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ABSTRACT

Context. Convective motions at the stellar surface generate a stochastic colored noise source in the radial velocity (RV) data. This
noise impedes the detection of small exoplanets. Moreover, the unknown statistics (amplitude, distribution) related to this noise make
it difficult to estimate the false alarm probability (FAP) for exoplanet detection tests.
Aims. In this paper, we investigate the possibility of using 3D magneto-hydrodynamical (MHD) simulations of stellar convection to
design detection methods that can provide both a reliable estimate of the FAP and a high detection power.
Methods. We tested the realism of 3D simulations in producing solar RV by comparing them with the observed disk integrated
velocities taken by the GOLF instrument on board the SOHO spacecraft. We presented a new detection method based on periodograms
standardized by these simulated time series, applying several detection tests to these standarized periodograms.
Results. The power spectral density of the 3D synthetic convective noise is consistent with solar RV observations for short periods.
For regularly sampled observations, the analytic expressions of FAP derived for several statistical tests applied to the periodogram
standardized by 3D simulation noise are accurate. The adaptive tests considered in this work (Higher-Criticism, Berk-Jones), which are
new in the exoplanet field, may offer better detection performance than classical tests (based on the highest periodogram value) in the
case of multi-planetary systems and planets with eccentric orbits.
Conclusions. 3D MHD simulations are now mature enough to produce reliable synthetic time series of the convective noise affecting
RV data. These series can be used to access to the statistics of this noise and derive accurate FAP of tests that are a critical element in
the detection of exoplanets down to the cm s−1 level.

Key words. techniques: radial velocities – Sun: granulation – planets and satellites: detection – methods: statistical

1. Introduction

At the time of this writing, 880 extrasolar planets have been dis-
covered so far by the radial velocity (RV) technique1. In this
sample, 52% of these consist of planets that are more massive
than Jupiter and 14% that have a mass inferior to 10 Earth-
masses (M⊕). Since the detection of HD215152c (Mayor et al.
2011), only 19 planets have been found with a mass ≤2 M⊕ and
all of the latter are short-period (≤50 days) planets orbiting stars
that are less massive than the Sun.

Indeed, detecting planets is easier around low-mass stars (as
the ratio of the planet to stellar masses is higher) and, thus, a
first strategy consists in monitoring cool M dwarfs to increase the
detection probability. This has been the purpose of recent surveys
with spectrographs such as CARMENES (Quirrenbach et al.
2014) and SPIRou (Donati et al. 2017). On the other hand, new
instruments such as ESPRESSO (Pepe et al. 2010) and EXPRES
(Jurgenson et al. 2016) have been developed to ensure the long-
term stability that is needed to detect signals of terrestrial planets
orbiting main sequence G-dwarf stars (with an amplitude around
10–30 cm s−1).

1 Source: exoplanet.eu, confirmed planets (01/2020).

However, detecting planet signatures at the cm s−1 level
remains challenging as spurious Doppler shifts of various ori-
gins may dominate the RV series. The activity at the surface of
the host star is one of the main sources generating changes in
depth, width, and asymmetries of the absorption lines. Disentan-
gling the planetary signal from the stellar activity “noise” is an
active research topic (see e.g., Desort et al. 2007; Aigrain et al.
2012; Haywood et al. 2014; Lagrange et al. 2010; Meunier et al.
2017a; Wise et al. 2018; Dumusque 2018; Chaplin et al. 2019;
and references therein) and stellar activity has already led to sev-
eral controversial planet detections in the past (e.g., αCenB b,
Dumusque et al. 2012; Hatzes 2013; Rajpaul et al. 2016, GJ581
d and g, Vogt et al. 2010; Robertson et al. 2014, GJ667 c, and f
Anglada-Escudé et al. 2013; Robertson & Mahadevan 2014).

This activity results from the contribution of various phe-
nomena, which can be classified as a function of their corre-
lation timescales. For main-sequence Solar-like stars, the three
main noise sources originate from: (1) cyclic stellar oscillation
eigenmodes (a few minutes), (2) stochastic surface convection
motions (minutes–hours), and (3) (quasi) periodic stellar activ-
ity – spots, plages, flares – modulated with the stellar rotation
or cycle (days–years). We note that even if active regions are
more frequent at the maximum phases of the cycle, they can
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have lifetimes that are shorter than the rotation period (Saar &
Donahue 1997).

In this paper, we aim to consider how the influence of the
stochastic noise due to stellar convective motion could be coun-
teracted. We ignore other sources of stellar RV variations (e.g.,
oscillations and active regions) and consider them as already cor-
rected in our time series (e.g., through activity-sensitive lines,
Baliunas et al. 1995; Wise et al. 2018 or dedicated filtering
technique, Chaplin et al. 2019).

Convective noise can significantly alter the detection of
exoplanets at the sub-m s−1 level (Meunier et al. 2015, 2017b;
Meunier & Lagrange 2019; Cegla 2019). The main technique
proposed so far for mitigating its contribution in the RV series
down to some tenth of cm s−1 consists of averaging several (typ-
ically two or three) measurements of a target star during a night
and separating them by at least two hours (Dumusque et al. 2011;
Collier Cameron et al. 2019). However, the convection acts as a
correlated noise over timescales longer than two-to-four hours
(and even longer for supergranulation) and some correlations
remain by using this observational procedure (Meunier et al.
2015). Moreover, this technique is performed at the cost of a
small number of data points per night, leading to a critical lack
of knowledge of the statistical properties for stellar activity as
a whole. Other methods for dealing with convection noise con-
sist of modeling the stellar activity as a correlated noise when
fitting for RV planetary Keplerian signatures. Examples of com-
mon empirical models that we can find in the literature are red
(i.e., power law) noise (Feroz & Hobson 2014), moving averaged
noise (Tuomi et al. 2014), or Gaussian processes (Rajpaul et al.
2015). In practice, these empirical modelings should be used
with caution as their results may lead to different conclusions,
as shown in a recent RV challenge (Dumusque et al. 2017).

In this study, we question the reliability of traditional meth-
ods for determining the statistical significance of the detection
in the presence of correlated noise. This significance is based
on the value of the false alarm probability (FAP) of statistical
tests (see review in Khan et al. 2017). Traditionally, the FAP
is derived under the assumption that the noise within the data
(or the data residuals) is an uncorrelated white Gaussian noise
(WGN). In this work, we propose a new method to access the
significance of the detection of (quasi-)periodic signals in the
presence of a correlated noise, providing that we can generate
reliable (non-parametric) time series of this noise. We propose to
use state-of-the-art 3D magneto-hydrodynamical (MHD) simu-
lations of stellar surfaces to generate the noise series. We note
that such simulations have already been investigated to deter-
mine the impact of convection on exoplanet detection (Cegla
et al. 2013, 2018, 2019). Our analysis focuses on evaluating the
reliability of MHD simulations in reproducing the time series of
solar convective noise and on investigating the statistical benefit
of using such simulated RV for deriving accurate FAP. In this
paper, the benefit of using these simulations in the detection pro-
cess is described for the case of regularly sampled time series.
The case of an irregular sampling will be developed in a second
paper2, whereas the present analytical studies can nevertheless
provide a useful proxy of the performance that can be expected
in the case of an irregular sampling close to regular (e.g., one
point per night at roughly the same hour).

This paper is divided into five sections. In Sect. 2, we eval-
uate the realism of the 3D MHD simulations. In Sect. 3, we use

2 The reader can refer to Sulis et al. (2017a) for preliminary indications
about how this work can be extended to the case of irregularly sampled
observations.

the standardized periodogram and present several detection tests
to exploit this periodogram. In particular, we discuss some tests
that are new to the exoplanet field: namely, the Higher-Criticism
(Donoho & Jin 2004) and the Berk-Jones tests (Berk & Jones
1979). In Sect. 4, we perform a numerical study to investigate the
benefit of our procedure and present our conclusions in Sects. 5
and 6.

2. Simulated solar granulation noise

As a preamble, we aim to test the realism of 3D MHD simulated
RV time series of convective (granulation) noise and compare
it to the RV time series obtained using the spectrophotometer
Global Oscillation at Low Frequencies (GOLF).

2.1. Space measurements of RV solar convective noise

Measurements from spaceborne missions represent an excellent
opportunity to validate the simulated velocities of solar convec-
tion. Indeed, they are not affected by the alternation of day and
night or any ground-based follow-up problems (e.g., the influ-
ence of the Earth’s atmosphere) and provide regularly sampled
time series at high cadence.

Since 1996, the GOLF spectrophotometer on board the
Solar and Heliospheric Observatory (SoHO) spacecraft takes
an almost continuous measurement of the solar disk-integrated
position of the Sodium doublet. More particularly, it measures
the position in the “blue” and “red” wings of the lines at ±108 Å
from the center of the lines, which are located at λ = 5895.924 Å
(D1) and 5889.950 Å (D2). The solar light enters into a sodium
vapor cell and a magnetic field splits the absorption lines
(Zeeman effect). Then the Doppler shift (i.e., velocity) is eval-
uated as the flux ratio on these two points of the lines’ wings
(see Unno et al. 1989, p. 328):

v(t) ∝ FB(t) − FR(t)
FB(t) + FR(t)

, (1)

where FB and FR are the fluxes in the blue and red wings, respec-
tively. For more technical details about this velocity extraction,
we refer to Boumier & Dame (1993), Gabriel et al. (1995), Garcia
et al. (2005) and Appourchaux et al. (2018).

After roughly one year of GOLF measurements, an instru-
mental failure happened and the velocity extraction was done
using only one side of the sodium doublet: the blue wings (where
the solar intensity comes from the bottom of the photosphere)
from 1996 to 1998 and from 2002 until now and the red wings
(where the solar intensity comes from the upper layers of the
photosphere) between these dates (Garcia et al. 2005). Therefore,
a careful calibration of the GOLF data was needed to obtain con-
sistent velocities and several calibrations have been proposed.
We chose to use the recent level-2 GOLF data3 calibrated as
described in Appourchaux et al. (2018). In order to have the same
sampling as in our MHD simulations, we sampled the GOLF
time series every minute4. Moreover, we divided the GOLF time
series into two-day sequences to study the RV correlations on
the granulation timescales (from a few minutes up to several
hours) and to validate them with Monte Carlo (MC) simulations
based on a large number of solar subseries (see the statistical
results presented in Sect. 3). From the entire sample of two-day
sequences, we removed the ones containing observation gaps to

3 www.ias.u-psud.fr/golf/templates/access.html
4 The original sampling was 20 s.
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have a perfectly regularly sampled time series (as our working
hypothesis throughout this paper).

Finally, we applied a low-pass filter of 1620 µHz (i.e.,
10.3 minutes) passband to filter out the oscillations modes and to
restrict sensitivity to pick up only the convective noise. We com-
puted the velocity root-mean-square (rms) of each 182 sequences
available on the 1996 dataset (i.e., at solar cycle minimum, no
calibration problem) and obtained an average value of 49 cm s−1,
which is in agreement with Pallé et al. (1999). An example of a
two-day sequence and the corresponding periodogram will be
shown in Sect. 2.2.4.

2.2. Synthetic time series of the RV solar convective noise

2.2.1. MHD simulations of the solar surface

We use the state-of-the-art radiative MHD code (STAGGER CODE,
Nordlund & Galsgaard 1995) to simulate the surface convection
and stratification of the Sun. In a 3D local-box model of the solar
atmosphere (size: 8000 × 8000 kms and +500 and −3400 km
above and below the surface at optical depth τ = 1), the code
solves the full set of conservative MHD equations coupled to
an accurate treatment of the radiative transfer. The horizontal
sizes of the domain are defined to contain a sufficient number
of granules at each time-step. The code is based on a sixth-order
explicit finite difference scheme. The equations are solved on
a staggered mesh where the thermodynamic variables are cell-
centered, while the flux is shifted to the cell edge. The domain of
simulation contains the entropy minimum located at the surface
(photosphere) and is extended deep enough to have a flat entropy
profile at the bottom (adiabatic regime). The code uses periodic
boundary conditions horizontally and opened boundaries verti-
cally. At the bottom of the simulation, the inflows have constant
entropy and pressure. The outflows are not constrained and are
free to pass through the boundary. We used a realistic equation-
of-state that accounts for ionization, recombination, dissociation
(Mihalas et al. 1988), and continuous line opacity (Gustafsson
et al. 2008). Radiative transfer is crucial since it drives convec-
tion through entropy losses at the surface (Stein & Nordlund
1998) and is solved using the Feautrier’s scheme along with
several inclined rays (one vertical, eight inclined) through each
grid point. The wavelength dependence of the radiative trans-
fer is taken into account using a binning scheme, in which the
monochromatic lines are collected into 12 bins. The numerical
resolution used for the present simulation is 1203. The choice
of this modest resolution is a compromise between sufficient
fine grid to catch enough of the inhomogeneities and sufficiently
small to minimize the computing and storing costs of very long-
run simulation. The solar parameters that define our 3D model
are Teff = 5775 ± 30 K, log g = 4.44 and a solar chemical com-
position (Asplund et al. 2009). The uncertainty in Teff represents
the fluctuations due to convection and p-modes. The average
magnetic field in our simulation is ∼100 G, as observed by
(Hanle) spectropolarimetry (Trujillo Bueno et al. 2004).

In this work, we use an exceptionally long series of solar
snapshots computed to study the properties of solar p-modes
(Bigot et al., in prep.). It represents 53.14 days with a sampling of
60 s (i.e., 76 528 snapshots). To our knowledge, this is the longest
series ever generated with such a 3D code. For the present study,
we filtered out these modes since they have unrealistic large
amplitudes (due to their small inertia) in such shallow boxes
of granulation simulation. The synthetic sodium doublet lines
are obtained for each snapshot by a monochromatic line transfer
within [5884.000, 5901.945] Å and at a resolution of 20 000.

Fig. 1. Comparison of velocities time series extracted from the Sodium
doublet lines at different µ. For each time series, the oscillation modes
have been filtered out.

The synthetic line intensities I(t, x, y, λ, µ, φ) and the con-
tinuum C(t, x, y, λ, µ, φ) are computed for each x and y, the
horizontal Cartesian coordinates of the simulation box and
for several inclined rays defined by µ, the cosine of the six
limb angles, and four azimuthal angles φ. The chosen discrete
µi values are defined by the Gauss-Radau procedure. For six
angles, we then have µi = {0.12, 0.39, 0.60, 0.80, 0.92, 1.00}. We
averaged these intensities both horizontally and in azimuth to
obtain our time-dependent center-to-limb intensity I(t, λ, µ) and
continuum C(t, λ, µ), from which we will extract the radial
velocities the following sub-sections.

2.2.2. RV dependence on the center-to-limb position

The radial velocities associated to each value of µi are obtained
using Eq. (1). To compute Eq. (1), we generated the fluxes
F(t, λ, µi) as the ratio of I(t, λ, µi) over C(t, λ, µi) for each µi. We
then extracted the mean line profile F0(λ, µi) by averaging the
fluxes F(t, λ, µi) over t and used this reference profile to evaluate
the fluxes ratio involved in Eq. (1). Finally, we translated these
Doppler shifts into velocities using a proportional factor (κ) that
results from a Taylor development around the considered wave-
length λ0 (see Unno et al. 1989, p. 328). This factor needs to be
evaluated for each line of the Sodium doublet. It writes:

1
κ

=
1
c
∂lnF(t, λ, µ)

∂lnλ

∣∣∣∣∣∣
λ=λ0

, (2)

with c the speed of light and λ0 the wavelength corresponding
to an intensity level of reference. We set this level of reference
to F0(λB

0 , µi) = F0(λR
0 , µi) = 0.5 with λB

0 and λR
0 the wave-

lengths in the blue and the red wings, respectively. The RV time
series associated with three of the discrete {µi}-values are shown
in Fig. 1.

The extracted radial velocities are strongly decreasing from
the limb to the disk center, with typical rms velocities of
234.2 m s−1 at the limb (µ = 0.12) and 23.3 m s−1 at the disk
center (µ = 1), as it is observed for the Sun (Löhner-Böttcher
et al. 2018). This is explained by the fact that the observer does
not see the same components of convective flows at the limb
and the disk center. Indeed, the radial velocity is the projection
of the total convective velocity, which includes both the vertical
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and horizontal velocities. At the disk center, radial and vertical
velocities are the same, but at the limb, we only see the hori-
zontal component. Since convection is strongly decelerating and
horizontally diverging at the surface so that the gas overturns
back to the interior in vertical downflows, the horizontal speeds
are much larger than the vertical ones (Stein & Nordlund 1998;
Nordlund et al. 2009). This explains the much larger values found
at the limb than at the disk center. Moreover, the contribution of
the small vertical velocity at the limb is strictly zero due to the
projection effect. Despite the large rms velocities at the limb, we
see in the following section that its contribution is limited due
to surface projection effect when considering the disk-integrated
velocities.

2.2.3. Disk-integrated RV

A single 3D simulation box represents a tiny fraction of the
solar surface. Typically, we need NB = 2πR2

�/`
2 ≈ 4.7 × 104

simulation boxes to cover the visible solar disk (i.e., half of
the solar surface) with R� the solar radius and ` = 8 Mm the
horizontal size of the simulation box. The difference in RV
amplitude between those extracted from one simulation box
(with µ-dependent rms velocity � 1 m s−1; see Fig. 1) and the
solar disk-integrated observations (∼49 cm s−1) is due to the
cancellation of positive (upflows) and negative (downflows) fluc-
tuations when averaging over the entire disk. The reader might
consult Ludwig (2006) for an in-depth discussion about this
effect in the case of brightness fluctuations (see also Schrijver
& Zwaan 2008). To generate a synthetic time series of the solar
granulation as seen from disk-integrated observations, we follow
a similar methodology to Ludwig (2006), Chiavassa et al. (2017)
and Cegla et al. (2019) based on our single simulation box. The
idea is to use the 76 528 available synthetic line profiles to patch
a surface equivalent to the solar disk. Contrary to the previously
mentioned studies, which used very short time series of a cou-
ple of hours, we have approximately 2 × NB boxes to patch the
solar disk at a given time, t, that allows us to cover the entire
disk without duplication of the same snapshots. This allows us
to avoid using the same snapshot in the patching procedure mul-
tiple times, which could lead to unavoidable correlations. In the
present study, we randomly distributed the snapshots all over the
surface, with the condition that two consecutive patches should
correspond to times that are separated by at least 20 min to
minimize possible correlations. For each patch k, we have an
associated emergent intensity I(t, λ, µk). The values of µk are cal-
culated depending to the position of the patch on the grid and the
intensities I(t, λ, µk) interpolated from the six Gauss-Radau val-
ues using a second-order polynomial function. Then we let each
of these patches evolves independently; that is, for each patch k,
we performed a new interpolation from the six Gauss-Radau val-
ues to derive the new value for I(t + 1, λ, µk) corresponding to the
considered µk. For each t and λ, we evaluated the disk integrated
emergent flux as a function of wavelength,

F (t, λ) =

NB∑

k=1

I(t, λ, µk) µk, (3)

and we normalized the flux Eq. (3) by its corresponding value in
the continuum FC(t, λ) =

∑NB
k=1 C(t, λ, µk) µk. As in Sect. 2.2.3,

we then generated the mean line profile F0(λ), which is our ref-
erence spectral line, to calculate the final Doppler shifts resulting
from these disk-integrated synthetic Sodium line spectra. Finally,
we extracted the Doppler velocity by measuring the flux ratio in

the two points of each of the lines’ wings using Eq. (1) with the
proportional factor given in Eq. (2).

The acoustic modes are naturally generated by the convective
fluctuations inside a simulation box. However, in one shallow
box, the modes have much lower inertia than the real observed
p-modes. They have therefore much larger amplitudes. Hence,
we eliminated their contribution to the RV time series by using a
low-frequency filter of 1620 µHz passband (the same applied to
GOLF time series; see Sect. 2.1). The rms of the final synthetic
RV time series is 0.507 m s−1, which is a value very close to
the observed rms from space with GOLF (Pallé et al. 1999), and
from the ground with HARPS-N (Collier Cameron et al. 2019).
We note that our rms value does not take into account the possi-
ble contribution of the granulation noise to the high frequencies
(ν > 1620 µHz) as we filtered them to remove the contribution
of the stellar p-modes.

Other rms values due to granulation can be found in the lit-
erature. For example, Meunier et al. (2015) derived an rms that
is twice higher (80 cm s−1), Cegla et al. (2012) derived a similar
value (40 cm s−1) and Cegla et al. (2019) derived a smaller value
(10 cm s−1). The latter authors discuss the influence of the mag-
netic field that can reduce the velocity of the granulation flows
in the 3D simulations.

2.2.4. Comparison between RV observations and simulations

To compare the synthetic velocity time series extracted from our
3D simulations with the GOLF observations, we added to both
datasets a synthetic WGN to replace the high-frequency part of
their power spectral density (PSD) that had been filtered out due
to the presence of the acoustic modes (see Sect. 2.2.3). The vari-
ance of this high-frequency noise was evaluated using the PSD
at ν > 1620 µHz of the non-filtered GOLF data. This WGN does
not affect the lower frequency part of the periodogram. We note
that the influence of the four second exposure time of GOLF has
been neglected in the computation of the PSD of the synthetic
velocities.

The final comparison of the velocities is shown in the left
panel of Fig. 2 for two selected two-day sequences. The cor-
responding (averaged) periodograms (see Eq. (8) in Sect. 3.2),
resulting from the average of L = 26 regularly sampled two-day
sequences, are shown in the right panel. The third periodogram
represents the PSD of GOLF observations before the filtering of
the acoustic modes. Toward the lower frequencies, we observe
the frequency-dependent behavior of the solar granulation in
all periodograms. When using high-resolution observations, the
RV contribution of the stellar granulation acts as a frequency-
dependent noise source that drastically differs from a WGN
(characterized by a flat power over all frequencies). We observe
a good match between the PSDs of the observed and simulated
velocities until ν = 56 µHz (i.e., ∼5 hr) corresponding to the cor-
relation regime dominated by the granulation process (i.e., ν ∈
[50, 1000] µHz). At lower frequencies, the solar PSD becomes
dominated by supergranulation and magnetic activity phenom-
ena (spots and plages) and the comparison of these simulations
of granulation with observations becomes obsolete (even if the
granulation signal affects also the low frequencies of the PSD).
We note that supergranules have longer lifetimes and should gen-
erate noise correlated over several days. They are not included
in our present MHD simulations but they are also reproducible
through 3D simulations, although their computing takes a longer
time (e.g., Stein et al. 2009).
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Fig. 2. Left: comparison of observed GOLF solar velocities (black) and synthetic velocities extracted from 3D simulations of the granulation (red).
The acoustics modes have been filtered out using a low-pass filter of 1620 µHz passband and a WGN has been added to both series. Right: associated
averaged periodograms computed with L = 26 time series of 2 days duration. The grey PSD shows the averaged periodogram resulting from the
unfiltered GOLF observations, where we can see the acoustics modes velocity signatures around 2000−6000 µHz. The dotted line indicates the
frequency regime where the high-frequency noise has been artificially added to both time series. The dashed line indicates the frequency limit
(ν = 56 µHz) where the PSD is no longer dominated by the granulation noise.

3. Detection

This section presents the considered statistical model and
detection tests. Several results detailed in Sulis et al. (2017b) are
summarized below for the sake of completeness since Sect. 4 is
aimed at validating the theoretical results from this study on real
astrophysical data. The purpose of the approach is to detect (pos-
sibly quasi-) periodic components in a stationary colored noise
with partially unknown statistics. By “partially” we mean that a
training dataset of this colored noise is available (through MHD
simulations). This noise dataset is independent of the observa-
tions (see Sect. 2). In the following, we assume the training data
set contains all the noise sources that can affect the dataset under
test. We note that currently, the MHD simulations per se cannot
reflect the presence of active regions (spots, plages) due to the
finite model precision. Hence, this study shows what can be done
in the absence of such noise sources or in the situation where
activity signatures can be identified by other means and added to
the simulation.

3.1. Hypothesis testing problem

Let us consider a time series X(t j) with N points, evenly sampled
on times t j = j × dt for j = 1, . . . ,N with dt the sampling time
step. We consider a binary hypothesis problem of the form:
{H0 : X(t j) = E(t j),
H1 : X(t j) = R(t j) + E(t j),

(4)

where, under the null hypothesis, H0, the data contain only
the colored noise E(t j) (of which a training set is available).
The noise E is defined as a zero-mean second-order station-
ary Gaussian noise with unknown power spectral density S E
and absolutely integrable autocorrelation function rE (see Sulis
et al. 2017b). The alternative hypothesis,H1, represents the case
where an unknown RV planetary signal R(t j) is melded with the
colored noise. As illustrated, for example in Sulis et al. (2016),
RV Keplerian signatures can be well approximated by a limited

number of pure oscillations :

R(t j; θR) =

Ns∑

q=1

αq sin(2π fqt j + ϕq), (5)

where the vector θR collects all the unknown amplitudes αq ∈
R+∗, frequencies fq ∈ R+∗ , and phases, ϕq ∈ [0, 2π[, of the Ns
sinusoids. If a star reflects Np planetary signatures, Ns is, in gen-
eral, larger than Np. The case Ns ≈ Np corresponds to Np planets
with circular orbits and frequencies close to the Fourier grid. In
all situations, Ns is much smaller than the number of Fourier
frequencies.

3.2. Detection approach: a standardized periodogram

For simplicity, we consider for this section a unit time sampling
dt = 1 and N even. When the observation sampling is regular, the
search of periodic components can be done using the classical
periodogram (Schuster 1898) defined as:

P(ν) :=
1
N

∣∣∣∣
N∑

j=1

X( j) e−i2πν j
∣∣∣∣
2
. (6)

We note that to express P in units of density (m2 s−2 Hz−1),
expression (6) has to be divided by the passband 1/dt (see
Percival 1994, Eq. (11.6), Chap. 11). This leads us to consider
in Eq. (6) a discrete Fourier frequencies defined as:

νk :=
k
N
, for k = 0, . . . ,N − 1.

Owing to the hermitian symmetry of the Fourier transform
and because we are not interested in the null frequency, below
we consider P(ν) in Eq. (6) only as evaluated on a subset
of N

2 − 1 independent Fourier frequencies corresponding to
k ∈ Ω := {1, . . . , N

2 − 1}. Asymptotically, P is an unbiased5

5 P is asymptotically unbiased as E P(νk) = S E(νk) + O(1/N).
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(but inconsistent6) estimate of the PSD (see Brillinger 1981,
Thms. 5.2.1 and 5.2.4). The asymptotic distributions of P under
both hypotheses are known ∀k ∈ Ω:

P(νk |H0) ∼ S E(νk)
2

χ2
2, (see Brillinger 1981, Thm. 5.2.6),

P(νk |H1) ∼ S E(νk)
2

χ2
2,λk
, (see Li 2014, Cor. 6.2),

(7)

with S E the (unknown) noise PSD and λk = λ(νk; S E , θR) a
non-centrality parameter. For Ns sinusoidal components involved
under H1, the expression of this parameter can be found in
Eq. (6) of Sulis et al. (2017b). We note that if the noise PSD S E is
unknown, the distribution of P given in Eq. (7) is also unknown.

Assuming now that L time series of the colored noise
(denoted by {X`}, ` = 1, . . . , L below), can be generated under
H0 as a training dataset, we propose to use them as an esti-
mate of the noise PSD to calibrate the periodogram of the data
under test. Based on these L time series, we compute an averaged
periodogram defined as:

PL(νk |H0) :=
1
L

L∑

`=1

1
N

∣∣∣∣
N∑

j=1

X`( j) e−i2πνk j
∣∣∣∣
2
. (8)

We note that this periodogram has been initially introduced by
Bartlett (1950), and used on subseries) to reduce the variance of
the classical periodogram given in Eq. (6).

This averaged periodogram is an asymptotically consistent
and unbiased estimator of the PSD. Following the same reason-
ing as for Eq. (7), the asymptotic distribution of PL can be easily
derived ∀k ∈ Ω as:

PL(νk |H0) ∼ S E(νk)
χ2

2L

2L
. (9)

Using Eq. (8) to calibrate Eq. (6), we define the standardized
periodogram as:

P̃(νk) :=
P(νk)

PL(νk)
. (10)

Thanks to the known distributions of the numerator and
denominator of Eq. (10) and to their mutual independence, we
can also derive the distribution of the standardized periodogram.
Using Eqs. (7) and (9), we obtain a ratio of two independent
χ2 variables. This ratio leads, underH0 andH1, to a central and
non-central F-distribution with respectively 2 and 2L degrees of
freedom:

P̃(νk |H0) ∼ χ2
2/2

χ2
2L/2L

∼ F(2, 2L),

P̃(νk |H1) ∼
χ2

2,λk
/2

χ2
2L/2L

∼ Fλk (2, 2L).

(11)

We note that underH0, the distribution of the standardized peri-
odogram P̃ is now asymptotically independent of the noise PSD
S E . This important property makes tests applied to P̃ act as Con-
stant False Alarm Rate detectors (Scharf & Friedlander 1994):
their false alarm rate is independent of the noise PSD. This is
a very desirable feature in practice since it allows to control the
false positive rate despite the unknown noise PSD. UnderH1, the
distribution depends on the noise PSD through the non-centrality
parameter λk. The definition and the analysis of the theoretical
6 P is asymptotically inconsistent as Var P(νk) = S E(νk)2 + O(1/N).

performance of tests based on Eq. (10) are summarized in the
following section.

3.3. Analysis of tests applied to the standardized
periodogram

Before introducing the tests, it is convenient to consider vec-
tors of random variables, noted in bold. For instance, the vector
collecting the periodogram ordinates is written as:

P := [P(ν1), . . . , P(νN)]>.

Notation x|y denotes a standardization of the entries of x by those
of y. For instance, the vector of periodogram ordinates is stan-
dardized as in Eq. (10) and defined on the frequency set Ω. It is
written as:

P̃ | PL :=


P(ν1)

PL(ν1)
, . . . ,

P(ν N
2 −1)

PL(ν N
2 −1)


>
.

3.3.1. Test designed for a single periodicity

A common test consists of comparing the maximum peri-
odogram value to a detection threshold γ ∈ R+ that determines
the false alarm rate:

TM(P̃ | PL) := max
k

P̃(νk)
H1
≷
H0

γ. (12)

This test is most efficient when a single periodicity on the
Fourier grid is present under H1 (Donoho & Jin 2004). As the
asymptotic distribution of P̃ is known at each frequency (see
Eq. (11)), the false alarm and detection probabilities (noted PFA
and PDET respectively), as well as their relationship (PDET(PFA)),
can be derived analytically (Sulis et al. 2017b):

PFA(γ) := Pr
(
TM(P̃ | PL) > γ|H0

)
= 1 −

1 −
(

L
γ + L

)L
Ni

, (13)

PDET(γ) := Pr
(
TM(P̃ | PL) > γ|H1

)
≈ 1 −

∏

k∈Ω
ΦFλk

(γ, 2, 2L),

(14)

PDET(PFA) ≈ 1 −
∏

k∈Ω
ΦFλk

(ε, 2, 2L), (15)

where Ni := N
2 − 1 is the number of frequencies effectively

considered in the test, ε := L
[(

1 −
(
1 − PFA

) 1
Ni
)− 1

L − 1
]

and ΦFλk

is the cumulative distribution function (CDF) of a non-central F
variable with non centrality parameter λk. The PDET expressions
given in Eqs. (14) and (15) are approximations due to the
approximate independence of the periodogram ordinates under
H1 (see Li 2014, Thm. 6.5). However, the analytic formulae
above are quite accurate for values of Ni considered in practice
as shown in Sulis et al. (2017b). These results allow saving
a substantial amount of computation time for comparing the
tests (in comparison with a MC simulation-based approach).
They also allow gaining theoretical insight into the relative per-
formances of the tests. Using the relation PDET(PFA), receiver
operating characteristic (ROC) curves can be computed to
compare the performances of the statistical tests. Furthermore,
these analytical results can also be used to design detectability
studies (see Sect. 4.2).
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3.3.2. Tests designed for multiple periodicities

Testing for the largest peak in the periodogram may not be the
best strategy for the case of multiple (quasi-) periodic signals.
Chiu (1989) showed that in such cases tests exploiting order
statistics of the periodogram may be more powerful than TM
(which looks at the maximum value only). In the case where the
number of periodogram ordinates at Fourier frequencies affected
by the planetary signature can be guessed or estimated a priori
(let NC denote this number), a generalization of test TM replaces
the maximum by the N th

C largest periodogram components. For
such a test, analytic expressions for both the PDET and PFA can
also be derived (see test TC in Sulis et al. 2017b).

In practice, however, N th
C is often unknown and it is necessary

to turn to tests that are adaptive with regard to the number of peri-
odicities contained in the total Keplerian signature. Such tests
are based on the P-values (noted v below) of the standardized
periodogram. In the framework considered here, the P-values of
an observed random variable (periodogram, or test statistic) is
defined as the probability, under the null hypothesis, of obtain-
ing a more extreme value than the observed one. Precisely, the
P-values of P̃(νk) are defined ∀k ∈ Ω as:

vP̃, k := 1 − ΦF

(
P̃(νk), 2, 2L

)
,

with ΦF the CDF of a central F variable. Examples of adaptive
tests based on the P-values are the Higher-Criticism (Donoho &
Jin 2004; Sulis et al. 2017b) and the Berk-Jones tests (Berk &
Jones 1979; Aldor-Noiman et al. 2013; Mary & Ferrari 2014;
Kaplan & Goldman 2014; Gontscharuk et al. 2015; Moscovich
et al. 2016) respectively defined as:

HC(P̃ | PL) := max
1≤k≤α0N

√
N(k/N − vP̃,(k))√
vP̃,(k)(1 − vP̃,(k))

H1
≷
H0

γ, (16)

and

BJ(P̃ | PL) := max
1≤k≤α0N

I1−vP̃,(k)
(N − k + 1, k)

H1
≷
H0

γ, (17)

where vP̃,(k) denotes the order statistics of the P-values of
the standardized periodogram (which have a beta distribution,
David & Nagaraja 2003), α0 is a constant ∈ [ 1

N , 1], and I denotes
the CDF of a beta variable.

Such tests as HC or BJ consist of setting a multiple testing
problem, in which a set of test statistics (in our case, this refers
to the periodogram at different frequencies) is taken and each
of them are simultaneously considered in order to discriminate
between the two hypotheses. In essence, these tests compare the
maximal deviation of the empirical CDF of the ordered peri-
odogram’s P-values to their true CDF under H0. The definition
of the deviation depends on the test; both can be seen as variants
of a generic divergence (Zhang et al. 2017).

In periodograms under H1, the planetary signature affects
only a small fraction of the total number of ordinates; further-
more, this is by only a very small amount, leading to a very
difficult “needle in a haystack” detection problem. Donoho &
Jin (2004) and Moscovich et al. (2016) demonstrate theoretically
that HC and BJ present optimal guarantees in this regime. For
finite values of Ni, the studies of Zhang et al. (2017) and Sulis
et al. (2017b) show that BJ can be more powerful than other
tests in case of weak and non extremely sparse signatures (e.g.,
multiplanetary systems of small planets with off-grid orbital fre-
quencies and with high eccentricity orbits). We note that, in the

case of irregular sampling – that will be the subject of a sec-
ond paper, RV planet signatures can be much less sparse in the
Fourier domain than for regular sampling owing to the sidelobes
of the spectral window. Interestingly, efficient and accurate ana-
lytic calculations for the distribution of several adaptive tests,
such as the HC and BJ under the null and the alternative
hypotheses, have been recently included in Zhang et al. (2017).
These features make adaptive tests particularly interesting for
exoplanets detection, as illustrated in the numerical study below.

4. Numerical study

In this section, we first evaluate the validity of the statistical
method presented in Sect. 3 using the solar observed and syn-
thetic RV time series presented in Sect. 2. In a second step, we
perform detectability studies for different planet signatures in the
presence of solar convective noise by exploiting our analytical
results. Finally, we compare the power of classical and adaptive
detection tests for different Keplerian signatures.

4.1. Control of the false alarm: comparison of methods

The first part of this numerical study aims to compare the relia-
bility of different false alarm probability estimates. We compare
in particular bootstrap approaches to periodogram standardiza-
tion (assuming a noise training data set is available). For the sake
of concision, we focus on one test: the test of the maximum (see
Eq. (12)). As for the considered dataset, we selected the regu-
larly sampled two-day GOLF time series that are available for the
first ten years of GOLF observations. In this sample, we removed
sequences that are affected by strong outliers due to instrumental
defects. This corresponds to a set of Nseries = 1640 GOLF times
series, with N = 2880 data points each. As described in Sect. 2,
we filtered out the acoustic modes and added to each time series
a WGN of standard deviation σ = 49 cm s−1. This dataset rep-
resents our sample of solar observations under H0, as none of
them contains any signs of the Solar System planets (the short-
est period, of Mercury, is ≈88 days or 1.31 × 10−7 Hz) nor the
stellar oscillations modes (affecting mostly the frequencies in the
range 1–5 × 10−3 Hz) that have been filtered out. In the follow-
ing, we will run tests on the frequency range that is dominated
by the granulation noise: ν ∈ [50−8333] µHz.

As discussed in the introduction, a traditional approach in RV
planet detection for evaluating FAP thresholds is based on boot-
strap procedures. These methods assume that the observations
(or their residuals in the case where some periodicities have been
removed) contain only noise and that this noise is further uncor-
related with unknown variance. The noise statistics are estimated
from the observations (see e.g., Jenkins et al. 2013, Hobson et al.
2018, Trifonov et al. 2018, Ment et al. 2018). The FAP is evalu-
ated by estimating the distribution of the test statistic using fake
data, typically obtained by shuffling the data.

Let us consider first the (scaled) max test,

TM(2P̃|σ2) := max
k

2
P(νk)
σ2

H1
≷
H0

γ, (18)

which, by definition, has FAP defined as

PFA(γ; TM(2 P̃|σ2) := 1 − ΦM(γ), (19)

where ΦM is the CDF of TM.
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Fig. 3. Illustration of the reliability of different FAP estimates of test TM depending on the noise characteristics under H0 and on the technique
involved. Top: FAP as a function of the detection threshold γ in the case where the data under H0 is a WGN of standard deviation σ = 49 cm s−1

(first column) or the colored solar time series of same variance (last two columns). Panel a: the blue curve corresponds to the FAP of test TM

with known variance σ2 (see Eq. (20)). The red curve corresponds to the FAP of test TM(2P̃|σ̂2) estimated by bootstrap using one estimate of the
variance from one time series, σ̂2. The dark green curve represents the true FAP of TM(2P̃|σ̂2). The curves in orange show 100 FAP estimates of
the same test but obtained for 100 different estimates of σ̂2. Panel b: the red curve shows the FAP of test TM(2P̃|σ̂2), evaluated by bootstrap on
one GOLF solar time series with estimated variance σ̂2. The dark green curve shows the true FAP of this test, as estimated using the Nseries − 1
other GOLF time series. The orange (resp. light green) curves are the same as the red (resp. the dark green) curves, but using each time a different
GOLF time series as input. Panel c: the green curve represents the analytic FAP of TM based on the simulation-standardized periodogram with
L = 20 MHD time series (see Eq.(13)) and the red curve represents the true FAP estimated using Nseries = 1640 GOLF time series. Bottom:
empirical distribution of test statistics TM as estimated by bootstrap (panels d and e) and by MC simulations of the GOLF series standardized by
the MHD simulations (panel f ). In all six panels, the thresholds inferred for FAPs of 1 and 10% by each technique are indicated by the dashed and
dotted lines, respectively. The color used for the thresholds in each bottom panel corresponds to the color used for each method in the corresponding
upper panel. Numerical values are indicated in Table. 1.

If the data contains a pure WGN of known variance σ2, it
can be shown (see e.g., Sulis 2017, Sect. 2.4.2) that

ΦM =
(
1 − e−γ/2

)Ni
, (20)

with Ni = N/2 − 1 the number of considered (independent)
periodogram components.

In the case where the variance σ2 is unknown, the Max test,
taking an estimate of the variance, σ̂2, uses TM(2P̃|σ̂2) as a test
statistic. The bootstrap procedure consists in this case of estimat-
ing the variance and repeating the following steps: (i) shuffle the
observed time series, (ii) compute the resulting periodogram on
the new data set, and (iii) evaluate the test statistics Eq. (18) with
σ̂2 replacing σ2. After generating a large number of realizations
of test’s statistics, the FAP is derived as in Eq. (19), with the
empirical distribution Φ̂M replacing ΦM.

This numerical procedure gives good results when the noise
is white and Gaussian. This is illustrated in panel a of Fig. 3.
This panel shows three FAP as a function of the detection thresh-
old for the Max test. First, the blue line shows the FAP of
test TM(2P̃|σ2): this is the case for which σ2 is known and
the FAP is obtained using Eqs. (20) in (19). Second, since the

bootstrap procedure describes above estimates σ2 for the time
series and follows steps (i)–(iii) above, the estimated function
PFA(γ) depends on the original data set used to generate the
“fake” data set obtained by shuffling. One FAP estimate obtained
for one particular data set, a WGN with standard deviation
σ = 49 cm s−1, is shown by the red curve, while the true FAP of
TM(2P̃|σ̂2) (evaluated on a WGN of variance σ2 instead of σ̂2),
is shown by the dark green curve. Third, if we investigate the
dependence of the FAP estimate with the original dataset (used
to estimate σ̂2), we obtain the orange curves of the panel a: here
we show 100 curves corresponding to 100 different original data
sets. We see from this panel that the bootstrap procedure is quite
stable with respect to the considered dataset.

When the noise is colored, the data shuffling breaks the cor-
relations present within the data and the situation changes. This
is shown in panel b. The red curve shows the FAP of the test
TM(2P̃|σ̂2) estimated by bootstrap on one particular time series
of estimated variance σ̂2. The true FAP of this test as estimated
from the remaining Nseries − 1 is shown by the dark green curve.
The orange (resp. light green) curves show the same as the red
(resp. dark green) curve for all other times series. In contrast
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Table 1. Threshold values derived in Fig. 3 for a FAP of 1 and 10% and for our three experiments.

WGN GOLF GOLF/MHD

Bootstrap† True σ2 known – Eq. (19) Bootstrap† True† Eq. (13) True

γ(PFA = 10%) 19.04 19.1 19.05 18.9 100.3 12.21 12.50
γ(PFA = 1%) 23.46 24.0 23.75 23.8 162.9 16.22 16.83

Notes. The symbol † indicates when thresholds were computed by their sample mean value over a set of MC simulations. Note that the disagreement
between the values of the last two columns (case GOLF/MHD) is very slight and comes essentially from the limited number of MC simulations
used to compute the FAP.

to the WGN case, the evaluation of the FAP is not robust nor
reliable in this case. Hence, if noise correlations are ignored,
a classical bootstrap procedure may severely underestimate the
FAP and derive irrelevant thresholds.

This is further illustrated in panels d and e of Fig. 3. In all
bottom panels, the estimated distributions of test TM are shown
in grey. The empirical thresholds corresponding to FA rates of 1
and 10% are represented by the vertical solid and dotted lines,
respectively. Their numerical values can be read in Table 1.
Panel d shows this distribution as obtained from one bootstrap
procedure in the case of WGN. In this case, the thresholds esti-
mated by bootstrap are close to the values they should have to
ensure the target FAP. However, for the case of solar observa-
tions (panel b), these estimates are incorrect and lead to FAP
that can be an order of magnitude larger than the target value.
For instance, for one series (see red curve in panel b), the boot-
strap procedure derives for a FAP of 1% a threshold value of
γ = 23.65, whereas this value is clearly underestimated: at this
threshold, the true FAP, as estimated using all other time series,
is in the range of [70.3%, 95.1%] (see green light curves).

To conclude this part of the analysis of results on GOLF
data, we now turn to test TM applied to the standardized peri-
odogram (see Eq. (12)). In this case, the theoretical FAP is
known (although the noise DSP is analytically unknown) and
given by Eq. (13). To verify this expression, we standardize
each of the periodograms of the GOLF sequences by the aver-
aged periodogram computed using the L = 20 noise training
datasets generated by the MHD simulations of the granulation
(see Sect. 2). We then apply test TM(P̃ | PL) and derive the asso-
ciated PFA as in Eq. (13). The results are shown in panels c and f
of Fig. 3. This time, we observe in both cases a very good match
between the theoretical FAP and the empirical values (see also
last columns of Table 1).

We conclude the presentation of this first study with a short
discussion. Of course, our point is not to show that the boot-
strap is doomed to fail in case of colored noise; rather, it might
possible to design bootstrap procedures that would take bene-
fit from a training data set (as the approach of panel c does) or
would use pre-whitening to obtain more robust FAP estimates
than shown in panels b and e. Our point here is primarily to
show that noise correlation caused by stellar convection severely
impacts FAP estimates and that the proposed approach based on
standardization achieves the desired robustness in estimating the
FAP. These results validate the MHD simulation-based standard-
ization approach for the control of the FAP and in particular the
accuracy of the analytic calculations for test TM(P̃ | PL) on real
data. Since the principle of the approach based on accurate MHD
simulations would be unchanged for a different spectral type,
these results suggest that it can be used for detecting exoplanets
orbiting any type of convective star.

4.2. Detectability study

As we have seen in Sect. 3, exploiting MHD simulations of the
granulation noise opens up the possibility for analytically con-
trolling the false alarm rate and extending the power of the tests
for any values of the observation parameters. Comparing the
impact of these parameters on the probability of detection for
a fixed FAP is very useful in designing observational strategies,
for instance.

Let us consider again the test TM given in Eq. (12), for which
the detection probability can be computed using expression (15)
for a given PFA. Given a specific planetary signature, we want
to evaluate the observation duration (Tobs) that is required to
allow for the detection of this planet with a large probability
(say, PDET = 80% at PFA = 1%). We simulated for this study
different planetary signatures under H1 with circular orbits and
orbital frequencies on the Fourier grid (we slightly adjusted the
time sampling step dt as Tobs increases to guarantee that the
period is exactly on the grid). For such signatures, only one
periodogram ordinate is affected under H1, while TM is opti-
mal (Donoho & Jin 2004). For periodogram standardization,
again we used the simulated velocities discussed in Sect. 2. The
considered convection noise corresponds to a Sun-like star.

Some results are shown in Fig. 4. Each panel of the figure
investigates the influence of a different parameter (see leg-
end). The black curves correspond to a configuration where a
0.5 Earth-mass planet orbits circularly its host star with a period
of 17.5 hr, the regular time sampling step dt is 2 hr and L =
20 MHD simulations time series are available for periodogram
standardization. This setting corresponds to a RV signature of
semi-amplitude K = 0.35 m s−1 and an orbital frequency of
fp = 1.58 × 10−5 Hz. In each panel, the pale blue dot indicates a
detection probability of 80% in this configuration for this planet.
The dashed lines in the first three panels represent the detectabil-
ity in the case where the noise is white (instead of colored) but
with the same standard deviation as the colored convection noise
(σ = 49 cm s−1). The analytical expression for this probability is
(see Eq. (2.53) in Sulis 2017):

PDET(γ; TM(2 P̃|σ2)) := 1 −
∏

k∈Ω
Φχ2

2,λk
(γ), (21)

where Φχ2
2,λk

is the CDF of a non central χ2
2 distribution with

two degrees of freedom and the non-centrality parameter λk (see
Eq. (6) of Sulis et al. 2017b).

The panel a of Fig. 4 shows, for instance, that in the consid-
ered configuration, an observation run totaling Tobs ≈ 12.4 days
(corresponding to N ≈ 150 sample points with dt = 2 hr) would
allow the detection of a 0.5 Earth-mass planet with a probabil-
ity of 80%, while ensuring a false alarm rate of 1%. We note
that, in contrast, we would only need Tobs = 3.0 days to reach the
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Fig. 4. Detection probability as a function of the observation time for a single planet in circular orbit with period 17.5 hr around a solar-type star,
for test TM(P̃|PL), at PFA = 1%. The orbital inclination is set to 90 degrees. The different panels show the influence of the planet’s mass (a), the
orbital period (with the corresponding orbital frequency on (black) or off (gray) -Fourier grid) (b), the time sampling step (c) and the size of the
training data set (i.e., the number of available noise times series) (d). In each panel, the black curve indicates the PDET obtained for a configuration
in which the planet has a mass of 0.5 M⊕, a circular orbit and L = 20 HD time series are available for periodogram standardization. The point
where PDET reaches 80% for this configuration is indicated by the blue disks. In each panel, the legends indicate the parameters under study. The
dashed lines represent the planet’s detectability in the case where the noise is white (instead of colored) but with the same standard deviation as the
colored convection noise (σ = 49 cm s−1).

same trade-off PDET vs. PFA if the noise was uncorrelated (see
the dashed circle). This factor ≈4 in duration is the price that
has to be paid in order to fight against correlation caused by con-
vection noise. If the planet mass is lower (panel a), the required
observational time Tobs can increase extensively. For example,
for a planet with a mass similar to Mars (≈ 0.1 M⊕ leading to
an RV semi-amplitude K = 0.07 m s−1), we would need at least
457 days of observations to achieve the same performances. Sim-
ilarly, if the planet’s period increases, the needed observational
time increases (because the amplitude of the Keplerian signature
decreases, which is not shown).

The test’s performance depends also on the sampling of
the orbital frequency (panel b). In our example, if the orbital
frequency is not on the Fourier frequency grid, the detection per-
formance of this test decreases, with a loss in PDET that can reach
a factor of 2.

Increasing the sampling time step (panel c) or decreasing the
number of used training data set (panel d), increases also Tobs.
We also note that there is a very small improvement of the test
performance brought by increasing L as soon as L is sufficiently
large (for L = 50 and L = 1000, when the required observation
durations are Tobs = 10.5 and 9.5 days, respectively). This fact is
particularly interesting since the MHD simulations are computa-
tionally heavy and L = 1000 may remain outside of the reach of
the coming decades.

These plots are examples of false alarm versus power trade-
offs that can be achieved by exploiting reliable time series of the
convective colored noise. We note that the values indicated in
this study are drastically different from those reported in Sulis
et al. (2017b). For instance, we reported Tobs = 250 days for an
1.1 M⊕ planet orbiting its star in 3.2 days with dt = 4 h and L =

100, while with these same parameters, we find now Tobs ≈ 17
days. The reason is that the PSD considered to represent the solar
granulation noise source is different from that given in these
first works: the considered PSD is now more realistic and deeply
checked against Solar observations (see Sect. 2).

We now give an example of an application of adaptive tests,
which are less well known in the exoplanet community than test
TM, although they can sometimes present advantages over the
latter.

4.3. Detectability of general Keplerian signatures

In this section, we compare the performances of the different
tests presented in Sect. 3, i.e., TM Eq. (12), HC Eq. (16) and BJ
Eq. (17) for different types of Keplerian signatures. The combi-
nation of Keplerian parameters influences the shape of the RV
signature which, in turn, influences the sparsity of the signature
in the Fourier domain, that is, the number of periodogram com-
ponents affected by the presence of a planetary signature (e.g.,
see Sulis et al. 2016 for a detailed study of the influence of
Keplerian parameters on sparsity). Here we define the sparsity
coefficient Sβ as the proportion of non-zero coefficients and, as
in Donoho & Jin (2004), we parameterize Sβ as:

Sβ :=
Ns

N
:= N−β,

with β ∈ [0, 1] a sparsity parameter. The value β = 1 corre-
sponds to an extremely sparse signal (i.e., a single periodogram
frequency is affected by the periodic signal), and β → 0 to a
non sparse signature. RV signatures correspond in general to
sparse signatures (β is typically in the range [ 1

2 , 1]). The less
sparse signatures are obtained for multiple systems, planets hav-
ing highly eccentric orbits and planets with off-Fourier grid
orbital frequencies.

4.3.1. Adaptive tests

We compare the detection probability of tests TM, HC and BJ for
two types of planet signatures. For the first case, we consider the
signal of a 0.4 M⊕ planet in a circular orbit with frequency on
the Fourier grid. In the second case, we consider the same planet
but with a highly eccentric orbit (e = 0.9) and a slightly off-grid
orbital frequency. The RV signatures of these two planets and
the corresponding periodograms are shown in the top panels of
Fig. 5. We see a difference in the number of significant peaks in
their corresponding periodograms.

We performed MC simulations to evaluate the ROC curves of
tests TM, HC and BJ. As the number of available MHD simula-
tions is limited, we generated the noise underH0 using a 20 order
autoregressive (AR) process, with parameters fitted to the MHD
simulated time series. We generated 104 realizations of this AR
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Fig. 5. Top: synthetic RV time series (left) and corresponding periodograms (right) for a single planet in circular (black) or eccentric (red) orbit
around a Solar-type star. For both signals, the planet mass is set to 0.4 M⊕, the period to 17.5 hr, the orbital inclination to 90 degrees, the argument
at periastron to π/2 radian, the time sampling step to 2 hr and the number of data points is N = 300. For the eccentric planet, the planet orbital
frequency is slightly off the Fourier-frequency grid. Bottom: ROC curves of tests TM (solid), HC (dashed) and BJ (dotted) applied to P̃|PL with
L = 20 for the considered circular (left) and eccentric (right) orbital signals.

process under H0 and 104 other realizations under H1 with the
two RV planetary signatures. For each realization, we computed
the standardized periodogram in Eq. (10) using L = 20 series
for the denominator in Eq. (8), and applied the different tests.
Results are shown in the bottom panel of Fig. 5. Comparing the
performances of test TM with the adaptive tests, we observe for
the “sparse signal” the best results for TM over the other two
tests, with HC close to TM at low FAP. However, in the case of
a high-eccentricity planetary orbit, tests BJ and HC show bet-
ter performances than TM at all FAP. We see that these adaptive
tests present another important side advantage over TM : their test
statistics can be used to reliably estimate the frequency content
for complex planetary signatures.

4.3.2. Ability of adaptive tests in recovering the signal’s
frequency support

Here we evaluate the ability of each test in detecting the cor-
rect number of periodic components at their true location (i.e.,
the true signal frequencies in the periodogram). We note that
this problem is different from that of discriminating between
the “noise only” vs. “planet plus noise” hypotheses. To be able
to quantify easily the number of periodic components to be
detected under H1, we consider periodic signals in the form

of a sum of Ns pure sinusoidal signals with frequencies on the
Fourier frequency grid. Moreover, to generate a large amount
of MC simulations, the colored noise is generated as a low
order AR process. The detection thresholds for a target FAP of
5% were derived for all considered tests by MC simulations on
104 noise sequences under H0. For the training dataset used
for periodogram standardization (see Eq. (10)), we generated
L = 20 synthetic separate noise time series for each of these 104

sequences.
In each case, we computed tests TM Eq. (12), HC Eq. (16),

and BJ Eq. (17) on P̃|PL. By definition, test TM only focuses on
the largest component of the (standardized) periodogram. In con-
trast, tests HC and BJ focus on one particular ordered P-value:
the one for which the corresponding test statistic is maximum.
This ordered P-value, say vP̃,i? corresponds to the i? largest peri-
odogram components. Consequently, when a detection is made,
the i? largest periodogram ordinates can be used to estimate the
signal’s frequency support. In the following, we estimate by MC
simulations the probability that i? = Ns and that the identified
frequencies correspond to the true signal frequencies, at a fixed
FAP of 5%.

Under H1, we varied the number Ns of sinusoidal signals
(by varying parameter β) added to each of the colored noise
time series: Ns ∈ [1, 100], corresponding to β ∈ [0.33, 1]. The

A146, page 11 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937105&pdf_id=0


A&A 635, A146 (2020)˜

Fig. 6. Probability of detecting the correct support (i.e., to find the true number of sinusoids with the correct frequencies) for tests TM (left), HC
(middle) and BJ (right) applied to P̃|PL with L = 20. For each given value of β, the Ns amplitudes are equal. Left panel: represents this probability
as a function of the sinusoid’s amplitude (Ns = β = 1) and the performances of tests HC and BJ have been added for comparison. The two other
panels represent the adaptive tests’ performances as a function of the sinusoids’ amplitude A and the sparsity parameter β. In these two panels, the
probability of correct recovery is indicated in color.

Ns sinusoids’ amplitudes denoted by A in Fig. 6 were taken as
equal, with A varied in the range [0.1, 4.5] m s−1, while their Ns
frequency locations fq were picked randomly in the Fourier grid.

The results are shown in Fig. 6 as a function of the signal
parameters (amplitude and sparsity) for tests TM, HC, and BJ
(from left to right, respectively). For TM, we only show the case
of β = 1 as this test statistic focuses on the largest periodogram
component. In the left panel, test TM appears to be the best to
correctly locate the signal frequency when only one frequency is
present (the adaptive tests are shown for comparison). For Ns = 1
(β = 1), the probability of correctly locating the sinusoid fre-
quency (PR) grows faster to 1 for this test than for the other tests
(with close to TM). In contrast to TM, tests HC and BJ allow
both for the detection and characterization of the planetary fre-
quency support (middle and right panel of Fig. 6). We also note
the particularly good performances of BJ vs. HC for recovering
the frequency support over a large sparsity regime. These tests,
which benefit from theoretical optimal results (see Donoho &
Jin 2004 and Moscovich et al. 2016), can be exploitable in the
context of exoplanet detection by RV thanks to the considered
periodogram standardization. Their good performances in theory
and practice make them particularly interesting for the detection
and characterization of extrasolar planetary systems.

5. Discussion

5.1. Scope of the proposed method and a zoom on USP
planets

Convective noise affects all components of the periodogram but
its effects impact mostly the frequency range corresponding to
periods between some minutes and several hours for solar-like
stars. In Sect. 2, we obtained a good match between the observed
and simulated PSD of solar RV in this frequency range. In prac-
tice, the convective noise cannot be “corrected” as magnetic
activity may be (e.g., with chromospheric indicators, Baliunas
et al. 1995; Wise et al. 2018) and constitutes a noise barrier,
for which the statistical properties need to be known to reliably
claim any planet detection at the cm s−1 level. This was the pur-
pose of our study and its presentation of the formalism of the
approach. In a subsequent work, we will apply this formalism to
other Solar-like stars having different convective properties.

Table 2. Some known USP planets given in the exoplanetarchive.
ipac.caltech.edu catalog.

Planet name Period [hr] Mass [M⊕] Time [days]

CoRoT-7 b 20.49 3.18 20.49
Kepler-407 b 16.06 3.20 11.38
Kepler-10 b 20.10 4.61 4.91
WASP-47 e 18.95 6.83 (?)

55 Cnc e 17.68 8.08 (?)

Notes. For all targets, the stellar mass is assumed to be 1 M� and the
eccentricity 0. Columns indicate the planet’s name, orbital period, mass
and the observational time we need with the proposed technique to
achieve PDET = 80% and PFA = 1% with test TM(P̃ | PL) computed for
L = 2 and dt = 12 hr. Symbols (?) indicate that the target is detectable
with probability higher than 80% for the considered parameters (mass
and period) and sampling rate. For instance, WASP-47 e would be
detectable with probability >97% as soon as the observation time is
superior to 6 days and 55 Cnc e with a probability >99%.

The proposed method of basing such studies on a stan-
dardized periodogram could be directly applied to improve the
determination of the FAP in the case of ultra-short period (USP)
planets (defined with periods <1 day) underH1. USP planets are
known to be tidally locked to their host star (leading to circular
orbit) and of small size or mass (<10 M⊕). They exist, in gen-
eral, in multi-planetary systems. According to Winn et al. (2018),
this category of planets is as frequent as hot-Jupiters (defined
with periods ranging up to 10 days), with one over 200 Sun-
like stars hosting such planets. To illustrate the performance of
the proposed technique for detecting USP planets, we performed
a similar detectability study as described in Sect. 4.2 for some
known USP planets (we assume their hosting star is similar to the
Sun). The results for a sampling rate of dt = 12 hr and for L = 2,
available synthetic noise light curves are reported in Table. 2 and
displayed in Fig. 7. The figure represents the observational time
required to reach a PDET of 80% for a PFA equal to 1%, using
test TM given in Eq. (12), as a function of the planet’s orbital
period. The colored curves show the observational time for vir-
tual planets of different periods and masses. The black crosses
correspond to real planets. Logically, we observe the increase of
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Fig. 7. Observation time as a function of the planet orbital period that
is needed to achieve PDET = 80% and PFA = 1% with test TM (colored
curves). The fixed parameters are dt = 12 hr and L = 2. The observa-
tion time associated with some known USP exoplanets (see Table. 2,
assuming a Solar-like star) are represented by black crosses.

the observational time with the decrease of the planet mass and
the increase of the planet period. The table indicates that most
USP planets are detectable at the levels specified above with our
technique within a couple of weeks (<21 days). For small mass
USP planets, with Mp < 2 M⊕, it would take a couple of months
to achieve the same performances.

Finally, we expect the method presented here to be easily
extended to larger period ranges by computing MHD super-
granulation instead of granulation, that is, by extending the
simulation domain (making it larger and deeper) with exactly
the same simulation setup (Rincon & Rieutord 2018). Since this
would be more demanding in terms of CPU and storage, while
retaining, in principle, what is shown here, we restrict the scope
of this study to granulation scale simulations.

5.2. Benefits and limitations of the method

MHD simulations are non parametric, meaning that they do
not rely on any adjustable parameter to fit the observed data
(see Sect. 2.1). In practice, the frequency dependence of the
granulation is often estimated using parametric laws, such as
Harvey-like profiles (Harvey 1985). However, as demonstrated in
Sects. VI and VII.D of Sulis et al. (2017b), the estimation of the
parameters of these models leads to the injection of an estimation
noise in the detection process, the statistics of which are diffi-
cult to capture. Besides, the noise parameters derived in this way
may be contaminated by the signal to be detected and the choice
of the noise parametric model can be subjective. As we show
in this study, using an MHD simulation-based approach allows
us to accurately control the estimation noise through the num-
ber L, whose impact on the tests performances can be exhibited
analytically (see Eqs. (14)–(13)).

This study needs to be extended to other convective stars.
The impact of granulation changes throughout the HR diagram:
the larger is the pressure scale height at the surface (that is for
larger effective temperatures or lower gravities), the larger are
the fluctuations induced by the convective motions. The current
limitation in the present method is the computational cost of the
MHD simulations to generate a substantially long time series of
velocities. However, in the coming years, the increased speed of
CPU resources will allow for such computations to be carried out

in a more systematic way. In a subsequent work, we will explore
these effects for selected targets in the HR diagram. Based on the
realism of the 3D MHD simulations, our results suggest that the
proposed method can be a powerful and reliable way of detecting
RV exoplanet signatures at the cm s−1 level in the presence of
convective noise.

A second limitation is the regular sampling involved in this
study. In practice, the RV data are irregularly sampled and the
FAP of any test based on any periodogram (Schuster 1898;
Scargle 1982; Zechmeister & Kürster 2009) cannot be controlled
by analytical expressions in the case of correlated noise because
the periodogram components are interdependent.

However, as mentioned earlier in this paper, we underline
that if the irregularity of the considered sampling remains weak,
the analytical studies presented here may provide a useful proxy
of the tests’ performance in practical situations. For example,
this can be used to design detectability studies. For strongly
irregular samplings, the techniques based on the MHD stan-
dardized periodogram presented here need to be adapted by
dedicated bootstrap procedures (see, i.e., Sulis et al. 2017a). The
application of this procedure to the real data deserves a full study
that will be the purpose of a second paper.

6. Conclusions

In cases where the effective temperature, surface gravity, and
metallicity of the star are precisely known (thanks to asteroseis-
mology, interferometry, or spectroscopy), 3D MHD simulations
are capable of generating realistic RV time series of the stellar
granulation. This has been demonstrated for the Sun as part of
studies involving the comparison of velocities extracted from 3D
spectra of the sodium doublet and GOLF/SoHO observations.

Following the theoretical analysis described in Sulis et al.
(2017b), we used these synthetic time series of the granulation
colored noise to design standardized periodograms. These new
standardized periodograms allow for the application of tests that
are both powerful and for which we can derive accurate FAP.
We present extensive numerical results based on real and syn-
thetic data, including studies on the robustness, the detectability,
and the frequency support recovery. In particular, we introduced
adaptive tests, which are new in the field of RV planet detection.
Even if the objective of this study is to detect planets down to
the cm s−1 level, the proposed procedure is a general approach
that can be applied to many periodicity detection problems in
astrophysics (and beyond).
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