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ABSTRACT
We consider the problem of variable selection in regression models. In particular, we
are interested in selecting explanatory covariates linked with the response variable
and we want to determine which covariates are relevant, that is which covariates are
involved in the model. In this framework, we deal with L1-penalized regression mod-
els. To handle the choice of the penalty parameter to perform variable selection, we
develop a new method based on the knockoffs idea. This revisited knockoffs method
is general, suitable for a wide range of regressions with various types of response
variables. Besides, it also works when the number of observations is smaller than
the number of covariates and gives an order of importance of the covariates. Finally,
we provide many experimental results to corroborate our method and compare it
with other variable selection methods.
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1. Introduction

Regression methods are really helpful to analyze dependencies between a variable,
named the response, and one or several explanatory covariates. This is one of the
reasons why they are widely used and studied in statistical analysis (Hastie et al.,
2001). Many models have been introduced including the well-known linear regression
for a continuous response variable or logistic regression for a binary response variable.
Indeed, many data sets involve this last situation such as the occurence of a disease in
medicine or voting intentions in econometrics. Another type of data is nominal data
(that is unordered categorical data) like housing types or food choice of predators.
The situation is a bit more complicated when the response is ordered categorical
(ordinal), e.g. different stages of cancer, pain scales, place ratings on Google or data
collected from surveys (0: never, 10: always). Logistic regression can naturally be
extended to the case where the response is nominal. For such data, many authors
(Agresti, 2010;Liu and Agresti, 2005;McCullagh, 1980;Suggala et al., 2017) provided
models based on odds ratios such as cumulative link models, adjacent-categories
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logit models or continuation-ratio logit models. The choice of one of these models
depends on the kind of problem. In this paper, we concentrate on a restricted but
large spectrum of regression models including all regression models mentioned above.

Although prediction and interpretation provide major challenges in regression mo-
tivations, another important issue is to identify the influential explanatory covariates,
that is variable selection. Selection problems often arise in many fields including biol-
ogy (Wu et al., 2009). For example, in microarray cancer diagnosis (Zhu and Hastie,
2004), a primary goal is to understand which genes are relevant. For cost and time
reasons, it can also be convenient for biologists to restrict their studies to a smaller
subset of explanatory covariates (genes, bacteria populations...). Accordingly, the spar-
sity assumption (that is, a few number of relevant explanatory covariates) is frequently
suitable and adequate, even crucial for interpretation. Indeed, with a large number of
covariates, it is also useful for interpretation to determine a smaller subset of covari-
ates that have the strongest effects. Besides, when the number of covariates is larger
than the number of observations or when covariates are highly correlated, standard
regression methods become inappropriate.

Lasso penalization, or L1-penalization, introduced by Tibshirani (Tibshirani,
1996) offers an attractive solution to these issues. That includes a L1 penalty in
the estimation of the regression coefficients in order to perform variable selection by
optimizing a convex criterion. The regularization resulting from Lasso penalization
shrinks down to zero the coefficients of explanatory covariates that have the lowest
effects and leads to sparse solutions and more interpretable models, making Lasso
one of the most popular penalization (Hastie et al., 2015;Park and Hastie, 2007;Zhao
and Yu, 2006).

Moreover, using Lasso induces the critical choice of the penalty parameter which
controls the number of selected covariables. This choice is major because two close
values of the penalty parameter can often lead to very different scientific conclusions.
Many general techniques have been proposed in the literature but they do not have
the same purposes. For instance, K-fold cross validation emphasizes prediction, the
validation step involving computing the prediction error and aiming at minimizing
this. Furthermore, cross validation is often quite greedy and tends to overfit the
data (Wasserman and Roeder, 2009). Other techniques, like StARS (Liu et al.,
2010), can be adapted to a regression framework and aim at ’overselecting’, that is
selecting a larger set of covariates which contains the relevant ones, allowing false
positive detections. Some frameworks such as gene regulatory networks require this
choice: indeed, false positive detections can then be eliminated by further biological
experiments whereas omitted interactions cannot be recovered after that. On the
contrary, one can prefer selecting a set of covariates included in the set of true
covariates to avoid false positive detections that is ’underselecting’. This constraint
comes from the fact that after selection, the relevant covariates have to be studied by
scientists through new experiments. But new experiments are generally expensive or
time-consuming and it would be a waste to involve noisy covariates. In this paper, we
focus on variable selection in the former case. Compared with our goals, we propose
an intuitive and general method for automatic variable selection, inspired from the
knockoffs idea of Barber and Candes (Barber and Candes, 2015, 2016). This method
uses a matrix of knockoffs of the covariates built by swapping the rows of the matrix
of covariates. This knockoffs matrix is thus random and aims at determining if a
covariable belongs to the model using a decision rule based on change detection
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methods. One of the major advantages is that it can be performed in a wide range of
regression frameworks including when the number of covariates is much larger than
the number of observations. We will see that our method does not lead to a choice
of the penalty parameter. Nevertheless, it provides an order of importance on the
covariates allowing to select covariates according to the target.

In this paper, we address the problem of variable selection in L1-penalized regres-
sions. Our goal is to determine which covariates are relevant and which are noisy.
We achieve it by proposing a new method of type knockoffs. The rest of the paper is
organized as follows. In Section 2, we first introduce the background and describe the
knockoffs method for variable selection. We also describe briefly our R package kosel

in which the revisited knockoffs method is implemented. In Section 3, we give many
illustrations and results of our method on simulated data. Furthermore, we propose a
way to exploit randomness of our procedure.

2. Revisited knockoffs method

2.1. Background

Consider we have p explanatory R-valued covariates X := (X1, X2, . . . , Xp) and a
response variable Y linked with X by m equations of the type:

fk(µk(Y |X)) = αk + β1X1 + . . .+ βpXp, k = 1, . . . ,m, (1)

where fk is a deterministic function, µk(Y |X) parameters of the distribution of
Y given X and αk, β1, . . . , βp real coefficients. Note that the vector of regression
coefficients β := (β1, . . . , βp) does not depend on k.

This framework is quite general and emcompasses many regression models such as
generalized linear models (Agresti, 2013) (linear regression, logistic regression, Poisson
regression, multinomial regression), ordinal logistic regression models (Agresti, 2010)
(cumulative logit models with proportional odds (Anderson and Philips, 1981;Simon,
1974;Williams and Grizzle, 1972), adjacent-categories logit models, continuation-ratio
logit models) or cumulative link models (Agresti, 2010). Indeed, for generalized linear
models, m = 1, µ1(Y |X) = E(Y |X) and f1 is the link function (identity, log, logit...)
of the corresponding model. For ordinal logistic regression models, fk = logit and
µk(Y |X) = P(Y ≤ k|X) (cumulative), µk(Y |X) = P(Y = k|Y = k or Y = k + 1, X)
(adjacent), µk(Y |X) = P(Y > k|Y ≤ k,X) (continuation). Notice that these last
models only allow identical effects of the covariates, which implies that the regression
coefficients βi do not depend on the modality k of the response variable Y . In
particular, this framework includes models for many types of response variable such
as binary, continuous, ordinal or categorical.

In this framework, covariates X`, ` = 1, . . . , p have to be linked to the response
variable Y through a linear expression so that the conditional dependence between
Y and X` given X1, . . . , X`−1, X`+1, . . . , Xp can be measured through the regression
coefficient β`. More precisely, β` = 0 means that X` and Y are independent condition-
ally on the other covariates Xk, k = 1, . . . , ` − 1, ` + 1, . . . p. We are thus interested
in the nullity of the regression coefficients β` to select the relevant covariates. More-
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over, we make sparsity assumption, that is a relatively small number of covariates
play an important role. This implies that only a few covariates are relevant and thus,
only a few regression coefficients β` are non-null. This sparsity assumption is conve-
nient for scientists to restrict their studies to a smaller subset of covariates, namely
in high-dimensional settings. Instead of checking the nullity of each coefficient β` by
performing statistical tests, we add a L1-penalization on the coefficients β in the es-
timation of the coefficients of the model. Coefficients are usually estimated by solving
the optimization problem:

argmax
(α,β)

L(α,β,Y,X), (2)

where L(α,β,Y,X) is a function of the coefficients relative to the model (like log-
likelihood), depending on the observations Y and X of the response variable Y and
the vector of covariates X respectively. Instead of estimating the coefficients by (2), we
add a Lasso penalization on the coefficients vector β which leads to solve the following
optimization problem:

argmax
(α,β)

{
L(α,β,Y,X)− λ||β||1

}
, (3)

where λ > 0 is the penalty parameter.

Usually, all penalization methods require the choice of the (positive) penalty
parameter, also referred as tuning or regularization parameter. We then need to tune
the penalty parameter λ (involved in the optimization problem (3)) which controls
the number of selected covariates: the larger λ is, the fewer the selected covariates
are. On the contrary, values of λ closed to 0 lead to the full model, that is the model
with all the covariates. We remind that our goal is to select only relevant covariates
and thus, to avoid false positive detections (the wrongly detected covariates).

With regard to our problems and goals, we propose a new method, inspired from
the knockoffs process used by Barber and Candes (Barber and Candes, 2015) in
the linear Gaussian regression setting. Actually, this method does not lead to a
choice of the penalty parameter λ but it puts the explanatory covariates in order
from the most relevant to the least. Furthermore, it suits any regression of the type
presented in (1) including when the number n of observations is smaller than the
number p of covariates. Obviously, in the linear Gaussian model, it is much more
pertinent to use the procedure described in (Barber and Candes, 2015) because of
their theoretical guarantees. Even if their procedure initially held for n > p, they
subsequently extended it thanks to a preliminary screening step (Barber and Candes,
2016). In what follows, we present the principle of our revisited knockoffs method.

2.2. Principle and generalities

Let X denote the n× p matrix of the n observations of the p-vector X = (X1, . . . , Xp)
of covariates, called the design matrix. The principle, given in (Barber and Candes,
2015), is to use a matrix X̃ of knockoffs (of the covariates Xi) whose covariance
structure is similar to X but independent from Y. The goal is to determine if a
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covariate Xi is relevant by studying if it enters the model before its knockoff X̃i,
that is if Xi enters the model for a larger value of the penalty parameter λ. Indeed,
as the knockoff matrix is independent from Y, if a covariate enters the model after
its knockoff, we can rightfully suspect that this covariate does not belong to the model.

We mainly differ from the method proposed by (Barber and Candes, 2015) in the
construction of the knockoffs. In their paper, they propose a sophisticated construc-
tion of the knockoff filter using linear algebra tools. This construction allows to control
the false discovery rate (FDR) –the expected fraction of false discoveries among all
discoveries– in the linear Gaussian model whenever there are at least as many obser-
vations as covariates. This difference in the construction of the knockoffs makes our
method suitable for the setting n < p and for a larger set of regression models. Nev-
ertheless, theoretical guarantees about the control of the false discovery rate do not
hold anymore.
We construct our knockoff matrix X̃ by randomly swapping the n rows of the design
matrix X. This way, the correlations between the knockoffs remain the same as the
original variables but the knockoffs are not linked to the response Y. Note that this
construction of the knockoffs matrix also makes the procedure random. Then, in the
same way as (Barber and Candes, 2015), we perform the regression of Y on the n×2p
augmented matrix [X, X̃], i.e. the columnwise concatenation of X and X̃. Let us note

β̂(λ) the estimated regression coefficients of the λ-penalized regression of Y on the
augmented matrix [X, X̃]:(

α̂(λ), β̂(λ)
)

:= argmax
(α,β)

{
L(α,β,Y, [X, X̃])− λ||β||1

}
.

For each variable of the augmented design, that is for each covariate and its correspond-
ing knockoff, we consider Ti := sup {λ > 0, β̂i(λ) 6= 0}, i ∈ {1, . . . , p, p + 1, . . . , 2p}.
Statistics Ti correspond to the largest value of λ for which the covariate Xi if
i ∈ {1, . . . , p} or its knockoff X̃i−p if i ∈ {p+ 1, . . . , 2p} first enters the model. At this
stage, we hope that Ti is large for the relevant covariate, that is for Xi, i ∈ {1, . . . , p}
such that βi 6= 0 and small for the knockoffs variables Xi := X̃i−p, i ∈ {p+1, . . . , 2p} or
for the noisy covariates Xi, i ∈ {1, . . . , p} such that βi = 0. This yields us a 2p-vector
(T1, ..., Tp, T̃1, ..., T̃p) where T̃i denotes Ti+p. Then, we consider, for all i ∈ {1, ..., p},

Wi := max(Ti, T̃i)×
{

(+1) if Ti > T̃i
(−1) if Ti ≤ T̃i

.

Statistics Wi allo to determine if a covariate enters the model before or after its
knockoff. A negative value for Wi means that the covariate Xi enters the model after
its knockoff and we eliminate it. On the contrary, a positive value for Wi means that
the covariate Xi enters the model before its knockoff and is more likely to belong to
the model. But covariates Xi whose statistic Wi is positive are not necessarily relevant:
we hope that Wi is large for most of relevant covariates and small for the other ones.
Thus, we are interested in the largest positive values of the p-vector of statistics W
which moreover indicates that the corresponding covariate enters the model early, that
is for a large value of λ. Statistics Wi allows in fact to sort the covariates according to
their importance: the larger Wi is, the more relevant the associated covariate Xi is.
This then implies defining a threshold s for Wi over which we will keep the correspond-
ing covariates in the estimated model. On the whole, we will choose the estimated
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model Ŝ such that:

Ŝ := {Xi : Wi ≥ s}.

2.3. Choice of the threshold

The second major difference with Barber and Candes (Barber and Candes, 2015) lies
in the choice of the threshold s. They provide in fact a data-dependent threshold that
shows attractive results relative to the false discovery rate in the Gaussian setting.
Unfortunately, these results do not hold in general, out of the linear Gaussian model.
In our method, we make the assumption that there is a breakdown in the distributions
between the Wi corresponding to the covariates Xi belonging to the model and the
other ones (see Figure 1). Figure 1 illustrates that distributions of Wi depend on
whether Xi is relevant or not. To generate Figure 1, we have simulated a set of data
under a linear Gaussian regression model with p = 20 independent Gaussian covariates.
Only the five first ones were linked to Y :

Y = β1X1 + · · ·+ βpXp + ε,

where β = (1, 1, 1, 1, 1, 0, . . . , 0) and ε ∼ N (0, 1). In our knockoffs procedure appli-
cated to this data set, only statistics W1,W2,W3,W4,W5,W6,W7,W13,W14,W16,W19

associated to the covariates X1, X2, . . . , X14, X16 and X19 have a positive value. For
example, the covariate X1 entered the model for λ = 1.002 (thus, T1 = 1.002) and
entered the model before its knockoff X̃1. This means that the knockoff variable X̃1

entered the model for λ < 1.04 and implies that T̃1 < 1.002. W3 takes the largest
value among all the statistics Wi, i = 1, . . . , 20, which implies that X3 is the covariate
the most likely to belong to the model. We can clearly observe a breakdown between
the values of the five first covariates and the other ones.

Consequently, we present two automatic ways to define the threshold s by using two
change detection methods: the method proposed by Auger and Lawrence (Auger and
Lawrence, 1989;Picard et al., 2004, 2007) and the CUSUM method for mean change
detection. Let W(i), i = 1, . . . , w, denote the sorted w positive statistics Wi, i =
1, ..., w, that is 0 < W(1) ≤ W(2) ≤ . . . ≤ W(w) and ej = W(j+1) − W(j) for all
j = 1, . . . w − 1 the w − 1 gaps between these sorted statistics. Remark that w, the
number of positive statistics Wi, is random (w = 11 on Figure 1). We propose two
automatic thresholds defined as:

• the minimum of the two thresholds obtained by applying these two change de-
tection methods directly on the statistics W(i), i = 1, . . . , w sorted in ascending
order,
• the minimum of the two thresholds obtained by applying these two change de-

tection methods on the gaps ej , j = 1, . . . , w − 1.

Let us name the first one ’W -threshold’ and the second one ’gaps-threshold’ for the
sake of simplicity.

It may seem odd not to exploit the distributional properties of Wi, which seems to
contain some interesting information. Namely, the sign of Wi is a coin flip for non-
relevant covariates, which may provide some information about the total number of
non-relevant covariates. This number corresponds to the number p0 of null tests in

6



2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
or

te
d 

po
si

tiv
e 

st
at

is
tic

s 
W

W7 W14 W19 W16 W13 W6

W2
W4 W1

W5

W3

Figure 1. Example of positive statistics Wi sorted in ascending order. Linear Gaussian regression model

with n = 500 observations of p = 20 covariates. Only covariates X1, X2, X3, X4 and X5 belong to the model
(regression coefficients are set to β = (1, 1, 1, 1, 1, 0, . . . , 0)).

multiple testing framework of (Storey, 2002). Unfortunately, using this kind of ideas
provided poor results on further simulations, even when covariates are independent.

2.4. R package kosel

Our procedures have been implemented in a R package, called kosel (for knockoffs
selection), available on the CRAN. Our package includes three functions: ko.glm,
ko.ordinal and ko.sel.

The two first functions construct the knockoffs matrix and return the p-vector
of statistics W for L1-penalized regressions models respectively implemented in the
R functions glmnet and ordinalNet from the packages of the same name. glmnet
emcompasses generalized linear models whereas ordinalNet includes ordinal regres-
sion models such as cumulative link, adjacent or continuation-ratio or stopping-ratio.
By default, a seed is used so that the knockoffs matrix remains the same (and thus,
the resulting statistics vector W ). But this can be changed with the option random

= TRUE to exploit the randomness of the procedure (see Subsection 3.3 for further
details).

The third function ko.sel deals with the choice of the threshold. It uses the
statistics vector W obtained by one of the two other functions and returns the p-
binary vector of estimation and the threshold s. Three choices are proposed: method
= ’stats’ and method = ’gaps’ respectively correspond to the ’W -threshold’ and
’gaps-threshold’ while method = ’manual’ allows the user to choose its own thresh-
old. The option print = TRUE displays the positive statistics Wi sorted in ascending
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order like in Figure 1. For method = ’manual’, they are automatically displayed so
that the user can choose its threshold. For the ’W -threshold’ (method = ’stats’) and
’gaps-threshold’ (method = ’gaps’), option print = TRUE also displays an horizontal
line corresponding to the threshold.

3. Simulation studies

3.1. Settings

We now describe experimental results to study the efficiency of our procedure. For
that, we have performed different simulations with various regressions: linear Gaussian
regression, logistic regression and cumulative logit regression (with proportional odds).
Covariates X are simulated as Gaussian such that E(Xk) = 0 and var(Xk) = 1 for
all k = 1, . . . , p and such that Xi and Xj are dependent conditionally on the other
covariates Xk, k ∈ {1, . . . , p} \ {i, j} with probability 0.2. The design matrix X of
covariates has been simulated with the R function huge.generator from the package
huge, for a random graph structure. We have then simulated the observations of the
response variable Y as:

Y = β1X1 + . . .+ βpXp + ε, (linear regression)

logit(P(Y = 1|X)) = α1 + β1X1 + . . .+ βpXp, (logistic regression)

or logit(P(Y ≤ k|X)) = αk + β1X1 + . . .+ βpXp, k = 1, 2,
(cumulative logit regression)

where ε ∼ N (0, 1) is Gaussian noise, the vector of regression coefficients β is sparse
and given below and intercepts α1 and α2 are chosen so that the response variable
Y takes enough values in each of its modalities ({0, 1} for logistic regression and
{0, 1, 2} for cumulative logit regression). These regressions have been respectively
performed with the R functions glmnet and ordinalNet of the eponymous R packages.

We present detection rates of each covariates on B = 100 repetitions for different
settings. The detection rate of the covariate X` is the number of times among the 100
repetitions where the estimated model included X`. First, we have simulated n = 200
observations of p = 50 covariates for pedagogical reasons and next, n = 1000 obser-
vations of p = 2000 covariates to illustrate results in a higher-dimensional framework.
For p = 2000 covariates, results are presented as boxplots of detection rates according
to the regression coefficient β in order to improve readability.
In addition, we compare our results with results obtained by cross validation. Cross
validation has been performed with the R functions cv.glmnet for linear and logistic
regressions and ordinalNetTune with ’logLik’ tune method for cumulative logit re-
gression. For p = 50, we also compare our results in the linear Gaussian setting with
results obtained by Barber and Candes’ procedure. Their procedure is implemented
in the function knockoff.filter from the R package knockoff. We do not perform
this comparison for p = 2000 because their procedure is not applicable due to the too
few observations.
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3.2. Efficiency and comparisons

3.2.1. p = 50

In the first place, we present results for n = 200 observations of p = 50
covariates. Regression coefficients are set to β = (1, 1, 1, 1, 1, 0, . . . , 0) and
β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0). Covariates X are the same for each different
regression. But they are different according to the regression coefficients β. In
other words, for a fixed value of β, the design matrix X is the same for each of
the three regression models. But the response variable Y is simulated according
to the regression model and is therefore different. The knockoffs matrix is also different.

0 10 20 30 40 50

0
20

40
60

80
10

0

Covariates

D
et

ec
tio

n 
ra

te
s

KO, W−threshold
KO, gaps−threshold
CV
BarberCandes

(a) β = (1, 1, 1, 1, 1, 0, . . . , 0).

0 10 20 30 40 50

0
20

40
60

80
10

0

Covariates

D
et

ec
tio

n 
ra

te
s

KO, W−threshold
KO, gaps−threshold
CV
BarberCandes

(b) β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0).

Figure 2. Detection rates of each covariate for the four methods: revisited knockoffs W -threshold and gaps-

thresholds, cross validation and Barber and Candes’ knockoffs. Linear Gaussian regression model with n =

200 observations of p = 50 covariates with regression coefficients β = (1, 1, 1, 1, 1, 0, . . . , 0) (a) and β =
(2.5, 2, 1.5, 1, 0.5, 0, . . . , 0) (b). Covariates are dependent Gaussian with a random structure. The number of

i.i.d. repetitions is B = 100.

Results and comments. Figures 2, 3 and 4 show detection rates for cross validation
and for the revisited knockoffs method after thresholding with the W -threshold and
with the gaps-threshold. These detection rates are illustrated on Figures 2, 3 and 4
for respectively linear, logistic and cumulative logit regressions. First, we can note
that our procedure is efficient for each of these regressions: the difference of detection
rates of the first five covariates and the rest of them is really clear, regardless of the
regression coefficients or the choice of the threshold. For linear regression, these two
thresholds give similar results whereas for logistic and cumulative logit regressions,
gaps-threshold tends to give slightly lower detection rates than W -threshold, for both
relevant and noisy covariates.
In comparison, cross validation provides considerably higher detection rates: although
the first five covariates, especially X4 and X5, can be more detected, noisy covariates
are also much more detected than with our procedure. For example, for logistic re-
gression in Figure 3, noisy covariates are almost all detected less than 20% with our
procedures whereas they are detected between 20% and 40% with cross validation.
In practice, using cross validation would give more false positive detections than our
procedures.
Figure 2 also show detection rates obtained by Barber and Candes’ knockoffs in the
linear Gaussian regression model. To perform their procedure, we have to choose a
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Figure 3. Detection rates of each covariate for the three methods: revisited knockoffs W -threshold and gaps-
thresholds and cross validation. Logistic regression model with n = 200 observations of p = 50 covariates

with regression coefficients β = (1, 1, 1, 1, 1, 0, . . . , 0) (a) and β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0) (b). Covariates are

dependent Gaussian with a random structure. The number of i.i.d. repetitions is B = 100.

target false discovery rate. In practice, we want it to be small but too small values
lead to an infinite threshold and thus an empty estimated model. By default, the FDR
is set to 0.1 but we set it to 0.4 to avoid too many empty estimated models. For the
two different configurations of β, we have obtained 4 empty estimated models on 100
repetitions. Because of that, detection rates of the noisy covariates tend to be a bit
higher than ours. For the same reason, the five first ones are a bit less detected (close
to 96%, which corresponds to the number of repetitions for which the threshold was
not infinite). For β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0), X5 is yet better detected.
All of these three figures illustrate also that detection rates depend on the regression
coefficient β: the higher β is, the more the associated covariate is detected. Indeed,
for β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0), we can observe that the covariate X5 tends to be
less detected than the four first ones. Furthermore, we can notice that some noisy
covariates are more detected. For example, this is the case for the noisy covariates
X18, X19, X29, X36, X39 or X47 for β = (1, 1, 1, 1, 1, 0, . . . , 0) and for all kind of regres-
sions (since the design matrix is the same). This is probably due to the dependence
structure of X. In particular, these covariates are dependent to at least two of the
first five covariates conditionally on the other ones. Similar phenomenon occurs for
β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0) with noisy covariates X19, X41 and X47. Simple cor-
relations between these noisy covariates and the five first (relevant) covariates vary
from 0.03 to 0.3. More precisely, the most detected noisy covariates are those that
are both conditionally dependent on the most relevant covariates and that also have
the highest simple correlations with them, which is actually not really surprising. All
non-null partial correlations between covariates are equal, respectively about −0.167
(for β = (1, 1, 1, 1, 1, 0, . . . , 0)) and −0.157 (for β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0)).
Finally, our procedure seems to be quite efficient regardless of the regression model.
Nevertheless, results are a little bit better for linear regression. In this case, we remind
that Barber and Candes’ procedures (Barber and Candes, 2015, 2016) also provide
theoretical guarantees.
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(a) β = (1, 1, 1, 1, 1, 0, . . . , 0).
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(b) β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0).

Figure 4. Detection rates of each covariate for the three methods: revisited knockoffs W -threshold and gaps-
thresholds and cross validation. Cumulative logit model with n = 200 observations of p = 50 covariates with

regression coefficients β = (1, 1, 1, 1, 1, 0, . . . , 0) (a) and β = (2.5, 2, 1.5, 1, 0.5, 0, . . . , 0) (b). Covariates are

dependent Gaussian with a random structure. The number of i.i.d. repetitions is B = 100.

3.2.2. p = 2000

We present now results for n = 1000 observations of p = 2000 covariates to illustrate
that our procedure is suitable with thousands of covariates. Regression coefficients

are set to βk =



5, if 1 ≤ k ≤ 20,
4, if 21 ≤ k ≤ 40,
3, if 41 ≤ k ≤ 60,
2, if 61 ≤ k ≤ 80,
1, if 81 ≤ k ≤ 100,
0, otherwise.

. In the same way as for p = 50 (Subsection

3.2.1), covariates X are the same for each different regression. But they are different
according to the regression coefficients β. In other words, for a fixed value of β, the
design matrix X is the same for each of the three regression models. But the response
variable Y is simulated according to the regression model and is therefore different.
The knockoffs matrix is also different.

Results and comments. Figures 5, 6 and 7 each contain four graphics: three of
them are boxplots of detection rate of each of the 6 groups of covariates according to
their regression coefficient β. These detection rates are respectively obtained with the
revisited knockoffs methods and cross validation. In order to compare our method with
cross validation for the noisy covariates, we present detection rates of the noisy covari-
ates (these for which β = 0) obtained with the knockoffs method (with gaps-threshold)
in function of detection rates obtained with cross validation in the last graphic.
Results in the linear regression framework are presented in Figure 5. Comparing the
three boxplots, we can remark that detection rates with revisited knockoffs method
with W -threshold are lower than with gaps-threshold. More specifically, relevant co-
variates whose β = 1 are detected between 10 and 95% with W -threshold whereas they
are detected more than 80% with gaps-threshold. Detection rates with W -threshold
are lower and more widespread for covariates whose regression coefficient β = 1 com-
paring to the other relevant covariates. Cross validation leads to better detection rates
for the relevant covariates. However, Figure 5d illustrates that most of the noisy co-
variates have higher detection rates with cross validation than with our procedure.
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(a) Revisited knockoffs with W -threshold.
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(b) Revisited knockoffs with gaps-threshold.
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(c) Cross validation.
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(d) Comparison of detection rates of noisy covariates

for the revisited knockoffs method with gaps-threshold
and for cross validation.

Figure 5. Boxplots of detection rates of each covariate according to their regression coefficient β for the three

methods: revisited knockoffs W -threshold (a), gaps-thresholds (b) and cross validation (c). Linear Gaussian

regression model with n = 1000 observations of p = 2000 covariates. Covariates are dependent Gaussian with
a random structure. The number of i.i.d. repetitions is B = 100.
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(a) Revisited knockoffs with W -threshold.
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(b) Revisited knockoffs with gaps-threshold.
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(c) Cross validation.
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(d) Comparison of detection rates of noisy covariates

for the revisited knockoffs method with gaps-threshold
and for cross validation.

Figure 6. Boxplots of detection rates of each covariate according to their regression coefficient β for the three

methods: revisited knockoffs W -threshold (a), gaps-thresholds (b) and cross validation (c). Logistic regression

model with n = 1000 observations of p = 2000 covariates. Covariates are dependent Gaussian with a random
structure. The number of i.i.d. repetitions is B = 100.
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(a) Revisited knockoffs with W -threshold.
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(b) Revisited knockoffs with gaps-threshold.

5 4 3 2 1 0

0
20

40
60

80
10

0

Coefficient beta

D
et

ec
tio

n 
ra

te

(c) Cross validation.
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(d) Comparison of detection rates of noisy covariates

for the revisited knockoffs method with gaps-threshold
and for cross validation.

Figure 7. Boxplots of detection rates of each covariate according to their regression coefficient β for the three

methods: revisited knockoffs W -threshold (a), gaps-thresholds (b) and cross validation (c). Cumulative logit

model with n = 1000 observations of p = 2000 covariates. Covariates are dependent Gaussian with a random
structure. The number of i.i.d. repetitions is B = 100.
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Thus, cross validation gives more false positive detections.
Results for logistic and cumulative logit regressions are respectively presented in Fig-
ures 6 and 7. As for p = 50, we can note on boxplots that detection rates depend on
the regression coefficient β: for all the three methods, detection rates are decreasing
according to β that is, the higher β is, the more the associated covariates are detected.
We also observe this on graphics 5a and 5b for linear regression, although it is less pro-
nounced. As for linear regression, even if cross validation gives better detection rates
for the relevant covariates, it also gives more fase positive detections for the noisy
covariates as illustrated in graphics 6d and 7d. This phenomenon is even stronger for
these two regression models where almost all of the noisy covariates are more detected
with cross validation than with our procedure. Contrary to linear regression, detec-
tion rates obtained by the knockoffs method with W -threshold are higher than with
gaps-threshold and they are higher for both relevant and noisy covariates.
Although detection rates are better for linear regression, our procedures lead to satis-
fying results for the three regression models. Even though relevant covariates are not
always enough detected, detection rates of noisy covariates are also often very low, es-
pecially in comparison with cross validation. On the whole, it seems to be appropriate
for sparse models regardless to the regression model and particularly when the goal is
to avoid false positive detections. Notice that the threshold (W or gaps-threshold) to
be used to avoid false positive detections may vary according to the regression model.

3.3. Randomness of the procedure

Note that revisited knockoffs procedure and cross validation are both random (which
is not the case for Barber and Candes’ procedure). Indeed, the former is random in
the construction of the knockoffs matrix whereas randomness of cross validation lies
in the choice of the folds. Hence, applying several time one of these methods leads
to different results. To conclude this section, we compare detection rates obtained
by these three methods on the same sample of data. This sample includes n = 200
observations of p = 50 covariates and consists in the first sample of the B = 100
samples used in the Subsection 3.2.1. Dependence structure of the vector X is thus
also the same as in Subsection 3.2.1.

Results and comments. Figure 8 displays detection rates of each covariate
using randomness of the three procedures: revisited knockoffs method with W and
gaps-thresholds and cross validation. Detection rates are obtained on 100 repetitions
on the same sample for the three methods and for the three regression models:
linear, logistic and cumulative logit regressions. Regression coefficients are set to
β = (1, 1, 1, 1, 1, 0, . . . , 0). Thus, only the first five covariates belong to the model.
We can notice that these first five covariates are almost always 100% detected except
with gaps-threshold for cumulative logit regression (for which they are still detected
more than 95%). Noisy covariates, that is covariates X6, . . . , X50, are always less
detected by our procedures than by cross validation. However, some of them are
wrongly highly detected: X18 for linear regression, X18, X25, X30 and X39 for logistic
regression or X19, X21, X36 and X40 for cumulative logit regression. This is probably
due to the sample (in which the dependence structure is more or less pronounced).
It should be recalled that this dependence structure is the same as in Subsubsection
3.2.1 for p = 50. In comparison with Figures 2, 3 and 4 of Subsubsection 3.2.1, we
can see that these covariates have also higher detection rates. For all these covariates,
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(a) Linear regression.
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(b) Logistic regression.
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(c) Cumulative logit regression.

Figure 8. Detection rates of each covariate for the three methods: revisited knockoffs method with the W - and

gaps-thresholds (see Subsection 2.3) and cross validation. Detection rates are obtained on 100 repetitions on the
same sample of n = 200 observations of p = 50 covariates with regression coefficients β = (1, 1, 1, 1, 1, 0, . . . , 0).

Covariates are dependent Gaussian with a random structure.
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cross validation gives higher detection rates than our procedures. Cross validation
gives also much higher detection rates for some other noisy covariates. For instance,
X6, X11, X13, X24, X40 and X48 are always detected for linear regression whereas
revisited knockoffs with W and gaps threshold never detect them. For cumulative
logit model, X8, X41, X46 and X50 are always detected whereas our procedures detect
them less than 15%.

In practice, with real data, this randomness opens up to further ways to perform
variable selection.

4. Discussion

In this paper, we proposed a method for variable selection in regression models based
on the construction of a matrix of knockoffs of the covariates. This method is quite
intuitive and suitable for many types of regressions, including when the number of
observations is much smaller than the number of covariates. Two different thresholds
can be chosen, leading to two procedures, which have been implementend in the R
package kosel. We have seen that these procedures both turn out to be very perti-
nent and efficient as the many and diverse simulations exemplify. Our two procedures
are particularly appropriate when the goal is to avoid false positive detections. In-
deed, even if there are false negative detections, there are also a very small rate of
false positive detections. Simulations show also that efficiency of our procedures de-
pends on the regression model. In general, we can try the two thresholds and choose
results according to its target. Furthermore, randomness of our procedures provides
other techniques to perform variable selection. Nonetheless, in the case of linear Gaus-
sian regression, Barber and Candes’ procedures also offer theoretical guarantees. In
addition, our procedures give better results than cross validation with regard to false
positive detections, even when we make use of randomness. However, if we aim at
overselecting, it is more appropriate to use other techniques such as cross validation.

As remarked by one of our reviewer that we thank for this idea, statistics Ti used
here is the maximal L1 penalty for which the regression coefficient associated with Wi

is not zero. But any other score provided by an arbitrary variable selection procedure
(like the posterior probability in a Bayesian setting) would fit as well. Score would be
computed for both variables and knockoffs, and the mechanism of selection would be
the same.
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