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Abstract. The coalition formation problem arises when heterogeneous
agents need to be gathered in groups in order to combine their capacities
and solve an overall goal. But very often agents are different and can be
distinguished by several characteristics like desires, beliefs or capacities.
Our aim is to make groups of agents according to several characteristics.
We argue that a swarming method inspired by group dynamics allows
groups to be formed on the basis of several characteristics and makes
it very robust in an open system context. We evaluate this approach
by making groups of heterogeneous cognitive agents and show that our
method is adapted to solve this problem.

1 Introduction

Agents in a multi-agent system (MAS) face complex problems and do not always
have all the capabilities to solve them alone. Thus, agents need to share theirs
capacities in cooperative groups in order to reach the overall goal of their sys-
tem. They need to find the best suited agents to compose their group in order
to maximize the overall performance for the task resolution. This problem is
called the coalition formation problem and has been addressed in many forms.
To illustrate with a realistic example, in case of a large scale natural disaster
[10] robots with different capabilities may rescue victims and they need to make
coalitions owning the complete capabilities to rescue people. In this work we
are presenting a new approach inspired by the group dynamics field in the Hu-
manities and Social Sciences (HSS) using a swarming model with heterogeneous
agents. Related work is quoted in 2 and 3 introduces our approach and defines
the problem. A swarming model inspired from the literature is presented in 4.
The integration of group dynamics features into a swarming context is described
in 5 and experimental results shown in 6.

2 Related Work

The coalition formation problem is a broad problem addressed from different
point of views as multi-agent system [16], robotic [6] or swarming [9]. It can be
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derived into very similar problems called Task allocation problem [12] or Knap-
sack problem [2]. Swarming approaches [1] are one method used to address this
problem. They often use an optimization method technique called Ant Colony
Optimization (ACO) [19] in order to find optimal coalitions but in this work we
focus on swarming based on social potential field. Social potential field [13] is
a distributed method used to make swarm from individuals by using attraction
and repulsion forces between each individual. Social potential field is used to
bring out a global behavior to individuals. [13] uses it for autonomous multi-
robot control and [15] uses it into the multi-agent system field to make agents
patrol on a terrain with obstacles. Among the swarming literature, some works
are using heterogeneous agents or robots [6,17,7] that have different character-
istics from others: they may have type, abilities or dynamics. [7] uses swarming
with heterogeneous agents in order to achieve a self-organization of a MAS by
modifying force fields depending on the type of agents. The swarming method
used in this paper is inspired from this work. Yet, this work makes possible the
self-organisation of agents into a system based on one characteristic (the type
of agents) in order to make groups of homogeneous agents. The reality is often
more complex and we would like to reuse this method to tackle the coalition
formation problem where agents come together to try to achieve an overall goal
based on more factors than a type or a weight.

3 The Coalition Formation Problem

In a large scale natural disaster scenario, robots can be stuck or destroyed be-
cause of debris . Thus the process of coalition formation has to be dynamic and
robust. It has to be able to take into account the variability of agents and the
openness of the system. This is why we choose a swarming method with social
potential fields to make coalitions: their formation is processed distributively by
each agent allowing to add or remove agents from the system without stopping
it. In addition, agents characteristics can be modified at any time making this
swarming method very robust.

As seen in the section 2 some works focus on segregation of agents into het-
erogeneous swarming models. To the best of our knowledge, work that focuses on
sorting heterogeneous swarms uses heterogeneous agents that differ only in one
characteristic. But in a complex scenario we need agents to own a lot of charac-
teristics as physical characteristics (e.g. battery state, sensors, etc.), capacities
(moving, taking objects, etc.), mental characteristics (e.g. personal goal, desires,
learning skills, etc.), etc. Thus, we propose a social approach of heterogeneous
swarming able to make coalitions from several factors. Because humans are well
suited to form groups and work efficiently in them, we draw inspiration from
the group dynamics field [3] in HSS and use it with the swarming method as a
new approach for the coalition formation problem. The group dynamics is a field
that describes what small groups are, how they are formed and how they are
maintained. This approach makes the group formation possible by taking into
account several factors making heterogeneous swarming more relevant.
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In the decentralized task allocation problem, we consider a set of N indi-
viduals A = {aop, ay, ...,a,} in a 1-dimension Euclidean space. Agents have het-
erogeneous characteristics C' = {cg, ¢1,...,¢,} and desires D = {do, d1,...,d,}.
A characteristic ¢; is meeting a desire d;. Each individual a, has its own set

of characteristics and desires such that C,, = {c} ,c/ ,..,c"} and D,, =
{d* d! ..,d° }. Each individual is a point, unaware of its dimension, that
n n n

knows the characteristics of all the other agents. The objective of the agents is to
form groups with other agents who best meet their desires such that Cy; C Dy, .
The distance between two agents in the space is an attraction metric represent-
ing the attraction value that two individuals have for each other. It depends on
the extent to which the agent’s desires are satisfied. The shorter the distance, the
stronger the attraction between the agents. A group is a set of agents g; for which
all the agents have an attraction value for each other below a given threshold such
that g; = {ai,a;,...,am} where Va,,a; € g;, attraction(a; — a;) < threshold
and attraction(a; — a;) < threshold. Processing rules of the attraction are
described in the next section through a swarm intelligence method. We assume
here that agents can be part of only one group. In other word, Yg;, g;, giNg; = 0.

4 Control Law Definition

4.1 Attraction / Repulsion Function

Agents attraction update is processed following this equation :

N
P R Y SR I
#= 2 Slt-e) =) @

j=1,j#i

where z¢ and 27 are the position of individuals 7 and j into the Euclidean space.
f(y) being the attraction/repulsion function inspired from [14] where a and b
are two constants and ||y|| the Euclidean norm given by ||y|| = v/yTy which
is the distance between two agents in the Euclidean space. We also made two
parameter functions to choose the right a and b constants

fulz) = 0.(;5Z

z being a bias representing social factors described in section 4.2. f, and f, were
both made after empirical tests. They allow to keep a good ratio between a and
b and are well managing the attraction/repulsion function whatever the z value
is. However, these functions were not designed to be optimal.

The theoretical proof of stabilization of this attraction/repulsion function is
shown in the Appendix.

fo(z) = 200F2) 4 23 (4.2)

4.2 Social factors integration

In group dynamics, the Group Formation subfield focuses on the processes that
generates bonds of attraction between members of groups. The group formation
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process is a complex phenomenon implying numerous dimensions. Among these
dimensions, the attraction principles takes a large part. There are two types of
attraction, the social attraction and the personal attraction. Social attraction is
an attraction for a group whereas the personal attraction is ”"based on idiosyn-
cratic preferences grounded in personal relationships” [5]. Because in swarming
individuals are not aware of groups they are making, we focus on the personal
attraction allowing to predict whether an individual is attracted to another one
or not. The following principles are based on personal attraction [11,3] :

— proximity principle (p): proximity allows individuals to increase the num-
ber of their interactions. We see here the proximity principle as a distance
between individuals.

— similarity principle (s): individuals like people who are similar to them [4,
18]. In our system, the similarity is a distance between mind states of agents.

— complementarity principle (c): individuals like other whose qualities com-
plement their own. We represent it by the complementarity of the agents’
capacities.

— reciprocity principle (r): liking tends to be mutual.

— physical attractiveness principle (a): individuals are more attracted to peo-
ple who have a great physical attractiveness [4]. In our system the physical
attractiveness is seen as the adequacy between the characteristics of an in-
dividual and desires of others.

— minimax principle (m): individuals are attracted to people that offer them
maximum reward and minimal cost [4].

We want agents to be able to assess the attraction they have for other agents in
order to allow to form groups into the system. To do so, we build the equation 4.3
that integrates these principles. However, group dynamics is only an inspiration
source to build our equation. Even if we try to be consistent with the literature,
we are not claiming that this equation can be used to predict the attraction
between two real people.

z = (0.5 + p) * average(a, s,c, m) (4.3)

5 Experimentation

In order to evaluate our mechanisms, we integrated them in an agent model. As
our approach is socially inspired we have chosen the cognitive agent architecture
Soar [8] to which we add specific features involving control laws. We characterize
an agent by four modules that can be seen as sets of information.

— personal characteristics (P): are physical or mental characteristics agents
have (e.g. battery state, weight, shape),

— capacities (C): are skills of the agent, actions it can execute on its envi-
ronment, virtual processing it can do, or perceptions it can get from the
environment (e.g. moving, taking objects, etc.),
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— beliefs (B): are the facts agents have about their environment (e.g. acquain-
tances characteristic, attraction for acquaintances, its group quality),

— desires (D): are objectives or situations that the agent would like to accom-
plish or bring about (e.g. making a high quality group, resolving its personal
goal, help its group mates);

In this experiment, we are using a 1-dimensions matrix of three floats between 0
and 1 to represent information of each module of our agents. The size of matrices
does not have any importance for the proper functioning of the system. In order
to use these information, we need to integrate the attraction principles from the
section 4.2 to our experimentation. Each principle undergoes a filter function
used to scale each result between 0 and 1.

Proximity principle is the distance between two agents, represented as :

llp|| = z* — 27 p = filter(VuTu,d) (5.1)

where 2° and 27 are the position of agents ¢ and j into the Euclidean space and
d a parameter to be adjusted.

Similarity, Physical attractiveness and Minimax principle are pro-
cessed in the same way as the Proximity principle. The similarity principle is a
distance between the beliefs of two agents. The physical attractiveness principle
is a distance between physical characteristics of one agent and the personal de-
sires of another agent. The minimax principle is a distance between capacities of
one agents and the desires of another one. Let [M] be the number of elements
of a N dimensions matrix M.

[ul| = 2% — @) s = filter(VuTu, [B]) (5.2)

where xé and xi are the Belief matrix of agents ¢ and j. The Physical attractive-

ness principle and the minimax principle are processed exactly the same equation

replacing the matrix used depending on the above description.
Complementarity principle is a distance between skills of two agents :

el =z — x, c=1- filter(VuTu, [C]) (5.3)

where z¢ and zJ are the skills matrix of agents i and j and [C] the number of
elements in the Capacities matrix.
Reciprocity principle is the mean of z between two individuals.

r = mean(z", 27%) (5.4)

where 2% and z7% are a real number representing the attraction of i to j and j
to i. Previous equations undergoing the filter function defined as

filter(z, Tmaz) = min( 1) (5.5)

Tmax

Finally, each agent process the control law from the section 4 in 1-dimension
for each other agent of the system.
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Fig. 1: Attraction an agent i has for other agents of the system

6 Evaluation

In order to make each agent characteristics attractive to others, we pseudo-
randomly generate populations of individuals. If the generation was fully random
the characteristics of individuals could not be appropriate to be attractive to
other agents and the number of groups would be unpredictable. Though, agents
characteristics are not known in advance and it allows us to better illustrate the
process of group formation.

Figures 1 illustrate the attraction each agent have for each of their acquain-
tances depending on the number of steps of the simulation. Firstly this simulation
confirms experimentally the proof of stabilization of the attraction from the Ap-
pendix. Secondly, we can see that agents converge towards different attraction
values. For example, agent 0 has a strong attraction for agents 1 and lower ones
for agents 2 and 3. These differences are explained by a difference of character-
istics that made agents 2 and 3 unattractive to agent 0. Finally, as illustrated,
each agent has an attraction value over all the others allowing an outside viewer
to visualize these links on a graph. To do so, we process a Gaussian mixture
model clustering on attraction values allowing us to make clusters and to find
agents for which they have the strongest attraction. Taking the cluster where
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(a) Six agents and two groups. (b) Fifty agents and six groups.

Fig. 2: Graph showing formed groups on two cases.

attraction has the lowest average and linking agent to each agent of this cluster
makes possible to build a graph representing groups as illustrated on the figure
2a. Repeating the same process on a larger agent population (fifty agents, six
groups), we obtain the figure 2b. Moreover, each individual is capable to assess
dynamically the attraction for its acquaintances. It means that even if groups
are stabilized for a specific state of the system they can changed if an agent
characteristic is modified. Note that this visualization is only a representation of
the attraction agent have for each other. Links and groups made on these graphs
can be modified depending on how clusters are built or what you consider being
a strong attraction.

7 Conclusion

This work tackles the coalition formation problem using a group dynamics in-
spired swarming approach. Its dynamicity allows to form groups of agents in an
open system with a decentralized manner making this method very robust. In
addition, the group dynamics inspiration from HSS allows the system to make
swarms with heterogeneous agents made by a high number of characteristics.

We showed that our approach is robust and adapted to the coalition for-
mation problem. However, this problem can be enhanced by some realistic con-
straints as overlapping groups or by making agents unaware of all the other
agents. This work will be used into a decision support system for the reman-
ufacturing and the repurposing of post-used products for the Circular project
(ANR-15-IDEX-02). This project focuses on developing the necessary technolo-
gies and conditions to make new circular industrial systems able to transform
post-used products into new products. In this context, formed groups will rep-
resent the new products proposed by the system.
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Appendix

A system state is a set of its agents’ states. For a specific state of the system,
we need to find a stable solution to the coalition formation problem, i.e. a set
of groups where individuals attraction for others has converged. Stabilization
allows the system to propose a result to the coalition formation problem with-
out oscillating between several ones. The following shows that our swarms are
converging towards a point of equilibrium.

Proof. Defining the state = of the system as the vector of the positions of indi-
viduals as = = [2'7,...,2NT]T. Let the invariant set of equilibrium points be

Q.={z:2=0} (Appendix .1)

The goal is to prove that, for ¢ — oo, the state x(t) is converging to 2.. We
choose the following Lyapunov function :

N-1

1 b .
=3 Z (2a||x || + ||3«"j||2) (Appendix .2)

i=1 j=i+1

and computing the gradient of this function with respect to z? gives :

N
. , a b i .
2 (wz_x])<|xixj||_||xixj||4>:_$z Uppendic 3

j=1,j#i

Taking the time derivative of our Lyapunov function along the motion of the
system,

V()= [VoV(@)Te =) [VaV(@)d' =) [~ Z 1] <0

i=1 i=1

(Appendlx A4)

for all ¢. Using LaSalle’s invariance principle, we can conclude that as t — oo,
the state x(t) converges to the largest invariant subset of the set defined by

Q={z:V(@)=0y={z:2=0} =12, (Appendix .5)

Since each point in {2, is an equilibrium, (2. is an invariant set and this proves the
stability of the swarming system for a symmetric attraction and repulsion rules
among individuals. However the introduction of the z paramater could make
attraction between agents asymmetric. In other word, an individual A could at-
tracts or repulses more an individual B than B attracts or repulses A. That’s
why the Reciprocity principle (¢f. 4.2) is important. It averages the attraction
between two individuals making the attraction symmetric. Thus, swarms mem-
bers converge to a constant arrangement.
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