies on
the view of galaxies as tracers of the dark matter distribu-
tion and allows for the study of the influence of the cosmic
environment on the formation and evolution of those tracers
(e.g. Alpaslan et al. 2014a,b; Martinez et al. 2016; Kuutma et al.
2017; Malavasi et al. 2017, 2020; Laigle et al. 2018; Codis et al.
2018; Kraljic et al. 2020; Sarron et al. 2019). It usually involves
either stacking or individual inspection of objects after their

detection. The observation of the filamentary pattern is currently
performed using different observables: X-ray emissions (see
e.g. Dietrich et al. 2012; Eckert et al. 2015; Nicastro et al. 2018),
weak lensing (e.g. Gouin et al. 2017; Epps & Hudson 2017), or
through the Sunyaev-Zel’dovich effect (see e.g. Bonjean et al.
2018; Tanimura et al. 2019, 2020; de Graaf et al. 2019).

To perform such statistical and physical analyses, it is essen-
tial to detect the filamentary pattern in an automatic way and
this task is even more challenging when dealing with real obser-
vations. Visual inspection makes it possible to easily identify the
underlying structure, especially in mock datasets, whether we
are dealing with the filament-like or clustered parts of the pat-
tern. Over the years, the key question quickly has shifted to how
we can automatically extract that which is visually observed.
In 1985, Barrow et al. used, for the first time, a minimal span-
ning tree (MST; Boruvka 1926) approach in a cosmological
context to exhibit the underlying filamentary pattern from a
2D or 3D galaxy distribution, arguing that the usual statisti-
cal procedures, such as the two-point correlation function, are
not sensitive to this specific feature. Since then, several meth-
ods have been developed to analyse and describe this gigantic
network and yet, filaments still have not been attributed with
a unique, well-posed definition. In an intuitive way, filaments
correspond to bridges of matter between two dense regions of
the space. On the basis of this simple idea, many algorithms
with their own mathematical definitions have emerged. With no
aim of being exhaustive (see Libeskind et al. 2017, for a detailed
review), we give hereafter a list of such methods for classify-
ing cosmic web elements. Some are using the previously men-
tioned minimum spanning tree, an object coming from graph
theory. The resulting tree highlights a preferable path minimising
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Fig. 1. Toy model used to illustrate steps of the algorithm corresponding
to a rotated sinewave with Gaussian random noise linking two Gaussian
clusters.

the total distance to link galaxies together (Barrow et al. 1985;
Alpaslan et al. 2014a). After several processing stages of the
graph proper to each method, filaments are extracted as branches
of the tree. The study of the topological properties of the con-
tinuous density field through the Discrete Morse Theory led
Aragón-Calvo et al. (2010b) and Sousbie (2011) to define fila-
ments as the set of gradient lines linking maxima and saddle
points. The seminal work of Aragon-Calvo et al. (2007) allowed
Cautun et al. (2013) to build Nexus, an algorithm that performs
a scale-space representation of the field in which filaments are
defined locally through the relative strength between eigen-
values of the Hessian matrix of a smoothed continuous den-
sity obtained from the Delaunay Tessellation Field Estimator
(Schaap & Weygaert 2000). Another class of methods is based
on a statistical representation of stochastic point processes to
model the geometry of the filamentary structure. In particular,
Stoica et al. (2007) presented their modeling of filaments as con-
nected and aligned cylinders through the marked point-processes
theory. Genovese et al. (2014) and Chen et al. (2015) proposed
that cosmic filaments be identified as ridges in the distribution
of galaxies using an automatic algorithm moving iteratively a
set of points along the projected gradient. Some indirect meth-
ods aim to first recover the initial density field and then make it
evolve forward in time using the Lagrangian perturbation theory.
Indeed, Kitaura (2013) and Jasche & Wandelt (2013), respec-
tively, paved the way for Bos et al. (2014) and Leclercq et al.
(2016) to develop such tools. We note that these methods are
indirect reconstructions and are not specifically related to our
issue of detecting cosmic web elements; although Leclercq et al.
(2016) do use the inferred final density field in a game the-
ory framework to classify structures in the reconstructed density
field.

This wide variety of approaches, all aimed at identifying fil-
aments in a spatial distribution of matter tracers, reveals how this
problem can be hard to handle and also how great an importance
it holds for observational cosmology. Also, some of the above
methods are designed on simulations and using dark matter par-
ticles to detect those features but if we want algorithms to be
able to handle real datasets, we need it to work specifically with
galaxies (or halos in simulation) as inputs. With this in mind, we

developed an algorithm using a set of 2D or 3D galaxy positions
to build a smooth representation given by a graph structure and
standing in the ridges of the distribution. The presented method
does not rely on any density estimation but directly on the set
of observed data points. It does not assume any shape for fila-
ments but, rather, a global weak prior on Cosmic Web connec-
tivity and can be easily extended to any topological prior as long
as it is given by a graph structure. Furthermore, it can be used as
a denoised representation of the Cosmic Web for other applica-
tions than filament detection.

In the first section, we present the datasets we use through-
out this article to illustrate the steps and results of the proposed
algorithm, called T-ReX (Tree-based ridge extractor). Section 3
provides the required mathematical formalism used to build the
procedure. Section 4 develops the method step by step and illus-
trate the obtained results on a simple dataset, while Sect. 5 dis-
cuss the effect of each parameter on the resulting estimate of the
underlying structure. Finally, Sect. 6 presents and discuss out-
puts obtained on cosmological datasets, then comparing it with
other existing methods, namely Bisous, DisPerSE, and Nexus.

2. Data

In order to develop and test the main steps of the algorithm, we
use a simple and non-cosmological dataset, hereafter called the
toy dataset, shown in Fig. 1. It is constructed in a way so that
it mimics a regularly curved structure, the filament, linking two
clusters of points standing for overdense regions. The use of this
toy dataset enables us to explore the impact of the parameters
and test the reliability of the algorithm.

As a realistic cosmological dataset representing the Cos-
mic Web, we adopted the Illustris simulation outputs1

(Vogelsberger et al. 2014). It is a set of large-scale hydrodynam-
ical simulations with different resolutions in which an initial
set of particles (dark matter or baryonic gas) distributed over a
75 Mpc h−1 box is evolved forward in time from high redshift to
z = 0. From the resulting distribution at z = 0, halos of dark
matter are identified using a Friend-of-Friend algorithm (FoF,
More et al. 2011). To assess the application of the algorithm
for cosmological cases and mimic its use for a galaxy survey,
we consider structures inside halos, called subhalos, which have
been identified with the Subfind algorithm (Springel et al. 2008)
and provided by the Illustris package, as has already been done in
other recent studies (Coutinho et al. 2016). For convenience, we
sometimes refer to these subhalos as “galaxies”. Figure 2 shows
a thin 5 Mpc h−1 slice of dark matter distribution obtained from
the Illustris-3 simulation in which subhalos have been extracted.
We can see how these “galaxies” trace the underlying web drawn
by the dark matter particles.

In the following, each time we use a dataset built from the
Illustris simulation, it always concerns the box at redshift z = 0
and the Illustris-3 resolution obtained from 4553 dark matter par-
ticles with a mass resolution of 4.0 × 108 M�. When needed, we
will explicitly specify the settings with which the subset of par-
ticles is obtained. Namely, we will specify the type of particles
we are showing (subhalos or DM particles), the cut in the spatial
distribution (over xe, ye or ze spatial axes), and the cut in total
mass M over the considered particles in the spatial range.

Finally, to compare our results with other methods, we
also apply T-ReX to FoF halos extracted from a 200 Mpc h−1

box of a Gadget-2 N-body simulation with 5123 particles

1 http://www.illustris-project.org/data/
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(Springel et al. 2005). This particular simulation2 is the one used
in Libeskind et al. (2017), who proposed a unified comparison of
the main existing procedures to classify elements of the cosmic
web using either dark matter particles or dark matter halos as
input.

3. General formalism

Relying on the simple and only assumption that observed points
(i.e. galaxies) are tracing the underlying Cosmic Web, the main
idea of T-ReX is to model the filamentary structure as the
set of ridges (or principal curves) in the input point cloud.
To extract these ridges, we use the minimum spanning tree
and extend its previous application in cosmology (Barrow et al.
1985; Alpaslan et al. 2014b) by building a smooth version of it
standing “in the middle” of the cloud. We note that this prob-
lem of finding curves passing through data points or detecting
ridges in images is not proper to the cosmology field and has also
been extensively studied in applied mathematics; it is currently
of importance for medical applications, such as blood vessels
segmentation (see e.g. Moccia et al. 2018, for a recent review)
or dimensionality reduction (Qiu et al. 2017).

The basic idea behind this approach is that the true filamen-
tary structure is a continuous manifold that can be described
with a graph structure, while the observed galaxies represent
a sparse and noisy sampling of that manifold. More precisely,
in this paper is aimed at finding the best 1D representation of
that manifold using a tree topology. This section introduces the
required formalism to highlight how clustering methods as Gaus-
sian Mixture Models (GMM), combined with graph theory, can
be used to build such a representation starting from a general set
of N datapoints X = {xi}

N
i=1 with xi ∈ R

d.

3.1. Elements from graph theory

Let G = (V,E) be an undirected graph, withV as the collection
of vertices, E = {(i, j) | (i, j) ∈ V2} as the set of edges linking
nodes together, and {wi j}(i, j)∈V2 as the set of edge weights, such
that ∀(i, j) ∈ V, wi j ≥ 0. In our case, we consider wi j = ‖xi−x j‖

2
2.

Let us also define di the degree of a node i ∈ V as the number of
edges directly connected with it.

We call minimum spanning tree M the subgraph of G with
|V| − 1 edges that is reaching all nodes ofV with the minimum
total weight. By construction, M has no loops and is unique if
there are not two edges with the same weight in G, which, in our
case, does not seem likely to happen since it would imply galax-
ies with the exact same distance between them. Still, it would
only create very local modifications of the tree structure that
would be erased by future operations. In a tree-like structure,
we can define three exclusive typologies for a node i depending
on its degree: extremity node (di = 1), junction node (di = 2), or
bifurcation node (di > 2).

Graphs can be represented by some computable quantities
encoding the full graph information. A first representation is
given by the adjacency matrix of G, noted A, which is a sym-
metric |V|× |V|matrix encoding whether two vertices are linked
or not. Elements Ai j of this matrix take values as follows:

Ai j =

{
1 if (i, j) ∈ E,
0 if (i, j) < E. (1)

2 https://data.aip.de/projects/tracingthecosmicweb.
html
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Fig. 2. Projected 2D slice (ze = [0; 5] Mpc h−1) of dark matter parti-
cles distribution obtained from Illustris-3 simulation at a redshift z = 0
together with 2D projection of Subfind subhalos in the same region
(blue dots).

This matrix encodes all the knowledge about the connectivity of
vertices in the graph G, and if we consider the matrix W, such
that Wi j = wi jAi j, we end up with a matrix describing the full
graph.

Another useful representation of a graph is the Laplacian
matrix from which spectral decomposition gives fundamental
information about the graph structure (Lurie 1999). Let G be an
undirected simple graph with an adjacency matrix A and D is a
diagonal |V| × |V| matrix in which the element Dii corresponds
to the degree of the node i. Then the Laplacian matrix of G is the
symmetric, positive semi-definite |V| × |V| matrix defined as

L = D − A. (2)

As the MST reaches all data points, the resulting graph is
not smooth and, therefore, it does not properly reveal the local
geometry of the underlying distribution (see Fig. 3). In order to
recover the shape of the distribution, we span the set of data
points with a given number of centroids that will coarse grain
the density distribution. This task is achieved by using Gaussian
Mixture Models. The key idea of T-ReX, thus, is to achieve a
smooth representation of the d-dimensional dataset standing in
its ridges by computing a set of centroids with an enforced topol-
ogy given by a graph structure.

3.2. Expectation-Maximization for Gaussian Mixture Models

Gaussian Mixture Models (GMM) are part of parametric mixture
models that can be used to map a cloud of points to a density dis-
tribution by using a restricted number K of kernels to model the
distribution. Starting with random parameters for Gaussian ker-
nels, their positions and variances are adjusted iteratively to fit
best the observed data. GMM are also extensively used in unsu-
pervised clustering approaches where the aim is to partition the
datapoints into K clusters by defining a probability that a given
data point is part of the kth cluster. Using GMM, each cluster
is represented by a Gaussian distribution and the clustering is
reduced to an estimation problem of the Gaussian’s parameters.
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Fig. 3. Minimum spanning tree computed over data points of the toy
dataset. Black dots are data points and straight red lines are edges of the
tree.

Here we extend this second approach so that the clusters pave
the observed set of datapoints in its ridges.

In practice, we define K ≤ N centroids { fk}Kk=1 with fk ∈
Rd and assume that the dataset X is drawn in an independant
and identically distributed way from an unknown density that we
model as a weighted linear combination of K Gaussian clusters,

p(x | θ) =

K∑
k=1

πk N(x | fk,Σk), (3)

where θ = {π1, . . . , πK , f1, . . . , fK ,Σ1, . . . ,ΣK} is the set of model
parameters, πk is the weight of the kth component, such that∑K

k=1 πk = 1, and N(x | fk,Σk) is a multivariate normal distri-
bution centered on fk with covariance Σk.

This goal could also be achieved using the K-Means algo-
rithm (Macqueen 1967) where we minimise the L2 risk,

R[ f ] =
1
N

N∑
i=1

min
k=1...K

‖xi − fk‖22. (4)

This kind of similarity-based clustering of the data, however,
generates a hard partition of the input domain, meaning that each
point xi can only be member of one group fk and generally lacks
of flexibility and robustness to noise and outliers. Mixture mod-
els can be used to face this difficulty by considering the condi-
tional probability of a data point being part of a cluster given the
assumed model.

From the assumption that the data are drawn from such a
density, all we have to do is to estimate the values for θ fitting
best the observed data. This is generally achieved by maximising
the log-likelihood function,

L(θ; X) =

N∑
i=1

log(
K∑

k=1

πk N(xi | fk,Σk)), (5)

from which, in this case, it is impossible to get an analytic solu-
tion when maximising with respect to θ.

To bypass this difficulty, we use an Expectation-Maximization
(EM) approach (Dempster et al. 1977) by defining a set of latent

variables, Z = {zi}
N
i=1, encoding the partition of the dataset: zi ∈

~1,K� denotes which of the K Gaussian components xi belongs
to. The completed log-likelihood is then

L(θ; X,Z) =

N∑
i=1

log(πzi N(xi | fzi ,Σzi )), (6)

which can be maximised using EM approach.
As we introduced a new unknown quantity through Z, the

central idea of the EM algorithm is to alternatively estimate Z by
the expectation over p(z | x) (E-step) and then update the param-
eters of the mixture θ by maximising the new likelihood on the
basis of the current distribution for Z (M-step). This procedure
provides an algorithm that locally maximises the true likelihood.
Mathematically, the procedure can be understood more gener-
ally as follows; for any probability distribution over the latent
variables, q(Z), it reads,

L(θ; X) =
∑

z

q(z) log
(

p(x, z | θ)
q(z)

)
−

∑
z

q(z) log
(

p(z | x, θ)
q(z)

)
= L(q, θ) + DKL(q || p(z | x, θ)), (7)

where DKL(q || p) ≥ 0 is the Kullback-Leibler divergence
(Kullback & Leibler 1951), implying that L(q, θ) is a lower
bound for the log-likelihood.

The idea behind EM formalism is to maximise the lower
bound L(q, θ) instead of the log-likelihood directly. The E-step
consists of fixing θ and maximising L(q, θ) with respect to q. By
noting that L(θ; X) does not depend on q, we simply need the
divergence to be cancelled out in order to maximise the lower
bound and, thus,

q(z) = argmax
q(z)

L(q, θ) = p(z | x, θ), (8)

which can be computed using Bayes’ theorem. In the M-step,
considering we are performing the tth iteration, we fix q(z) =
p(z | x, θ(t)) and update the optimal set of parameters, such that
θ(t+1) = argmaxθ L(q, θ).

To summarise, EM is an iterative approach capable of iden-
tifying K clusters from the data itself with guaranteed conver-
gence. In a first step (E), a probabilistic (soft) assignment of
each data point to mixture components is computed and in a
second one (M) an estimation of mixtures’ parameters is per-
formed given the distribution for the latent variables. The main
advantage over the K-means method is that GMM allow a soft
partitioning of the input dataset through this q(z) distribution.

3.3. Regularised GMM for ridge extraction

So far, we have simply addressed the Gaussian mixture clus-
tering with an Expectation-Maximization approach and gained
access to K separated clusters, with their own means { fk}Kk=1 and
covariances {Σk}

K
k=1 representing the data, but with no smooth-

ness constraints or topology enforced. From the observation that
the MST naturally traces ridges and the underlying connectiv-
ity of datapoints without any free parameters, we can enforce
a tree topology to our centroids to obtain a representation that
combines this idea of the MST and the local averaging naturally
provided by GMM to impose smoothness. The question the full
formalism tries to answer is what smooth minimal tree struc-
ture fits the set of observed data best. In general, if we want
the centroids to have a given shape, we need to incorporate a
prior distribution p(θ) within the previous equations. The pre-
sented framework is very close and inspired, in its form and

A18, page 4 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936859&pdf_id=3


T. Bonnaire et al.: T-ReX

spirit, to manifold learning methods for dimensionality reduc-
tion (see e.g. Roweis & Saul 2000; Gorban & Zinovyev 2005)
and, in particular, the principal curves (Hastie et al. 1989) field,
which has already studied the application of mixture models
to curve extraction from point distribution (Tibshirani 1992;
Bishop & Svensén 1998).

With such a prior, we no longer aim to directly maximise
the likelihood but the posterior log p(θ | x) ∝ L(θ; X) + log p(θ).
In this context of maximum a posteriori estimation, previous
equations and results from EM algorithm remains unchanged for
the E-step, the maximization over q being independant on p(θ).
In the case of the M-step, the update is computed so that that
θ(t+1) = argmax

θ
L(q, θ) + log p(θ).

The log-prior can be considered as a regularization term on
the log-likelihood and keeping in mind its role helps us choosing
it correctly. In particular, we want to give centroids a smoothness
constraint and to enforce a topology through a given graph struc-
ture G. Hence, we use a Gaussian form for the prior with a vari-
ance ν2 thus acting on the L2 norm ‖F‖2

G
to constrain the smooth-

ness of centroids directly on the graph domain, as is usually done
in statistics (Smola et al. 2001) and which is inspired by previous
studies on elastic topology regularization (Durbin & Willshaw
1987; Yuille 1990) and manifold learning (Gorban & Zinovyev
2005):

log p(θ) = −
1
2

K∑
i=1

K∑
j=1

bi j
‖ fi − f j‖

2
2

ν2 + const.

= −
1
ν2 Tr{FLFT } + const. (9)

where F ∈ Rd×K such that column k of F contains fk and L is the
Laplacian matrix as defined in Eq. (2).

In the context of this paper and its application, we simplify
this formalism by considering equidistributed Gaussian mixtures
(∀k ∈ ~1,K�, πk = 1/K) with identical and isotropic covariances
σ2Id, where Id denotes the d × d identity matrix. This reduces
the problem with regard to the estimate of θ = { fk}Kk=1 during the
M-step. By noting pik = p(zi = k | xi, θk), the probability of a
given data point xi being well represented by the cluster k, we
find

θt = argmax
θ
−

N∑
i=1

K∑
k=1

pik
‖xi − fk‖22

σ2

−

K∑
i=1

K∑
j=1

bi j
‖ fi − f j‖

2
2

ν2 · (10)

The first term of this optimisation problem corresponds to a soft
K-means clustering (Bezdek 1981) while the right-hand side is
an elastic regularization term constraining the topology of cen-
troids. Under the previous simplifications and in pursuit of a
specific topology given by the minimum spanning tree, the pre-
sented formalism is equivalent to the work of Mao et al. (2015).

Again, to simplify the notation and to link the two variances

σ2 and ν2, we can introduce the parameter λ =
σ2

ν2 as the relative
strength of the two kernels. The final problem of the M-step can
hence be written as

θt = argmin
θ

N∑
i=1

K∑
k=1

pik‖xi − fk‖22

+ λ

K∑
i=1

K∑
j=1

bi j‖ fi − f j‖
2
2. (11)

The first term of this equation tries to minimise the error when
datapoints are approximated by centroids while the second term
acts like an elastic constraint on centroids when they are linked
together in the considered graph. λ can be seen as a regulariza-
tion parameter acting like a soft constraint on the total length of
the graph and, thus, as a trade-off parameter between the data
fidelity term and the penalty term constraining the smoothness
and simplicity of the graph representation.

4. T-ReX: Tree-based Ridge eXtractor

Given a set of N observed data points X = {xi}
N
i=1, each living in

a d-dimensional euclidean space Rd, the first step of T-ReX is to
build a graph with a tree structure. This is achieved by computing
the MST over X, resulting in a unique preferable path to link
points together (see Fig. 3). This tree then goes through several
processes to obtain a version that is robust to noise and outliers
and to gain some smoothness properties.

4.1. Pruning of the tree

Considering that we obtained a graph with a tree structure, we
adopt a simple denoising operation by cutting all the nodes
standing in branches of the tree at a level l. In practice, branches
are defined as the set of connected nodes linking an extremity
node to a bifurcation node (defined in Sect. 3.1). Strictly speak-
ing, we iteratively remove all nodes of degree one in the graph
structure. By doing so, we remove the most spurious part of the
structure corresponding to nodes that are more likely to be found
in physically irrelevant regions for the underlying pattern (i.e.
underdense regions). This approach is iterative, meaning that
nodes which are initially bifurcations can become junctions or
extremities (or even be removed if there are only branches with
path length strictly lower than l connected to it). To give a rep-
resentative image of this procedure, it acts like iterative peel-
ing of an onion, attributing to each node a depth in terms of
layers to peel before we reach it and starting from extremities
(Hébert-Dufresne et al. 2016). This method is very close to the
first step introduced by Barrow et al. (1985), where all branches
with a path length inferior to l are removed (meaning that there
are less than l nodes in the branch) except that our approach also
cuts extremities of longer branches.

Previous MST methods usually perform, in addition to this
pruning, a removal of all edges above a given physical length.
In our case, this operation is not only aimed at avoiding the
introduction of a new parameter that is not easy to tune, but it
is also based on our argument that all connections, even “long”
ones, can provide information about the underlying structure. Of
course, as a result, if two unconnected parts of a network are
given as an input to the presented method, they will end up con-
nected.

Figure 4 shows the pruned MST obtained with a given cut-
off level on the toy dataset. We can clearly observe that remov-
ing extremity nodes iteratively acts like a denoising operation,
deleting small branches and irrelevant ones while preserving the
core of the pattern. The choice of the pruning level is essential
for a single realization of a tree, especially when dealing with
noisy data. Section 5 analyses the impact of this parameter on
the resulting tree.

4.2. The regularised minimum spanning tree

As discussed in Sect. 3, the MST does not exhibit a smooth
behaviour. To enforce this constraint in our representation,
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Fig. 4. Pruned version of the minimum spanning tree displayed on Fig. 3
at level l = 28. Black dots are data points, dashed shaded red lines are
edges of the MST and green solid lines are the remaining edges after
pruning.
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Fig. 5. Regularised minimum spanning tree computed over data points
of the toy dataset. Black dots are data points, red solid lines are edges
of the regularised tree and dashed blue line is the original MST. Result
obtained from Algorithm 1 with λ = 1 and σ2 = 0.67 (explained in
Sect. 5).

we solve expectation-maximization Eqs. (8) and (11) follow-
ing the work and notations of Mao et al. (2016) by applying
Algorithm 1. It is worth noting that the inverse of 2λL+Λ always
exists since L is a positive semi-definite matrix and Λ is a posi-
tive diagonal matrix. The convergence is guaranteed by the EM
approach and characterised by a slow displacement of the pro-
jected points ‖Ft−Ft−1‖

2
2 ≤ ε where t denotes the iteration index.

The computational complexity of Algorithm 1 can be divided
into three components: (i) The computation of the MST over the
centroids, (ii) The computation of the assignment matrix P to
solve the E-step, and (iii) The matrix inversion to update cen-
troids positions during the M-step. As already pointed out in
Mao et al. (2015), the total complexity is O(K3 + DNK + K2D).

Algorithm 1 Regularised minimum spanning tree
Input: Data: X ∈ Rd×N , parameters: λ and σ
Output: F ∈ Rd×K , the set of centroids and B, the associated
adjacency matrix

Initialise F = X or with K-Means clustering

while convergence do
Compute the minimum spanning tree B from F
Compute the Laplacian matrix L of B via Eq. (2)
E-step:

Compute the assignment matrix P where (i, k) entry is

pik = p(zi = k | xi, fk) =

exp(−
1

2σ2 ‖xi − fk‖22)

K∑
j=1

exp(−
1

2σ2 ‖xi − f j‖
2
2)

(12)

M-step:
Compute Λ, a diagonal K × K matrix such that Λkk =

N∑
i=1

pik

Solve Eq. (11) to update the position of centroids3, F =
XP(2λL + Λ)−1

end while

Figure 5 shows the difference between the MST directly built
on data points and its regularised version obtained from Algo-
rithm 1. The regularised minimum spanning tree (RMST) has
smooth extensions (visible in the zooms of Fig. 5) while pre-
serving the global shape of the tree-like structure. In the inflex-
ion regions of the filament, we observe that the tree is a creating
bifurcations. This is due to the chosen MST topology for the
centroids. In this precise case, with a single filament, the best
topology for centroids would be a straight line described by an
adjacency matrix such that Ai j = 2δi,i − δi, j+1 − δi, j−1, where
δi, j denotes the Kronecker delta function. It should be noted that
such a topology could be handled by the formalism presented in
Sect. 3.3.

4.3. The probability map

As previously mentioned in Sect. 3, a graph with a tree struc-
ture has no loops and, hence, it cannot represent holes but only,
rather, connected components in the Cosmic Web topology. In
addition to that, the MST highlights one particular path linking
data points together but does not provide any idea of uncertainty
or reliability of this latter. Both of these issues can be overcome
by introducing a robust representation that takes into account the
eventual variations in the input distribution. To do so, we build
B different samples {Xb}

B
b=1 from the initial one X and compute

the regularised MST for each of them in a similar fashion as
in bootstrap approaches. The entire procedure is described by
Algorithm 2.

From the B realisations of RMST, one can build a map I
characterising the probability, in a frequentist meaning, of a

3 In term of these matrices, optimization problem (11) can be written
argmin

F
Tr{FΛFT − 2XPFT + 2λFLFT}.

A18, page 6 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936859&pdf_id=4
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936859&pdf_id=5


T. Bonnaire et al.: T-ReX

0 5 10 15 20 25 30 35
x

0

5

10

15

20

25

y

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
Fig. 6. Probability map obtained from Algorithm 2 and Eq. (13) with
B = 200 and NB = 0.75N. Red dots are input data points overplotted on
the probability map.

position x to be crossed by a realization of a tree:

I(x) =
1
B

B∑
b=1

1Hb(x)=1, (13)

where 1A is the indicator function and Hb is the binary histogram
obtained from the projected points Fb. The random nature of I
thus comes from the uniformly at random resampling of X and
not from Algorithm 1 that is a deterministic optimization step.

Algorithm 2 Bootstrap RMST
Input: Data X, parameters λ, σ, l, B,NB
Output: S, the set of points describing the skeleton
Generate B bootstrap samples {Xb}Bb=1 of size NB

for each Xb do
Compute the MST Bb of Xb

Prune Bb at level l
Keep the remaining vertices in Bb, noted Yb

Apply Algorithm 1 on Yb with parameters λ and σ to
obtain the regularised MST BR

b and optimal Fb
end for
S = {Fb}

B
b=1

Figure 6 shows a probability map obtained from the toy
dataset in which the intensity of each pixel corresponds to the
frequency that an edge of the MST crossed it. This way, we
quantify the reliability of the various paths in the input domain.
In practice, to build I(x), we use both the projected points Fb
and the set of edges linking vertices encoded in BR

b that contains
information on the paths used and consequently should be taken
into account in the final distribution. Edges are thus sampled and
counted in the computation of Hb for Eq. (13). In what follows,
we may refer to a quantity called the superlevel set of those maps
defined as Γp(I) = {x | I(x) ≥ p}. Those sets are used to thresh-
old the probability maps and keep only regions with a probability
higher than p.

5. Choice of T-ReX parameters

In Table 1, we summarise the parameters of the algorithm
together with their roles. We also give the baseline values further

used in our study. As we are dealing with simulations of the Cos-
mic Web, we fix the cut-off level to a low value l = 4 and look for
B = 100 regularised minimum spanning trees using uniformly
at random 75% of the dataset for each sample. However, each
of these parameters has a different and specific impact on the
detection of the pattern that we discuss below.

5.1. Elastic constraint λ

As mentioned in Sect. 3.3, λ is a regularisation parameter acting
like a trade-off between a set of centroids minimizing the data
reconstruction error and the strength of the smooth tree topol-
ogy we enforced. Hence, we understand that the larger λ, the
more important the second part of Eq. (11), leading to a shorter
and smoother tree, as seen on Fig. 7. λ can be seen as a soft-
constraint on the total length of the tree, a high value leading to a
tree representation that has short extensions and projected points
are more uniformly distributed over the tree. Given the defini-
tion of λ in Sect. 3.3, it is also the ratio between both variances
of Gaussian kernels we used, one for the data fitting term and the
other for the prior on centroids to introduce the elastic regular-
ization term. Choosing λ = 1 thus induces that the two kernels
have the same variance. When dealing with outliers or highly
noisy datasets, λ also helps increasing the robustness and main-
tains the tree structure in the desired regions without extending
in noisy and underdense regions.

Mao et al. (2015) proposed to tune λ using the gap statis-
tics, originally presented by Tibshirani et al. (2001) to choose
the number of clusters in the K-means algorithm. This method
requires several runs of the Algorithm 1 with a range of λ which
can be very costly when dealing with large datasets. We hence
choose to fix λ = 1 in our runs, leading to satisfactory results for
a well chosen σ.

5.2. Spatial extension of Gaussian clusters σ2

The parameter σ2 corresponds to the variance of Gaussian clus-
ters used to compute the assignment matrix P in Algorithm 1.
It ensures the local smoothness of the graph by allowing a soft
partitioning of the input data points into centroids. Thus, σ rep-
resents the spatial extension of each cluster and the higher it is,
the more data points will be affiliated to a specific node of the
resulting graph leading to a coarser representation. This trend
is illustrated in Fig. 8, which shows several regularised MST
obtained by fixing λ = 1 and varying σ. As σ increases, cen-
troids tend to be aligned and they describe a coarser shape of the
underlying structure, biasing the estimate. Intuitively, σ should
represent the thickness of a typical filament so that centroids are
fitting the distribution well.

To automatically tune this parameter from the data, we fol-
low the recommendation of Chen et al. (2015), who investigated
the choice of such a parameter in the SCMS algorithm. We
thus chose σ using a modified version of the Silverman’s rule
(Silverman 1986):

σs = A0

(
N(d + 2)

) −1
d+4
σmin, (14)

where A0 is a constant, N is the number of data points, d is the
dimension of the data and σmin is the minimum standard devia-
tion over all directions. Taking A0 = 1 leads to the Silverman’s
rule and is the optimal estimate for an underlying Gaussian dis-
tribution. As argued by Chen et al. (2015), when the data are not
Gaussian anymore, A0 should be optimised as a free parameter.
In our experiments, when the parameter is not explicitly defined,
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Table 1. Parameters implied in the procedure and baseline values used in the presented results.

Parameter Role Used values

λ Elastic constraint on centroids 1
σ2 Spatial extension of Gaussian kernels Eq. (14), A0 = 0.1
l The cut-off level to prune MST 4
B Number of bootstrap samples 100

NB Size of bootstrap samples 0.75 N
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Fig. 7. Effect of the λ parameter on the regularised MST by fixing
σ = 1. Black dots are data points while red, blue and green lines are
RMST with respectively λ = {1000, 1, 0.001}. Projected points are also
represented, respectively by triangles, dots and crosses. We note that
curves for λ = 1 and λ = 0.001 are almost superimposed.

we adopt the baseline value of Table 1, namely A0 = 0.1, a rather
low value so that the estimated trees keep some small scales vari-
ations. When A0 increases, the smoothing scale also increases
and a coarser filamentary pattern is described.

Although we considered a fixed isotropic and identical
covariance matrix for all clusters, it is noteworthy that the for-
malism initially presented in Sect. 3.3 is more general. We could
consider a specific covariance for each cluster, initialise it with
the rule of Eq. (14) and adapt it automatically from the data. EM
computation can indeed auto-adjust this estimate at each itera-
tion by considering θ = { f1, . . . , fk,Σ1, . . . ,Σk} and then max-
imising the lower bound of the log-likelihood not only over fk
but also with respect to Σk in the M-step. This solution has, how-
ever, an additional computational cost and can lead each Gaus-
sian cluster to be housed in a specific data point when K is close
to N. It did not sufficiently improved the results in our cosmo-
logical application to consider it but could be included in future
works. The current choice, hence, restricts the range of scales
that can be described by the Gaussian clusters, implying that
broad structures in which the extension is way above σ will not
collapse into a single ridge passing in the middle of the structure
in the resulting graph.

5.3. Pruning level l

As explained in Sect. 5.3, the pruning acts as a denoising oper-
ation but it also helps reducing the number of kernels to span
the point cloud. A high cut-off level removes a large number of
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Fig. 8. Effect of the σ parameter on the regularised MST by fixing
λ = 1. Black dots are data points while red, blue and green lines are
RMST with respectively σ2 = {

σ2
s

10 , σ
2
s , 10σ2

s} (see Eq. (14)). Corre-
sponding projected points are also represented, respectively, by trian-
gles, dots and crosses.

nodes at the extremity of all branches revealing only the core
of the tree structure while a lower value allows branches to
have long extensions reaching even nodes in empty regions. The
choice of l can hence lead to different tree representations of a
noisy dataset.

To choose the value of l, we rely on the work of
Hébert-Dufresne et al. (2016) who introduced the onion decom-
position for graphs. The idea is to attribute to each node a layer
in terms of depth in the network allowing to define a center and
a periphery. The left panel of Fig. 9 shows the onion spectrum
of the noisy toy dataset and illustrates the points of the noisy
dataset colored by their layers. The power-law decay in the first
part of the spectrum can be interpreted as the removal of all
short branches (in number of nodes). A constant level in the
onion spectrum means that we are iteratively removing the same
amount of nodes in the network at each iteration and thus that the
tree structure is “stable” in terms of number of branches. Using
as cut-off level the beginning value of the last constant level in
the onion spectrum (l = 39 on left of Fig. 9) would lead to keep-
ing only the core of the tree structure with a single branch (the
longest one in the initial tree). However, this is a very conser-
vative solution and doing so in real datasets would lead to miss
some end parts of filaments or peripheral structures.

A threshold l that is too low can bring out spurious detec-
tions of the underlying pattern for a realization of a tree. How-
ever, this effect should be mitigated by:(i) the λ parameter which
also helps reducing the length of branches in noise and outliers,
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Fig. 9. Left: onion spectrum of the tree structure. Vertical lines correspond to l = 14 (solid) and l = 39 (dashed) discussed in Sect. 5.3. Right: layer
value of each datapoint. Red dashed line is the MST and dots are data points from a noisy version of the toy dataset (obtained by adding 25%
uniform noise in the bounding box).
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Fig. 10. Superlevel sets Γ0.25(I) for two pruning levels on the noisy toy
dataset: l = 14, a too low cut-off and l = 39, an adequate value. Blue
pixels are regions where both sets are overlapping while red ones show
regions highlighted by the l = 14 version but not by the l = 39 one and
are mostly found in the background noise of the pattern.

as discussed in Sect. 5.1 and (ii) the bootstrap step where those
detections will have a low occurrence as illustrated in the super-
level sets of Fig. 10. For this reason, in what follows, we con-
sider a rather low value for the pruning parameter, namely l = 4.
In the case of simulated cosmological datasets, this parameter
only helps to remove data points that are located in empty or low
dense regions since, for a well chosen value of σ, Algorithm 1 is
robust to noise encountered around the ridges.

5.4. Number and size of the bootstrap samples

Both the number and size of the replicated samples, B and NB
respectively, are related to the probability map. Above a mini-
mum value, the parameter B has almost no effect on the estimate
for a fixed NB. The main idea to explain this phenomenon is that,
for a fixed size NB, there is only a limited number of different
possible paths with high probability. Even though a higher value

for B can highlight some new paths, they will have a very low
occurrence.

NB affects the map in a more important way. A low size value
induces more possible paths to cross and thus more variability in
the resulting map while a size close to the initial one N (0.90N
for instance) allows for only local modifications of the high-
lighted paths; hence, it is more conservative. Choosing a low
value can thus lead to more spurious path detection.

6. Results: application to cosmological datasets

In this section, we apply T-ReX with the baseline parameters of
Table 1 on the 2D and 3D cosmological datasets described in
Sect. 2. The slice of the 2D subhalo distribution corresponds
to the data points in Fig. 2 which represent a projected slice
of 5 Mpc h−1 depth. The 3D distribution of halos is built from
a 2003 Mpc h−1 Gadget-2 simulation used in Libeskind et al.
(2017).

6.1. Filamentary structure in a 2D subhalo distribution

Figure 11 shows two realisations of a regularised minimum span-
ning tree (see Algorithm 1) with over 75% of the data points
picked randomly and uniformly. Firstly, it is interesting to see
that each RMST is standing in regions that would naturally be
called ridges or filaments in the distribution of galaxies, that is,
elongated structures connecting high density regions together.
Secondly, we can see that according to the distribution of picked
data points, different paths are taken for the core of the tree struc-
ture. The complementarity of the two realisations is highlighted
in the zoomed region. Since the tree topology cannot include
loops, the effect of disconnection is observable in this particular
region where the solid blue realisation is not fully connecting the
network. We note that such an effect is intensified by the pruning
operation. Other realisations might not exhibit the disconnection
in the same region as seen in the case of the dashed red line of
Fig. 11. This highlights the necessity and the interest of stack-
ing several RMST to obtain a full characterisation of the cosmic
network.

Figure 12 shows a probability map obtained from 100 real-
izations of RMST. We can see that the highly probable part of
the map is fitting what one would expect for the underlying
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Fig. 11. Two realisations (solid blue line and dotted red line) of RMST
(Algorithm 1) with 75% of the dataset picked randomly and uniformly
with the parameters of Table 1. Black dots are subhalos from the
Illustris-3 simulation.

distribution while the overlap of the superlevel set Γ0.25(I) with
the DM distribution allows us to see that high probability paths
(above 0.25 in this case) are tracing the most prominent part of
the network. It is worth noting that the agreement is particularly
interesting given that the input of the algorithm are subhalos and
not DM particles. The zoomed-in region emphasises that small
scales are also recovered where high probability paths follow the
ridge in the DM distribution.

6.1.1. Comparison with DisPerSE skeletons

DisPerSE (Sousbie 2011) is a publicly available4 and widely
used algorithm capable of detecting filaments and walls in a
density field tracer, such as galaxy distribution. From this dis-
crete set of particles, a continuous density field is estimated
using the Delaunay tessellation field estimation. Based on the
discrete Morse theory (Forman 1998), DisPerSE first aims at
identifying singularities (or critical points) in the field defined as
positions where the gradient cancels and then uses the local mor-
phology to classify those points in maxima, minima, and saddles
using eigenvalues of the Hessian matrix. DisPerSE finally iden-
tifies filaments using the connectivity of critical points follow-
ing the gradient lines in the density field. Persistent homology
(Edelsbrunner et al. 2002) is then used to remove insignificant
parts of the pattern.

Figure 13 shows both T-ReX and DisPerSE results obtained
on the Illustris slice with several probability thresholds for the
former and several persistence levels for the latter. At fixed den-
sity smoothing (here 1), the DisPerSE skeletons show the best
overlap with our un-tresholded probability map for a persistence
σp = 0, where the two methods agree for most of the filamen-
tary structure. The boundary effects observed in the DisPerSE

4 http://www2.iap.fr/users/sousbie/web/html/indexd41d.
html
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Fig. 12. Top: probability map I obtained from subhalos displayed in
Fig. 2 with parameters described in Table 1. The resolution of the prob-
ability map is 250 Kpc h−1. Bottom: superlevel set Γ0.25(I) (red squares)
overplotted on the DM distribution together with subhalos (black dots).

skeleton at low σp disappear with increasing persistence. The
good agreement between high probability paths provided by
T-ReX and the DisPerSE skeleton remains with increasing per-
sistence levels and probability thresholds as shown by the over-
lap of DisPerSE and T-ReX skeletons (right column of Fig. 13).
It should be emphasised that there is no direct transposition of
the persistence threshold in DisPerSE into the probability thresh-
old in T-ReX. The present choice of threshold parameters is
hence arbitrary and only serves illustration purposes.

Although the two algorithms have very different definitions
for what they both call filamentary pattern, it is reassuring to see
that they are recovering similar structures. However, it is not sur-
prising to observe some disagreement on specific filaments (see
orange shaded regions in Fig. 13). Since the pattern identified
by T-ReX is obtained by minimising a global criterion, some
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Fig. 13. Left column: subhalos (black dots) and DisPerSE skeletons (red lines) with several significance levels (from top to bottom: σp = 0, 2, 5).
Right column: superimposition of some thresholded probability maps obtained by T-ReX and DisPerSE skeletons (red lines) with several signif-
icance levels (from top to bottom: σp = 0 and Γ0.0(I), σp = 2 and Γ0.1(I), σp = 5 and Γ0.25(I)). Resolution of the maps provided by T-ReX is
250 Kpc h−1. Shaded blue and orange areas highlight some differences between results discussed in Sect. 6.1.1.

paths identified by DisPerSE are not relevant for minimising the
total distance and, thus, they do not appear as possible paths in
any of the realisations. When comparing two conservative cases,
namely, Γ0.25(I) and the 5σ DisPerSE persistence skeleton (low-
est right panel of Fig. 13), we see that the T-ReX pattern pre-
serves more small-scale structures and provides some paths that
seems coherent with the subhalo distribution but which are not
identified with the chosen parameters for the DisPerSE output
(see blue shaded regions in Fig. 13).

6.1.2. Sparse data point distribution

In order to explore the robustness of the method against the dat-
apoint density used for ridge detection, we reduce the number
of subhalos in the initial dataset by keeping only those with a
mass M ≥ Mcut. In practice, we investigate how the original fila-
mentary map is spatially close to the recovered ones when Mcut

varies. Figure 14 shows probability maps obtained for increas-
ing values of Mcut leading to sparser and sparser input (100%,
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Fig. 14. Probability maps with increasing mass threshold Mcut. From left to right, Mcut = {0, 0.85, 1.35, 3.22, 11} × 1010 M� h−1 corresponding,
respectively, to 100%, 83%, 60%, 31%, and 10% of the total subhalos in the slice.

83%, 60%, 31% and 10% of the initial subhalos in the slice
respectively corresponding to Mcut = {0, 0.85, 1.35, 3.22, 11} ×
1010 M�/h). Visually, probability maps show a nice stability,
even when the sparsity is high: patterns are pretty much the same
when we keep at least 60% of the most massive objects hence
recovering the essential part of the structure.

Figure 15 emphasises the spatial proximity between the dif-
ferent maps by representing, for each IJ , where J denotes the
fraction of galaxies we kept to compute the map, the cumulative
distribution of {dJ

x }x∈Γ0.25(I100) defined, for a position x in the set
Γ0.25(I100), as

dJ
x = min

x′∈Γ0.25(IJ )
‖x − x′‖2. (15)

Hence dJ
x corresponds to the closest distance from a position x in

the original skeleton obtained by keeping all subhalos, namely
Γ0.25(I100), to a given thresholded map Γ0.25(IJ). This way, the
distribution of dJ

x measures how far the original pattern is from
the one obtained with J% of the data points.

In more than 95% of the cases, the original pattern finds
a closest point in the 83% and the 60% maps at less than
1.8 Mpc h−1, showing that structures found in the three maps
are spatially close and about the thickness of typical filaments
(Cautun et al. 2014). When Mcut increases, the filamentary pat-
tern traces the most prominent parts of the structure with a loss
of some small scales and hence highlights coarser and coarser
structures. Even though the pattern is rough with only 31% of the
data points used, we still observe a nice correlation with previous
maps highlighting coherent structures with 90% of the original
pattern being retrieved at less than 3 Mpc h−1. As expected, an
unrealistic scenario where we use only 10% of the data points
associated with the most massive subhalos degrades the recon-
struction of the filamentary pattern. Yet, the recovered structures
show a coarse but coherent connectivity between regions. This
illustrates the ability of T-ReX to recover the underlying struc-
ture with high stability with respect to deformation of the input
distribution of data points.

6.2. Application to 3D data

In this section, we apply T-ReX on the 3D distribution of halos
obtained from a Gadget-2 simulation (see Sect. 2) and com-
pare our results with some other existing procedures that have
also been run on the same dataset. Although the original review
(Libeskind et al. 2017) considers over a dozen different methods,
we focus the comparison on three procedures, namely Nexus+,
DisPerSE and Bisous, so that we have a broad set of different
methods using respectively scale-space representation, topolog-
ical considerations, or stochastic approach to recover the fila-
mentary pattern. Nexus+ (Cautun et al. 2013) is a classification
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Fig. 15. Cumulative distribution of distances {dJ
x } (see Sect. 6.1.2)

between positions of the binary maps Γ0.25(I100) obtained with increas-
ing mass threshold Mcut to the one with J% of the data points. Mcut =
{0.85, 1.35, 3.22, 11} × 1010 M� h−1 leading respectively to 83%, 60%,
31% and 10% of the total number of subhalos in the slice.

algorithm inspired by image processing and based on filtering
techniques leading to state-of-the-art environment classification
able to identify clusters, filaments and walls. The main idea is
to assume that the local morphology of the density field fully
encodes the environmental information. Eigenvalues of the Hes-
sian of the density field are thus used to compute an environ-
mental signature in each voxel of the smoothed field. The key
ingredient is to compute this signature for a set of smoothed
fields with a log-Gaussian filter over a range of different scales to
highlight structures of different sizes. Physically motivated cri-
teria are then used to threshold signature values and attribute
a classification to each volume element. Bisous (Stoica et al.
2007) is a publicly available5 stochastic method based on halos
positions aiming at identifying the filamentary structure using
a set of random parametric cylinders. Filaments are modelled
as aligned and contiguous small cylinders of a given size in
the galaxy distribution. The Bisous model generates two maps
allowing to extract filaments spine; one characterising the prob-
ability to find a filament at a given position called the visit map
and an other one corresponding to the filament orientation field.
This way, spines are defined as dense regions and are aligned
with the axis of the different cylinders.

5 https://www.ascl.net/1512.008
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Fig. 16. Identification results provided by four detection methods on a randomly chosen 2 Mpc h−1 depth slice of the full 3D detection for each
method. Green pixels are walls, blue are filaments, red are clusters and white are voids or unclassified regions.

We note that not only do these methods have very differ-
ent mathematical definitions for what they all call clusters, fil-
aments, and walls, but they also have been run with different
input, using either DM particles or halos.

We applied T-ReX to the full halo distribution of the 3D sim-
ulated box (281465 halos in total) and built a 100 × 100 × 100
grid map like other methods. For T-ReX, this means that the final
probability map is computed over a 1003 grid in which all vis-
ited voxels are considered part of the filamentary structure. As
T-ReX is using 1D objects (segments of the RMST) sampled
over the input space, it is preferable, for illustration and compar-
ison, to give its filamentary pattern a “thickness” by smoothing
the obtained probability map. Whenever a voxel is classified as
part of the filamentary structure, a smoothing is thus performed
over its 26 direct neighbors. In what follows, we call this version
T-ReXs while the original result is referred to as T-ReXus.

For illustration, following Libeskind et al. (2017), we show
in Fig. 16 the results of the classification provided by each
method for a 2 Mpc h−1 depth slice from which FoF halos were
extracted (top left panel of Fig. 16). We note that all methods
have been run over the full 3D cube and this is a projected slice
of the detection. It is also worth noting that T-ReX identifies the
filamentary pattern as a whole and does not classify the environ-
ment into clusters, filaments and walls as Nexus and DisPerSE
do. To perform the comparison, we must look at the full pat-
tern provided by each method and compare it with our extracted
skeleton. We observe that T-ReX provides a satisfactory
connectivity of the halos through the slice. In its smoothed ver-
sion, it leads to thicker filaments compared to the results of
Nexus+ and Bisous but thinner ones than Disperse, and retrieves
most of the structures (filaments, walls, and clusters) obtained
by the Nexus+ algorithm.

Even though these methods have been developed with differ-
ent approaches, it is interesting to see whether they agree or not
in the detection of the filamentary pattern. To do so in a quanti-
tative way, we could use the proximity measurement of Eq. (15)
but as the resulting patterns are presented on a 2 Mpc h−1 grid,
the distance between them would not be accurate. Hence, we
introduce a similarity measurement as follows: considering the
answers provided by two detection methods, H1 and H2, such
that H•(x) = 1 if the position x is part of the filamentary struc-
ture and 0 otherwise, the similarity measurement is defined as:

S(H1,H2) =
|H1 ∩ H2|

|H1|
, (16)

where |Hi| denotes the cardinal of Hi defined as
∑

x 1Hi(x)=1 and
|H1 ∩ H2| is the cardinal of the intersection between H1 and H2
detections defined as

∑
x 1H1(x)=11H2(x)=1. Hence, S(H1,H2) mea-

sures the proportion of H1 detections that are contained in H2
and is thus asymmetric. In other words, if we consider H2 as a
reference, S(H1,H2) represents the proportion of true detections
provided by H1. Of course, such a simple metric does not pro-
vide the full information on the similarity between the consid-
ered patterns. This measure must then be completed in tandem
with others, or with visual inspection, as we have done here.

Table 2 shows the similarity indices between all considered
methods for the entire 3D cube. We observe that 85% of the
detections provided by the unsmoothed version of T-ReX are
contained in the Nexus+ skeleton and 81% of the Nexus+ detec-
tions are found by the smoothed version of T-ReX. This indi-
cates that the smoothed version of T-Rex contains a large part
of the Nexus+ skeleton but with a larger amount of the vol-
ume detected, explained by the smoothing leading to a thicker
filamentary pattern. The same tendency is observed concerning
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Table 2. Index of similarity S(H1,H2) as defined in Eq. (16) between
the considered methods applied on the entire 3D cube.

H2
H1 T-ReXus T-ReXs Nexus+ DisPerSE Bisous

T-ReXus 1 1 0.85 0.62 0.37
T-ReXs 0.48 1 0.62 0.62 0.24
Nexus+ 0.53 0.81 1 0.62 0.30
DisPerSE 0.22 0.46 0.35 1 0.12
Bisous 0.66 0.87 0.86 0.62 1

Notes. T-ReXus refers to the unsmoothed version of the detection while
T-ReXs refers to the smoothed one over the 26 neighboring voxels.

Bisous for which the detections are mostly contained in other
skeletons (last row of Table 2) but not reciprocally (last column
of Table 2). This is due to the sparse and unconnected detection
provided by the Bisous method. The thick skeleton of DisPerSE
also tends to contain a large fraction of other skeletons (fourth
column of Table 2) but it fills so much volume, which is not con-
tained in the latter (fourth line of Table 2).

7. Conclusion

In this paper, we present T-ReX, a graph-based algorithm aimed
at an automatic retrieval of the underlying density from a discrete
set of points. We show that it can be used to uncover the natural
filamentary pattern of the Cosmic Web from a 2D or 3D galaxy
distribution. The key idea of T-ReX is to find a set of centroids
paving a given set of data points in its ridges by enforcing a pre-
defined topology. To do so, the minimum spanning tree is com-
puted over those centroids, which are iteratively moved to obtain
a smoothed version of the MST. To characterise the reliability
of the underlying filamentary structure, a without replacement
bootstrap is used where several regularised MST are computed
over a subset of data points chosen randomly and uniformly. In
this way, we can build a probability map of those realisations to
get the most frequent paths and highlight some regions as being
part of the underlying filamentary pattern with high reliability.

For the sake of simplicity and because this topology is, at
first, a fitting representation of the filamentary structure, we
chose the tree topology for the centroids to highlight ridges of
the point cloud distribution of galaxies. In addition, the MST
provides a natural way to connect observed data points with the
possibility to infer the underlying filamentary pattern by min-
imising the total distance linking them. However, the presented
framework (see Sect. 3.3) is more general and can use any kind
of graph construction. Hence, it could be interesting to investi-
gate other topologies and in other contexts that detecting ridges.
In particular, its nearest neighbors have been recently applied in
several cosmological studies, such as Coutinho et al. (2016), to
find new metrics characterising the Cosmic Web using graphs.
Also, studying the properties of the regularised tree representa-
tion in the same way as it is done for the usual MST (see e.g.
Colberg 2007; Naidoo et al. 2020) could be of interest.

In this paper, we mainly focus the application of the
procedure on simulated datasets. When dealing with real data,
in addition to the mathematical considerations of defining and
extracting the filamentary pattern, we face the usual technical
issues of observed data: noise, outliers, uneven distribution of
the samples, sparsity of the representation, selection, and obser-
vational effects. Even though we showed some robustness of the
estimate to noise and outliers, the ability of minimum spanning

tree methods to get rid of observational (redshift-space distor-
tions) and selection effects (missing parts of the sky) in real cos-
mological surveys could be a consideration of further studies.
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