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Abstract—This paper presents a preliminary study of a new
inversion strategy combining the method of adjoint applied to
the wide-angle parabolic equation and the method of split-
step wavelet for tropospheric refractivity estimation. Our main
motivation is to use a gradient based optimization method
to infer atmosphere from radio-frequency data, in an effort
towards a real-time accurate refractivity-from-clutter system.
The proposed adjoint formulation is validated with the method of
finite differences. The validation setup is developed for inversion
using a tomographic approach.

Index Terms—Inverse Problems; Troposphere Propagation;
Adjoint Method.

I. INTRODUCTION

The prediction of the refractive index distribution in the
lower troposphere is fundamental for estimating the perfor-
mance of communication and surveillance platforms operat-
ing in maritime environment. Dynamic nature of the lower
troposphere poses a challenge for conventional methods of
obtaining the refractivity with difficult-to-deploy expensive
equipments. The advantage of inferring refractivity from clut-
ter (RFC) (e.g., [1], [2], [3]) is the real-time sensing of the
environment within extended range for extended duration with
a radar only. Ongoing research in RFC aims at developing a
real-time accurate method of inversion (e.g., [4]).

Historically, the inversion methods which have been used
in the RFC community adopt parabolic equation (PE) solved
with split-step Fourier (SSF) technique [5]. They generally
require lots of forward model simulations, hence problems
with low-dimensional parameter vector are considered [3].
Zhao et al. [6] have demonstrated the applicability of the
method of adjoint for RFC when high-dimensional problem is
accounted for. In their work, narrow-angle approximation of
PE (NAPE) has been solved with SSF applying a tomographic
approach.

In this work, a new adjoint formulation is developed in
order to tackle high-dimensional problems. In this context,
our aim is to use a gradient based optimization method to
infer atmosphere from radio-frequency (RF) data, in an effort
towards a real-time accurate RFC system. Adjoint methods are
known for their accuracy and rapidity to estimate the gradient.
Inversion accuracy can be further improved by considering a
wave equation which is more accurate than NAPE in realistic
scenarios. In accordance with the forward model, the adjoint
model can be derived directly from the one-way wave equation

and can be approximated in a second time (e.g., to wide-angle
PE (WAPE)). Rapidity of inversion can be further improved
by adopting the numerical solution of WAPE for both forward
and adjoint models from split-step wavelet (SSW) [7] which
outperforms SSF in terms of computational time. Consequent
RFC system computes the gradient at the cost of two inexpen-
sive SSW runs only, regardless of the number of parameters
to invert.

The major contribution of this paper is to propose an
approximate adjoint model to the one-way equation. Then the
inexpensive SSW method is used for computing both direct
and adjoint fields. The new inversion strategy is validated with
finite differences (FD), which lacks in the previous works.

The outline of this paper is as follows. Firstly, the forward
model is introduced in Section II. The cost function, adjoint
model and the gradient are formulated in Section III. The com-
putational setup is detailed in Section IV-A. The justifications
for the choice of computational setup are found in Section
IV-B with details of the validation strategy. Numerical results
for validation are presented in Section IV-C for evaluation of
the gradient. Finally inversion results are discussed in Section
IV-D.

II. FORWARD MODEL

There are several choices to model the electromagnetic wave
propagation in the lower troposphere. This paper considers the
one-way equation, which is the forward propagating part of the
Helmholtz equation in cylindrical coordinates, as the forward
model [5]:

∂ru− jk0 (1−Q)u = 0, (1a)
u(r, 0) = 0, (1b)
u(0, z) = φ(z), (1c)

which is numerically solved using SSW [7]. Operator Q is

given by Q =
√
k−2
0 ∂2z +m2(z). Field u(r, z) ∈ C is related

to the electric or magnetic field propagating at frequency
f = k0/2π through a medium with refractive index n(z) and
m(z) = n(z) + z/rearth is the refractivity for flattened-earth
approximation, with rearth being the radius of earth.



transmitter receiver array

rN

r3

.

.

.

r1

r2

0

z

r

Fig. 1. Schematic of the bistatic configuration.

III. ADJOINT MODEL

A. Cost Function

Let the function u ∈ L2(Ω) in domain Ω = [0, R]× [0, Z].
Consider the setup of the tomographic approach which is
schematized in Fig. 1. For samplings on u obtained at (r, z) =
(R, z), the observed field is denoted by uobs(R, z) and its
simulated counterpart is denoted by um(R, z). The misfit
between the simulation and the observation is estimated as:

J(m) =
1

2

∫ Z

0

|um(R, z)− uobs(R, z)|2dz. (2)

The function um is solution of (1) using the refractivity model
m.

B. Adjoint Model

The variational form is obtained when tangent-linear model
of the parabolic equation (1) is multiplied by w(r, z) ∈ C and
integrated on the domain Ω [8]. The adjoint model (AM) is:

∂rw − jk0 (1−Q∗)w = 0, (3a)

w(R, z) = um(R, z)− uobs(R, z), (3b)
w(r, 0) = 0, (3c)

where w is obtained by solving (3) in opposite direction to
(1). The gradient of the cost function is estimated as:

∇mJ = k0m

∫ R

0

<
{
j
[
Q−1

]∗
um · w

}
dr, (4)

where the operator Q−1 denotes the inverse of the operator
Q and the superscript ∗ denotes its adjoint. <{x} denotes the
real part of x ∈ C.

IV. NUMERICAL ANALYSIS

In the context of this paper, we use the steepest descent
optimization method for the inversion. Therefore the validation
of the gradient is crucial. The optimization employs the
gradient computed with AM. One classical way of validating
the gradient ∇mJAM obtained from AM is to compare it to
the gradient estimated with FD, denoted by∇mJFD. Although
FD is expensive and gives only a numerical approximation of
the gradient computed with AM, comparison with FD is still
useful for validation purpose [8].

A. Computational Setup

The discretized domain ΩNr,Nz
, where Nr and Nz are the

number of discretizations along the respective indices, has the
size of R = 100 m and Z = 150 m. The domain is discretized
with a uniform grid with the cell size of ∆r = ∆z = 1 m. The
initial condition φ(z) is given by the complex-point source
positioned at (rs, zs) = (−100 km, 25 m) with width of
5 m and radiation frequency of fs = 2 GHz at horizontal
polarization. Note that φ(z) is almost a plane wave.

The variation of the refractivity m in the lower troposphere
is typically between 1.00025-1.0004 [1]. It is customary to
describe refractivity via modified refractivity M given by
M(z) = (m(z) − 1) × 106. The objective and the initial
modified refractivity parameters of the computational setup
are given in Fig. 2 and they are respectively denoted by
Mopt and M0. The initial guess M0 is constant refractivity:
M0(z) = 330 M-unit. The parameter Mopt is composed of
three line segments, each described with the segment thickness
t and slope s. From z = 0 to z = Z, the parameters
of the objective refractivity are t = {50, 50, 50} m and
s = {0.4,−0.4, 0.118} M-unit/m. There is no variation of
refractivity with range. The simulations estimate the refrac-
tivity model m from the two parametric distibutions (initial
and objective) at grid nodes, i.e., m ∈ RNz . Consequently, we
invert Nz = 150 refractivity parameters.

The numerical solution of the function u is given by SSW
[7]. The field is apodized with the Hanning window for
z > Z. In order to compute the adjoint field w, φ(z) is
replaced with the difference um(R, z) − uobs(R, z) in SSW
and backpropagated in the same domain ΩNr,Nz . The gradient
∇mJAM is estimated by (4) with the Simpson’s rule of
integration.

The observed field uobs(R, z) is synthetically generated
using refractivity model mopt and it is sampled at each grid
node, uobs(R, z) ∈ CNz . The inversion aims at retrieving
mopt ∈ RNz from an initial guess m0 ∈ RNz . The solu-
tion mopt can be estimated with a line-search algoritm. The
iterations of parameters m can be formulated as:

mi+1 = mi − ρi∇mi
J, (5)

where the index i denotes the number of iterations, mi is the
parameter of the ith iteration, ρi = ραb and ∇mJi are the
stepsize and the gradient of the ith iteration respectively. The
parameter b is defined as the smallest integer such that:

J
(
mi − ραb∇mi

J
)
< J(mi), (6)

where ρ = 10−4 and α = 0.5. The stopping criterion of the
optimization algorithm is given by:

||mi+1 −mi||
1 + ||m0||

≤ 10−11, (7)

otherwise a maximum number of iterations of 400 is imposed.
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Fig. 2. Initial guess and objective refractivity profile.

B. Method of Validation

FD computations can validate AM in different ways [8].
In this work, we use the validation through comparison of
the synoptic structure of the gradients ∇mJAM and ∇mJFD.
If the adjoint field is formulated and simulated properly, the
gradients ∇mJAM and ∇mJFD should follow each other.

Inspired from [6], a short range propagation setup is orga-
nized for the validation purpose. Both gradients are estimated
for the parameters given in Fig. 2. The gradient ∇mJAM is
compared to ∇mJFD which is obtained using forward differ-
ence scheme for perturbation tolerance ε = 10−7 following [8]
(Other values of ε have been tested. No significant dependence
is observed).

In this work, the operator Q∗ in (3) is assumed to be self-
adjoint (Q∗ ≡ Q) and the operator Q−1∗ in (4) is assumed
to approximate to unity (Q−1∗ ≡ 1). The proof of validity is
kept out of scope of this article. However, the numerical tests
support the assumptions.

The initial condition φ(z) is obtained from a complex-point
source positioned far from the domain, at rs = −100 km. This
is necessary in order to illuminate the duct so that the gradient
can be computed for 0 < z < Z entirely in short range.

C. Validation

The gradient ∇mJAM is compared to ∇mJFD in Fig. 3.
The curves are normalized by the norm of the gradient. From
Fig. 3a, one observes that the gradients of the two different
methods follow each other for R = 100 m.

The relationship between the m and J is weakly nonlinear
in short range. This is confirmed with that ∇mJAM in Fig.
3a has a symmetric synoptic structure of Mopt−M0 deduced
from Fig. 2. To detail, from the gradient ∇mJAM being the
lowest at z = 50 m to its decrease towards null at z = 100 m,
and the symmetry of the gradient around z = 50 m in the
range 0 < z < 100 m are among other things to defend
this assertation. Therefore the inversion does not have strong
dependence on the initial guess in this scenario.

Increasing nonlinearity of the problem with range impacts
on the gradient ∇mJAM . To illustrate this, the range is
increased to R = 60 km with cell size to ∆r = 100 m
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Fig. 3. Gradients estimated with the finite differences (FD) and the adjoint
model (AM) for different range R. The curves follow the synoptic structure
of each other.

and corresponding ∇mJAM is displayed in Fig. 3b. Increasing
the range from 100 m to 60 km changes the direction of the
gradient∇mJAM mainly to the opposite of that of R = 100 m.
The fact that ∇mJAM is positive at some altitudes does not
seem to be in accord with the refractivity parameters (of
a weakly nonlinear problem). To remove the doubts on the
accuracy of ∇mJAM , validation with FD is performed again.
As depicted in Fig. 3b, both methods estimate the gradient
comparably so the assumptions on the adjoint model are
validated for long range as well. Having different ∇mJAM for
different propagation ranges is linked to the high nonlinearity
of the problem.

The change of the gradient with increasing nonlinearity
(with range) is attributed to the change in driver of the adjoint
given with (3b). Consequently, increasing the range impacts
on the structure of the adjoint field w which is used for
estimating ∇mJAM with (4). Let us first consider the case
for R = 100 m. Fig. 4a shows the adjoint field w obtained by
propagating the difference given in Fig. 4b at r = R. From
Fig. 4b one observes that the difference |u − uobs| is low
in short range and its vertical distribution seems to be self-
similar with range. This monotonicity with range is observed
to ensure |u− uobs| = 0 at the altitude z = 100 m following
(Mopt−M0)|z=100 m = 0. However, the nonlinearity between
m and J gets severe with range and the gradient progressively
deviates from that given in Fig. 3a. This is linked to the
emergence of new local minima; the gradient points towards
the nearest minimum. This is supported by the increasing
nonlinearity of |u − uobs| which is obvious for increasing
ranges in Fig. 5b. Thus, one expects to lose track of the
global minimum as propagation range increases. Note that
the objective duct is an oversimplified example of what is
encountered in reality, still the inversions are expected to suffer
from nonlinearity beyond 5-6 km range. Finally, the adjoint w
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Fig. 4. For propagation range R = 100 m, (a) backpropagation of the adjoint
field w (dBV/m), (b) the difference between the initial guess field u (dBV/m)
and the observation uobs (dBV/m).

for R = 60 km is presented in Fig. 5a for completeness of the
discussion. Comparison between Fig. 4a and Fig. 5a shows an
example of how different the error um(R, z)−uobs(R, z) back-
propagates for different degrees of nonlinearity. Accordingly,
∇mJAM depends on the range of propagation.

To summarize, the adjoint model is validated and non-
linearity of the problem is elaborated. Given the degree of
nonlinearity of an oversimplified case, an accurate RFC system
has to consider mitigation of nonlinearity as a second step,
following the validation of the gradient.

D. Inversion Results

We test our method of inversion in order to prove that the
inversion strategy is implemented properly. The objective duct
is given in Fig. 2. The computational setup of the inversion is
given in section IV-A.

In short ranges the convergence of the inversion is seen from
the decrease of the cost function with iterations in Fig. 6a. The
inversion has converged after 131 iterations. The success of the
inversion is seen from the match between initial and objective
modified refractivity profiles in Fig. 6b.

The inversion parameters minv capture most of the objective
duct profile given by mopt in only the first two iterations.
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Fig. 5. For propagation range R = 60 km, (a) backpropagation of the adjoint
field w (dBV/m), (b) the difference between the initial guess field u (dBV/m)
and the observation uobs (dBV/m).

This is achieved thanks to not only the accuracy of the
method to compute the gradient but also the assist of the
weak nonlinearity. From 2nd to 8th iterations, the effort is
mostly dedicated to the capturing of the abrupt variation
of mopt around z = 50 m. The abrupt variation is not
perfectly captured in the gradient (see Fig. 3a) partly due
to the physical diffusion in (1) and (3). However it is not
associated with the assumptions on the operator Q because FD
predicts the gradient comparably smooth. This is an example
of common difficulty to capture abrupt variations in nonlinear
inverse problems. We note that the remaining 123 iterations
are performed mainly so as to smoothen the oscillations of
minv around mopt. These oscillations spread over minv during
iterations and they originate from the abrupt variation of mopt

at z = 50 m. The convergence can be improved by convexi-
fying the cost function with the application of regularization
techniques. However, one anticipates that the improvement of
convergence rate at the level of these oscillations are not a
concern when noise is introduced in realistic scenarios as the
cost function remains higher than it is beyond 8th iteration in
Fig. 6a.

As for the case with R = 60 km, the inversion is not
successful. Convergence criterion is not met until maximum
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Fig. 6. For propagation range R = 100 m, (a) convergence plot, (b) the
initial guess, objective and inverted modified refractivity.

allowed 400 iterations. The inverted refractivity parameters do
not follow the objective in Fig. 7b. The failure is owing to the
nonlinearity of the problem; the inversion converges at the
minimum which is the nearest to the given initial condition.
Rate of convergence is also slower than that of R = 100 m
in Fig. 7a. Mitigation of nonlinearity is mandatory for a
successful inversion because a good initial guess is typically
unavailable.

V. CONCLUSION

The adjoint model for a wide-angle parabolic equation has
been introduced. The numerical solution of the new adjoint
formulation using SSW has been validated with the method
of finite differences. Inversions are succesful only in short
range propagation. The nonlinear problem requires mitigation
of nonlinearity to successfully invert in long range.

In future work, we will aim at improving our results by
combining multiscale parametrization [9] and different regu-
larization methods [8]. More realistic ducts will be analysed
and robustness tests with respect to noise will be executed.
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Fig. 7. For propagation range R = 60 km, (a) convergence plot, (b) the
initial guess, objective and inverted modified refractivity.
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