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Abstract 20 

Quantifying the ability of plants to store atmospheric inorganic carbon (C) in their biomass 21 

and ultimately in the soil as organic C for long duration is crucial for climate change 22 

mitigation and soil fertility improvement. While many independent studies have been 23 

performed on the transfer of atmospheric C to soils for single crop types, the objective of this 24 

study was to compare the ability of crops which are the most commonly found worldwide to 25 

transfer C to soils, and the associated factors of control. We performed a meta-analysis of 227 26 

research trials, which had reported C fluxes from plant to soil for different crops. On average, 27 

crops assimilated 4.5 Mg C ha-1 yr-1 from the atmosphere with values between 1.7 Mg C ha-1 28 

yr-1, for barley (Hordeum vulgare) and 5.2 Mg C ha-1 yr-1 for maize (Zea mays). 61% of the 29 

assimilated C was allocated to shoots, 20% to roots, 7% to soils while 12% was respired back 30 

into the atmosphere as autotrophic respiration by plants. Maize and ryegrass (Lolium perenne) 31 

had the greatest allocation to the soil (1.0 Mg C ha-1 yr-1 or 19% total assimilation), followed 32 

by wheat (Triticum aestivum). 0.8 Mg C ha-1 yr-1, 23%) and rice (Oryza Sativa, 0.7 Mg C ha-1 33 

yr-1, 20%). C allocation to the soil positively correlated to C allocation to roots C (r=0.33, 34 

P<0.05) while correlations between on the one hand shoot and root biomass and on the other 35 

hand C allocation to shoots were not significant. The question of the long -term stability of the 36 

C transferred to soils remains unanswered. 37 

Keywords: Carbon transfer, C assimilation, plant C, C labeling, C flux 38 

39 



Introduction 40 

In 2015, 192 countries ratified the Paris Agreement at COP21 in Paris to limit the rise of 41 

global air temperature to 2°C above pre-industrial levels by the end of this century (Minasny 42 

et al. 2017). At that occasion, the 4 per mille Initiative: Soils for food security and climate 43 

(4p1000) was launched by the French government with the aspiration to transfer atmospheric 44 

carbon (C) to soils for a net increase in soil organic carbon (SOC) stocks (also termed soil 45 

carbon sequestration, e.g. Chenu et 2019) by 0.4% per year (Minasny et al. 2017). The 46 

Initiative envisaged that atmospheric C sequestration into soils would yield spillover benefits 47 

such as reduced increase of global temperature, improved soil fertility; favorable soil 48 

structure, high soil biodiversity, and reduced risk of soil erosion will accrue (Lal 2016) to 49 

sustain higher crop productivity. 50 

However, some practices proposed by Paustian et al. (2016) to meet the 4p1000 objectives, 51 

such as reduced tillage and land use conversion, are subjects of debate. For example, it has 52 

been argued that reduced tillage only cause redistribution of SOC within the soil profile with 53 

no net gain (Dimassi et al. 2014; Haddaway et al. 2017), while land use conversion from 54 

cropland to grassland or forest can have negative implications for SOC stocks and food 55 

security. Furthermore, there is a high tendency to rely on best agronomic practices for 56 

increasing SOC stocks, while neglecting the effects of plants despite abundant evidence that 57 

genetic variation, especially in root traits, influences C allocation in terrestrial ecosystems 58 

(Warembourg et al. 2003). 59 

Carbon sequestration into soils is influenced by equilibrium C carrying capacity of the soil, 60 

the vegetation it supports and the attendant climatic factors (Gupta and Rao, 1994; Lal, 2004). 61 

Plants play a pivotal role in the global cycle because more than 10% of the carbon dioxide 62 

(CO2) in the atmosphere is recycled through photosynthesis (Raich and Potter, 1995). After 63 

photosynthesis, plants deposit organic C into the soil via exudation and biomass C 64 



incorporation into the soil and a net increase in the soil C stocks is realized when the amount 65 

of C deposits are higher than C losses through microbial decomposition and root respiration 66 

(Fearnside and Barbosa, 1998). Plant C is either incorporated as structural C, released as 67 

exudates or respired as CO2 (Ostle et al. 2003). These processes vary with crops’ genetic 68 

characteristics, leading to potential differences in C fluxes to soils (Kuzyakov and Domanski 69 

2000). Yet there is little empirical analysis on how crops differ in their ability to enhance SOC 70 

stocks (Wegener et al. 2015). The first step for assessing the ability of crops to sequester C in 71 

terrestrial ecosystems lies in the evaluation of the C fluxes to the different pools: shoots, roots 72 

and soil. 73 

There have been concerted efforts to understand C fluxes in the plant/soil system (e.g. Remus 74 

and Augustin 2016; Studer et al. 2014). Carbon fluxes are commonly estimated by measuring 75 

changes in SOC stocks over time (e.g. Hemminga et al. 1996).  However, this method lacks 76 

precision when little changes in SOC stocks occur and is unable to distinguish between the 77 

preexistent and “new” SOC (e.g. Remus and Augustin 2016). Isotopic C labeling, where C 12 78 

atoms are replaced with either C 13 or 14 atoms, facilitate the quantification of C fluxes from 79 

atmosphere to soil through plants (Studer et al. 2014). Based on C labelling, it has been 80 

reported that plants transfer from 30 to 50% of their photosynthetic C below ground 81 

(Buyanovsky and Wagner 1997). Furthermore, C labelling has proven that the translocation of 82 

C to roots may occur immediately after C assimilation in leaves with up to 10% of the 83 

photosynthetic C being detected in roots within 2 hours (Kaštovská and Šantrůčková 2007). 84 

Carbon assimilated by plants is allocated to above ground (shoots and reproductive organs) 85 

and below ground (roots) biomass depending onplant genetic constitution (de Neergaard and 86 

Gorissen 2004), plant growth pattern, environmental conditions and interactions among these 87 

factors (Rangel-Castro et al. 2005). However, it is the root C fluxes, which are particularly 88 

important for increasing SOC stocks because root tissues and/or root exudates are in 89 



immediate contact with the decomposer community and the mineral phase, thus leading to 90 

lower mineralization rates as compared to shoot-derived C (Rasse et al. 2005). Labile C inputs 91 

such as those derived from above ground biomass are potentially easily decomposed, leading 92 

to losses of the total plant C stock of 15–45% in case of perennial plants and 27–60% in 93 

annuals (e.g. Warembourg and Paul 1977; Swinnen et al. 1995a). 94 

Several compilations of individual studies have been performed to identify the trends in SOC 95 

dynamics (e.g., Guo and Gifford, 2002; Poeplau et al. 2011; Don et al. 2011). From Guo and 96 

Gifford (2002), we learn that the conversion of natural vegetation to cropland is detrimental to 97 

SOC stocks with a worldwide average loss in the 0-0.3m soil layer of 42% from native forest 98 

and of 59% from grassland. From this meta-study we also learn that afforestation of cropland 99 

can increase SOC stocks by as much as 50%, with Laganière et al., (2010) indicating greatest 100 

increase by using broadleaf tree species as compared to coniferous species. Meta-studies on 101 

land management impact on SOC stocks have also been performed. Poeplau and Don (2015) 102 

using 139 plots worldwide showed the potential of cover crops to increase SOC stocks in the 103 

first 0.2 m of the soil to be of 0.32 ± 0.08 Mg C ha−1 yr-1 or about 0.5% or 5p1000. The study 104 

by Ugarte et al (2014) using data from 55 peer-reviewed studies showed a 9% average 105 

increase of SOC stocks in the 0-0.3 m layer using diversified crop rotations and conservation 106 

systems as compared to the conventional controls, a result confirmed by Alison et (2017). The 107 

increase was 32% by using a combination of chemical and organic fertilization (Han et al., 108 

2016) as compared to no fertilization and Shi et al (2018) pointed to a 18% increase in SOC 109 

stocks using agroforestery under subtropical climate, all these studies considered the soil to a 110 

depth of 0.3m.  111 

While several individual studies worldwide have been published on the fluxes of atmospheric 112 

C to soils on one or several crops, these data have not been compiled yet and the global trends 113 

are still unknown.  114 



This study aimed at compiling multiple trials across the world that quantified C fluxes from 115 

the atmosphere to the soil during the growing cycle using C labelling. The hypothesis behind 116 

this study is that some crops might be more efficient than others to build SOC and might thus 117 

be promoted. 118 

 119 

Materials and Methods 120 

Meta analysis 121 

The study is a meta-analysis based on data collated from isotopic C enrichment experiments 122 

conducted across the world. The data was obtained from peer-reviewed journal articles 123 

published between 1985 and 2016. The journal articles were obtained from academic 124 

databases (Google Scholar, Refseek, Science Direct, SciFinder, Scopus, Springer Link and 125 

Web of Science) using key words and phrases, singly and/or in combination, such as “isotopic 126 

pulse labelling”, “C allocation”, “plant carbon sequestration”, “rhizodeposition” and 127 

“plants/soil/microbial respiration”. The literature survey considered studies reporting the 128 

allocation of C to plant shoots and roots, soil pools and proportions of the respired C as either 129 

percentages or absolute quantities. Thirty-three journal articles (Table 1) detailing different 130 

studies were obtained using the above criteria providing 227 observations from different 131 

experiments, globally (Fig. 1). A database was constructed to capture the names of authors, 132 

year of publication, type of C isotope, type of crop, quantitative information on C allocation 133 

variables and the controlling factors (Supplemental Table). 134 

 135 

The study variables, calculations and statistical analysis 136 

This study simplified the soil-plant system within three pools, namely, plant shoots, plant 137 

roots, and soil. Information on C allocation to shoots (Sc), to roots (Rc), soil allocated C (Soc) 138 

and respiration from the soil (REc) (defined in Table 2) were collated from the different 139 



studies. All these variables were estimated using the pulse labelling method where ambient 140 

12CO2 was partially replaced by 13CO2 or 14CO2 for short durations. After harvest, plant parts 141 

(shoots and roots) as well as soil samples (collected from the pots in the case of glasshouse 142 

experiments or from the undisturbed soil in the case of field trials) were oven-dried (70°C), 143 

ground to 2 mm and analyzed for total C, 13C or 14C using C analysers coupled with mass 144 

spectrometers. 145 

Since the experiments differed as to the duration of pulse labelling, as to the concentration of 146 

labelled CO2 and as the concentration of total CO2, the data of C allocation were normalized 147 

and transformed into single unit for unbiased comparison. Normalization was done by 148 

dividing the reported C allocations by the respective CO2 concentration used during 149 

enrichment, duration of exposure during enrichment or the duration of that particular 150 

experiment, thus assuming the existence of linear relationship between the intensity of C 151 

fluxes in the atmosphere-plant-soil system and these variables. Moreover, in order to compare 152 

the crops’ potential to transfer C to soils over an entire year, the data in different units were 153 

reported on a yearly basis by summing the fluxes observed during the growing months (i.e. 154 

few months in case of maize vs 12 months for permanent grasses), and harmonized as 155 

Mg C ha-1 yr-1. Finally, the variations between field and greenhouse results were tested using 156 

the independent two-sample t-test at 95% confidence level using Genstat 18th edition (Payne 157 

et al. 2017).  The parameters measured under field conditions were tested for normality and 158 

treated as independent samples from the greenhouse data and the two samples were regarded 159 

as heteroscedastic samples during the procedure for t-test (Yang et al 1992). 160 

Finally, the sample size for each variable was determined and stratified by crop type and 161 

environmental variable, namely soil texture, soil organic carbon content (SOCc) and average 162 

air temperature (Table 3). Summary statistics for the variables were derived including 163 

minimum, maximum, median, standard deviation (SD), skewness, 25th quartile (Q1) and 75th 164 



quartile (Q3), kurtosis and coefficient of variation. Afterwards, the data were summarized 165 

using box plots to elucidate the variability and distribution after checking out the outliers. 166 

Boxplots are presented for six major staple crops due to scarcity of data in the other crops. 167 

Bivariate and multivariate analyses, using Spearman rank correlations and principal 168 

component analysis (PCA), respectively, were conducted to depict the general relationships 169 

between C variables and some controlling factors. 170 

 171 

  172 



Results 173 

Variability in C Allocation to plant parts 174 

Table 4 presents the statistics of biomass and C allocation to the different plant parts from the 175 

field and greenhouse trials. As shown by the statistical t test (Table 4), there was no 176 

significant differences between field and greenhouse trials for all study variables, except for 177 

root biomass (Rb), which was about two times higher under field conditions than in 178 

greenhouses (36 vs 16 MgCha-1). 179 

The average C allocation to shoots ranged from 0.20 Mg C ha-1 yr-1 recorded by Swinnen et 180 

al. (1995a) for barley in the Netherlands to 5.60 Mg C ha-1 yr-1 for wheat in Spain (Aljazairi et 181 

al. 2015); the mean shoot C flux for all plant species was 2.48± 0.09 Mg C ha-1 yr-1. The mean 182 

C allocation to roots was 1.0± 0.04 Mg C ha-1 yr-1 with a lowest of 0.1 Mg C ha-1 yr-1 183 

calculated for sub-tropical wheat in Australia (Fan et al. 2016) and a highest of 2.8 Mg C ha-1 184 

yr-1 calculated for ryegrass in a temperate region of the USA (Butler et al. 2004). The lowest 185 

total C allocation was 0.2 Mg C ha-1 yr-1 by wheat,  while the highest was 22.1 Mg C ha-1 yr-1 186 

by Kobresia spp. grass in temperate China (Wu et al. 2010). Mean C loss from soil as CO2 187 

(autotrophic plus heterotrophic respiration) was 0.63±0.30 Mg C ha-1 yr-1. Greenhouse grown 188 

soyabean had the highest C emissions of 1.8 Mg C ha-1 yr-1 (Harris et. al. 1985). An average 189 

of 0.90±0.05 Mg C ha-1 yr-1 was allocated to soils with a maximum of 3.00 Mg C ha-1 yr-1 
190 

found for temperate maize in the USA (Holland et al. 1995). Environmental factors also 191 

showed wide variability. The soil clay content ranged from 6.1 to 36.0%, while the SOCc 192 

ranged from 2.70 to 37.00 g C kg-1. Temperatures varied from 5oC in the Netherlands 193 

(Swinnen et al. 1995a) to 34.7oC in Spain (Fernández et al. 2003). 194 

 195 

Crop type impact on C allocation to shoot and roots 196 



Figure 2 shows the variations in C allocation in the different pools (shoot, root, and soil) of 197 

the plant-soil system as function of crop type. The highest mean C allocation to shoots was 198 

observed in maize (4.10±0.12 Mg C ha-1 y-1), which was 44% higher than for ryegrass 199 

(2.85±0.21 Mg C ha-1 yr-1), which ranked second, and 91% higher than in barley (2.15±0.24 200 

Mg C ha-1 yr-1) with the lowest C allocation. The C allocation to shoot in wheat (2.52±0.20 201 

Mg C ha-1 yr-1) and rice (2.30±0.15 Mg C ha-1 yr-1) were not significantly different. Ryegrass 202 

had at least 17% higher C allocation to shoots as compared to all the other crops except 203 

maize. The highest mean C allocations to roots were found in ryegrass (1.50±0.18 Mg C ha-1 204 

yr-1), followed by rice (1.48±0.17 Mg C ha-1 yr-1) and maize (1.40±0.21 Mg C ha-1 yr-1), but 205 

with differences being not significant at P<0.05 (Fig. 2b). In contrast, barley exhibited 206 

significantly (p≤0.05) lower C allocation to roots as compared to all the other crop species, 207 

while wheat and soyabean had intermediary C allocation to roots. 208 

 209 

Crop type impact on C allocation to the soil 210 

Figure 3 compares the C allocation to the soil by the selected crops to the C allocation in the 211 

different plant parts, as a means to assess crop efficiency in allocating atmospheric C into 212 

soils. Soyabean had the largest proportion of C allocated to the soil as compared to the whole 213 

plant (ratio of 0.32±0.07, fig. 3a), which means that the amount of C recovered in the soil 214 

during the growing season is about a third of that recovered in the plant. Barley was the 215 

second most efficient crop because it transferred 0.29±0.06 units of C per unit of C fixed by 216 

the plant. Wheat, maize and rice showed similar efficiencies in terms of C transfer to the soil 217 

relative to the total C allocated in the plant (ratios between 0.18 and 0.20). 218 

C allocation to the soil relative to C allocation to shoots exhibited a similar trend with 219 

soyabean having the highest efficiency followed by barley (Fig. 3b). In contrast, barley and 220 

wheat had the highest C allocation to soils as compared to roots (ratio of 1.22, fig. 3b). The 221 



least C allocation to soils per unit C allocation to roots was recorded in rice with a ratio of 222 

0.48. Maize and soybean showed non-significant difference with means of 0.96 and 0.98, 223 

respectively. Figure 3d shows the C allocation to soils relative to C emission from the soil as 224 

CO2 for the different crops. The highest ratio was observed for ryegrass (1.88±0.17) followed 225 

by wheat (1.48±0.11), maize (1.30±0.13) and barley (1.00±0.23).  226 

Figure 4 compares C allocation in the plant to C respiration from the soil. Ryegrass lost the 227 

least amount of C through respiration relative to total plant C allocation (ratio of 0.11±0.01, 228 

fig. 4a). For soyabean and barley, C respiration constituted above 40% of plant C allocation 229 

while for the rest of the crop species this proportion was less than 20%. Soyabean had also the 230 

highest ratio of respired C to shoot C allocation (0.85±0.13) which was 24% higher than for 231 

ryegrass and with wheat showing the least ratio (Fig. 4b). Respired soil C as a fraction of C 232 

allocation in roots was the highest barley and soyabean with 1.49±0.26 and 1.38±0.17, 233 

respectively (Fig. 4c).  234 

 235 

Variations in plant C allocation with soil properties and climate  236 

Soil texture 237 

Figure 5 shows the variations in C allocation in response to soil clay content. For clayey soils, 238 

the mean C allocation to shoots was 2.36±0.23 Mg C ha-1 yr-1 (Fig. 5a), which was 13% lower 239 

than that of loam textured soils (2.70±0.25 Mg C ha-1 yr-1) with the widest variability (values 240 

between 0.5 and 4.6 Mg C ha-1 yr-1). There was a decrease in root C allocation from clayey 241 

and loamy (1.30±0.13; 1.36±0.16 Mg C ha-1 yr-1) to sandy soils (0.91 Mg C ha-1 yr-1) (Fig. 242 

5b). In contrast, soil respiration significantly decreased by 60% from sandy (0.75±0.12 Mg C 243 

ha-1 yr-1) to clayey (0.47±0.03 Mg C ha-1 yr-1) and sandy soils (0.46±0.04 Mg C ha-1 yr-1), with 244 

the differences between clayey and sandy soils being not significant at P<0.05 (Fig. 5c). 245 



The amount of isotopic C detected in the soil significantly and positively correlated with soil 246 

clay content (r=0.46, p<0.05). Figure 5d shows a general increase for isotopic C from 247 

0.43±0.09 Mg C ha-1yr-1 in sandy soils to 1.04±0.07 Mg C ha-1 yr-1 under loamy and 248 

1.08±0.06 Mg C ha-1 yr-1 under clayey soils. The C detected in clay soils was nearly 150% 249 

higher than soil C fluxes under sandy soils. 250 

 251 

Soil carbon content 252 

SOC content exhibited a significant (p>0.05) and positive correlation with root C allocation 253 

(r=0.44) and with soil respiration (r=0.20, Table 5). Root C allocation was 33% higher from 254 

0.79±0.08 Mg C ha-1 yr-1 under low SOCc to 1.07±0.08 Mg C ha-1 yr-1 under medium SOCc 255 

soils (Fig. 6b). Root C was 1.01 Mg C ha-1 yr-1 at higher SOCc, which did not correspond to a 256 

significant difference at p>0.05. Soil C allocation was with 1.01±0.16 Mg C ha-1 yr-1 the 257 

highest under medium SOCc and the lowest under low SOCc (0.84±0.06 Mg C ha-1 yr-1). 258 

Finally, soil respiration did not significantly differ for all study SOCc classes (Fig. 6d).  259 

 260 

Climate 261 

Figure 7a shows that shoot C allocation was about 8% lower (2.32±0.23 Mg C ha-1 yr-1) under 262 

cool climate than under warm conditions (2.51±0.13 Mg C ha-1 yr-1) and was the lowest 263 

(2.18±0.08 Mg C ha-1 yr-1) under hot temperatures. The difference between cool and warm 264 

climates was not significant. The weak negative correlation between temperature and shoot C 265 

fluxes was also revealed by the bivariate correlations (Table 5). In contrast, root C allocation 266 

and temperature were positively correlated (Table 5). An increase of over 53% in root C 267 

allocation was observed from 0.75±0.14 Mg C ha-1 yr-1 under cool to 0.99±0.12 Mg C ha-1 yr-1 
268 

under warm temperatures, while there was a sharp increase of 200% from warm to hot 269 

temperatures (1.51±0.15 Mg C ha-1 yr-1) (Fig. 7b). The association between temperature and 270 



soil respiration was relatively strong and positive (r=0.34; p≤0.05) (Table 5). Carbon 271 

emissions due to respiration under warm (0.63±0.01 Mg C ha-1 yr-1) and hot (0.62±0.02 Mg C 272 

ha-1 yr-1) temperatures were similar, while they were significantly lower under cool 273 

temperatures (0.54±0.05 Mg C ha-1 yr-1) (Fig. 7c). Soil C allocation exhibited a negative 274 

correlation with temperature (Table 5, Fig. 7d). However, the differences in soil C allocation  275 

between cool (0.90±0.08 Mg C ha-1 yr-1) and warm (0.86±0.05 Mg C ha-1 yr-1) temperature 276 

zones were not significant and ranged between 0.58±0.06 (Fig. 7c).  277 

 278 

Multivariate analysis 279 

Principal component analysis (PCA) was conducted using the selected variables and data 280 

from all crop species. The first two principal components (Fig. 8) accounted for 68% of the 281 

data variability. The first principal component (Axis 1), which accounted for 40% of data 282 

variability, correlated the most with SOCc with positive coordinates. Since soil respiration 283 

had positive coordinates on Axis 1, it can be inferred that soil respiration increased with 284 

increasing SOCc. There was also a trend for soil respiration to positively correlate with C 285 

allocation in plant and in shoots. Principal component 2 (Axis 2), accounting for 28% of the 286 

variability in data, correlated the most with the shoot and plant biomass with positive 287 

coordinates, and air temperature and soil clay content with negative coordinates. The trend 288 

was thus for shoot and plant biomass to decrease with increase in air temperature and soil clay 289 

content. Moreover, as C allocation to soils and to roots showed negative coordinates on 290 

Axis 2, the trend was also for more C to be allocated to roots and to soils under clayey and 291 

warm conditions than under sandy and loamy soils of cooler climates. Interestingly, C inputs 292 

to roots and to soils appeared to decline with increasing shoot biomass. 293 

294 



Discussion 295 

The impact of crop species on C assimilation from atmosphere to shoots and roots 296 

The wide variations in atmospheric C allocation to shoots from  0.4 to 5.6 Mg C ha-1 yr-1 was 297 

expected and is likely to result from variable environmental conditions, plant growth pattern 298 

and internal metabolism which are under genetic control (Staddon et al. 2004; Warembourg et 299 

al 2003). Maize exhibited a significantly higher assimilation of atmospheric C into shoots 300 

than ryegrass, which confirmed previous reports by Pausch and Kuzyakov (2017) and 301 

Atkinson et al. (2014). The differences in shoot C fluxes among annual crops could be partly 302 

due to variations in efficiency in C capture and internal C metabolism. For instance, maize has 303 

a higher leaf area and C4 photosynthetic pathway which render it more efficient in 304 

atmospheric C capture than C3 crops (wheat or rice), while its high concentration of lignin 305 

and hemicellulose result in the retention of more C in the shoots (Adapa et al. 2009; Li et al. 306 

2013).  307 

The flux of C to roots in maize, rice and ryegrass was above 1.0 Mg C ha-1 yr-1across all crop 308 

types, a result that is in agreement with the investigations by Huang and Johnson (1995) and 309 

Mathew et al. (2017). Root C allocation are influenced by genetic variations and/or growth 310 

habits with for instance ryegrass because of perennial growth storing a larger proportion of 311 

the assimilated C in its roots as compared to annual crops (Purdy et al. 2015). The high 312 

amount of C assimilated in maize roots is related to its high photosynthetic capacity which 313 

avails large amount of assimilates for translocation to the roots (Amanullah and Stewart 2013; 314 

Pausch and Kuzyakov 2017) after meeting demand in the above ground biomass (Ludewig 315 

and Flügge 2013). In case of rice, the high amount of C allocated to roots results from the 316 

plant’s response to maintain root development under hypoxic conditions (Huang and Johnson 317 

1995). 318 

 319 



The link between plant C fluxes and C transfer to the soil  320 

The existence of a significant correlation between root C allocation and C allocation to the 321 

soil (r=0.38; p≤0.05, table 5) is supported by prior knowledge showing that root derived C 322 

constitutes a substantial proportion of SOC (Rasse et al. 2005). Root C contributes to SOC 323 

through various ways, e.g., provision of C exudates which are eventually stabilized in the soil, 324 

physical protection of soils against erosion, formation of associations with mycorhizae for C 325 

immobilization in the soil and providing exchange site for chemical interactions between 326 

plant and soil ions (Rasse et al. 2005). Intuitively, higher C allocation to roots increases the 327 

potential for C transfer to soils as more root exudates are released into the soil. 328 

Crop species differ in the amounts of C allocation to the roots and in their root characteristics, 329 

which appeared in the present study to subsequently result in differences in the amount of C 330 

transferred to the soil by the different crop species. Ryegrass and rice exhibited high higher C 331 

allocation to the roots and to the soil, while maize and wheat showed high C allocation to soil 332 

(>0.8 Mg C ha-1 yr-1) despite low root C allocation. The latter could point to the existence of 333 

mechanisms of regulation of C transfer to soils. Such mechanisms are beyond the scope of 334 

this paper but understanding these is required to identify crops for SOC sequestration. 335 

It was also interesting to observe that soyabeans had low C allocation to the soil (0.64 Mg C 336 

ha-1 yr-1) despite having high root C allocation. This points to the relative inefficiency of 337 

legumes to build SOC. Microbial respiration, which returns C to the atmosphere as shown by 338 

the high Rec (Fig. 2d), can be implicated in the low C sequestration potential of legumes. In 339 

the short term, soil C sequestration under annual crops such as maize may be higher than 340 

perennials such as ryegrass because C exudation below ground in annual crops peaks earlier 341 

during plant development than in perennials (Pausch and Kuzyakov 2017). Conversely, 342 

ryegrass is likely to contribute more biochemically stable C to soils through root turnover 343 

rather than exudation (Menichetti et al. 2015; Mota et al. 2010). Chemical, physical and 344 



biochemical processes influence the amount of C stabilized in the soil. For instance plant 345 

matter with low C:N ratio, like soyabean shoots are easily decomposed by microbes to 346 

become SOC as compared to crop residues with high C:N such as from cereals (Abiven et al. 347 

2009).  348 

From Hütsch et al. (2002) we learn that only up to 5% of the C assimilated by plants is 349 

eventually stabilized in the soil after accounting for respiration. Based on estimations after 350 

harvest in the current study, C transfer to the soil reached 32% of net plant total C 351 

assimilation in soyabean, followed by barley (28%) and wheat (23%), while values for maize, 352 

ryegrass and rice reached 19% of their assimilated C to the soil. The question of the longer 353 

term stabilization of this newly assimilated SOC remains unanswered. There is also a need to 354 

conduct more investigations to assess the longer term impacts of rhizodeposition of energy-355 

rich substrates in deep soil horizons on  the mineralization of pre-existent “old” soil organic 356 

matter, by a process called rhizosphere priming effect (e.g. Fontaine et al., 2004; Shahzad et 357 

al, 2018). 358 

 359 

The link between C assimilation in the soil and soil CO2 emissions  360 

The study showed no significant correlation between C assimilation in the soil and soil CO2 361 

emissions suggesting that addition of  C does not necessary enhance C losses through 362 

respiration in the short term, which may be explained by a possible mechanism that offers a 363 

relatively higher protection of the newly assimilated C. There were large differences in C 364 

emissions from soils with, for example, soyabeans emitting 1.12 Mg C ha-1 yr-1 while ryegrass 365 

grass emitted significantly lower amounts (0.49 Mg C ha-1 yr-1). The high amount of C 366 

emission under soyabean may be explained as mentioned above by a low C:N ratio and 367 

associated high microbial respiration (Schmitt et al. 2013) as compared to cereals (Pausch and 368 

Kuzyakov 2017). The higher soil CO2 emissions under maize (0.9 Mg C ha-1 yr-1) are most 369 



likely because of high hemicellulose-content biomass (Adapa et al. 2009; Li et al. 2013) and 370 

low C:N ratio as compared to barley and wheat (Velthof et al. 2002). Despite higher soil CO2 371 

emissions, maize exhibited a higher C allocation to soils than wheat, barley and rice showing 372 

that it is more efficient in photosynthesis (Amanullah and Stewart 2013) than the other crops. 373 

This shows that soil C accumulation can still be driven by root C allocation provided they are 374 

high enough to offset soil CO2 emissions. The foregoing indicates that maize and ryegrass had 375 

superior ability for C allocation into the soil than the other plant species, while wheat 376 

appeared to be the most efficient among the winter crops such as barley.  377 

 378 

The effect of environmental conditions on C allocation into soils  379 

The results pointed to a lack of significant impact of the type of experiment performed (field 380 

vs glasshouse) on the study variables, except for root biomass which was about two times 381 

higher under field conditions (with mean of 36 MgCha-1) compared to the greenhouse (16 382 

MgCha-1). Such a lack of significant differences is indicative of the absence of major shifts in 383 

the environmental conditions at glasshouses as compared to fields. Moreover, the greater root 384 

biomass under field conditions might be explained by the fact that under field conditions the 385 

roots have more room to growth as compared to greenhouse where the root zone is 386 

constrained by the pot size.  387 

The positive association between soil C sequestration and clay content (r=0.46; p≤0.05) 388 

(Table 5) and the fact that clayey soils stabilized 200% more soil C than sandy soils (Fig. 5d) 389 

show the importance of soil clay fractions in C dynamics. Clay particles provide adsorption 390 

and aggregation sites for the intrinsic stability of C compounds and protection from microbial 391 

decomposition, which increases persistence of organic C in fine-textured soils in comparison 392 

with coarse texture soils (Hütsch et al. 2002). 393 



The lack of a significant correlation between soil C sequestration and temperature was rather 394 

surprising and contrary to other study reports (e.g. Davidson and Janssens 2006; Jones et. al. 395 

2005). However, temperature may have impacted soil C indirectly by increasing soil moisture, 396 

soil CO2 emissions and by promoting high C retention in the root biomass as Giardina et al. 397 

(2014) reported that high temperatures promote root C accumulation to maintain vital 398 

biological processes. 399 

 400 

Implications of cropping systems on soil C dynamics 401 

Isotopic tracing techniques have shown that after fixation of atmospheric by plants, C 402 

allocation occurs to below ground biomass occurs within a few hours period (Gregory et al. 403 

1991). The C dynamics in the soils are immediately affected by exudation, respiration and 404 

immobilization to variable extents depending on the soil and plant characteristics. Root 405 

respiration is essential for plant growth although it results in loss of fixed C and represents a 406 

return loop for CO2 back into the atmosphere. The results of this meta-analysis show that on 407 

average 7% of the atmospheric C fixed by plants will be stabilized into the soils while 12% 408 

was respired back into the atmosphere as autotrophic respiration by plants. The proportion 409 

varied with crop species. For instance, wheat allocated the highest proportion (23% total 410 

assimilation) of fixed C to the soil.  411 

This study reported that maize and ryegrass could potentially deposit1.0 Mg C ha-1 yr-1 into 412 

the soil, followed by wheat (0.8 Mg C ha-1 yr-1), and rice (0.7 Mg C ha-1 yr-1), showing that 413 

impact that different cropping systems could have on soil C dynamics depending on other 414 

factors such as agronomic practices. Qiao et al (2012) and An et al (2015) provided evidence 415 

that plants increased SOC but alluded to the effects of fertilizer application and mulching, 416 

which increased C sequestration potential in soybeans and maize. The impact of crops on soil 417 

C dynamics is also governed by the species as Fan et al (2008) reported that maize distributed 418 



higher proportion of C below ground compared to faba beans although the distribution 419 

dynamics changed when the intercropping system was altered showing that C sequestration is 420 

also influenced by synergies or competition between and among crop communities. Fang et al 421 

(2016) investigated the impact of tillage practices on C sequestration and concluded that SOC 422 

stocks and agronomic functionality could not be improved by conservation tillage only. Plants 423 

were therefore the critical conduit for C sequestration into soil. Qiao et al (2012) found that 424 

soybean could potentially deposit 160 to 564 kg ha-1 C season-1 in China. In comparison, 425 

Mutegi et al (2011) estimated barley could contribute up to 3.4 Mg C ha-1, which was 600kg 426 

shortfall to maintain long term soil organic C in Denmark. In essence, there is overwhelming 427 

evidence to show the potential of crops in increasing C in the soil. The most important issues 428 

surrounding C allocation to soils are centered on the quantities of C sequestered, the mean 429 

residence time of the deposited C and the cost benefit of C sequestration by plants against the 430 

C emission during agricultural operations such as ploughing and fertilization. 431 

Conclusions 432 

Three main conclusions can be drawn from this study of 227 research trials worldwide 433 

investigating atmospheric C allocation to crop shoots, roots and to the soil:  434 

(i)  (i) Only a small fraction (about 7%) of the plant assimilated C is found in the soil 435 

after harvest with wheat showing the highest proportion (23%), followed by rice 436 

(20%), and maize and ryegrass with 19%; 437 

(ii) (ii) The transfer of atmospheric C to the soil was the highest for maize (1.00 Mg C 438 

ha-1 yr-1) followed by ryegrass (0.95 Mg C ha-1 yr-1), rice (0.70 Mg C ha-1 yr-1), and 439 

wheat (0.80 Mg C ha-1 yr-1); 440 

(iii) (iii)Irrespective of crop type, higher SOC was recorded under clayey soil and 441 

warmer climates.  442 



Such quantitative information on C allocation by plants and to soils might be used by C 443 

models for improving crop selection and/or rotations for enhanced atmospheric C 444 

sequestration, soil fertility and crop production, from short to long term. These results could 445 

also be used in selecting crop genotypes of higher soil C sequestration potential, which could 446 

be useful in informing the breeding efforts to enhance the genetic capacity of existing crops. 447 

More is however to be done on the long term stability of the C allocated to soils and on the 448 

mechanisms involved in the C transfer from roots to its stabilization into soils. There is also a 449 

need to identify the genetic markers associated with the key traits for C allocation in the 450 

different plant parts and into the soil to further marker-assisted breeding and trait 451 

introgression into agronomically desirable genotypes that would potentiate C storage without 452 

compromising grain yield and grain quality. 453 

 454 
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Fig. 1 Global distribution of the study sites shown by shaded circles on the map 
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Fig. 2 Carbon allocation into (a) Sc: shoots, (b) Rc: roots; c) REc: soil respiration and (d) SOc: C 

allocation to the soil; as affected by crop species. Rye=ryegrass and Soya=soyabean. Values above 

the top whisker represent mean values of each crop. Means followed by the same letters are not 

significantly different at p≤0.05. 

 



R
a
ti

o

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Crop 

Barley Wheat Maize Rice Soya Rye

R
at

io

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) (b)

(c)

Crop

Barley Wheat Maize Rice Soya Rye

(d)

0.29a

0.20b
0.18b 0.19b

0.32a

0.23ab

0.46ab

0.25c 0.35ab

0.45ab

0.51a

0.25c

1.22a

0.98b

0.48c

0.62c

0.96b

1.22ab 1.00c

1.34b

0.91c

1.88a

0.60d

1.48b

 

Fig. 3 Carbon allocation into the soil as a proportion of (a) Pc (b) Sc, (c) Rc, and (d) REc. 
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Fig. 4 Respired Carbon allocation into the soil as a proportion of (a) Pc (b) Sc, (c) Rc, and (d) SOc. 
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Fig. 5 Carbon allocation into (a) Sc (b) Rc, (c) REc, and (d) SOc. 
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Fig 6 Impact of soil organic carbon content (SOCc) on carbon allocation into (a) Sc, (b) Rc, (c) 4 

SOc, and (d) REc. See table 2 for SOCc classes. 5 
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Fig 7 Impact of air temparature on carbon allocation into (a) Sc, (b) Rc, (c) SOc, and (d) REc. 

See table 2 for SOCc classes. 

 



 

 

Fig 8 PCA showing multivariate relationship among variables and factors all plant types. Sc=shoot C 

allocation, Rc=root C allocation, SOc=soil C allocation, REc=soil respiration, Rb=root biomass, 

Pb=plant biomass, Rb/Sb=biomass root:shoot, Temp=temperature and SOCc=soil organic C content. 

See Table 2 for full description of variables. 

 



Table 1 List of authors, countries, crop types studied and type of experiment carried out using an 

identified carbon isotope  

No. Author Country Isotope Crop  Experiment Soil 

      cm 
1 Aljazairi et al. 2015 Spain 13C Cereal Greenhouse  
2 An et al. 2015 China 13C Cereal Field 0-15 
3 Aranjuelo et al. 2009 Spain 12C Cereal Greenhouse  
4 Bazot et al. 2006 Switzerland 14C Grass Field NA 
5 Butler et al. 2004 USA 13C Grass Greenhouse  
6 Chaudhary et al. 2012 USA 13C Grass Greenhouse  
7 Davenport and Thomas 1988 Canada 14C Cereal, grass Greenhouse  
8 de Graaf et al. 2009 USA 13C Cereal Greenhouse 0-25 
9 de Neergaard and Gorissen Denmark 14C Grass, legume Greenhouse  

10 Domanski et al. 2001 Germany 14C Grass Greenhouse  
11 Fan et al. 2008 China 13C Cereal, legume Greenhouse  
12 Fang et al. 2016 Australia 13C Cereal Field 0-30 
13 Fernández et al. 2003 Spain 14C Cereal Greenhouse  
14 Gocke et al. 2011 Germany 14C Cereal, grass Field NA 
15 Gregory and Tawell 1991 Australia 14C Cereal Field 0-15 
16 Harris et al. 1985 USA 14C Legume Greenhouse  
17 Hodge and Millard 1998 UK 14C Cereal Greenhouse  
18 Hodge et al. 1997 UK 14C Grass Greenhouse  
19 Holland et al. 1995 USA 14C Cereal Greenhouse  
20 Kaiser et al. 2015 Australia 13C Cereal Greenhouse  
21 Kakiuchi and Kobata 2008 Japan 14C Legume Greenhouse  
22 Lodhi et al. 2009 Pakistan 14C Cereal Greenhouse  
23 Meng et al. 2013 China 13C Cereal Greenhouse  
24 Mutegi et al. 2011 Denmark 14C Legume Field 0-10; 
25 Qiao et al. 2012 China 13C Legume Field NA 
26 Schmitt et al. 2013  Germany 14C Grass Greenhouse  
27 Schulze and Poschel 2004 Germany 14C Cereal Greenhouse  
28 Swinnen et al. 1995 Netherlands 14C Cereal Field 0-20 
29 Tian et al. 2013 China 14C Cereal, grass Greenhouse  
30 Warembourg et al. 2003 France 14C Legume, cereal Greenhouse  
31 Werth and Kuzyakov 2006 Germany 14C Cereal Lab  
32 Wu et al. 2008 China 13C Cereal Greenhouse  
33 Wu et al. 2010 China 13C Grass Field NA 

 



Table 2 Definition of C allocation variables and controlling factors as used in this paper 

Parameter Units Definition Categories Remarks 

Shoot carbon allocation (Sc) MgCha-1yr-1 The amount of C allocated to the shoots Shoot All crops used in the study 

Root carbon allocation (Rc) MgCha-1yr-1 The amount of C allocated to the roots Root All crops used in the study 

Plant C allocation (Pc) MgCha-1yr-1 Sum of the shoot and root C allocations Plant All crops used in the study 

Soil carbon allocation (SOc) MgCha-1yr-1 The amount of C allocated to the soil Soil All crops used in the study 

Respired carbon from soil 

(REc) 
MgCha-1yr-1 The amount of C being respired from the soil 

Soil 

respiration 
All crops used in the study 

 
  Cereals All monocot grain crops  

Crop type  The broad group to which a plant belongs Legumes All N fixing plants  

 
  Grasses All pasture grasses 

Shoot biomass (Sb) Mgha-1yr-1 
The annual total amount of above ground biomass (leaves 

and stems) excluding grain lint or pods 
All  All crops used in the study 

Root biomass (Rb) Mgha-1yr-1 

The annual total amount of biomass found below the soil 

surface (crown roots, rhizoms and nodules) excluding  

stems and leaves. 

All  All crops used in the study 

Plant biomass (Pb) Mgha-1yr-1 The sum of root and shoot biomass All  All crops used in the study 

 
  Sand below 20% 

Clay content (Cl%) % The clay fraction of the soil  Loam  between 20-30% 

 
  Clay above 30% 

 
  

Low below 10 g C kg-1 

Soil Organic Carbon 

content (SOCc) 
g C kg-1 The C content of the soil at the start of the experiment Medium between 10 and 15 g C kg-1 

 
  High above 15 g C kg-1 

 
  

Cool up to 10oC 

Temperature (Temp) oC The average temperature during CO2 enrichment Warm between 10 and 20 oC 

      Hot above 20 oC 

 



Table 3 Sample size of C allocation variables stratified by different factors 

Variable 

 
Sc Rc REc Cseq Cseq/Sc Cseq/Rc REc/Sc REc/Rc Cseq/Sb Cseq/Rb 

Description 200 194 142 153 153 153 142 136 138 138 

Crop type Cereal 130 124 95 96 96 96 95 89 96 96 

 
Grass 47 47 36 36 36 36 36 36 24 24 

 
Legume 22 22 10 20 20 20 10 10 18 18 

 
Non-legume 1 1 1 1 1 1 1 1 

 
 

Soil texture Clay 19 19 7 11 11 11 7 7 4 4 

 
Loam 39 39 23 31 31 31 23 23 31 31 

 
Sand 14 14 14 14 14 14 14 14 14 14 

 
Unclassified 128 122 98 97 97 97 98 92 89 89 

SOCc  

(g C kg-1) High 35 35 21 27 27 27 21 21 27 27 

 
Low 16 16 6 10 10 10 6 6 10 10 

 
Medium 17 17 4 6 6 6 4 4 6 6 

 
Unclassified 132 126 111 110 110 110 111 105 95 95 

Temperature 

(oC) Cool 49 49 37 49 49 49 37 37 38 38 

 
Hot 36 36 10 20 20 20 10 10 20 20 

 
Warm 89 83 73 74 74 74 73 67 70 70 

 
Unclassified 26 26 22 10 10 10 22 22 10 10 

Sc=shoot C fluxes; Rc=root C flux;  SOc=soil C flux; REc=respiration C flux; SOc:Sc, SOc:Rc, REc/Scs, REc:Rcs, SOc/Sb and SOc/Rb are ratios of the 

respective variables 



 

Table 4. Summary statistics on plant parameters, C allocation to plant parts and soil parameters based on data collected from field and 

greenhouse evaluations. 

 Statistics  

Plant parameters  C allocation Soil parameters  

Sb Rb Pb Rb/Sb Sc Rc Pc Clay SOCc 

------------------------------Mgha-1---------------------------- ---------------------Mgyr-1ha-1------------------ % gkg-1 

FD GH FD GH FD GH GH FD FD GH FD GH FD GH FD GH FD GH 

Observations 34 87 34 84 34 87 34 114 81 114 71 129 81 114 36 17 22 45 

Mean 124.7 152.2 36.6 16.6 161.30 168.30 0.505 2.545 2.32 2.55 0.97 1.07 4.30 4.63 21.94 20.78 10.89 17.28 

Variance 69923 349708 2388 1292 81764 351412 0.17 1.57 1.71 1.57 0.33 0.66 19.95 7.10 80.21 108.66 7.56 59.93 

St dev 264.40 591.40 48.86 35.94 285.90 592.80 0.4196 1.2531 1.31 1.25 0.58 0.81 4.47 2.67 8.96 10.42 2.75 7.74 

SEM 45.35 63.40 8.38 3.92 49.04 63.55 0.072 0.117 0.15 0.12 0.07 0.07 0.50 0.25 1.49 2.53 0.59 1.15 

t value -0.35 2.16 -0.09 -14.82 -1.21 -1.01 -0.59 0.42 -4.93 

df 116 48 114 144 193 185 120 51 61 

p-vlaue 0.725ns 0.036* 0.93ns 0.001** 0.228ns 0.313ns 0.559ns 0.678ns 0.001** 

* and ** denote significant difference at P<0.05 and p<0.01, respectively; ns=non-significant difference. df=approximate degrees of freedom, 

FD=field condition, GH=greenhouse condition, SEM=standard error of mean, St dev=standard deviation. Sb=shoot biomass, Rb=root biomass, 

Pb=total plant biomass, Rb/Sb=root to shoot ratio, Sc=C allocation to shoot, Rc= C allocation to root, Pc= C allocation to plant, SOCc=soil organic 

carbon content. 

 

In the materials and methods were need to mention that the variation between field and greenhouse data was tested using the independent 

two-sample t-tests at 95% confidence level using Genstat 18th edition.  The parameters measured under field conditions were treated as 

independent samples from the greenhouse data and the two samples were regarded as heteroscedastic samples during the procedure for t-tests 

(Yang et al 1992). 

  

Yang, S. R., Koo, W. W., & Wilson, W. W. (1992). Heteroskedasticity in crop yield models. Journal of Agricultural and Resource Economics, 103-

109. 



Table 5 Spearman rank correlation coefficients showing pair-wise relationship among C flux variables and controlling factors used in 

the study for all crops 

 

Variables 

Temp Cl% SOCc Sb Rb Sc Rc Cseq REc Cseq:Sc Cseq:Rc REc/Sc REc:Rc Cseq/Sb Cseq/Rb 

Temp 1.00               
Cl% 0.66* 1.00              

SOCc 0.23* 0.91* 1.00             

Sb -0.15 -0.79* -0.66* 1.00            

Rb -0.03 -0.61* -0.37* 0.80* 1.00           

Sc -0.04 -0.11 0.20 0.02 -0.20* 1.00          

Rc 0.04 0.21* 0.44* -0.12 0.04 -0.01 1.000         

Cseq -0.01 0.46* 0.11 -0.13 -0.18 0.11 0.38* 1.00        

REc 0.34* -0.28* 0.20* 0.09 0.09 0.19* 0.33* -0.12 1.00       

Cseq:Sc 0.04 0.40* 0.48* -0.17 -0.05 -0.51* 0.33* 0.75* 0.01 1.00      

Cseq:Rc -0.14 0.07 -0.23 -0.04 -0.14 0.22* -0.67* 0.35* -0.23* 0.18* 1.00     

REc/Sc 0.11 -0.26 0.49* 0.05 0.12 -0.59* 0.23* -0.02 0.57* 0.41* -0.31* 1.00    

REc:Rc 0.02 -0.19 -0.16 0.11 0.24* 0.03 -0.78* -0.34* 0.25* -0.31* 0.62* 0.18* 1.00   

Cseq/Sb 0.01 0.04 0.01 0.10 0.12 0.02 0.03 0.72* 0.13 0.69* 0.58* 0.13 0.05 1.00  

Cseq/Rb 0.04 -0.35* -0.10 0.24* 0.22* 0.11 -0.08 0.59* 0.19 0.48* 0.58* -0.03 0.16 0.88* 1.00 

*=significance at p≤0.05 

Temp=temperature; Cl%=soil clay content; SOCc=soil organic carbon content; Sb=shoot biomass; Rb=root biomass; Sc=shoot C fluxes; Rc=root 

C fluxes; Soc=soil C fluxes; REc=respiration C fluxes; SOc:Sc, SOc:Rc, REc/Scs, REc:Rcs, SOc/Sb and SOc/Rb are ratios of the respective variables 

 




