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In this work, we present an abstract finite volume discretization framework for incompressible immiscible two-phase flow through porous media. A-priori error estimates are derived that allow to prove the existence of discrete solutions and to establish the proof of convergence for schemes belonging to this framework. In contrast to existing publications, the proof is not restricted to a specific scheme and it does neither assume symmetry nor linearity of the flux approximations. Two nonlinear schemes, namely a nonlinear two-point flux approximation (NLTPFA) and a nonlinear multi-point flux approximation (NLMPFA) are presented and some properties of these schemes, e.g. saturation bounds, are proven. Furthermore, the numerical behavior of these schemes (e.g. accuracy, coercivity, efficiency or saturation bounds), is investigated for different test cases.

essential when solving fluid dynamical processes. This is why finite volume schemes are the most commonly used methods for solving flow through porous media. A comparison and an overview of different schemes can be found in [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF][START_REF] Schneider | Nonlinear finite volume schemes for complex flow processes and challenging grids[END_REF][START_REF] Schneider | Comparison of finite-volume schemes for diffusion problems[END_REF]. For subsurface simulations, often corner-point grids are used to account for the different petrophysical properties that are associated to the control volumes (cells) of the grids. Solving partial differential equations on such corner-point grids with highly heterogeneous and anisotropic properties poses challenges on the discretization scheme. In our previous work, it has been demonstrated that so-called nonlinear finite volume schemes can be used for such grids and for complex applications [START_REF] Schneider | Nonlinear finite-volume scheme for complex flow processes on corner-point grids[END_REF][START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF], where the convergence of these nonlinear schemes has been proven for elliptic problems in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF]. This work is an extension of [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF] to incompressible immiscible two-phase porous media flow problems on general meshes. Besides a general discretization framework, including nonlinear flux discretization schemes, a-priori estimates are presented, which are used to show the existence of discrete solutions and to prove the convergence of schemes belonging to the presented discretization framework.

Previous publications include the convergence proof of a phase-based fully-upwind scheme with a two-point flux approximation, which was first analyzed for a one-dimensional setup in [START_REF] Brenier | Upstream differencing for multiphase flow in reservoir simulation[END_REF][START_REF] Sammon | An Analysis of Upstream Differencing[END_REF] and then extended in [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] to general higher dimensional grids. In this work, we establish the proof of convergence for the so-called fractional-flow formulation (global pressure-saturation formulation), which was theoretically analyzed (e.g. showing the existence of weak solutions) in [START_REF] Kroener | Flow of oil and water in a porous medium[END_REF][START_REF] Chavent | Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media[END_REF][START_REF] Chen | Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution[END_REF]. The fractional-flow approach treats the two-phase flow problem as a total fluid flow of a single mixed fluid, and then describes the individual phases as fractions of the total flow. This approach leads to two coupled equations: the global pressure equation and the saturation equation. For the mathematical analysis of different discretization schemes for this fractional-flow formulation we refer to [START_REF] Chavent | Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media[END_REF][START_REF] Eymard | Convergence d'un schéma de type éléments finis-volumes finis pour un système formé d'une équation elliptique et d'une équation hyperbolique[END_REF][START_REF] Vignal | Convergence of a finite volume scheme for an elliptic-hyperbolic system[END_REF][START_REF] Michel | A finite volume scheme for two-phase immiscible flow in porous media[END_REF][START_REF] Brenner | Convergence of a vertex centred discretization of two-phase darcy flows on general meshes[END_REF]. The proof of convergence for schemes belonging to the gradient discretization framework (e.g [START_REF] Droniou | Gradient schemes: Generic tools for the numerical analysis of diffusion equations[END_REF]) has been presented in [START_REF] Eymard | Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation[END_REF]. The gradient discretization method (GDM) is a recent framework for the numerical discretization and analysis of elliptic and parabolic PDEs. The usual GDM defines reconstruction operators (e.g. discrete gradient operators) on discrete solution spaces and discretizes the PDEs by replacing the continuous operators in the weak formulation by the corresponding discrete ones. The convergence of gradient schemes obtained in [START_REF] Brenier | Upstream differencing for multiphase flow in reservoir simulation[END_REF][START_REF] Eymard | Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation[END_REF] is in fact based upon a weakstar convergence (weak-strong convergence) argument which states that if fn f is weak-star convergent in the dual space X * of a Banach space X and xn → x converges strongly in X, then

[fn, xn] → [f, x] as n → ∞. The use of this argument in the case of gradient schemes is possible because only one discrete gradient reconstruction operator ∇ D is used in the discrete problem, which allows to get both weak and strong convergence in the duality bracket thanks to the limit-conformity and consistency properties required for these methods. Thus, by using an argument of weak-strong convergence, the proof of convergence follows by establishing some compactness results (see Section 3.3 of [START_REF] Brenner | Convergence of a vertex centred discretization of two-phase darcy flows on general meshes[END_REF] and Theorem 3.7 in [START_REF] Eymard | Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation[END_REF]).

However, despite its flexibility, the usual GDM does not seem to cover some important families of numerical methods, in particular some finite volume schemes such as the two-point flux approximation (TPFA), the multi-point flux approximation MPFA-L/G schemes, MPFA-O schemes on general meshes except some particular meshes for which they become symmetric (simplex, parallelogram), or nonlinear schemes. These non-symmetric schemes do not belong to the family of gradient schemes, because two different gradient reconstruction operators ∇ D and ∇ D are needed in the discrete formulation, where one of the operators is strong (in the sense of the consistency) and the other one is weak (in the sense of the limit-conformity). Due to these two different gradient reconstruction operators, which appear in the duality bracket terms of the weak formulation, the weak-strong convergence argument cannot be used to get the proof of convergence. This is the main reason why the proof of convergence for non-symmetric schemes is quite different from the one used for schemes encompassed by the gradient discretisation framework. The proof of convergence for non-symmetric schemes requires to establish a-priori error estimates (see the proof of Theorem 1 in [START_REF] Agélas | The G method for heterogeneous anisotropic diffusion on general meshes[END_REF], Lemma 5.7

and Theorem 5.1 in [START_REF] Agélas | Convergence of finite volume MPFA O type schemes for heterogeneous anisotropic diffusion problems on general meshes[END_REF], Theorem 1 in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF] and the asymmetric gradient discretization framework in [START_REF] Droniou | The asymmetric gradient discretisation method[END_REF]) depending on duality bracket terms, which involve two discrete gradient reconstruction operators and thus allow the use of weak-strong convergence and compactness arguments. This is done in this article, where we give, after establishing a-priori error estimates, the proof of convergence for the two-phase flow problem of cell-centered finite volume schemes which are possibly unsymmetric and nonlinear. The proof is based on a-priori error estimates combined with compactness arguments, where our assumptions are compatible with field applications (discontinuous data, fully nonlinear models, etc.). These are, at least to our knowledge, novel results for general parabolic PDEs and differ from recent proofs which are essentially based on weak-strong convergence arguments (see [START_REF] Brenner | Convergence of a vertex centred discretization of two-phase darcy flows on general meshes[END_REF][START_REF] Eymard | Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation[END_REF]). Thus our proof appears to be technically quite difficult because of the a-priori error estimates that have to be additionally established.

Furthermore, most of the existing literature either neglect capillary pressure or buoyancy terms in their mathematical analysis and only consider linear flux approximations. This is not done in this work, where all terms are considered and the fluxes are allowed to be nonlinear. Such nonlinear flux approximations have the advantage that they are consistent and satisfy saturation bounds.

This work is organized as follows: In Section 2, the mathematical formulation of the two-phase flow problem using the fractional-flow formulation is presented. In Sections 3 and 4, a general finite volume discretization framework is introduced and the proof of convergence is given. This general framework also includes nonlinear schemes. Two representatives of such schemes are presented in Section 5, where also some fundamental properties of these schemes are proven. Finally, these schemes are numerically investigated in Section 6 for a quasi one-dimensional setup and a two-dimensional test case including gravity and capillary pressure effects.

2 Mathematical formulation of a two-phase flow problem

Continuous form

Let Ω ⊂ R d , d ∈ N * , be an open bounded connected polygonal domain with boundary ∂Ω and d-dimensional measure |Ω|. On Ω and for all t ∈ (0, T ) (T > 0), we define the following two-phase porous-media flow problem, where the phases are assumed to be incompressible and immiscible with a rigid porous matrix,

φu t -∇• (λ 1 (u)Λ(∇p 1 -1 g)) = f 1 (c)s + -f 1 (u)s -, (1a) 
φ(1 -u) t -∇• (λ 2 (u)Λ(∇p 2 -2 g)) = f 2 (c)s + -f 2 (u)s -. (1b) 
Here, u denotes the saturation of the wetting phase; p 1 , p 2 the wetting and non-wetting pressures linked together through the capillary pressure pc = p 2 -p 1 ; φ the porosity; Λ a symmetric permeability tensor; 1 , 2 the phase densities; g = (0, 0, -g) T the gravity vector (g > 0); s + , s -the source and sink terms; c the inflow wetting saturation; λ 1 and λ 2 the wetting and non-wetting phase mobilities;

and f 1 , f 2 the fractional-flow functions, which are given as

f 1 = λ 1 λ T , f 2 = λ 2 λ T , (2) 
where λ T = λ 1 + λ 2 is the total mobility.

Using these quantities, problem (1) can be rewritten in the fractional-flow form

φu t + ∇• f 1 v T -Λ∇ψ(u) + ( 1 -2 )f 1 λ 2 Λg = f 1 (c)s + -f 1 (u)s -, (3a) 
∇•v T = s + -s -, (3b) 
where we have introduced the total velocity

v T = -λ T (u)Λ ∇p -f g ,
with the average fluid density

f = 1 f 1 + 2 f 2 , (4) 
the global pressure

p = p 1 - 1 u f 2 (v)p c (v) dv, (5) 
and the following function

96 ψ(u) = - u 0 λ 1 (v)f 2 (v)p c (v) dv. (6) 
Initial conditions for Problem (3) are given for the wetting saturation

97 u(., 0) = u init in Ω. (7) 
Additionally, for simplicity, we assume homogeneous zero Dirichlet boundary conditions

98 u(x, t) = 0, p(x, t) = 0, on ∂Ω × (0, T ). ( 8 
)
In the following, we consider problem (3) with the two unknowns (u, p) and make the following 99 assumptions. For simplicity we do not introduce residual saturations such that the effective saturation corresponds to u.

Hypotheses 1 We assume that:

(A1) φ ∈ L ∞ (Ω) with φ ∈ [φ, φ]
almost everywhere (a.e.) in Ω (without loss of generality, we assume φ = 1

in the mathematical analysis of the finite volume scheme), (A2) Λ is symmetric and there exist 0 < α 0 < β 0 < +∞ so that the spectrum of Λ is contained in [α 0 , β 0 ]

a.e. in Ω,

(A3) u init ∈ L ∞ (Ω), with u init ∈ [0, 1] a.e., (A4) c ∈ L ∞ (Ω × (0, T )), with c ∈ [0, 1] a.e., (A5) s + , s -∈ L 2 (Ω × (0, T )), s + ≥ 0 and s -≥ 0 a.e., (A6) λ 1 : R → [0, λ 1 ] is a nondecreasing Lipschitz continuous function such that (s.t.) λ 1 (x) = 0, ∀x ∈ (-∞, 0], λ 1 (x) = λ 1 > 0, ∀x ∈ [1, ∞), (A7) λ 2 : R → [0, λ 2 ] is a nonincreasing Lipschitz continuous function s.t. λ 2 (x) = λ 2 > 0, ∀x ∈ (-∞, 0], λ 2 (x) = 0, ∀x ∈ [1, ∞), (A8) ψ ∈ C([0, 1]) with ψ(0) = 0, is a strictly increasing Lipschitz-continuous function. The function ψ is linear outside [0, 1] that is ψ(u) = Ξψ(1)(u -1) + ψ(1) if u > 1, Ξu if u < 0, (9) 
with Ξ > 0. We denote by L ψ the Lipschitz constant of ψ over R. At last, there exist C 1,ψ ≥ 0,

C 2,ψ ≥ 0 so that, for all u ∈ R, |ψ(u)| ≥ C 1,ψ |u| -C 2,ψ . (10) 
Using the assumptions (A6) and (A7), we set λ = min x∈R λ T (x) and λ = max x∈R λ T (x). We also introduce the function

Ψ (s) = s 0 ψ(x) dx, ∀ s ∈ R. (11) 
Thanks to the Lipschitz continuity of ψ, the fact that ψ is nondecreasing and that ψ(0) = 0, the function Ψ satisfies the following inequality (see proof of Lemma 13 in section Appendix):

0 ≤ ψ(s) 2 2L ψ ≤ Ψ (s) = s 0 (ψ(x) -ψ(0)) dx ≤ L ψ s 2 2 . ( 12 
)
Furthermore, under assumption (A8), we deduce that 2(ψ(s

) 2 + C 2 2,ψ ) ≥ C 2 1,ψ |s| 2 .
Hence, using [START_REF] Danilov | A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes[END_REF], we obtain

Ψ (s) ≥ C 2 1,ψ |s| 2 -2C 2 2,ψ 4L ψ . ( 13 
)
The monotonicity of ψ implies that Ψ is a convex function such that for all

s 1 , s 2 ∈ R Ψ (s 2 ) -Ψ (s 1 ) ≤ ψ(s 2 )(s 2 -s 1 ). ( 14 
)
Fig. 1 An example of admissible mesh for d = 2.

Weak form

Under Hypotheses 1, (p, ū) is a weak solution of (3) if

-p ∈ L 2 (0, T ; H 1 0 (Ω)), -ū ∈ L 2 (Ω × (0, T )), -ψ(ū) ∈ L 2 (0, T ; H 1 0 (Ω)),
and if, for all ϕ ∈ L 2 (0, T ;

H 1 0 (Ω)) s.t. ϕ t ∈ L 2 (Ω × (0, T )
) and ϕ(., T ) = 0 a.e., we have

T 0 Ω -φūϕ t -f 1 v T -Λ∇ψ(ū) + ( 1 -2 )f 1 λ 2 Λg) ∇ϕ dx dt = Ω φu init (x)ϕ(x, 0) dx + T 0 Ω (f 1 (c)s + -f 1 (ū)s -)ϕ dx dt, (15a) 
- T 0 Ω v T • ∇ϕ dx dt = T 0 Ω (s + -s -)ϕ dx dt. ( 15b 
)
3 Finite volume discretization

Before giving a finite volume discretization of (15), we introduce a few notations and definitions.

Discretization of the space and time domains and their regularity

We first define the spatial discretization which includes general polygonal meshes (see Figure 1). 

D def = sup K∈T diam(K).
The number of cells is indicated by n T .

(ii) E (the faces) is a finite family of subsets of Ω s.t., for all σ ∈ E, σ is a non-empty closed subset of a hyperplane of R d with (d -1)-dimensional measure |σ| > 0 (the area), and the intersection of two different faces has zero (d -1)-dimensional measure. For all K ∈ T , we assume that there exists a

subset E K of E s.t. ∂K = ∪ σ∈E K σ. For any σ ∈ E, either Tσ def = {K ∈ T | σ ∈ E K } has exactly one element (if σ ⊂ ∂Ω)
or Tσ has exactly two elements (inner face); the sets of inner and boundary faces are denoted by E int and Eext, respectively. The face evaluation points (interpolation points) are denoted by xσ (not required to be the barycenters). For all K ∈ T and σ ∈ E K , we denote by n K,σ the unit vector that is normal to σ and outward to K.

(iii) P = {x K } K∈T (the cell centers, not required to be the barycenters) is a family of points of Ω s.t. x K ∈ K. We assume that there is α > 0 such that for all K ∈ T , K is star-shaped with respect to all the points in a ball of radius αdiam(K) and, in particular, to x K . For all K ∈ T and for all σ ∈ E K , d K,σ denotes the Euclidean distance between x K and the hyperplane including σ, and ∆ K,σ denotes the convex hull of x K and σ. In addition, we denote, for all σ ∈ E, by ∆σ = Interior K∈Tσ ∆ K,σ and by ∆ = {∆σ, σ ∈ E}.

Let us remark with the notations of Definition 3.1, that, since

|σ|d K,σ d
is the measure of the convex hull ∆ K,σ of x K and σ, we have

∀K ∈ T , σ∈E K |σ|d K,σ = d|K|. ( 16 
)
In the following of this work, a few regularity assumptions are made on the spatial discretization for the convergence analysis of the scheme. Therefore, we now introduce the notion of an admissible spatial discretization. 

|E K | ≤ ζ 1 , min K∈T , σ∈E K |σ| diam(K) d-1 ≥ ζ 2 , (17) 
min

K∈T , σ∈E K d K,σ diam(K) ≥ ζ 3 , min σ∈Eint, Tσ={K,L} min(d K,σ , d L,σ ) max(d K,σ , d L,σ ) ≥ ζ 4 , min K∈T diam(K) h D ≥ ζ 5 . (18) 
The next two definitions allow us to precise the concept of admissible discretization for the whole space-time domain and to introduce the notion of admissible family for these discretizations that will be used for the convergence study. For this, we use the definition 0,

N def = {0, • • • , N }.
Definition 3 (Admissible space-time discretization) The pair D = (D, D t ) is a space-time discretization of Ω × (0, T ) if:

-D is a spatial discretization in the sense of Definition 1,

-D t = n∈ 0,N In with In = [t (n) , t (n+1) [, {t (n) } n=0,••• ,N such that t (0) = 0, t (N +1) = T , and 
δt (n+ 1 2 ) = t (n+1) -t (n) > 0, for all n ∈ 0, N .
The maximum time step size of a space-time discretization is denoted by

|δt| = max n=0,••• ,N δt (n+ 1 2 ) . (19) 
It is said to be admissible if D is admissible according to Definition 2.

Definition 4 (Admissible family of space-time discretizations) A family of space-time discretiza- In what follows, when referring to a generic element Dm of an admissible family of discretizations {Dm} m∈N , the subscript m will be dropped for the ease of reading in cases where no ambiguity arises.

tions {Dm} m∈N is admissible if h Dm → 0, |δtm| → 0 as m → ∞,

Further notations and discrete tools

In this section, we introduce further notations and some discrete tools which are needed for the analysis of the discrete scheme.

Notations

In the sequel, we use the following notations

-for any V ⊂ Ω and Φ ∈ L 1 (V ), Φ V def = |V | -1
V Φ dx which is meant component-wise for functions with vector or tensor values, -L(E; F ) represents the vector space of bounded linear operators from E to F .

Discrete spaces

First, we define discrete spaces on Ω. The space of piecewise constant functions on Q ∈ {T , ∆} is defined as

H Q (Ω) def = {v ∈ L 2 (Ω) | v K def = v |K ∈ P 0 (K ), ∀K ∈ Q}.
With this, for any v ∈ L 2 (Ω), we denote by

v Q the element of H Q (Ω) such that for all K ∈ Q, (v Q ) K = v K . For v ∈ H ∆ (Ω)
we often use the abbreviation vσ instead of v ∆σ .

Next, we define discrete spaces on Ω × (0, T ). Here, the space of piecewise constant functions on

Q ∈ {T , E }, with T def = T × D t and E def = ∆ × D t
, is given as

H Q (Ω × (0, T )) def = {v ∈ L 2 (Ω × (0, T )) | v (n) K def = v |K ×In ∈ P 0 (K × In), ∀(K , In) ∈ Q}.
In the same way, for any v ∈ L 2 (Ω × (0, T )), we denote by v Q the element of

H Q (Ω × (0, T )) such that for all (K , In) ∈ Q, (v Q ) (n) K = v K ×In . With this, for each v ∈ H Q (Ω × (0, T )) (Q = Q × D t
and Q ∈ {T , ∆}) and for each t ∈ In, we define

v (n) = v(t) ∈ H Q(Ω) s.t. (v(t)) K = v(•, t) K for all K ∈ Q.

Discrete operators and norms

We now introduce a general trace reconstruction operator, which allows to define discrete gradients and H 1 -norms on the spaces H Q .

Definition 5 (Trace reconstruction operator) A trace reconstruction operator is a set of bounded linear operators I, such that I = {Iσ} σ∈E , Iσ ∈ L(H T (Ω); P 0 (σ)), and Iσv = 0 for all v ∈ H T and σ ∈ Eext.

Among these operators, we will consider the ones, denoted by Υ def = {Υσ} σ∈E , for which there exist, for all σ ∈ E int with Tσ = {K, L}, two non-negative values, θ K,σ and θ L,σ , such that θ K,σ + θ L,σ = 1 and which are given by

Υσv = θ L,σ v K + θ K,σ v L if σ ∈ E int , 0 if σ ∈ Eext. (20) 
We denote by R E the set of operators satisfying [START_REF] Eymard | Convergence d'un schéma de type éléments finis-volumes finis pour un système formé d'une équation elliptique et d'une équation hyperbolique[END_REF]. Of special interest is the trace reconstruction

operator γ = {γσ} σ∈E that is defined, for all v ∈ H T (Ω), by γσv =    d L,σ v K + d K,σ v L d K,σ + d L,σ if σ ∈ E int , 0 if σ ∈ Eext. (21) 
Then, for any trace reconstruction operator I = {Iσ} σ∈E matching Definition 5 and for any v ∈ H T (Ω), we define a discrete gradient with values in (H T (Ω)) d :

( ∇ D,I v) K def = 1 |K| σ∈E K |σ|(Iσv -v K )n K,σ , (22) 
a discrete norm:

v T ,I def =   K∈T σ∈E K |σ| d K,σ |Iσv -v K | 2   1 2 , ( 23 
)
where for I = γ we use the simplified

notation ||v|| T def = v T ,γ ,
a discrete dual semi-norm for all u ∈ L 2 (Ω):

||u|| -1,T def = sup Ω u(x)w(x) dx : w ∈ H T (Ω), ||w|| T = 1 (24) 
the extensions of both previous norms to the space H T (Ω × (0, T )):

||v|| T def = T 0 ||v(t)|| 2 T dt 1/2 and ||v|| -1,T def = T 0 ||v(t)|| 2 -1,T dt 1/2 .
Finally, for all v ∈ H T (Ω × (0, T )) and n = 0, • • • , N -1, we also define the discrete time derivative of v,

(δ t v) (n) K def = v (n+1) K -v (n) K δt (n+ 1 2 ) (25) 
and, for all K ∈ T and σ ∈ E K , we denote by

F K,σ : H T (Ω) × H T (Ω) → P 0 (σ) (26) 
a numerical flux designed to approximate the flow induced by the normal component of a gradient term with respect to n K,σ . In this work, we assume that the fluxes are locally mass conservative, meaning that for any σ ∈ E int with Tσ = {K, L}

F K,σ (u, v) + F L,σ (u, v) = 0. ( 27 
)

Definition of the scheme

Using the notations introduced in Sections 3.1-3.2, a finite volume discretization of problem [START_REF] Droniou | Study of the mixed finite volume method for stokes and navier-stokes equations[END_REF], along with an implicit Euler scheme for the time discretization, consists in computing a pair (u, p) ∈

[H T (Ω × (0, T ))] 2 s.t., for all n ∈ {0, • • • , N -1} and K ∈ T : |K| u (n+1) K -u (n) K δt (n+ 1 2 ) + σ∈E K f 1 (u (n+1) 1,σ )v (n+1) K,σ + f 1 (u (n+1) 2,σ )λ 2 (u (n+1) 3,σ )( 1 -2 )G K,σ - σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) = |K| f 1 (c K )s + K -f 1 (u (n+1) K )s - K , (28a) σ∈E 
K v (n+1) K,σ = |K|(s + K -s - K ). ( 28b 
)
Note that (28b) also holds for n = -1. In the previous discrete system (28), we have used the following notations

v (n+1) K,σ = -λ T (u (n+1) 1,σ ) F K,σ (p (n+1) , p (n+1) ) -f (u (n+1) 0,σ )G K,σ , (29) 
with u (n+1) 0,σ = 0.5(u

(n+1) K + u (n+1) L ), G K,σ = |σ|(δ K,σ Λ K n K,σ • g -δ L,σ Λ L n L,σ • g), (30) 
with δ K,σ = d K,σ τ L,σ d L,σ τ K,σ +d K,σ τ L,σ , δ L,σ = d L,σ τ K,σ d L,σ τ K,σ +d K,σ τ L,σ , τ K,σ = n K,σ •Λ K n K,σ , τ L,σ = n L,σ •Λ L n L,σ .
The downstream upstream inner-face saturations {u (n+1)

i,σ } i=1,...,3 are defined according to the sign of the quantitites {M i } i=1,...,3 in the following way

u (n+1) i,σ = u (n+1) K if M i ≥ 0, u (n+1) L otherwise, (31) 
with

M 1 = f (u (n+1) 0,σ )G K,σ -F K,σ (p (n+1) , p (n+1) ), M 2 = ( 1 -2 )G K,σ , M 3 = -M 2 . For σ ∈ Eext, we set u (n+1) L = 0.
For the case that σ ∈ Eext, we use the same formulas as introduced above by setting

u n+1 L = 0, δ K,σ = 1, and δ L,σ = 0.
In view of analyzing this discrete scheme, we introduce, for all χ :

R → R, α ∈ H ∆ (Ω), (u, v, w) ∈ [H T (Ω)] 3 , the form a T ,χ,α (u, v, w) = - K∈T σ∈E K χ(ασ)F K,σ (u, v)w K . ( 32 
)
4 Analysis of the finite volume discretization

The aim of this section is to carry out an analysis of the discrete problem (28) by making the following assumptions. 

(P4) For χ = 1, χ = λ T or χ = λ 1 , a Tm,χ,• is weakly consistent on L 2 (0, T ; D), i.e., for all ϕ ∈ L 2 (0, T ; D),

Dm (ϕ) → 0 as m → ∞, where, Dm (ϕ) def = max (u,v,w)∈P m inf Υm∈R Em 1 w Tm T 0 a Tm,χ,v(t) (u(t), ϕ Tm (t), w(t)) dt - T 0 Ω χ(v)Λ∇ϕ • ∇ Dm,Υm w dx dt , (35) 
where

P m def = {(u, v, w) | (u, w) ∈ [H Tm (Ω × (0, T ))] 2 , w = 0, v ∈ H Em (Ω × (0, T ))}.
By using the fact that D is a dense subspace of H 1 0 (Ω), we extend in Proposition 4 property (P4) to the space L 2 (0, T ; H 1 0 (Ω)). This result is stated and proved in Section 8.1.

A priori estimates

In this section, we establish several estimates that will be used in Sections 4.2 and 4.3 to prove the existence of discrete solutions and the convergence of the scheme. 

p(t) T ≤ C 1 , (36) 
ψ(u) T ≤ C 2 , (37) 
sup

t∈[0,T [ Ψ (u(t)) L 1 (Ω) ≤ C 3 , (38) 
sup

t∈[0,T [ u(t) L 2 (Ω) ≤ C 4 . ( 39 
)
Proof Let n ∈ 0, N -1 . Multiplying equation (28b) by p

K and summing it over K ∈ T give

T p,1 = T p,2 + T p,3 with T p,1 = - K∈T σ∈E K λ T (u (n+1) 1,σ )F K,σ (p (n+1) , p (n+1) )p (n+1) K , T p,2 = - K∈T σ∈E K λ T (u (n+1) 1,σ ) f (u (n+1) 0,σ )G K,σ p (n+1) K , T p,3 = K∈T |K|(s + K -s - K )p (n+1) K .
Thanks to the coercivity assumption [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF], we obtain

T p,1 ≥ Ĉ1 p (n+1) 2 T .
By using Lemma 12 with M (x, y) = λ T (x) f (y), we deduce there exists a constant C 5 > 0 depending on λ, λ, λ 1 λ 2 , ρ 1 , ρ 2 , g, β 0 and Ω such that

T p,2 ≤ C 5 p (n+1) T .
Using the Cauchy-Schwarz inequality and Proposition 4 of [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF] yield

T p,3 ≤ ( s + L 2 (Ω) + s - L 2 (Ω) ) p (n+1) L 2 (Ω) ≤ ( s + L 2 (Ω) + s - L 2 (Ω) )C 6 p (n+1) T ,
where C 6 depends on Ω, ζ 3 and ζ 4 . The previous inequalities thus lead to

p (n+1) T ≤ 1 Ĉ1 C 5 + C 6 ( s + L 2 (Ω) + s - L 2 (Ω) ) .
Since this estimate is also valid for n = -1, we therefore have

sup t∈[0,T [ p(t) T ≤ 1 Ĉ1 C 5 + C 6 ( s + L 2 (Ω) + s - L 2 (Ω) ) ,
which gives [START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF].

Multiplying equation (28a) by ψ(u

K

) and summing it up over K ∈ T results in

T ψ = T ψ,1 + T ψ,2 + T ψ,3 with T ψ = K∈T |K| u (n+1) K -u (n) K δt (n+ 1 2 ) ψ(u (n+1) K ) - K∈T σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) ))ψ(u (n+1) K ), (40) 
T ψ,1 = - K∈T σ∈E K f 1 (u (n+1) 1,σ )v (n+1) K,σ ψ(u (n+1) K ), (41) 
T ψ,2 = K∈T σ∈E K f 1 (u (n+1) 2,σ )λ 2 (u (n+1) 3,σ )( 2 -1 )G K,σ ψ(u (n+1) K ), (42) 
T ψ,3 = K∈T |K| f 1 (c K )s + K -f 1 (u (n+1) K )s - K ψ(u (n+1) K ). ( 43 
)
Using inequality ( 14) together with the coercivity property [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF] with χ = 1, we obtain

T ψ ≥ K∈T |K| Ψ (u (n+1) K ) -Ψ (u (n) K ) δt (n+ 1 2 ) + Ĉ1 ψ(u (n+1) ) 2 T . (44) 
Let us consider the term T ψ,1 . Using the continuity property [START_REF] Schneider | Nonlinear finite volume schemes for complex flow processes and challenging grids[END_REF] 

with χ = f 1 λ T and Lemma 12 with M (x, y) = (f 1 λ T )(x) f (y), we get T ψ,1 ≤ Cχ p (n+1) T ψ(u (n+1) ) T + C 7 ψ(u (n+1) ) T .
Again, using Lemma 12 with M (x,

y) = f 1 (x)λ 2 (y)( 2 -1 ) gives T ψ,2 ≤ C 8 ψ(u (n+1) ) T .
For the term T ψ,3 we proceed in the same way as previously for the pressure estimate and use Young's inequality, which leads to

T ψ,3 ≤ ( s + L 2 (Ω) + s - L 2 (Ω) ) ψ(u (n+1) ) L 2 (Ω) ≤ Ĉ1 4 ψ(u (n+1) ) 2 T + 1 Ĉ1 C 6 ( s + L 2 (Ω) + s - L 2 (Ω) ) 2 .
By combining these estimates we deduce that

K∈T |K| Ψ (u (n+1) K ) -Ψ (u (n) K ) δt (n+ 1 2 ) + Ĉ1 ψ(u (n+1) ) 2 T ≤Cχ p (n+1) T ψ(u (n+1) ) T + (C 7 + C 8 ) ψ(u (n+1) ) T + Ĉ1 4 ψ(u (n+1) ) 2 T + 1 Ĉ1 C 6 ( s + L 2 (Ω) + s - L 2 (Ω) ) 2 .
Using again Young inequality and estimate [START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF], we deduce that there is a constant C1 such that

K∈T |K| Ψ (u (n+1) K ) -Ψ (u (n) K ) δt (n+ 1 2 ) + Ĉ1 4 ψ(u (n+1) ) 2 T ≤ C1 .
Multiplying this inequality by δt (n+ 1 2 ) , summing over n = 0, • • • , -1 with ∈ 1, N , and using inequalities [START_REF] Danilov | A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes[END_REF] to obtain

Ψ (u ( ) ) L 1 (Ω) + Ĉ1 4 t ( ) 0 ψ(u(s)) 2 T ds ≤ C1 T + L ψ 2 u (0) 2 L 2 (Ω) . (45) 
Since ( 45) is valid for all ∈ 1, N , we deduce, for = N ,

ψ(u) T ≤ 4 Ĉ1 C1 T + L ψ 2 u (0) 2 L 2 (Ω) 1 2 , ( 46 
)
which gives [START_REF] Schneider | Nonlinear finite-volume scheme for complex flow processes on corner-point grids[END_REF].

If t ∈ [t (0) , t (1) [ then u(t) = u (0) and hence [START_REF] Danilov | A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes[END_REF] gives

Ψ (u(t)) L 1 (Ω) = Ψ (u (0) ) L 1 (Ω) ≤ L ψ 2 u (0) 2 L 2 (Ω) .
If t ∈ [t (1) , T [ then there exists ∈ 1, N such that t ∈ [t ( ) , t ( +1) [ and hence u(t) = u ( ) and thanks to (45) we get

Ψ (u(t)) L 1 (Ω) ≤ C1 T + L ψ 2 u (0) 2 L 2 (Ω) .
From the two previous inequalities we deduce that sup

t∈[0,T [ Ψ (u(t)) L 1 (Ω) ≤ C1 T + L ψ 2 u (0) 2 L 2 (Ω) , (47) 
which gives [START_REF] Schneider | Comparison of finite-volume schemes for diffusion problems[END_REF].

Finally, thanks to ( 13) and (47), we deduce [START_REF] Terekhov | Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem[END_REF].

Lemma 2 (Discrete H -1 -estimate) Let D be a space-time discretization matching Definition 3. Assume that Hypotheses 1 and the continuity and coercivity properties, (P2) and (P3), hold. Then, there

exists C 9 > 0, depending on Ω, T , ζ 3 , ζ 4 , β 0 , 1 , 2 , g, λ i with i = 1, 2, λ, λ, L ψ , s + , s -, u init , Ĉ1 ,
and Cχ with χ = f 1 λ T and χ = 1 such that any discrete solution u ∈ H T (Ω × (0, T )) of problem [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF] satisfies

δ t u -1,T ≤ C 9 . ( 48 
)
Proof For any w ∈ H T (Ω), we deduce, from (28a), that

K∈T |K| u (n+1) K -u (n) K δt (n+ 1 2 ) w K ≤ K∈T σ∈E K f 1 (u (n+1) 1,σ )v (n+1) 
K,σ w K + K∈T σ∈E K f 1 (u (n+1) 2,σ )λ 2 (u (n+1) 3,σ )( 1 -2 )G K,σ w K + K∈T σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) ))w K + K∈T f 1 (c K )s + K -f 1 (u (n+1) K )s - K w K . ( 49 
)
The four terms on the right hand side of (49) can be bounded using the same techniques as in the proof of Lemma 1. This provides the existence of a constant C 10 > 0 such that, for all w ∈ H T (Ω),

Ω (δ t u) (n) (x)w(x) dx ≤ C 10 p (n+1) T + ψ(u (n+1) ) T + s + L 2 (Ω) + s - L 2 (Ω) + 1 w T ,
from which we deduce that

||(δ t u) (n) || -1,T ≤ C 10 ( p (n+1) T + ψ(u (n+1) ) T + s + L 2 (Ω) + s - L 2 (Ω) + 1).
Squaring both sides of the inequality above, multiplying it by δt (n+ 1 2 ) , and summing up over n = 0, ..., N -1, results in

||(δ t u)|| 2 -1,T ≤ 5C 2 10 ( p 2 T + ψ(u) 2 T + T ( s + 2 L 2 (Ω) + s -2 L 2 (Ω) + 1)
). Then, thanks to Lemma 1, we deduce that there exists

C 9 > 0, depending on Ω, T , ζ 3 , ζ 4 , β 0 , 1 , 2 , g, λ i with i = 1, 2, λ, λ, L ψ , s + , s -, u init , and Cχ with χ = f 1 λ T and χ = 1 such that ||δ t u|| -1,T ≤ C 9 .
Lemma 3 (Estimate on the time translates) Let D be a space-time discretization matching Definition 3. Assume that Hypotheses 1 and the continuity and coercivity properties, (P2) and (P3), hold. Then, there exists

C 11 > 0 depending on Ω, T , ζ 3 , ζ 4 , β 0 , 1 , 2 , g, λ i with i = 1, 2, λ, λ, L ψ , s + , s -, u init , Ĉ1
and Cχ with χ = f 1 λ T and χ = 1, such that any discrete solution u ∈ H T (Ω × (0, T )) of problem [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF] satisfies

ψ(u)(•, • + τ ) -ψ(u) L 2 (Ω×(0,T -τ )) ≤ C 11 √ τ , ∀τ ∈]0, T [. ( 50 
)
Proof Thanks to Lemma 2 and to the estimate (37) of Lemma 1, (50) can be obtained by following the proof of Lemma 3.11 in [START_REF] Brenner | Convergence of a vertex centred discretization of two-phase darcy flows on general meshes[END_REF].

Lemma 4 (H -1 -estimate) Let D be a space-time discretization matching Definition 3. Assume that Hypotheses 1 and the continuity and coercivity properties, (P2) and (P3), hold. Then, there exists C 12 > 0,

depending on Ω, T , α, ζ 1 , ζ 3 , ζ 4 , β 0 , 1 , 2 , g, λ i with i = 1, 2, λ, λ, L ψ , s + , s -, u init , Ĉ1 and Cχ with χ = f 1 λ T and χ = 1, such that any discrete solution u ∈ H T (Ω × (0, T )) of problem (28) satisfies δ t u L 2 (0,T ;H -1 0 (Ω)) ≤ C 12 .
(51)

Proof For any w ∈ H 1 0 (Ω) and n ∈ 0, N , using Lemma 10, we have

Ω (δ t u) (n) w dx = Ω (δ t u) (n) w T dx ≤ (δ t u) (n) -1,T w T T ≤ C 16 (δ t u) (n) -1,T w H 1 0 (Ω) .
We thus deduce that

δ t u L 2 (0,T ;H -1 0 (Ω)) ≤ C 16 (δ t u) -1,
T and conclude the proof thanks to Lemma 2.

Lemma 5 (L 2 -estimate on the dual mesh ∆) Let D be a space-time discretization matching Definition 3. Assume that Hypotheses 1 and the continuity and coercivity properties, (P2) and (P3), hold. Then, there exists

C 13 > 0, depending on Ω, T , ζ 3 , ζ 4 , β 0 , 1 , 2 , g, λ i with i = 1, 2, λ, λ, L ψ , s + , s -, u init , Ĉ1
and Cχ with χ = f 1 λ T and χ = 1, such that any discrete solution u ∈ H T (Ω × (0, T )) of problem [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF] satisfies

ψ(u) -ψ(v) L 2 (Ω×(0,T )) ≤ C 13 h D , (52) 
for all v ∈ H E (Ω × (0, T )) such that for all n ∈ 0, N , σ ∈ E, v (n) σ ∈ [min{u (n) K , u (n) L }, max{u (n) K , u (n) L }] if Tσ = {K, L} otherwise if Tσ = {K}, v (n) σ ∈ [min{u (n) K , 0}, max{u (n) K , 0}]. Proof We have ψ(u) -ψ(v) 2 L 2 (Ω×(0,T )) = N n=0 δt n+ 1 2 ψ(u (n) ) -ψ(v (n) ) 2 L 2 (Ω) = N n=0 δt n+ 1 2 K∈T σ∈E K |∆ K,σ |(ψ(u (n) K ) -ψ(v (n) σ )) 2 .
Since ψ is a monotone function, we notice that for all K ∈ T and σ ∈ E K :

-if σ ∈ E int with Tσ = {K, L} then |ψ(u (n) K ) -ψ(v (n) σ )| ≤ |ψ(u (n) K ) -ψ(u (n) L )| = d K,σ + d L,σ d K,σ |ψ(u (n) K ) -γσ(ψ(u (n) ))|, -if σ ∈ Eext then |ψ(u (n) K ) -ψ(v (n) σ )| ≤ |ψ(u (n) K )|.
By using the mesh regularity, we then deduce

ψ(u) -ψ(v) 2 L 2 (Ω×(0,T )) ≤ 2 ζ 4 N n=0 δt n+ 1 2 K∈T σ∈E K |∆ K,σ | (ψ(u (n) K ) -γσ(ψ(u (n) ))) 2 = 2 ζ 4 N n=0 δt n+ 1 2 K∈T σ∈E K |σ|d K,σ d (ψ(u (n) K ) -γσ(ψ(u (n) ))) 2 ≤ 2h 2 D ζ 4 d N n=0 δt n+ 1 2 K∈T σ∈E K |σ| d K,σ (ψ(u (n) K ) -γσ(ψ(u (n) ))) 2 = 2h 2 D ζ 4 d ψ(u) 2 T .
Finally, using the estimate (37) of Lemma 1, we obtain that there exists a constant

C 13 > 0 such that ψ(u) -ψ(v) L 2 (Ω×(0,T )) ≤ C 13 h D .

Existence of discrete solutions

Proposition 1 (Existence of discrete solutions) Let D be a space-time discretization matching Definition 3. Assume that Hypotheses 1 and the continuity and coercivity properties, (P2) and (P3), hold. For all n ∈ 0, N -1 , there exists at least one solution to the equations [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF].

Proof Let us take n ∈ 0, N -1 and let us introduce the following open bounded subset of

R n T ×R n T ω = (p (n+1) T , u (n+1) 
T

) ∈ R n T × R n T p (n+1) T < C 1 + 1 and u (n+1) L 2 (Ω) < C 4 + 1
and the application ην defined over ω and for all ν ∈ [0, 1], by

ην : R n T × R n T → R n T × R n T (p (n+1) T , u (n+1) 
T ) → (η ν,1 , η ν,2 )
where, for all K ∈ T ,

(η ν,1 ) K = -ν   σ∈E K λ T (u (n+1) 1,σ )(F K,σ (p (n+1) , p (n+1) ) -f (u (n+1) 0,σ )G K,σ ) + |K|(s + K -s - K )   +(1 -ν)|K|p (n+1) K , (η ν,2 ) K = ν   |K| u (n+1) K -u (n) K δt (n+ 1 2 ) + σ∈E K    f 1 (u (n+1) 1,σ )v (n+1) K,σ +f 1 (u (n+1) 2,σ )λ 2 (u (n+1) 3,σ )( 1 -2 )G K,σ -F K,σ (ψ(u (n+1) ), ψ(u (n+1) ))       -ν|K| f 1 (c K )s + K -f 1 (u (n+1) K )s - K +(1 -ν)|K|u (n+1) K .
ην is continuous with respect to ν, p

T and u

T

. Thanks to (14) used with s 1 = 0 and (12), we get that for all s ∈ R,

sψ(s) ≥ 0. ( 53 
)
Then proceeding in the same way as in the proof of Lemma 1 and thanks to (53), we deduce that

∀ν ∈ [0, 1], 0 R 2n T / ∈ ην (∂ω).
The topological degree d(ην , ω, 0 R 2n T ) is therefore well defined. For ν = 0, the associated system, ην = 0 R 2n T , admits one solution. Indeed, we have p

(n+1) T = 0 R n T and u (n+1) T = 0 R n T and both
solutions belong to ω. Since the degree is homotopy invariant, we have

∀ν ∈ [0, 1], d(ην , ω, 0 R 2n T ) = d(η 0 , ω, 0 R 2n T ) = 0.
As, for ν = 1, the system ην = 0 R 2n T corresponds to [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF], the previous relation guarantees the existence of a solution in ω.

Convergence proof

Before proving the convergence of the discrete scheme in this section, we present a compactness result and establish some further estimates.

Lemma 6 (Compactness of approximate solution) Let Dm be a sequence of space-time discretizations matching Definition 4 and (pm, um) ∈ [H T (Ω × (0, T ))] 2 be a discrete solution of problem [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF]. Let us assume that Hypotheses 1 and the continuity and coercivity properties, (P2) and (P3), hold, then, up to a subsequence (still denoted with the subindex m), we have the following results:

(i) ψ(um) converges in L 2 (Ω×]0, T [) to some ψ(ū) ∈ L 2 (0, T ; H 1 0 (Ω)
), (and therefore um converges in

L 2 (Ω×]0, T [) to ū), (ii) for any Υm ∈ R Em , ∇ Dm,Υm ψ(um) weakly converges in L 2 (Ω×]0, T [) d to ∇ψ(ū), (iii) pm weakly converges in L 2 (Ω×]0, T [) to some p ∈ L 2 (0, T ; H 1 0 (Ω)), (iv) for any Υm ∈ R Em , ∇ Dm,Υm pm weakly converges in L 2 (Ω×]0, T [) d to ∇p, (v) (δ t u)m weak-converges in L 2 (0, T ; H -1 0 (Ω)) to ∂ t ū, (vi) um weakly converges in L 2 (Ω) uniformly on [0, T ] to ū, (vii) for Tm → T , lim inf m→∞ Ω Ψ (um(Tm)) ≥ Ω Ψ (ū(T )).
(viii) ψ((um) i ), i ∈ {1, 2, 3}, strongly converge to ψ(ū) ∈ L 2 (0, T ; H 1 0 (Ω)) in L 2 (Ω×]0, T [), (and therefore

(um) i converge in L 2 (Ω×]0, T [) to ū).
Proof We first define ψm by ψm = ψ(um) a.e. on Ω×]0, T [ and ψm = 0 a.e. on R d+1 \ Ω×]0, T [.

Following the proof of Lemma 3.3 in [START_REF] Eymard | The finite volume method[END_REF], using the fact that, for all v ∈ H T (Ω)

(v K -v L ) 2 d K,σ + d L,σ ≤ (γσv -v K ) 2 d K,σ + (γσv -v L ) 2 d L,σ ,
and (37), we can prove that there exists a constant C 14 > 0 only depending on Ω s.t.

ψm(• + η, •) -ψm 2 L 2 (R d+1 ) ≤ C 2 2 η ( η + C 14 h Dm ) , ∀η ∈ R d . (54) 
From ( 50), [START_REF] Terekhov | Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem[END_REF], and the Lipschitz property of ψ, we also deduce that

ψm(•, • + τ ) -ψm 2 L 2 (R d+1 ) ≤ |τ |(|τ |C 2 11 + 2L 2 ψ C 2 4 ), ∀τ ∈ R. (55) 
Thus, with (54) and ( 55), an application of the Kolmogorov theorem gives that ψ(um) strongly converges to some Φ in L 2 (Ω×]0, T [). Therefore, ψ(um) strongly converges to ψ(ū) with ū = ψ -1 (Φ).

Then, thanks to the assumptions made on ψ (see Hypotheses 1) and by using Lemma 7.1 in [START_REF] Angelini | A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation[END_REF] with g = ψ -1 , we deduce that um also strongly converges to ū.

For any Υm ∈ R Em , using [START_REF] Schneider | Nonlinear finite-volume scheme for complex flow processes on corner-point grids[END_REF], the equivalence of the norms || • || T and || • || T ,Υm (see Lemma 1 in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF]) and a straightforward adaptation of Lemma 4.3 in [START_REF] Eymard | Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces[END_REF] to time dependent problems, we deduce that there exists G such that ∇ Dm,Υm ψ(um) weakly converges in

L 2 (Ω×]0, T [) d to G = ∇Φ.
From [START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF] and Proposition 4 in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF], we have that pm is also bounded in L 2 (Ω×]0, T [) and thus weakly converges to some limit p. Again, for any Υm ∈ R Em , using [START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF], the equivalence of the norms From (51), we deduce that (δ t u)m weak-converges in L 2 (0, T ; H -1 0 (Ω)) to some U . In the same way as in the proof of Theorem 4.18 in [START_REF] Droniou | The Gradient Discretisation Method[END_REF] and by using the strong convergence of um one can show that

U = ∂ t ū.
Statement (vi) is obtained by using ( 39), (51) and Theorem 4.19 of [START_REF] Droniou | The Gradient Discretisation Method[END_REF], whereas (vii) is a consequence of (vi), the convexity of Ψ , and Lemma D.11 of [START_REF] Droniou | The Gradient Discretisation Method[END_REF]. Finally, from ( 52) and (i), we obtain (viii).

Lemma 7 Let D be a space discretization matching Definition 2, m : R × R → R a bounded function and Υ the trace reconstruction operator obtained by taking θ K,σ = δ K,σ (see Definition 5 and equation [START_REF] Potier | Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés[END_REF]).

For all (u, v) ∈ [H T (Ω)] 2 and (u 1 , u 2 ) ∈ [H ∆ (Ω)] 2 there exists a constant C1m > 0 such that - K∈T σ∈E K m(u 1,σ , u 2,σ )G K,σ v K - Ω m(u, u)Λg • ∇ D,Υ v dx ≤ C1m m(u 1 , u 2 ) -m(u, u) L 2 (Ω) v T . Proof Let I = -K∈T σ∈E K m(u 1,σ , u 2,σ )G K,σ v K .
Inserting the definition of G K,σ and by rearrange of terms, we deduce that

I = K∈T σ∈E K |σ|m(u 1,σ , u 2,σ )Λ K n K,σ • g(Υσv -v K ).
We thus get I = I 1 + I 2 with

I 1 = K∈T σ∈E K |σ|(m(u 1,σ , u 2,σ ) -m(u K , u K ))Λ K n K,σ • g(Υσv -v K ), I 2 = K∈T σ∈E K |σ|m(u K , u K )Λ K n K,σ • g(Υσv -v K ) = Ω m(u, u)Λg • ∇ D,Υ v dx.
Thanks to Cauchy-Schwarz inequality and the the equivalence of the discrete norms (see Lemma 1 in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF]) we infer

I 1 ≤ dβ 0 |g|   K∈T σ∈E K |∆ K,σ |(m(u 1,σ , u 2,σ ) -m(u K , u K )) 2   1 2 v T ,Υ ≤ d 2β 0 ζ 4 |g| m(u 1 , u 2 ) -m(u, u) L 2 (Ω) v T .
Lemma 8 (Error estimate for the strong convergence) Let D be a space-time discretization matching Definition 3. Let us assume that Hypotheses 1, the linearity, continuity and coercivity properties, (P1), (P2) and (P3), hold. Let (p, u) ∈ [H T (Ω × (0, T ))] 2 be a discrete solution of problem [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF] and

(q, v) ∈ [H T (Ω × (0, T ))] 2 two test functions. Then there exist C2 , C3 > 0 such that, p -q 2 T ≤ C2 C3 m 0 (u 1 , u 0 ) -m 0 (u, u) 2 L 2 (Ω×(0,T )) + T 0 Ω (λ T f )(u)Λg • ∇ D,Υ (p -q) + T 0 Ω (s + -s -)(p -q) - T 0 a T ,λT,u1(t) (p(t), q(t), p(t) -q(t)) , (56) 
with m 0 (x, y) = λ T (x) f (y), and C4 , C5 , C6 , C7 > 0 such that,

ψ(u) -v 2 T ≤ C4 -( Ψ (u N ) L 1 (Ω) -Ψ (u 0 ) L 1 (Ω) ) + T 0 Ω δ t u v + C5 m 1 (u 1 , u 0 ) -m 1 (u, u) 2 L 2 (Ω×(0,T )) + C6 m 2 (u 2 , u 3 ) -m 2 (u, u) 2 L 2 (Ω×(0,T )) + C7 p -q 2 T - T 0 a T ,λTf1,u1(t) (p(t), q(t), ψ(u(t)) -v(t)) + T 0 Ω (f 1 λ T f + f 1 λ 2 ( 1 -2 ))(u)Λg • ∇ D,Υ (ψ(u) -v) + T 0 Ω (f 1 (c)s + -f 1 (u)s -)(ψ(u) -v) - T 0 a T ,1,1 (ψ(u(t)), v(t), ψ(u(t)) -v(t)) , (57) 
with m 1 (x, y) = (f 1 λ T )(x) f (y) and m 2 (x, y) = f 1 (x)λ 2 (y)(ρ 2 -ρ 1 ).
Proof Let n ∈ 0, N -1 . We set

T p,1 = - K∈T σ∈E K λ T (u (n+1) 1,σ )F K,σ (p (n+1) , p (n+1) -q (n+1) )(p (n+1) K -q (n+1) K ).
Thanks to assumption [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF], with χ = λ T and α = u

(n+1) 1
, we first have

T p,1 ≥ Ĉ1 p (n+1) -q (n+1) 2 T .
Multiplying equation (28b) by p

K and summing it over K ∈ T results in Tp,1 = Tp,2 + Tp,3

with

Tp,1 = - K∈T σ∈E K λ T (u (n+1) 1,σ )F K,σ (p (n+1) , p (n+1) )(p (n+1) K -q (n+1) K ), Tp,2 = - K∈T σ∈E K λ T (u (n+1) 1,σ ) f (u (n+1) 0,σ )G K,σ (p (n+1) K -q (n+1) K ), Tp,3 = K∈T |K|(s + K -s - K )(p (n+1) K -q (n+1) K ) = Ω (s + -s -)(p (n+1) -q (n+1) ). ( 58 
)
After setting

Tp,4 = -

K∈T σ∈E K λ T (u (n+1) 1,σ )F K,σ (p (n+1) , q (n+1) )(p (n+1) K -q (n+1) K ),
we observe that T p,1 = Tp,2 + Tp,3 -Tp,4 . Then, by using Lemma 7 with m 0 (x, y) = λ T (x) f (y), we get that there exists a constant C1m 0 > 0 such that Tp,2 ≤ C1m 0 m 0 (u

(n+1) 1 , u (n+1) 0 ) -m 0 (u (n+1) u (n+1) ) L 2 (Ω) p (n+1) -q (n+1) T + Ω (λ T f )(u (n+1) )Λg • ∇ D,Υ (p (n+1) -q (n+1) ). ( 59 
)
By gathering the results and using the fact that Tp,4 = a T ,λT,u

(p (n+1) , q (n+1) , p (n+1)q (n+1) ), we obtain

Ĉ1 p (n+1) -q (n+1) 2 T ≤ C1m 0 m 0 (u (n+1) 1 , u (n+1) 0 ) -m 0 (u (n+1) , u (n+1) ) L 2 (Ω) p (n+1) -q (n+1) T + Ω (λ T f )(u (n+1) )Λg • ∇ D,Υ (p (n+1) -q (n+1) ) + Ω (s + -s -)(p (n+1) -q (n+1) ) -a T ,λT,u (n+1) 1 
(p (n+1) , q (n+1) , p (n+1)q (n+1) ).

First using Young's inequality, then multiplying the obtained inequality by δt (n+ 1 2 ) and summing it up over n = 0, ..., N -1, yield

p -q 2 T ≤ 4 3 Ĉ1 C1 2 m 0 Ĉ1 m 0 (u 1 , u 0 ) -m 0 (u, u) 2 L 2 (Ω×(0,T )) + T 0 Ω (λ T f )(u)Λg • ∇ D,Υ (p -q) + T 0 Ω (s + -s -)(p -q) - N -1 n=0 δt (n+ 1 2 ) a T ,λT,u (n+1) 1 
(p (n+1) , q (n+1) , p (n+1)q (n+1) ) .

(
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Let us now consider the discrete saturation equation. We set

T u,1 = - K∈T σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) ) -v (n+1) )(ψ(u (n+1) K ) -v (n+1) 

K

).

Thanks to the coercivity property (34),

T u,1 ≥ Ĉ1 ψ(u (n+1) ) -v (n+1) 2 T .
Multiplying equation (28a) by ψ(u

(n+1) K ) -v (n+1) 
K and summing it over K ∈ T results in Tu,1 = Tu,2 + Tu,3 + Tu,4 + Tu,5 , with

Tu,1 = - K∈T σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) ))(ψ(u (n+1) K ) -v (n+1) K ), Tu,2 = - K∈T |K| u (n+1) K -u (n) K δt (n+ 1 2 ) (ψ(u (n+1) K ) -v (n+1) K ), Tu,3 = - K∈T σ∈E K f 1 (u (n+1) 1,σ )v (n+1) K,σ (ψ(u (n+1) K ) -v (n+1) K ), Tu,4 = K∈T σ∈E K f 1 (u (n+1) 2,σ
)λ 2 (u

(n+1) 3,σ )( 2 -1 )G K,σ (ψ(u (n+1) K ) -v (n+1) K ), Tu,5 = K∈T |K| f 1 (c K )s + K -f 1 (u (n+1) K )s - K (ψ(u (n+1) K ) -v (n+1) 

K

).

After setting

Tu,6 = -

K∈T σ∈E K F K,σ (ψ(u (n+1) ), v (n+1) )(ψ(u (n+1) K ) -v (n+1) K ) = a T ,1,1 (ψ(u (n+1) ), v (n+1) , ψ(u (n+1) ) -v (n+1) ),
we observe that T u,1 = Tu,2 + Tu,3 + Tu,4 + Tu,5 -Tu,6 . From inequality [START_REF] Droniou | Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF], we deduce that

Tu,2 ≤ - K∈T |K| Ψ (u (n+1) K ) -Ψ (u (n) K ) δt (n+ 1 2 ) + Ω (δ t u) (n) v (n+1) .
By using the expression of v

K,σ , we observe that

Tu,3 = -a T ,λTf1,u (n+1) 1 (p (n+1) , p (n+1) , ψ(u (n+1) ) -v (n+1) ) - K∈T σ∈E K (f 1 λ T )(u (n+1) 1,σ ) f (u (n+1) 0,σ )G K,σ (ψ(u (n+1) K ) -v (n+1) 

K

).

On one hand, thanks to Lemma 7, we infer

- K∈T σ∈E K (f 1 λ T )(u (n+1) 1,σ ) f (u (n+1) 0,σ )G K,σ (ψ(u (n+1) K ) -v (n+1) K ) ≤ C1m 1 m 1 (u (n+1) 1 , u (n+1) 0 ) -m 1 (u (n+1) , u (n+1) ) L 2 (Ω) ψ(u (n+1) ) -v (n+1) T + Ω (f 1 λ T f )(u (n+1) )Λg • ∇ D,Υ (ψ(u (n+1) ) -v (n+1) ).
On the other hand, we have

-a T ,λTf1,u (n+1) 1 (p (n+1) , p (n+1) , ψ(u (n+1) ) -v (n+1) ) = -a T ,λTf1,u (n+1) 1 (p (n+1) , p (n+1) -q (n+1) , ψ(u (n+1) ) -v (n+1) ) -a T ,λTf1,u (n+1) 1 (p (n+1) , q (n+1) , ψ(u (n+1) ) -v (n+1) ) ≤ Cχ p (n+1) -q (n+1) T ψ(u (n+1) ) -v (n+1) T -a T ,λTf1,u (n+1) 1 (p (n+1) , q (n+1) , ψ(u (n+1) ) -v (n+1) ),
where we have used the continuity property (P2) of the form a T ,λTf1,u (n+1)

1

. Then, we obtain

Tu,3 ≤ C1m 1 m 1 (u (n+1) 1 , u (n+1) 0 
) -m 1 (u (n+1) , u (n+1) ) L 2 (Ω) ψ(u (n+1) ) -v (n+1) T + Ω (f 1 λ T f )(u (n+1) )Λg • ∇ D,Υ (ψ(u (n+1) ) -v (n+1) ) +Cχ p (n+1) -q (n+1) T ψ(u (n+1) ) -v (n+1) T -a T ,λTf1,u (n+1) 1 (p (n+1) , q (n+1) , ψ(u (n+1) ) -v (n+1) ). (61) 
Thanks again to Lemma 7, we have

Tu,4 ≤ C1m 2 m 2 (u (n+1) 2 
, u

(n+1) 3 
) -m 2 (u (n+1) , u (n+1) ) L 2 (Ω) ψ(u (n+1) ) -v (n+1) T + Ω (f 1 λ 2 )(u (n+1) )( 1 -2 )Λg • ∇ D,Υ (ψ(u (n+1) ) -v (n+1) ). ( 62 
)
By gathering all the results, we obtain

Ĉ1 ψ(u (n+1) ) -v (n+1) 2 T ≤ - K∈T |K| Ψ (u (n+1) K ) -Ψ (u (n) K ) δt (n+ 1 2 ) + Ω (δ t u) (n) v (n+1) + C1m 1 m 1 (u (n+1) 1 , u (n+1) 0 ) -m 1 (u (n+1) u (n+1) ) L 2 (Ω) ψ(u (n+1) ) -v (n+1) T + C1m 2 m 2 (u (n+1) 2 
, u

(n+1) 3 
) -m 2 (u (n+1) , u (n+1) ) L 2 (Ω) ) ψ(u (n+1) ) -v (n+1) T + Ω (f 1 λ T f )(u (n+1) )Λg • ∇ D,Υ (ψ(u (n+1) ) -v (n+1) ) +Cχ p (n+1) -q (n+1) T ψ(u (n+1) ) -ψ(v (n+1) T -a T ,λTf1,u (n+1) 1 (p (n+1) , q (n+1) , ψ(u (n+1) ) -v (n+1) ) + Ω (f 1 λ 2 )(u (n+1) )( 1 -2 )Λg • ∇ D,Υ (ψ(u (n+1) ) -v (n+1) ) + Ω (f 1 (c)s + -f 1 (u (n+1) )s -)(ψ(u (n+1) ) -v (n+1) ) -a T ,1,1 (ψ(u (n+1) ), v (n+1) , ψ(u (n+1) ) -v (n+1) ).
Using Young inequality, multiplying this new inequality by δt (n+ 1 2 ) and summing it over n = 0, ..., N -

1 give T 0 ψ(u) -v 2 T ≤ 4 Ĉ1 -( Ψ (u (N ) ) L 1 (Ω) -Ψ (u 0 ) L 1 (Ω) ) + T 0 Ω δ t u v + C1 2 m1 Ĉ1 m 1 (u 1 , u 0 ) -m 1 (u, u) 2 L 2 (Ω)×(0,T ) + C1 2 m2 Ĉ1 m 2 (u 2 , u 3 ) -m 2 (u, u) 2 L 2 (Ω×(0,T )) + C 2 χ Ĉ1 T 0 p -q 2 T - N -1 n=0 δt (n+ 1 2 ) a T ,λTf1,u (n+1) 1 (p (n+1) , q (n+1) , ψ(u (n+1) ) -v (n+1) ) + T 0 Ω (f 1 λ T f + f 1 λ 2 ( 1 -2 ))(u)Λg • ∇ D,Υ (ψ(u) -v) + T 0 Ω (f 1 (c)s + -f 1 (u)s -)(ψ(u) -v) - N -1 n=0 δt (n+ 1 2 ) a T ,1,1 (ψ(u (n+1) ), v (n+1) , ψ(u (n+1) ) -v (n+1) ) . ( 63 
)
Lemma 9 (Strong convergence) Let Dm be a sequence of space-time discretizations matching Definition 4 and (pm, um) ∈ [H T (Ω × (0, T ))] 2 be a discrete solution of problem [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF]. Let us assume that Hypotheses 1 and 2 hold. Then, there exist ψ(ū), p ∈ L 2 (0, T ;

H 1 0 (Ω)) such that lim m→∞ pm -pTm Tm = 0, lim m→∞ ψ(um) -ψ(ū) Tm Tm = 0 ( 64 
)
where, for any m ∈ N and v ∈ L 2 (Ω × (0, T )), v Tm is defined in Section 3.2.2.

Proof Let ψ(ū), p ∈ L 2 (0, T ; H 1 0 (Ω)) be the functions given from Lemma 6 and let ϕ, χ ∈ L 2 (0, T ; D).

For any m ∈ N, we have

pm -pTm Tm ≤ pm -ϕ Tm Tm + ϕ Tm -pTm Tm , ψ(um) -ψ(ū) Tm Tm ≤ ψ(um) -χ Tm Tm + χ Tm -ψ(ū) Tm Tm .
Thanks to Lemma 11, there exists a constant C 17 > 0 such that

ϕ Tm -pTm Tm ≤ C 17 ϕ -p L 2 (0,T ;H 1 0 (Ω)) , χ Tm -ψ(ū) Tm Tm ≤ C 17 χ -ψ(ū) L 2 (0,T ;H 1 0 (Ω)) .
Thanks to Lemma 8, (i)-(viii) of Lemma 6,[START_REF] Schneider | Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media[END_REF] and the properties of the functions λ T , λ 1 , λ 2 , we infer that The convergence of the discrete solutions to some pair (ū, p) has already been shown in Lemma 6 and 9, it remains to show that (ū, p) is indeed a weak solution. This is done in the following theorem.

lim sup m→∞ pm -pTm Tm ≤ C2 T 0 Ω λ T f (ū)Λg • ∇(p -ϕ) + T 0 Ω (s + -s -)(p -ϕ) - T 0 Ω λ T (ū)Λ∇ϕ • ∇(p -ϕ) +C 17 ϕ -p L 2 (0,T ;H 1 0 (Ω)) , lim sup m→∞ ψ(um) -ψ(ū) Tm Tm ≤ C4 -( Ψ (ū(T )) L 1 (Ω) -Ψ (ū(0)) L 1 (Ω) ) + T 0 Ω ∂ t ūψ(ū) + C7 lim sup m→∞ pm -pTm Tm - T 0 Ω (λ T f 1 )(ū)Λ∇ϕ • ∇(ψ(ū) -χ) + T 0 Ω (f 1 λ T f + f 1 λ 2 ( 1 -2 ))(u)Λg • ∇(ψ(ū) -χ) + T 0 Ω (f 1 (c)s + -f 1 (u)s -)(ψ(ū) -χ)- T 0 Ω Λ∇χ • ∇(ψ(ū) -χ) +C 17 χ -ψ(ū) L 2 (0,T ;H 1 0 (Ω)) Since L 2 (0, T ; D) is dense in L 2 (0, T ; H 1 0 (Ω)), by letting ϕ → p in L 2 (0, T ; H 1 0 (Ω))
Theorem 1 (Convergence of the scheme) Let Dm be a sequence of space-time discretizations matching Definition 4 and (pm, um) ∈ [H T (Ω × (0, T ))] 2 be a discrete solution of problem [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF]. Assume that Hypotheses 1 and 2 hold. Then (pm, um) converges, as m → ∞, to the pair (p, ū) (according to Lemma 6 and 9), and this pair is a weak solution of problem [START_REF] Droniou | Study of the mixed finite volume method for stokes and navier-stokes equations[END_REF].

Proof Let ϕ ∈ L 2 (0, T ; D). For any m ∈ N, n ∈ 0, Nm , we multiply equation (28b) by (ϕ Tm )

K and sum it over K ∈ Tm and n ∈ 0, Nm to obtain

Nm n=0 δt (n+1) T (n+1) p,1 - T (n+1) p,2 - T (n+1) p,3 = 0 (65) with T (n+1) p,1 = - K∈Tm σ∈E K λ T ((um) (n+1) 1,σ )F K,σ (p (n+1) m , p (n+1) m 
)(ϕ Tm )

(n+1) K = a Tm,λT,(um) (n+1) 1 (p (n+1) m , p (n+1) m , ϕ (n+1) 
Tm ), T (n+1)

p,2 = - K∈Tm σ∈E K λ T ((um) (n+1) 1,σ ) f ((um) (n+1) 0,σ )G K,σ (ϕ Tm ) (n+1) K , T (n+1) p,3 = K∈Tm |K|(s + K -s - K )(ϕ Tm ) (n+1) K = Ω (s + -s -)ϕ (n+1)
Tm .

Thanks to the properties (P1), (P2), the Cauchy-Schwarz inequality and Lemma 11, we deduce T 0 a Tm,λT,(um)1(t) (pm(t), pm(t) -pTm (t), ϕ Tm (t)) ≤ Cχ pm -pTm Tm ϕ Tm Tm ≤ C 17 Cχ pm -pTm Tm ϕ L 2 (0,T ;H 1 0 (Ω)) .

(66)

Similarly, by using the same ideas as for (59) and by means of the Cauchy-Schwarz inequality and Lemma 11, we get

Nm n=0 δt (n+1) T (n+1) p,2 - T 0 Ω (λ T f )(um)Λg • ∇ Dm,Υm ϕ Tm ≤ C 17 C1m 0 m 0 ((um) 1 , (um) 0 ) -m 0 (um, um) L 2 ((0,T )×Ω) ϕ L 2 (0,T ;H 1 0 (Ω)) ,
(67) with m 0 (x, y) = λ T (x) f (y). Thanks to (65)-(67), we obtain

T 0 a Tm,λT,(um)1(t) (pm(t), pTm (t), ϕ Tm (t)) - T 0 Ω (s + -s -)ϕ Tm - T 0 Ω (λ T f )(um)Λg • ∇ Dm,Υm ϕ Tm ≤ C 17 max(Cχ, C1m 0 ) pm -pTm Tm + m 0 ((um) 1 , (um) 2 ) -m 0 (um, um) L 2 ((0,T )×Ω) ϕ L 2 (0,T ;H 1 0 (Ω)) .
By using the Lemma 6 and 9 and Proposition 4, as m → ∞, we obtain

T 0 Ω λ T (ū)Λ∇p • ∇ϕ - T 0 Ω (s + -s -)ϕ - T 0 Ω (λ T f )(ū)Λg • ∇ϕ = 0.
For any m ∈ N, n ∈ 0, Nm , we multiply equation (28a) by (ϕ Tm ) 

with

T (n+1) u,1 = - K∈Tm σ∈E K F K,σ (ψ(u (n+1) m ), ψ(u (n+1) m ))(ϕ Tm ) (n+1) K = a Tm,1,1 (ψ(u (n+1) m ), ψ(u (n+1) m ), ϕ (n+1) 
Tm ),

T (n+1) u,2 = - K∈Tm |K| (um) (n+1) K -(um) (n) K δt (n+ 1 2 ) (ϕ Tm ) (n+1) K = - Ω (δ t um) (n+1) ϕ (n+1) Tm , T (n+1) 
u,3

= - K∈Tm σ∈E K f 1 ((um) (n+1) 1,σ )v (n+1) K,σ (ϕ Tm ) (n+1) K , T (n+1) 
u,4

= K∈Tm σ∈E K f 1 ((um) (n+1) 2,σ
)λ 2 ((um)

(n+1) 3,σ )( 2 -1 )G K,σ (ϕ Tm ) (n+1) K , T (n+1) 
u,5

= K∈Tm |K| f 1 (c K )s + K -f 1 ((um) (n+1) K )s - K (ϕ Tm ) (n+1) K = Ω (f 1 (c)s + -f 1 (u (n+1) m )s -)(ϕ Tm ) (n+1) .
In the same way as for (66) and (67), we can prove that

Nm n=0 δt (n+1) T (n+1) u,1 - T 0 a Tm,1,1 (ψ(um(t)), ψ(ū) Tm (t), ϕ Tm (t)) ≤ C 17 Cχ ψ(um) -ψ(ū) Tm Tm ϕ L 2 (0,T ;H 1 0 (Ω)) , ( 69 
) Nm n=0 δt (n+1) T (n+1) u,3 + T 0 Ω (f 1 λ T f )(um)Λg • ∇ Dm,Υm ϕ Tm + T 0
a Tm,λTf1,(um)1(t) (pm(t), pTm (t), ϕ Tm (t))

≤ C 17 max(Cχ, C1m 1 )( m 1 ((um) 1 , (um) 0 ) -m 1 (um, um) L 2 ((0,T )×Ω) + pm -pTm Tm ) ϕ L 2 (0,T ;H 1 0 (Ω)) (70) with m 1 (x, y) = (f 1 λ T )(x) f (y) and Nm n=0 δt (n+1) T (n+1) u,4 + T 0 Ω (f 1 λ 2 )(um)( 2 -1 )Λg • ∇ Dm,Υm ϕ Tm ≤ C 17 C1m 2 m 2 ((um) 2 , (um) 3 ) -m 2 (um, um) L 2 ((0,T )×Ω) ϕ L 2 (0,T ;H 1 0 (Ω)) (71) with m 2 (x, y) = f 1 (x)λ 2 (y)( 2 -1 ). Thanks to (68)-(71), we obtain T 0 a Tm,1,1 (ψ(um(t)), ψ(ū) Tm (t), ϕ Tm (t)) + T 0 Ω δ t um ϕ Tm + T 0 Ω (f 1 λ T f )(um)Λg • ∇ Dm,Υm ϕ Tm + T 0 a Tm,λTf1,(um)1(t) (pm(t), pTm (t), ϕ Tm (t)) + T 0 Ω (f 1 λ 2 )(um)( 1 -2 )Λg • ∇ Dm,Υm ϕ Tm - T 0 Ω (f 1 (c)s + -f 1 (um)s -) ϕ Tm ≤ C 17 max(Cχ, C1m 1 , C1m 2 )     ψ(um) -ψ(ū) Tm Tm + m 1 ((um) 1 , (um) 0 ) -m 1 (um, um) L 2 ((0,T )×Ω) + pm -pTm Tm + m 2 ((um) 2 , (um) 3 ) -m 2 (um, um) L 2 ((0,T )×Ω)     ϕ L 2 (0,T ;H 1 0 (Ω)) .
(72) By using Lemma 6 and 9 and Proposition 4, as m → ∞, we therefore obtain

T 0 Ω -ūϕ t - Ω u init (x)ϕ(x, 0)+ T 0 Ω (λ T f 1 )(ū)Λ∇p • ∇ϕ - T 0 Ω (f 1 λ T f )(ū)Λg • ∇ϕ- T 0 Ω (f 1 λ 2 )(ū)( 1 -2 )Λg • ∇ϕ+ T 0 Ω Λ∇ψ(ū) • ∇ϕ- T 0 Ω (f 1 (c)s + -f 1 (ū)s -) ϕ = 0.

Flux discretizations

In this section, we introduce a specific familiy of discrete diffusive fluxes F K,σ , which are used in the equations [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF]. Hereby, we mainly follow the ideas that have been presented in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF][START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF]. Please note that the fluxes do not include the phase mobilities which are evaluated separately such that the fluxes can be constructed analogously.

Please note that in the following, we will define the fluxes based on some u, v ∈ H T (Ω), where u is not meant to be the saturation. In the discrete formulation [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF], the fluxes are then evaluated for u = p (n+1) or u = ψ(u (n+1) ). An established idea to obtain monotone or extremum-principlespreserving schemes, as those developed in [START_REF] Potier | Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés[END_REF][START_REF] Yuan | Monotone finite volume schemes for diffusion equations on polygonal meshes[END_REF][START_REF] Danilov | A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes[END_REF][START_REF] Lipnikov | Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes[END_REF][START_REF] Droniou | Construction and convergence study of schemes preserving the elliptic local maximum principle[END_REF][START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF][START_REF] Schneider | Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media[END_REF][START_REF] Potier | A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators[END_REF], is to compute for each interior face σ ∈ E int , with Tσ = {K, L}, two consistent linear flux approximations, FK,σ (u) and FL,σ (u), which depend on the unknown u ∈ H T (Ω), and to define the final flux F K,σ (u, u) as a convex combination (with weights µ K,σ , µ L,σ that also depend on u) of these linear fluxes:

F K,σ (u, u) = µ K,σ (u) FK,σ (u) -µ L,σ (u) FL,σ (u), with µ K,σ (u) ≥ 0, µ L,σ (u) ≥ 0 and µ K,σ (u) + µ L,σ (u) = 1, (73) 
where the linear fluxes are defined by

FK,σ (u) = |σ| σ ∈S K,σ α K,σσ (I σ u -u K ), (74) 
where S K,σ denotes the face stencil and I σ ∈ L(H T (Ω); P 0 (σ)) a trace reconstruction operator according to Definition 5. The stencil and the coefficients α K,σσ are determined by the conormal decomposition:

Λ K n K,σ = σ ∈S K,σ α K,σσ (x σ -x K ). ( 75 
)
This means that the conormal Λ K n K,σ is decomposed into a basis (x σ -x K ) {σ ∈S K,σ } with coefficients (α K,σσ ) {σ ∈S K,σ } which are computed to be non-negative, i.e. α K,σσ ≥ 0 if possible. By only including neighboring cells into the face stencils, the non-negativity cannot always be guaranteed.

In [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF][START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF], we have thus introduced the idea of formulating the conormal decomposition as an optimization problem. The authors of [START_REF] Terekhov | Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem[END_REF] solve this issue by also including non-neighboring cells. For further details the reader is referred to the given references. By using this conormal decomposition, it can be shown that the linear sub-fluxes (74) are strongly consistent if the trace reconstruction operators {I σ } σ∈E are of second order accuracy [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF].

For any K ∈ T , σ ∈ E K ∩ E int and L ∈ T such that Tσ = {K, L}, we thus get from (73) the numerical flux function

F K,σ (•, •), defined for all (u, v) ∈ [H T (Ω)] 2 by F K,σ (u, v) = µ K,σ (u) FK,σ (v) -µ L,σ (u) FL,σ (v). ( 76 
)
These flux functions are constructed to be conservative, such that equation ( 27) holds.

In the following, different choices for the weights µ K,σ , µ L,σ are presented for the family of schemes (73). Moreover, a general trace reconstruction operator Iσ (see Definition 5), which is needed for the derivation of the different nonlinear schemes, is introduced and given for each face σ ∈ E int by

Iσu = M ∈Iσ ω M,σ u M , M ∈Iσ ω M,σ = 1, ω M,σ ≥ 0, (77) 
where the subset Iσ ⊂ T stands for the interpolation index set (see [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF] for further details).

AvgMPFA scheme

The most simple choice of coefficients is µ K,σ = µ L,σ = 0.5 resulting in a linear finite volume scheme, which is in the following called AvgMPFA.

NLTPFA scheme

To derive a nonlinear two-point flux approximation (NLTPFA), the different terms are reordered such that the flux is written as

F K,σ (u) = t L,σ (u)u L -t K,σ (u)u K -(µ L,σ (u)λ L,σ (u) -µ K,σ (u)λ K,σ (u)) def = R K,σ (u) , (78) 
with the transmissibilities

t K,σ (u) = |σ|   µ K,σ (u) σ ∈S K,σ M ∈{I σ \{K}} α K,σσ ω M,σ + µ L,σ (u) σ ∈S L,σ M ∈{I σ ∩{K}} α L,σσ ω M,σ   , t L,σ (u) = |σ|   µ L,σ (u) σ ∈S L,σ M ∈{I σ \{L}} α L,σσ ω M,σ + µ K,σ (u) σ ∈S K,σ M ∈{I σ ∩{L}} α K,σσ ω M,σ   , (79) 
and

λ K,σ (v) = |σ| σ ∈S K,σ M ∈{I σ \{K,L}} α K,σσ ω M,σ v M , λ L,σ (v) = |σ| σ ∈S L,σ M ∈{I σ \{K,L}} α L,σσ ω M,σ v M . (80) 
The idea of the NLTPFA scheme is to choose the weights such that R K,σ (u) = 0. From a numerical point of view, it is sufficient that |R K,σ (u)| ≤ . Under the assumption that λ K,σ λ L,σ ≥ 0, this can be ensured, by taking

µ K,σ (u) = |λ L,σ (u)| + |λ K,σ (u)| + |λ L,σ (u)| + 2 , µ L,σ (u) = |λ K,σ (u)| + |λ K,σ (u)| + |λ L,σ (u)| + 2 . ( 81 
)
With this, the residual term is given as

R K,σ (u) = λ L,σ (u) -λ K,σ (u) |λ K,σ (u)| + |λ L,σ (u)| + 2 ,
for which it holds that

|R K,σ (u)| ≤ . ( 82 
)
Instead of directly neglecting the term R K,σ (u), we will incorporate it partly into t K,σ , t L,σ and then only neglect a smaller part R K,σ (u) for which it holds that |R K,σ (u)| ≤ |R K,σ (u)|. Details can be found in [START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF]. This results in the final fluxes

F K,σ (u, u) = tL,σ (u)u L -tK,σ (u)u K , (83) 
with the new transmissibilities tK,σ , tL,σ which are greater or equal to the corresponding t K,σ , t L,σ .

Therefore, the positivity of the new transmissibilities directly follow from the positivity of the old ones. Here, is chosen such that 0 < ≤ h D min σ∈E |σ|.

NLMPFA scheme

A nonlinear multi-point flux approximation (NLMPFA) is derived by splitting the linear fluxes into a two-point part and a residual flux part as follows

FK,σ (u) = |σ|βσ(u L -u K ) + F res K,σ (u), FL,σ (u) = |σ|βσ(u K -u L ) + F res L,σ (u), (84) 
with βσ = min(α K,σσ ω L,σ , α L,σσ ω K,σ ) and F res K,σ , F res L,σ defined by

F res K,σ (v) =|σ|(α K,σσ ω L,σ -βσ)(v L -v K ) + |σ|α K,σσ M ∈{Iσ\{L}} ω M,σ (v M -v K ) + σ ∈{S K,σ \{σ}} |σ|α K,σσ (I σ v -v K ), F res L,σ (v) =|σ|(α L,σσ ω K,σ -βσ)(v K -v L ) + |σ|α L,σσ M ∈{Iσ\{K}} ω M,σ (v M -v L ) + σ ∈{S L,σ \{σ}} |σ|α L,σσ (I σ v -v L ). ( 85 
)
Here, the weights are chosen as which results in

F K,σ = |σ|βσ(u L -u K ) + µ K,σ 1 -sign F res K,σ F res L,σ F res K,σ , F L,σ = |σ|βσ(v K -v L ) + µ L,σ 1 -sign F res K,σ F res L,σ F res L,σ . (87) 
As shown in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF], these fluxes are continuous because for | F res K,σ (u)| + | F res L,σ (u)| = 0 they are independent of µ K,σ , µ L,σ . Furthermore, the constraint βσ > 0 is considered in the conormal decomposition, see [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF] for more details.

Properties

In this section, some properties of fluxes belonging to the family (73) are summarized. First, the consistency and continuity of the fluxes is discussed, which allows the prove of (P2) and (P4). In the second part, it is shown that the NLTPFA is positivity-preserving, whereas the NLMPFA prevents saturation under-and overshoots.

Consistency and continuity

The consistency property (P4) for the form a follows from the strong consistency of the sub-fluxes FK,σ , see Corollary 1 and 2 in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF].

We now show that the continuity property (P2) holds for the fluxes (73) and therefore also for the AvgMPFA, NLTPFA, and NLMPFA schemes.

Proposition 2 (Continuity) Let D be a space discretization matching Definition 2, χ : R → R a bounded function, α ∈ H ∆ (Ω), and a T ,χ,α be the form defined by [START_REF] Sammon | An Analysis of Upstream Differencing[END_REF] with the fluxes given by (73)-(74).

Then there exists a constant C 15 such that for all (u, v, w)

∈ [H T (Ω)] 3 a T ,χ,α (u, v, w) ≤ C 15 v T w T . ( 88 
)
Proof Using the flux expression (73), rearranging terms, and applying the Cauchy-Schwarz inequality yield

a T ,χ,α (u, v, w) = K∈T σ∈E K χ(ασ) FK,σ (v)(Υu,σw -w K ) ≤ w T ,Υµ χ ∞   K∈T σ∈E K d K,σ |σ| | Fk,σ | 2   1 2
with Υµ,σ the trace reconstruction operator defined by [START_REF] Eymard | Convergence d'un schéma de type éléments finis-volumes finis pour un système formé d'une équation elliptique et d'une équation hyperbolique[END_REF] with θ K,σ = µ K,σ (u). Inserting the subfluxes (74), using the fact that |α K,σσ | ≤

Cαβ 0 d K,σ
(see equation ( 52) in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF]), the Cauchy-Schwarz inequality together with the fact that S K,σ ⊂ E K , and equation ( 16) to deduce

  K∈T σ∈E K d K,σ |σ|   |σ| σ ∈S K,σ |α K,σσ ||I σ v -v K |   2   1 2 ≤ Cαβ 0   K∈T σ∈E K d K,σ |σ|      σ ∈E K 1 d K,σ |σ |     σ ∈E K |σ | d K,σ |I σ v -v K | 2        1 2 ≤ dζ 1 ζ 2 ζ 3 Cαβ 0 v T ,I .
Gathering the previous results give:

a T ,χ,α (u, v, w) ≤ χ ∞ dζ 1 ζ 2 ζ 3 Cαβ 0 v T ,I w T ,Υµ .
Using the equivalence of the discrete H 1 -norms (see Lemma 1 in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF]), the previous inequality implies (88).

Saturation bounds

In this section, it is shown that, in contrast to general linear schemes, the NLTPFA scheme prevents saturation undershoots, whereas the NLMPFA scheme prevents both under-and overshoots.

Proposition 3 () Assume that Hypotheses 1 hold. Let D be a space-time discretization matching Definition 3 and u ∈ H T (Ω × (0, T )) a solution to [START_REF] Lipnikov | Minimal stencil finite volume scheme with the discrete maximum principle[END_REF] with the fluxes given by (73)-( 74). Let us assume that all coefficients α K,σσ , ω M,σ of the conormal decomposition (75) and of the reconstruction operator (77)

are non-negative. Then, for all n ∈ 0, N and for all K ∈ T , we have, in the case of the NLMPFA fluxes (87),

0 ≤ u (n) K ≤ 1, ( 89 
)
and in the case of the NLTPFA fluxes (83),

u (n) K ≥ 0. ( 90 
)
Proof For all K ∈ T , we rewrite equation (28a) as

u (n) K = u (n+1) K + δt (n+ 1 2 ) |K|                f 1 (u (n+1) K ) σ∈E K (v (n+1) K,σ ) + + σ∈E K f 1 (u (n+1) L )(v (n+1) K,σ ) - +f 1 (u (n+1) K ) σ∈E K λ 2 (u (n+1) L )(( 1 -2 )G K,σ ) + +λ 2 (u (n+1) K ) σ∈E K f 1 (u (n+1) L )(( 1 -2 )G K,σ ) - - σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) -|K| f 1 (c K )s + K -f 1 (u (n+1) K )s - K                (91) 
where a + = max(a, 0) and a -= min(a, 0).

Let us first prove that the saturations are positive at all time steps. By assumption, this is the case for the initial ones. Let us assume this property is valid up to some time step n and let us prove that it then also holds for the time step n + 1. Let us assume that this is not the case, such that there exists at least one cell K for which u (n+1)

K

< 0 and such that u

(n+1) K = min M ∈T (u (n+1) 

M

). Using the extension of the function λ 1 to 0 on (-∞, 0] for which we infer f 1 (u (n+1) K ) = 0, and the fact that

s + ≥ 0, we deduce that u (n) K < - δt (n+ 1 2 ) |K| σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )). ( 92 
)
Let us now study the sign of the right hand side in the last inequality. We first consider the case of the NLMPFA fluxes (87) which can be rewritten as

F K,σ (u, u) = M ω K,σ,M (u)(u M -u K ), ω K,σ,M (u) ≥ 0. ( 93 
) Since u (n+1) K = min M ∈T (u (n+1)

M

) and ψ is an increasing function, it follows that

- δt (n+ 1 2 ) |K| σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) ≤ 0, ( 94 
) leading to u (n)
K < 0 which is in contradiction with our assumption. Let us now prove the positivity of the saturations obtained with the NLTPFA fluxes (83). For this, we use the fact that inequality (92) holds for each cell M ∈ T for which u (n+1) M < 0. Thus, summing up over the set

T -def = {M ∈ T | u (n+1) M < 0} yields K∈T - |K| δt (n+ 1 2 ) u (n) K < - K∈T -σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) = - σ∈Eint,Tσ={K,L},K∈T -,L ∈T - F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) - σ∈Eext,Tσ={K},K∈T - F K,σ (ψ(u (n+1) ), ψ(u (n+1) )), ( 95 
)
where we have used the local flux conservation [START_REF] Lipnikov | Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes[END_REF]. Using the fact that t K,σ , t L,σ ≥ 0 and that ψ(u) < 0 for all u < 0 it follows that

F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) = t L,σ (ψ(u (n+1) ))ψ(u (n+1) L ) -t K,σ (ψ(u (n+1) ))ψ(u (n+1) K ) ≥ 0, ( 96 
)
for all σ ∈ E int , Tσ = {K, L} such that K ∈ T -and L ∈ T -. For all σ ∈ Eext, Tσ = {K} such that K ∈ T -it also follows that F K,σ ≥ 0 because of homogeneous zero Dirichlet conditions for which ψ(0) = 0. This leads to a contradiction, which therefore shows the positivity of the NLTPFA solution.

Now let us prove that the saturations obtained with the NLMPFA fluxes are smaller than one at all time steps. As before, let us assume this property is valid up to some time step n and let us prove that it then also holds for the time step n + 1. We write equation (28b) as

δt (n+ 1 2 ) |K|   σ∈E K v (n+1) K,σ -|K|(s + K -s - K )   = 0. ( 97 
)
We substract equation ( 91) from (97) and using the fact that

f 1 + f 2 = 1 to obtain for all K ∈ T 1 -u (n) K = 1 -u (n+1) K + δt (n+ 1 2 ) |K|                f 2 (u (n+1) K ) σ∈E K (v (n+1) K,σ ) + + σ∈E K f 2 (u (n+1) L )(v (n+1) K,σ ) - -f 1 (u (n+1) K ) σ∈E K λ 2 (u (n+1) L )(( 1 -2 )G K,σ ) + -λ 2 (u (n+1) K ) σ∈E K f 1 (u (n+1) L )(( 1 -2 )G K,σ ) - + σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) -|K| f 2 (c K )s + K -f 2 (u (n+1) K )s - K                (98) which implies 1 -u (n) K ≤ 1 -u (n+1) K + δt (n+ 1 2 ) |K|           f 2 (u (n+1) K ) σ∈E K (v (n+1) 
K,σ ) + -λ 2 (u (n+1) K ) σ∈E K f 1 (u (n+1) L )(( 1 -2 )G K,σ ) - + σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) +|K|f 2 (u (n+1) K )s - K           . ( 99 
)
Let us assume that there exists at least one cell K for which u

K > 1 and such that u

(n+1) K = max M ∈T (u (n+1) 

M

). Using the extension of the function λ 2 to 0 on [1, +∞) for which we infer f 2 (u

(n+1) K ) = λ 2 (u (n+1) 

K

) = 0, we deduce from (99) that

1 -u (n) K ≤ 1 -u (n+1) K + δt (n+ 1 2 ) |K| σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )). (100) 
By using the expression of the NLMPFA fluxes (93), since u

(n+1) K = max M ∈T (u (n+1) 

M

) and ψ is an increasing function, we then have

1 -u (n+1) K + δt (n+ 1 2 ) |K| σ∈E K F K,σ (ψ(u (n+1) ), ψ(u (n+1) )) < 0, (101) 
leading to 1u

K < 0 which is in contradiction with our assumption.

Numerical results

In this section, the behavior of the above mentioned nonlinear finite volume schemes is investigated for different two-phase flow scenarios. NLTPFA denotes the scheme which is given by equation ( 83)

and the weights (81), NLMPFA the scheme defined by equation ( 87) and the weights (86) with the additional constraints that α K,σσ , α L,σσ > 0 and AvgMPFA the scheme with fluxes (76) and constant weights µ K,σ = µ L,σ = 0.5. Further details can be found in [START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF][START_REF] Schneider | Monotone nonlinear finite-volume method for challenging grids[END_REF].

All simulations are performed using the open-source simulator DuMu x [25], which comes in the form of an additional DUNE module [START_REF] Blatt | The distributed and unified numerics environment, version 2.4[END_REF]. Furthermore, for all grids, the dune-alugrid module [START_REF] Alkmper | The DUNE-ALUGrid Module[END_REF] is used. A monolithic approach is applied, where Newton's method is used for solving the occurring nonlinear systems of equations. We use a relative stopping criterion for Newton's method, where the iteration loop is stopped if relative changes of the primary variables are below 10 -8 , see the DuMu x documentation for more information. Such a relative criterion does not require the recalculation of the residual, which is therefore more efficient.

In general, the exact solution is unknown. Therefore, we have to interpolate numerical solutions on fine grid levels to coarser ones to calculate convergence rates. There are several possibilities to do this.

Here we present the one for which we have observed the least fluctuating rates. We are interested in the spatial and temporal convergence rates for the discrete space-time

L 2 -norm (|| • || L 2 (Ω×(0,T )) )
and

L 2 (0, T ; H 1 (Ω))-norm (|| • || T ).
To calculate the convergence rates for increasing spatial refinement, a small time step size is fixed and the numerical solution on refinement level m is interpolated on

level m -1, 1 ≤ m ≤ mmax.
This interpolation is done by calculating coefficients such that for each

cell K m-1 ∈ T m-1 it holds that x Km-1 = Lm∈Tm,Lm⊂Km-1 ω Lm x Lm . (102) 
With these coefficients, the solution (um, pm) on grid level m is interpolated at the cell centers x Km-1 of grid level m -1 as

(um, pm)(x Km-1 ) = Lm∈Tm,Lm⊂Km-1 ω Lm (u Lm , p Lm ), (103) 
where (u Lm , p Lm ) are the given solution values on grid level m. Please note that the grid refinement is done such that x Km-1 ∈ Conv {x Lm } Lm∈Tm,Lm⊂Km-1 for all 1 ≤ m ≤ mmax, which means that each center of a coarse cell is in the convex hull constructed by the centers of its child elements.

For calculating the temporal convergence rates, a reference solution (u ref , p ref ) is calculated using a small discretization length h D,ref and a small time step size δt ref . This reference solution is then mapped to the discrete time levels calculated for bigger time step sizes δt i . These time step sizes are chosen such that δt i = c i δt ref for some c i ∈ N, which guarantees that the reference solution is given for the discrete times calculated for coarser time discretizations.

To guarantee that the assumptions (A6)-(A7) are fulfilled, the mobilities are evaluated as

λ i (u) = λ i (max{0, min{u, 1}}), ∀u ∈ R, i = 1, 2. (104) 
The linearization ( 9) is also applied on ψ. Please note that this is a continuous extension of ψ because ψ(0) = 0. Furthermore, with this linearization, ψ is strictly increasing for all u ∈ R. If not explicitly mentioned, the scaling factor is chosen as Ξ = 1. The influence of Ξ on saturation overshoots is investigated in Section 6.1.3.

Furthermore, the coercivity property ( 34) is numerically investigated by using the following quantity e T ,m (vm

) def = inf t∈(0,T )
a Tm,χ,α (vm(t), vm(t), vm(t))

vm(t) 2 Tm , (105) 
where vm ∈ {ψm, pm} and χ = 1 due to the fact that the mobility functions are chosen such that λ T = const for all considered test cases, which also means that a Tm,χ,α is independent of α. This is obviously not sufficient to show the coercivity of the considered schemes but it serves here as an indicator.

For simplicity, Neumann boundary conditions are defined for the phase velocities v 1 , v 2 . However, this can be equivalently written as

v 1 • n = ν 1 , v 2 • n = ν 2 ⇐⇒ (f 1 v T -Λ∇ψ + ( 1 -2 )f 1 λ 2 Λg) • n = ν 1 , v T • n = ν 1 + ν 2 . ( 106 
)
The first test case investigates the convergence behavior for a quasi one-dimensional setup without gravity effects, with a constant total velocity, and with homogeneous porosity and permeability. The second test case includes gravity effects and heterogeneities.

Quasi one-dimensional test case

In the first test case, we investigate a two-dimensional setup, with Ω = [0, 1] × [0, 0.2], for which the solution is expected to be constant with respect to the y-coordinate, meaning that the solution profile is quasi one-dimensional. Gravity is neglected and there are no source or sink terms (i.e. The grid shown in Figure 2 corresponds to a grid refinement level of zero (16x16 cells). The direct solver UMFPack [START_REF] Davis | Algorithm 832: UMFPACK V4.3 -an unsymmetric-pattern multifrontal method[END_REF] is used to solve the occurring linear systems of equations.

The densities of the fluids are set to 1 = 1000.0 kg /m 3 , 2 = 1500.0 kg /m 3 . The mobility functions are given by

λ 1 (u) = u 2 µ 1 , λ 2 (u) = 1 -u 2 µ 2 , ∀u ∈ [0, 1], (107) 
where the dynamic fluid viscosities are set to

µ 1 = µ 2 = 0.003 Pa s. If u ∈ [0, 1] formula (104) is used.
A linear function is used for the capillary pressure, which is given as

pc(u) = 10 4 (1 -u). (108) 
For these functions, an analytical expression for ψ can be derived:

ψ(u) = 10 4 µ 1 ( 1 3 u 3 - 1 5 u 5 ), (109) 
which is used for all u ∈ [0, 1] and the linearization ( 9) is utilized for all other values of u. 

Spatial convergence

In the following, the convergence rates are analyzed with increasing mesh refinement, where the maximum refinement level is mmax = 4 and a small time step size of δt = 0.05 s is used for all simulation runs. It is assumed that the domain is initially fully-saturated with the wetting fluid phase, i.e. u init (x) = 1, and the second fluid phase (non-wetting phase) enters the domain on the left (situation (a) in Figure 2). By neglecting gravity and assuming homogeneous data, the total velocity is constant for this quasi one-dimensional setup and therefore corresponds to a linear pressure profile.

All schemes are able to exactly reproduce this linear profile. Therefore, only the convergence behavior with respect to u and ψ(u) is explored for this test case.

Figure 3 shows the saturation solution of the NLMPFA scheme for the grid with refinement level m = 3 and the solution differences between two consecutive grid refinement levels. Table 1 and 2 list the discrete L 2 (Ω × (0, T ))-errors and L 2 (0, T ; H 1 (Ω))-errors together with the related convergence rates for u and ψ(u), respectively. For u, also the overshoots are shown. Additionally, Table 2 lists the total number of Newton iterations that are needed for the whole simulation run and the coercivity estimates calculated with formula (105). In Table 1 it can be seen that all schemes converge with approximately first order with respect to the discrete L 2 (Ω × (0, T ))-norm and with a rate of approximately 0.3 with respect to the discrete L 2 (0, T ; H 1 (Ω))-norm for the variable u. In general, we cannot expect a higher rate since upwinding is used for the term f 1 v T . As expected, no saturation overshoots can be observed for the NLMPFA 1) ) and convergence rates (cr) with respect to spatial discretization for quasi one-dimensional test case (situation (a) in Figure 2) for the variable ψ(u). scheme, whereas the NLTPFA and AvgMPFA schemes produce small overshoots (for further discussion of over-and undershoots see Section 6.1.3). For ψ first order convergence is observed with respect to both discrete norms. A possible reason for the better convergence rate with respect to the discrete L 2 (0, T ; H 1 (Ω))-norm is the fact that ψ (1) = 0 such that the regions with high saturation errors do not necessarily result in regions with high ψ-errors, see Figure 3. In terms of Newton convergence, the NLMPFA scheme shows a better behavior compared to the other schemes. This is probably because the NLMPFA scheme does not produce any over-and undershoots and thus the regularization of ψ (9) has no influence on the Newton convergence, whereas it may influence the Newton behavior of the other schemes. The coercivity estimates shown in Table 2 indicate that all schemes are coercive for this test case.

scheme m 1 ψ(1) ψm -ψ m-1 L 2 cr 1 ψ(1) ψm -ψ m-1 T cr 1 α 0 e T ,

Temporal convergence

In this section, the convergence rates with respect to time discretization is investigated. Here, a fine grid resolution (128x128 cells with h D = 2.32e-2) is chosen and a reference solution is calculated on this grid with a small time step size of δt ref = 0.05 s. The results are listed in Table 3 and4. Again, the results of p are not shown because the linear solution profile is exactly reproduced. Here, a first order convergence rate for the discrete L 2 (Ω × (0, T ))-norm is observed for all schemes, which is as expected for the implicit Euler scheme. Furthermore, in Table 3 it can be seen that the saturation overshoots of the NLTPFA and AvgMPFA become larger for smaller time step sizes. This could be one reason why the convergence rates with respect to the discrete L 2 (0, T ; H 1 (Ω))-norm are lower for the NLTPFA and AvgMPFA schemes compared to the NLMPFA scheme. Here, the dependency of saturation over-and undershoots on the scaling factor Ξ is examined. For this purpose, the Neumann boundary conditions are replaced by Dirichlet conditions (situation (b) in Figure 2) and the simulation is run on the coarsest grid with δt = 0.3 s for different values of Ξ.

Besides this, the same setup is chosen as described in Section 6.1.1. Choosing the same value of p at the left and right boundaries of the domain results in a constant global pressure, and thus in v T = 0.

Therefore, flow is purely driven by the term -Λ∇ψ (see equation (3a)). This allows to investigate the influence of Ξ on saturation over-and undershoots without having an influence of the term f 1 v T .

The maximum saturation overshoots are plotted for different values of Ξ in Figure 4 (left). It is observed that the overshoots produced by the NLTPFA and AvgMPFA schemes scale with Ξ.

Thus, these overshoots can be reduced by increasing Ξ. For the NLMPFA scheme, the overshoots are in the range of the solver tolerances and thus no overshoots are observed. This is in accordance with Proposition 3. The influence of the scaling factor on the total number of Newton iterations is shown in Figure 4 (right). It can be seen that with increasing Ξ, the number of Newton iterations also increases. Please note that ψ(1) is already in the range of 10 6 such that for Ξ = 10 6 numerical roundoff errors (for example for calculating numerical derivatives) play an important role. In general, it may cause numerical difficulties if the values for ψ are ten orders of magnitude higher than those of u.

Please also note that no undershoots are observed for the setting described above (i.e. the NLTPFA and NLMPFA schemes are in the range of the solver tolerances and thus no undershoots are observed. This is in accordance with Proposition 3. Again, the undershoots of the AvgMPFA can be reduced by increasing Ξ, at least if Ξ > 10 2 , which however may influence the Newton convergence behavior as shown in Figure 5 (right). In general, it is beneficial to choose a different scaling factor for u < 0 than for u > 1 in (9) because ψ( 1) is already in the range of 10 6 .

In the following test cases, we set Ξ = 1 for which one also obtains reasonable results. 

Lenses test case

In the following test case, we investigate a two-dimensional setup with domain Ω = [0, 20] × [0, 10] (see Figure 6). Again, there are no source or sink terms (i.e. s + = s -= 0) but in contrast to the previous test case gravity is included. The simulation time is T = 3 • 10 4 s, the porosity is set to φ = 0.4, and the permeability is given as Λ = 10 -10 I except for three lenses within the domain The convergence rates are shown in Table 5-7. Furthermore, saturation overshoots are shown in Table 5, the total number of Newton iterations together with the coercivity estimates in Table 6, and the minimum total pressure value p min in Table 7. The convergence rates are quite similar for all schemes. The highest rates are observed for the variable p, for which all schemes converge with approximately first order with respect to both discrete norms. For the variable u all schemes convergence with a rate of approximately 0.8 for the discrete L 2 (Ω × (0, T ))-norm and with a rate of approximately 0.2 -0.25 with respect to the discrete L 2 (0, T ; H 1 (Ω))-norm. Again, the only scheme that does not produce saturation overshoots is the NLMPFA scheme, where the overshoots are below 1e-13 and thus negligible. For ψ the rates are slightly higher and again quite similar for all schemes. A possible reason for these slightly higher rates is the fact that the highest saturation errors are located at regions where u is close to one, for which ψ is quite small (see Figure 7). Looking at the total number of Newton iterations it can also be seen that all schemes behave similar, in contrast to the previous test case. Furthermore, the coercivity estimates for p indicate that the schemes are coercive. However, the estimates for ψ decrease with increasing mesh refinement and therefore it is not clear if these estimates are bounded from below.

Temporal convergence

To examine the temporal convergence rates, a fine grid resolution (160x320 cells) is chosen and a reference solution is calculated by using a small time step size of δt ref = 5 s. The results are listed in Table 8-10. For all variables a first order convergence is observed with respect to the discrete L 2 (Ω × (0, T ))-norm, the rates with respect to the discrete L 2 (0, T ; H 1 (Ω))-norm are slightly lower.

The behavior in terms of saturation overshoots and Newton convergence are similar than for the spatial convergence in the previous section. Furthermore, the coercivity estimates seem to be bounded from below.

Conclusion

In this work, we have presented the mathematical analysis of the incompressible immiscible twophase flow equations and performed different numerical test cases to verify the theoretical findings.

The mathematical formulation of the two-phase flow problem together with some assumptions on the occurring nonlinear functions, used to perform the proof of convergence, have been presented in Section 2. In Sections 3 and 4, a general finite volume discretization framework has been introduced

and the proof of convergence has been given. In contrast to existing literature, this general framework also includes so-called nonlinear flux discretization schemes. Two representatives of such schemes, namely the NLTPFA and NLMPFA schemes, have then been presented in Section 5, where we have also shown some fundamental properties of these schemes. Finally, these schemes have been numerically investigated in Section 6 for a quasi one-dimensional test case and for a more complicated test case, which includes gravity effects and heterogeneities. For these test cases, the convergence with respect to a discrete L 2 (Ω × (0, T ))-and L 2 (0, T ; H 1 (Ω))-norm has been studied. Furthermore, it has been demonstrated that the NLMPFA scheme does not produce any saturation over-or undershoots, whereas the NLTPFA scheme is positivity-preserving. This is generally not given for linear schemes, which may produce over-and undershoots. In future work, these results will also be compared to other discretization schemes and the theory will be extended to more general problems, for example by allowing compressibility effects.

Therefore, from the two previous inequalities, it follows that, for all n ∈ 0, N , v We now state and prove Proposition 4.

Proposition 4 Assuming properties (P1), (P2) and (P4), for any bounded function χ, then a Tm,χ,• is also weakly consistent on L 2 (0, T ; H 1 0 (Ω)).

Proof Let ϕ ∈ L 2 (0, T ; D) and q ∈ L 2 (0, T ; H 1 0 (Ω)). Under property (P1), the form a is linear with respect to its second argument, we then have, for all (u, v, w) ∈ P m , T 0 a Tm,χ,v(t) (u(t), q Tm (t), w(t)) dt - (114)

Using the continuity property (P2) of the bilinear form a Tm,χ,v(t) (u(t), ., .), the Cauchy-Schwarz inequality for the time integral, and Lemma 11 lead to T 0 a Tm,χ,v(t) (u(t), q Tm (t)ϕ Tm (t), w(t)) dt ≤ Cχ q -ϕ L 2 (0,T ;H 1 0 (Ω)) w Tm . Therefore, dividing (114) by w Tm , taking the infimum over the set R Em and the maximum over the set P m , we deduce Dm (q) ≤ Cχ q -ϕ L 2 (0,T ;H 1 0 (Ω)) + Dm (ϕ). Taking lim sup Dm (q) in the inequality just above and using the weak consistency property (P4), we get lim sup m→∞ Dm (q) ≤ Cχ q -ϕ L 2 (0,T ;H 1 0 (Ω)) .

Using the density of L 2 (0, T ; D) in L 2 (0, T ; H 1 0 (Ω)), there exists a sequence {ϕ l } l∈N ⊂ L 2 (0, T ; D), s.t. ϕ l → q in L 2 (0, T ; H 1 0 (Ω)), and therefore lim sup m→∞ Dm (q) = 0.

A technical lemma

Lemma 12 Let D be a space discretization matching Definition 1 and M : R×R → R a bounded function.

For all (u, v) ∈ [H T (Ω)] 2 , there exists a constant C 18 depending on M ∞, β 0 , g and Ω such that

K∈T σ∈E K M (u 1,σ , u 2,σ )G K,σ v K ≤ C 18 v T , (115) 
where u 1 , u 2 ∈ H ∆ (Ω).

Proof Let us denote by S the left hand side of (115). Using G K,σ + G L,σ = 0 if Tσ = {K, L}, γσv = 0 for all σ ∈ Eext, equality [START_REF] Droniou | The asymmetric gradient discretisation method[END_REF], and the Cauchy-Schwarz inequality to deduce

S = K∈T σ∈E K M (u 1,σ , u 2,σ )G K,σ (v K -γσv) ≤ M ∞β0|g| d|Ω| v T .
Lemma 13 Let ψ ∈ C(R) be a nondecreasing Lipschitz-continuous function with ψ(0) = 0 and L ψ its Lipschitz constant. Then the function Ψ defined by

Ψ (s) = s 0 ψ(x) dx, ∀ s ∈ R. ( 116 
)
satisfies the following inequality:

0 ≤ ψ(s) 2 2L ψ ≤ Ψ (s) ≤ L ψ s 2 2 , ∀ s ∈ R.
Proof On one hand, for any s ≥ 0 we have Ψ (s) = 

2

. Therefore, for all s ∈ R,

Ψ (s) ≤ L ψ s 2 2 .
On the other hand, we introduce the functions ψ and Ψ defined respectively for all s ∈ R by 2L ψ as → 0.

By taking > 0, for any s ≥ 0 we have ψ (s) ≥ ψ (0) = Ψ ( ) ≥ 0 and then G (s) ≥ 0, which implies G (s) ≥ G (0) and hence as → 0 + we deduce that for any s ≥ 0, Ψ (s) -

ψ(s) 2
2L ψ ≥ 0. Let us now take < 0, for any s ≤ 0 we have ψ (s) ≤ ψ (0) = Ψ ( ) ≤ 0 and then G (s) ≤ 0 , we thus deduce that G (s) ≥ G (0) which implies as → 0 -that for any s ≤ 0, Ψ (s) -

ψ(s) 2 2L ψ ≥ 0.
Then we obtain that for all s ∈ R,

ψ(s) 2
2L ψ ≤ Ψ (s).

  and for each m, Dm is admissible in the sense of Definition 3 where the parameters ζ 1 , ζ 2 , ζ 3 , ζ 4 , ζ 5 do not depend on m.

  and χ → ψ(ū), the previous inequality leads to lim sup m→∞ pm -pTm Tm = 0, lim sup m→∞ ψ(um)ψ(ū) Tm Tm = 0.

K

  and sum it over K ∈ Tm and n ∈ 0, Nm to obtain Nm n=0 δt (n+1) T (n+1)

s

  + = s -= 0). The simulation time is T = 300 s, the porosity is set to φ = 0.3, and the permeability is assumed to be homogeneous and isotropic Λ = 10 -10 I. The setting and the grid that are used for this test case are shown in Figure 2. No-flow boundary conditions are set at the top and bottom boundaries, whereas Dirichlet conditions are set on the right boundary. For analyzing the convergence rates Neumann boundary conditions are set on the left boundary (situation (a)), this guarantees that, independent of the grid, the same amount of mass enters the domain on the left. For analyzing the saturation over-and undershoots, Dirichlet conditions are set on the left boundary (situation (b)).

Fig. 2

 2 Fig. 2 Grid and setting that are used for the quasi one-dimensional test case. No-flow boundary conditions are set at the top and bottom boundaries, whereas Dirichlet conditions are set on the right boundary. Two different situations are considered on the left boundary: (a) Neumann conditions and (b) Dirichlet conditions.

Fig. 3

 3 Fig. 3 Saturation solution of NLMPFA scheme and difference between fine solution (um, ψm) and coarser solution (u m-1 , ψ m-1 ) for m = 4 (mapping is done using formula (103)).

u init = 1 andFig. 4

 14 Fig. 4 Saturation overshoots (left) and total Newton iterations (right) plotted for different scaling factors Ξ on the coarsest grid and for a maximum time step size of δt = 0.3 s.

8 Ξ- 10 - 1 - 10 - 2 - 10 - 3 - 10 Fig. 5

 8101102103105 Fig. 5 Saturation undershoots (left) and total Newton iterations (right) plotted for different scaling factors Ξ on the coarsest grid and for a maximum time step size of δt = 0.3 s.

Ω

  schemes look almost the same and are therefore not shown. As before, it can be seen that the regions of high saturation errors and the regions of high ψ errors are not the same (caused by the fact that ψ (1) = 0). The largest differences of p are at the boundary or at the lenses.

Fig. 7

 7 Fig. 7 Saturation solution of NLMPFA scheme and difference between fine solution (um, ψm, pm) and coarser solution (u m-1 , ψ m-1 , p m-1 ) (mapping is done using formula (103)) for m = 4. The results are shown for the lenses test case.

T 0 Ω 0 a 0 a

 000 χ(v)Λ∇q • ∇ Dm,Υm w dx dt ≤ T Tm,χ,v(t) (u(t), q Tm (t)ϕ Tm (t), w(t)) dt + T Tm,χ,v(t) (u(t), ϕ Tm (t), w(t)) -)Λ∇(ϕq) • ∇ Dm,Υm w dx dt .

Furthermore

  , since ∇ Dm,Υm η [L 2 (Ω)] d ≤ √ d η Tm,Υm ≤ 2 √ d ζ4 ηTm for all η ∈ H Tm (Ω) (as a consequence of (16), the Cauchy-Schwarz inequality, and the equivalence of norms Lemma 1 in[START_REF] Schneider | Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF]), and again applying the Cauchy-Schwarz inequality results in T 0 Ω χ(v)Λ∇(ϕq) • ∇ Dm,Υm w dx dt ≤ Cχ q -ϕ L 2 (0,T ;H 1 0 (Ω)) w Tm .

  0)ψ(x)) dx ≤ L ψ 0 s (-x)dx = L ψ s 2

ψ

  (s) = Ψ (s + ) -Ψ (s) and Ψ (s) = s 0 ψ (x)dx with ∈ R * . Then ψ is a C 1 -function with ψ (s) = ψ(s + )ψ(s) , we thus get ∀s ∈ R, |ψ (s)| ≤ L ψ and ψ (s) ≥ 0. We observe that |ψ (s)ψ(s)| = s+ s (ψ(x)ψ(s))dx function G defined for all s ∈ R by G (s) = Ψ (s) -ψ (s) 2 2L ψ , we have G (s) = ψ (s) 1 -ψ (s) L ψ .Owing to (117), we get ∀s ∈ R, G (0) → 0 and G (s) → Ψ (s) -ψ(s) 2

  Hypotheses 2 Let {D} m∈N be a family of space-time discretizations matching Definition 4. Let D be a dense subspace of H 1 0 (Ω) s.t. D ⊂ C 0 (Ω), where C 0 (Ω) denotes the space of continuous functions which vanish on ∂Ω. We suppose that: (P1) for any u ∈ H Tm (Ω), for all K ∈ Tm and for all σ ∈ E K , u → F K,σ (u, •) is a linear form;(P2) for any bounded function χ and αm ∈ H ∆m (Ω), a Tm,χ,αm is continuous, i.e., there is 0 < Cχ < +∞

	independent of m s.t. for all (u, v, w) ∈ [H Tm (Ω)] 3	
	|a Tm,χ,αm (u, v, w)| ≤ Cχ v Tm w Tm ;	(33)
	(P3) the finite volume scheme is coercive, i.e., there is 0 < Ĉ1 < +∞ independent of m s.t. for χ = λ T and χ = 1, for all (v, w) ∈ [H Tm (Ω)] 2 and for any αm ∈ H ∆m (Ω)
	a Tm,χ,α (v, w, w) ≥ Ĉ1 w 2 Tm ;	

  Lemma 1 (Discrete estimates) Let D be an admissible space-time discretization matching Definition 3. Assume that Hypotheses 1 and the continuity and coercivity properties (P2) and (P3) hold. Then, thereexist C 1 , C 2 , C 3 , C 4 > 0, depending on Ω, T , ζ 3 , ζ 4 , β 0 , 1 , 2 , g, λ i with i = 1, 2, λ, λ, L ψ , C 1,ψ , C 2,ψ , s +, s -, u init , Ĉ1 and Cχ with χ = f 1 λ T and χ = 1 such that any discrete solution (p, u) ∈ [H T (Ω ×(0, T ))] 2

	of problem (28) satisfies
	sup
	t∈[0,T [

  || • || T and || • || T ,Υm and Lemma 4.3 in [22], we deduce that p ∈ L 2 (0, T ; H 1 0 (Ω)) and that ∇ Dm,Υm pm weakly converges in L 2 (Ω×]0, T [) d to ∇p.

Table 1

 1 Discrete space-time error norms and convergence rates (cr) with respect to spatial discretization for quasi one-dimensional test case (situation (a) in Figure2) for the variable u.

	scheme	m	um -u m-1 L 2	cr	um -u m-1 T	cr	umax -1	h D
		1	1.55e-2	-	6.57e-1	-	8.17e-4	9.25e-2
	NLTPFA	2 3	8.06e-3 4.06e-3	0.95 0.99	5.31e-1 4.13e-1	0.31 0.36	4.40e-4 1.59e-4	4.64e-2 2.32e-2
		4	2.05e-3	0.99	3.20e-1	0.37	5.48e-5	1.16e-2
		1	2.37e-2	-	4.10e-1	-	-1.40e-5	9.25e-2
	NLMPFA	2 3	1.49e-2 7.77e-3	0.67 0.94	3.95e-1 3.37e-1	0.06 0.23	-2.51e-9 0.00	4.64e-2 2.32e-2
		4	3.71e-3	1.07	2.73e-1	0.31	0.00	1.16e-2
		1	1.59e-2	-	6.65e-1	-	7.48e-4	9.25e-2
	AvgMPFA	2 3	8.21e-3 4.11e-3	0.96 1.00	5.34e-1 4.15e-1	0.32 0.36	4.18e-4 1.54e-4	4.64e-2 2.32e-2
		4	2.06e-3	1.00	3.21e-1	0.37	5.41e-5	1.16e-2

Table 2

 2 Discrete space-time error norms (scaled by the factor 1 ψ(

Table 3

 3 Discrete space-time error norms and convergence rates (cr) with respect to temporal discretization for quasi one-dimensional test case (situation (a) in Figure2) for the variable u.

	scheme	m	um -u ref L 2	cr	um -u ref T	cr	umax -1	δt
		0	9.10e-03	-	7.81e-01	-	1.09e-05	4.00
	NLTPFA	1 2	7.01e-03 4.81e-03	0.91 0.93	7.23e-01 6.47e-01	0.26 0.27	1.84e-05 2.70e-05	3.00 2.00
		3	2.47e-03	0.96	4.99e-01	0.38	3.93e-05	1.00
		0	8.20e-03	-	3.73e-01	-	4.00e-13	4.00
	NLMPFA	1 2	6.25e-03 4.23e-03	0.95 0.96	3.06e-01 2.27e-01	0.69 0.73	4.00e-13 4.00e-13	3.00 2.00
		3	2.12e-03	1.00	1.31e-01	0.80	2.00e-13	1.00
		0	9.10e-03	-	7.82e-01	-	1.07e-05	4.00
	AvgMPFA	1 2	7.01e-03 4.81e-03	0.91 0.93	7.24e-01 6.48e-01	0.26 0.27	1.81e-05 2.66e-05	3.00 2.00
		3	2.47e-03	0.96	5.00e-01	0.38	3.89e-05	1.00

Table 4

 4 Discrete space-time error norms (scaled by the factor 1 ψ(1) ) and convergence rates (cr) with respect to temporal discretization for quasi one-dimensional test case (situation (a) in Figure2) for the variable ψ(u).

	scheme	m	1 ψ(1) ψm -ψ ref L 2	cr	1 ψ(1) ψm -ψ ref T	cr	1 α 0	e T ,m	nIt
		0	7.13e-03	-	1.29e-01	-	3.63e-01	864
	NLTPFA	1 2	5.34e-03 3.54e-03	1.01 1.01	1.01e-01 7.08e-02	0.85 0.87	3.62e-01 3.62e-01	1002 1331
		3	1.73e-03	1.03	3.72e-02	0.93	3.61e-01	2150
		0	6.95e-03	-	1.26e-01	-	3.64e-01	315
	NLMPFA	1 2	5.20e-03 3.44e-03	1.01 1.02	9.85e-02 6.91e-02	0.85 0.87	3.63e-01 3.63e-01	416 604
		3	1.68e-03	1.04	3.62e-02	0.93	3.62e-01	1091
		0	7.13e-03	-	1.29e-01	-	3.63e-01	861
	AvgMPFA	1 2	5.34e-03 3.54e-03	1.01 1.01	1.01e-01 7.08e-02	0.85 0.87	3.62e-01 3.62e-01	1002 1330
		3	1.73e-03	1.03	3.72e-02	0.93	3.61e-01	2157
	6.1.3 Saturation over-and undershoots						

Table 5

 5 Discrete error norms and convergence rates (cr) with respect to spatial discretization for lenses test case for the variable u.

	scheme	m	um-u m-1 L 2 √ Ω	cr	um-u m-1 T √ Ω	cr	umax -1	h D
		1	1.04	-	2.35	-	3.69e-7	9.15e-1
	NLTPFA	2 3	6.59e-1 4.00e-1	0.77 0.78	2.17 1.91	0.14 0.20	5.16e-5 3.89e-5	5.09e-1 2.68e-1
		4	2.31e-1	0.82	1.61	0.25	1.45e-5	1.38e-1
		1	1.03	-	2.32	-	0.00	9.15e-1
	NLMPFA	2 3	6.64e-1 4.05e-1	0.75 0.77	2.17 1.91	0.12 0.20	0.00 9.99e-14	5.09e-1 2.68e-1
		4	2.34e-1	0.82	1.61	0.25	9.99e-14	1.38e-1
		1	9.99e-1	-	2.25	-	9.43e-7	9.15e-1
	AvgMPFA	2 3	6.41e-1 3.87e-1	0.76 0.79	2.10 1.84	0.12 0.20	5.20e-5 4.45e-5	5.09e-1 2.68e-1
		4	2.22e-1	0.83	1.55	0.26	1.46e-5	1.38e-1

Table 6

 6 Discrete error norms and convergence rates (cr) with respect to spatial discretization for lenses test case for the variable ψ(u).

	scheme	m	ψm-ψ m-1 L 2 √ Ωψ(1)	cr	ψm-ψ m-1 T √ Ωψ(1)	cr	1 α 0	e T ,m	nIt
		1	5.59e-1	-	1.21	-	2.23e+5	12128
	NLTPFA	2 3	3.42e-1 1.97e-1	0.84 0.87	1.03 8.01e-1	0.28 0.39	1.30e+5 7.05e+4	12793 16249
		4	1.07e-1	0.91	5.90e-1	0.46	3.70e+4	18007
		1	5.56e-1	-	1.21	-	2.23e+5	12231
	NLMPFA	2 3	3.46e-1 1.99e-1	0.81 0.86	1.04 8.09e-1	0.26 0.39	1.30e+5 7.06e+4	13124 16522
		4	1.08e-1	0.92	5.94e-1	0.46	3.70e+4	18015
		1	5.12e-1	-	1.13	-	2.20e+5	12128
	AvgMPFA	2 3	3.20e-1 1.83e-1	0.80 0.87	9.79e-1 7.64e-1	0.25 0.39	1.28e+5 7.01e+4	12805 16216
		4	9.89e-2	0.92	5.60e-1	0.46	3.68e+4	18008

Table 7

 7 Discrete error norms and convergence rates (cr) with respect to spatial discretization for lenses test case for the variable p.

	scheme	m	pm-p m-1 L 2 √ Ω10 5	cr	pm-p m-1 T √ Ω10 5	cr	1 α 0	e T ,m	p min
		1	2.59e-1	-	5.45e-1	-	8.43e+5	1.02e+5
	NLTPFA	2 3	1.23e-1 6.20e-2	1.27 1.07	2.65e-1 1.33e-1	1.23 1.08	8.73e+5 8.85e+5	1.01e+5 1.01e+5
		4	3.17e-2	1.01	6.97e-2	0.96	8.91e+5	1.00e+5
		1	2.60e-1	-	5.39e-1	-	8.43e+5	1.02e+5
	NLMPFA	2 3	1.23e-1 6.25e-2	1.27 1.06	2.62e-1 1.32e-1	1.23 1.07	8.73e+5 8.85e+5	1.01e+5 1.01e+5
		4	3.20e-2	1.00	6.97e-2	0.96	8.91e+5	1.00e+5
		1	1.35e-1	-	2.98e-1	-	8.44e+5	1.02e+5
	AvgMPFA	2 3	6.67e-2 3.37e-2	1.20 1.07	1.50e-1 7.64e-2	1.17 1.05	8.73e+5 8.85e+5	1.01e+5 1.01e+5
		4	1.72e-2	1.01	4.12e-2	0.93	8.91e+5	1.00e+5

Table 8

 8 Discrete error norms and convergence rates (cr) with respect to temporal discretization for lenses test case for the variable u.

	scheme	m	um-u ref L 2 √ Ω	cr	um-u ref T √ Ω	cr	umax -1	δt
		0	4.62e-1	-	3.62	-	1.46e-5	400.00
	NLTPFA	1 2	3.60e-1 2.51e-1	0.87 0.89	2.90 2.10	0.76 0.80	1.50e-5 1.50e-5	300.00 200.00
		3	1.31e-1	0.94	1.14	0.87	1.48e-5	100.00
		0	4.61e-1	-	3.61	-	1.17e-11	400.00
	NLMPFA	1 2	3.60e-1 2.50e-1	0.87 0.89	2.90 2.09	0.76 0.80	1.34e-11 9.80e-12	300.00 200.00
		3	1.31e-1	0.94	1.14	0.87	8.60e-12	100.00
		0	4.61e-1	-	3.62	-	1.43e-5	400.00
	AvgMPFA	1 2	3.59e-1 2.50e-1	0.87 0.89	2.91 2.10	0.76 0.81	1.42e-5 1.42e-5	300.00 200.00
		3	1.30e-1	0.94	1.15	0.87	1.40e-5	100.00

Table 9

 9 Discrete error norms and convergence rates (cr) with respect to temporal discretization for lenses test case for the variable ψ(u).

	scheme	m	ψm-ψ ref L 2 √ Ωψ(1)	cr	ψm-ψ ref T √ Ωψ(1)	cr	1 α 0	e T ,m	nIt
		0	1.37e-1	-	8.30e-1	-	3.78e+4	469
	NLTPFA	1 2	1.04e-1 7.05e-2	0.95 0.97	6.43e-1 4.44e-1	0.88 0.91	3.76e+4 3.74e+4	573 752
		3	3.53e-2	1.00	2.28e-1	0.96	3.72e+4	1259
		0	1.37e-1	-	8.29e-1	-	3.78e+4	379
	NLMPFA	1 2	1.04e-1 7.05e-2	0.95 0.97	6.43e-1 4.44e-1	0.88 0.91	3.76e+4 3.74e+4	486 654
		3	3.53e-2	1.00	2.28e-1	0.96	3.72e+4	1203
		0	1.36e-1	-	8.28e-1	-	3.77e+4	463
	AvgMPFA	1 2	1.04e-1 7.01e-2	0.95 0.97	6.42e-1 4.44e-1	0.88 0.91	3.75e+4 3.73e+4	583 752
		3	3.51e-2	1.00	2.28e-1	0.96	3.70e+4	1278

Table 10

 10 Discrete error norms and convergence rates (cr) with respect to temporal discretization for lenses test case for the variable p.

	scheme	m	pm-p ref L 2 √ Ω10 5	cr	pm-p ref T √ Ω10 5	cr	1 α 0	e T ,m	p min
		0	2.12e-2	-	4.09e-2	-	8.91e+5	1.00e+5
	NLTPFA	1 2	1.62e-2 1.10e-2	0.94 0.96	3.19e-2 2.22e-2	0.87 0.89	8.91e+5 8.91e+5	1.00e+5 1.00e+5
		3	5.53e-3	0.99	1.16e-2	0.94	8.91e+5	1.00e+5
		0	2.12e-2	-	4.08e-2	-	8.91e+5	1.00e+5
	NLMPFA	1 2	1.62e-2 1.10e-2	0.94 0.96	3.18e-2 2.21e-2	0.87 0.89	8.91e+5 8.91e+5	1.00e+5 1.00e+5
		3	5.53e-3	0.99	1.15e-2	0.94	8.91e+5	1.00e+5
		0	2.10e-2	-	4.08e-2	-	8.91e+5	1.00e+5
	AvgMPFA	1 2	1.61e-2 1.09e-2	0.94 0.96	3.18e-2 2.21e-2	0.87 0.90	8.91e+5 8.91e+5	1.00e+5 1.00e+5
		3	5.47e-3	0.99	1.15e-2	0.94	8.91e+5	1.00e+5

  Multiplying the former inequality by δt (n+1 2 ) and summing it over n = 0, . . . , N yield

	T	2 T ≤ C 2 16	1 δt (n+ 1 2 )	t (n+1) t (n)	Ω	|∇v(x, t)| 2 dx dt.
		v T	2 T ≤ C 2 16 ∇v 2 L 2 ((0,T )×Ω) .
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non-wetting fluid enters the domain at the boundary Γ inflow = [START_REF] Brooks | Hydraulic properties of porous media[END_REF][START_REF] Chen | Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution[END_REF] × {10}, with an inflow velocity of 10 -4 m /s. Initially, it is assumed that the domain is fully-saturated with the wetting fluid phase, i.e. u init (x) = 1.

Fig. 6 Setting and grid used for the lenses test case. The grid shows the coarsest refinement level with 40x20 cells.

The densities and the viscosities of the fluids are the same as in the previous test case, i.e. 

Again, formula (104) is used for all u ∈ [0, 1], which guarantees that (A6)-(A7) are fulfilled. For the capillary pressure, a Brooks-Corey-type relationship is used [START_REF] Brooks | Hydraulic properties of porous media[END_REF]:

with λ BC = 1. For these functions, an analytical expression for ψ can be derived:

which is used for all u ∈ [0, 1] and the linearization ( 9) is utilized for all other values of u.

For solving the occurring linearized systems of equations, an iterative linear solver is used, namely, a stabilized bi-conjugate gradient (BiCGSTAB) method with an algebraic multigrid preconditioner [START_REF] Blatt | The iterative solver template library[END_REF], where the tolerance for the residual reduction is set to 10 -6 .

Spatial convergence

To investigate the spatial convergence a constant time step size of δt = 5 s is applied and the grid is successively refined, with a maximum refinement level of mmax = 4.

For this test case, the total velocity is not constant, which is why the convergence rates of p are also investigated. Please also note that, even though λ T = const, the pressure equation (28b) depends on u because of the gravity term f g, with f = 1 f 1 + 2 f 2 . Therefore, the equations (28a) and (28b) are fully-coupled.

Figure 7 shows the saturation solution of the NLMPFA scheme for the grid with refinement level m = 3 and the solution differences between two consecutive grid refinement levels (the solution of grid level m = 4 is mapped to the one of level m = 3). The saturation profile looks as expected, the non-wetting fluid does not flow through the impermeable lenses but instead flows round these 

Proof Using the definition of v T from Section 3.2.2 and Definition 21 of γσv T , we get

for all σ ∈ E int , Tσ = {K, L}. Then, choosing, for all σ ∈ E, vσ = v σ , we obtain

Using Lemma 6.6 of [START_REF] Droniou | Study of the mixed finite volume method for stokes and navier-stokes equations[END_REF], we get

where the constant C only depends on α and d. Then, thanks to ( 17)-( 18), the result is obtained

Lemma 11 Let D be an admissible space-time discretization matching Definition 3. Then there exists a constant

2 ) On the other hand, Cauchy-Schwarz inequality leads to

t (n) |∇v(x, t)| 2 dt dx.