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Introduction

In a recent work [l], for binary alloys, we retrieved the formalism of Bhatia-Thornton [START_REF] Bhatia | Structural Aspects of the Electrical Resistivity of Binary Alloys[END_REF] from the study of the order in the alloy. We defined the ACEO (Alloy Components Exchange Operator) Γ, which lets the binary alloy invariant [l]. We stated that the order parameter is only defined by quantities that remain invariant under the ACEO. We also emphasised the invariance of the total structure in any formalism (Ashcroft-Langreth [START_REF] Ashcroft | Structure of Binary Liquid Mixtures[END_REF] (AL), Faber-Ziman [START_REF] Faber | A theory of the electrical properties of liquid metals[END_REF] (FZ), and Bhatia-Thornton [START_REF] Bhatia | Structural Aspects of the Electrical Resistivity of Binary Alloys[END_REF]). More precisely, we can affirm that any quantity as the total structure factor or the order parameter remain invariant under the symmetry S2, which contains the identity Id and the ACEO Γ. The group of symmetry for the binary alloy is

{ } Γ = , 2 Id S
. A quantity X, which remains invariant by any element of S2 is invariant by S2. We shall note [ ]

X X S = 2 .
Here we shall extend this formalism to the ternary alloy

3 2 1 3 2 1 c c c C C C
, where i C is the i-th component of concentration i c , with the conditions 1

3 2 1 = + + c c c
and 0

3 2 1 ≠ ⋅ ⋅ c c c
. For this system, the symmetry group is S3, which contains six elements. These elements are the identity Id, + Ε and - Ε which are two circular permutation or cyclic operators and the three exchange operators 12 Γ , 23 Γ and 31 Γ . The symmetry S3 group possesses an alternating subgroup A3, which contains the operators Id, + Ε and - Ε . The results of the six operators on the ternary alloy are given in table 1. The alloy remains invariant by

S3 then 3 2 1 3 2 1 3 3 2 1 3 2 1 ) ( c c c c c c C C C C C C S = .
Any quantity or set of quantities intrinsic to the ternary alloys must be invariant under the symmetry group S3. We shall use its invariance properties to calculate the total structure factor in a formalism where the highest possible number of quantities remain invariant by the symmetry group S3. Depending on their level of invariance, it may be possible to clearly reveal the partial structure factors, which are linked to the number of particles without distinction between their chemical species, to the stoichiometry of the alloys and to the order.

Section 2, entitled "Formalism", is divided in three subsections. In subsection 2.1, we recall the necessary functions for the description of a ternary alloy. We also emphasise the links between them. In subsection 2.2, we define the total structure factors in the AL and FZ formalisms.

Subsection 2.3 is devoted to the total structure factor invariance under the symmetry group S3. In this subsection, we obtain three quantities with different levels of invariance. The first is bound to the total number of particles in the volume of study. The second is related to the stoichiometry and the third is linked to the order. They will be investigated in the three subsections of the section 3.

Section 4 is divided in two subsections and is devoted to the quantities intrinsic to the alloy. Subsection 4.1 is dedicated to the expression of the total structure factor in the FZ and AL formalisms. The expressions of the three order parameters are given in subsection 4.2; there are obtained following the approach developed for the binary alloys [START_REF] Grosdidier | Accurate determination of the radii and order parameter of the layers of a binary alloy, liquid or amorphous, from the eigenstates of the exchange operator of its components[END_REF]. In this subsection, we also discuss about the order in the ternary alloy. In section 5, we apply our formalism to the liquid ternary alloy 20 . 0 15 . 0 65 . 0

Si Ni Al

whose structure was previously calculated in our team [START_REF] Saadeddine | Structure Factors of Binary Aluminum-Nickel and Ternary Aluminum-Nickel-Silicon Liquid Alloys[END_REF] by using a square-well (or a shouldered) interatomic potentials [START_REF] Silbert | Liquid metals with structure factor shoulders[END_REF]. Our concluding remarks are presented in section 6.

Formalism

Functions for the description of a ternary alloy

The ternary alloy

3 2 1 3 2 1 c c c C C C
at a given temperature is determined by nine independent quantities:

-the alloy mean number density ρ .

-the three concentrations 1 c , 2 c and 3 c , which are bound by the relationship:

1 3 2 1 = + + c c c (1) 
-in the reciprocal space, the six FZ partial structure factors ) (q a ij or the six partial pair correlation functions ) (r g ij in the real space. Any quantity describing the alloy in the real space is expressed as a function of these nine independent quantities. The FZ partial structure factors ) (q a ij are related to the partial pair correlation functions ) (r g ij by the Fourier Transform (FT):

∫ ∞ - = - 0 ) sin( ) 1 ) ( ( 4 1 ) ( dr qr r g r q q a ij ij πρ (2)
All functions ) (r g ij and ) (q a ij have as limit 1 at infinity:

( ) ( ) j i q a r g ij q ij r , 1 ) ( lim and 1 ) ( lim ∀ = = ∞ → ∞ → (3)
From the partial pair correlation function ) (r g ij given in the FZ formalism [START_REF] Waseda | The structure of non-crystalline materials: liquids and amorphous solids[END_REF], we define the coordination functions ) (r N ij by:

) 3 or 2 , 1 ( ) , ( ' ) ' ( ' 4 ) ( 0 2 = = ∫ j i r d r g r r N r ij ij πρ (4)
Thus, it will be possible to go from ) (q

a ij to ) (r g ij or ) (r N ij
indifferently by Eqs. ( 2) and (4). The sets { }

) (q a ij , { } ) (r g ij and { } ) (r N ij
will have the same properties with respect to the symmetry group S3. We choose to study the set { }

) (q a ij
, which may be written as:

{ } { } { } { } { } j i ij ii
q a q a q a q a q a q a q a q a q a q a q a q a q a q a [START_REF] Waseda | The structure of non-crystalline materials: liquids and amorphous solids[END_REF] The two sets { }

≠ + = + = ) ( ) ( ) ( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( ), ( ), ( ), 
) (q a ii and { } j i ij q a ≠ ) ( are independently invariant under the group S3. { } ( ) { } ) ( ) ( 3 q a q a S ii ii = and { } ( ) { } j i ij j i ij q a q a S ≠ ≠ = ) ( ) ( 3 (6)

Total structure factor of ternary alloy in the FZ and AL formalism

For the considered ternary alloy

3 2 1 3 2 1 c c c C C C
, the total structure factor ) (q S Tot in the AL formalism is defined by (Eqs. (1.2.24) of Ref. [START_REF] Waseda | The structure of non-crystalline materials: liquids and amorphous solids[END_REF]):

( )

∑∑ = = = ⋅ + + 3 1 3 1 2 2 3 2 2 2 2 1 1 ) ( ) ( i j ij j i j i Tot q S b b c c q S b c b c b c ( 7 
)
where b1, b2 and b3 are the scattering lengths of each component and the terms ) (q S ij are the six AL partial structure factors. The total structure factor ) (q S Tot may also be written with the six FZ partial structure factors ) (q a ij (Eqs. (1.2.26) of Ref. [START_REF] Waseda | The structure of non-crystalline materials: liquids and amorphous solids[END_REF]) as:

( ) ( ) ( ) [ ] ) ( ) ( 3 1 3 1 2 3 3 2 2 1 1 2 2 3 2 2 2 2 1 1 2 2 3 2 2 2 2 1 1 q a b b c c b c b c b c b c b c b c q S b c b c b c i j ij j i j i Tot ∑∑ = = = + + - + + - ⋅ + + (8) 
Eq. ( 8) may be written as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
1 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 1 ) ( 1 ) ( 1 ) ( 31 1 1 3 3 23 3 3 2 2 12 2 2 1 1 33 2 3 2 3 22 2 2 2 2 11 2 1 2 1 2 2 3 2 2 2 2 1 1 - ⋅ + - ⋅ + - ⋅ + - ⋅ + - ⋅ + - ⋅ = - ⋅ + + q a b c b c q a b c b c q a b c b c q a b c q a b c q a b c q S b c b c b c Tot (9)
We define 2 b and b by:

3 3 2 2 1 1 2 3 3 2 2 2 2 1 1 2 and b c b c b c b b c b c b c b + + = + + = (10) 
From Eq. (3), we deduce that:

( ) 1 ) ( lim = ∞ → q S Tot q (11)
Eq. ( 9) may be written as:

( )

2 31 1 1 3 3 23 3 3 2 2 12 2 2 1 1 33 2 3 2 3 22 2 2 2 2 11 2 1 2 1 2 ) ( 2 ) ( 2 ) ( 2 ) ( ) ( ) ( 1 ) ( b q a b c b c q a b c b c q a b c b c q a b c q a b c q a b c q S b Tot - ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = - ⋅ (12) 
Eq. (12) becomes:

) ( ) ( ' ) ( 2 2 2 2 b b q S b q S b Tot Tot - + = ⋅ (13) 
where ) ( ' q S Tot , weighted by 2 b , is the total structure factor in the FZ formalism and the last term in parentheses will be denoted L. This term may be written as:

31 23 12 2 1 3 1 3 2 3 2 3 2 2 2 1 2 1 2 2 ) ( ) ( ) ( L L L b b c c b b c c b b c c b b L + + = - + - + - = - = (14) 
Thanks to Eqs. ( 3) and (11), we have:

( ) 1 ) ( ' lim = ∞ → q S Tot q (15)
We define 1 δ , 2 δ and 3 δ by:

2 1 3 1 3 2 3 2 1 b b b b b b - = - = - = δ δ δ (16)
These three quantities i δ are not independent because:

0 3 2 1 = + + δ δ δ (17)
The results of applying the operators belonging to the group S3 to the i δ are given in table 1. We observe that:

{ } [ ] { } 3 2 1 3 2 1 3 , , , , δ δ δ δ δ δ ≠ S ( 18 
)
The set { } So, we have:

{ } [ ] { } 3 2 1 3 2 1 3 , , , , δ δ δ δ δ δ = A (19)
In contrast, the sum [ ]

0 3 2 1 3 2 1 3 = + + = + + δ δ δ δ δ δ S ( 20 
)
A consequence of Eq. ( 17) is that the three quantities ij L are also bound. The quantities ij L are similar to the Laue monotonic term for the binary alloy (page 12 of Ref. 5). We observe that:

2 2 3 ] [ b b S = (21) ( ) b b S = 3 (22) { } [ ] { } 31 23 12 31 23 12 3 , , , , L L L L L L S = (23) [ ] L L S = 3 (24) [ ] ) ( ) ( 3 q S q S S Tot Tot = (25) [ ] ) ( ' ) ( ' 3 q S q S S Tot Tot = (26)

Invariance of the total structure under the symmetry group S3

As observed at the end of subsection 2.2, the total structure factors remain invariant under the group S3. We go use this for determination of their expression. The invariance of ) ( ' q S Tot is bound to that of the quantity:

) ( 2 ) ( 2 ) ( 2 ) ( ) ( ) ( ) ( ' 31 1 1 3 3 23 3 3 2 2 12 2 2 1 1 33 2 3 2 3 22 2 2 2 2 11 2 1 2 1 2 q a b c b c q a b c b c q a b c b c q a b c q a b c q a b c q S b Q Tot ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = = (27) 
We have:

[ ] Q Q S = 3 (28)
We choose a transformation between the two sets We choose:

          3 2 1 b b b and           ) , , , , , ( ) , , , , , ( 3 2 
3 2 1 3 2 1 3 2 1 ) , , , , , ( δ 
= - = b b b b b c c c f ( 29 
)
and

1 3 2 3 2 1 3 2 1 ) , , , , , ( δ 
= - = b b b b b c c c g ( 30 
)
This transformation generalizes that used for a binary alloy and also includes the quantities ij L .

Thus, we can write:

          ⋅           - - =           3 2 1 3 2 1 1 3 1 1 0 0 1 1 b b b c c c b δ δ (31) whose determinant 1 1 0 0 1 1 3 2 1 - - c c c
is equal to 1 and consequently invariant under the group S3. The transformation written with a symmetrical matrix is:

( )           ⋅             ⋅ = 1 3 1 3 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , , 1 1 1 3 1 1 3 3 3 3 1 3 δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ b q Q q Q q Q q Q q Q q Q q Q q Q q Q b Q b b b b b b (32)
We must find the six coefficients ) (q Q µν in order to retrieve Eq. (27 

3 3 1 1 1 3 3 2 1 3 1 ) ( 2 ) ( ) ( ) ( ) ( 2 ) ( 1 3 1 1 3 3 1 3 Term Term b b Term b b q Q q Q q Q q Q q Q b q Q b b Q δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ + + + + + = (33) 
We know that Q obeys Eq. (28) and it is composed by three additive terms, which have different levels of invariance under the symmetry group S3. 

) ( ) ( 1 3 1 3 q Q q Q b b δ δ δ δ +
should also be. It contains two independent q-functions, which will be linked to two independent structure factors. These latter two are bound to the two independent equations, which govern the relative abundance of one species with respect to the two other ones. We shall call the Term 2 "Species Ratio Term". Term 3 must be invariant under the group. It presents the lowest level of invariance. It involves three q-functions. We shall show that they are related to the three alloy order parameters. The Term 3 will be called "Order Term". These different terms will be investigated in section 3. The determination of the terms ) (q Q µν is obtained from equating Eqs. ( 27) and (32). This leads to:

0 ) ( 2 ) ( 2 ) ( 2 ) ( ) ( ) ( ) ( 2 ) ( ) ( )] ( ) ( [ 2 ) ( 31 1 1 3 3 23 3 3 2 2 12 2 2 1 1 33 2 3 2 3 22 2 2 2 2 11 2 1 2 1 3 1 2 1 2 3 1 3 2 1 3 1 1 3 3 1 3 =         ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ - + + + + + q a b c b c q a b c b c q a b c b c q a b c q a b c q a b c q Q q Q q Q q Q q Q b q Q b b b b b δ δ δ δ δ δ δ δ δ δ δ δ δ δ (34)
By replacing b , 3 δ and 1 δ by their dependence on 1 b , 2 b and 3 b , Eq. ( 34) breaks down into a system S of six equations corresponding to each element of the set { }

1 3 3 2 2 1 2 3 2 2 2 1 , , b b
. We obtain: 

For 2 1 b : 0 ) ( ) ( ) ( 2 ) ( 11 2 1 1 2 1 11 3 3 3 = - + + = q a c q Q q Q c q Q c B b b b δ δ δ (35) For 2 2 b : 0 ) ( ) ( ) ( 2 ) ( ) ( 2 ) ( 2 ) ( 22 2 2 2 2 2 2 22 3 3 1 3 1 1 3 1 = - + - + - + = q a c q Q q Q q Q q Q c q Q c q Q c B b b b b δ δ δ δ δ δ δ δ (36) For 2 3 b : 0 ) ( ) ( ) ( 2 ) ( 33 2 3 3 2 3 33 1 1 1 = - + - = q a c q Q q Q c q Q c B b b b δ δ δ (37) For 2 1 b b : ( ) 0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 12 2 1 1 2 1 2 1 12 3 3 1 3 3 1 = - - + - + + = q a c c q Q q Q q Q c c q Q c q Q c c B b b b b δ δ δ δ δ δ (38)
( ) 0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 23 3 2 3 3 2 3 2 23 1 3 1 1 3 1 = - + - - + - + = q a c c q Q q Q q Q c q Q c c q Q c c B b b b b δ δ δ δ δ δ (39) For 1 3 b b : ( ) 0 ) ( ) ( ) ( ) ( 2 31 1 3 3 1 1 3 31 1 3 3 1 = - - + - = q a c c q Q Q c q Q c q Q c c B b b b b δ δ δ δ (40)
The system S is solved; its solutions are presented in each subsection of section 3.

Calculations of the three physical terms

The Particle Number Term

The resolution of the system of equations S provides: q a q a q a q a q a q a B =

                    = 1 3 3 2 2 1 2 3 2 2 2 1 2 2 2 ) ( c c c c c c c c c q Q b b (41) where the solution ) (q Q b b is
. For simplicity, we choose to write this solution as a vector in the basis of the six FZ partial structure factors ) (q a ij . This allows isolating the factors that depend on q, which only appear in the basis B. We notice that:

) ( ) ( 2 ) ( 2 ) ( 2 ) ( ) ( ) ( ) ( 31 1 3 23 3 2 12 2 1 33 2 3 22 2 2 11 2 1 q S q a c c q a c c q a c c q a c q a c q a c q Q NN b b = + + + + + = . ( 42 
)
The quantity, as expected, is invariant under the symmetry group S3:

[ ] ) ( ) ( 3 q S q S S NN NN = (43) 
Thanks to Eqs. ( 3) and (42), we show that:

( ) 1 ) ( lim = ∞ → q S NN q (44)
Using Eqs. ( 2) and ( 4), we can associate the particle number function ) (r N NN to the quantity

) (q S NN . The particle number function ) (r N NN is defined by: ) ( ) ( ) ( ) ( 2 ) ( 2 ) ( 2 ) ( ) ( ) ( ) ( 3 2 1 31 1 3 23 3 2 12 2 1 33 2 3 22 2 2 11 2 1 r N r N r N r N c c r N c c r N c c r N c r N c r N c r N NN + + = + + + + + = (45) 
In Eq. (45), ) (r N i (i=1,2,3) is the number of atoms of the component i C inside the sphere of radius r . It is given by:

∑ = = 3 1 ) ( ) ( j ij j i i r N c c r N (46)
As for a binary alloy

[1], ) (r N NN
is the total number of atoms, without distinction of their chemical species, that are located inside the volume ) (r

NN

Ω

. This volume is spherical due to the spherical symmetry in the liquid. It is an average microscopic volume, which represents all volumes of the same size in the macroscopic sample that we study. This average volume is thus a conceptual entity and it does not correspond to a specific position within the macroscopic sample.

The Species Ratio Term

The resolution of the system S gives: 

                    - - - - + - - =                     + - - + - - + - = ) ( 2 ) ( ) ( ) ( and ) ( ) ( 2 ) ( ) ( 3 2 1 3 3 2 3 2 1 2 2 3 2 2 3 2 1 1 3 2 1 1 3 2 1 2 2 1 2 1 3 2 2 2 1 3 3 1 c c c c c c c c c c c c c c c c q Q c c c c c c c c c c c c c c c c q Q b b δ δ (47) We calculate )] ( [ 1 31 q Q b δ Γ : [ ] ( )       Γ                             + - - Γ + - - Γ Γ + - Γ Γ Γ Γ =                                           + - - + - - + - Γ ) ( ),
)] ( [ )] ( [ ] 2 [ )] ( [ ] [ ] [ ) ( ) ( 2 ) 
( q a q a q a q a q a q a q a q a q a q a q a q a 

) ( ), ( ), ( ), ( ), ( ), ( 3 2 1 3 3 2 3 2 1 2 2 3 2 2 3 2 1 1 ) ( ), ( ), ( ), ( ), ( ), ( 1 2 3 3 1 2 3 2 2 3 2 3 1 2 2 2 3 1 q Q c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c b q a q a q a q a q a q a q a q a q a q a q a q a δ - =                     - - - - + - =                     + - - + - - + - =             (48) We obtain: ) ( )] ( [ 3 1 31 q Q q Q b b δ δ - = Γ
, which is in agreement with the fact that the term

) ( ) ( 1 3 1 3 q Q q Q N N δ δ δ δ +
remains invariant under group S3. Indeed, we have:

0 )] ( [ ] [ )] ( [ ] [ ) ( ) ( or ) ( ) ( )] ( ) ( [ 1 3 1 3 1 3 1 3 31 1 31 31 3 31 1 3 - Γ ⋅ Γ - + + = + Γ q Q q Q q Q q Q q Q q Q q Q q Q b b b b b b b b δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ (49)
Thanks to Eq. ( 14), we have . That implies:

) ( )] ( [ 3 1 31 q Q q Q b b δ δ - = Γ and ) ( )] ( [ 1 3 31 q Q q Q b b δ δ - = Γ (50) 
We now look for the function that remains invariant. We suppose that it can be written in the form:

) ( ) ( ) ( 3 3 2 2 1 1 q V q V q V X δ δ δ + + = (51) 
where the three functions )

( 1 q V , ) ( 2 q V and ) ( 3 q V
will soon be determined. 

) (q V i
). The consequence is that the set { }

) ( ), ( ), ( 3 2 1 q V q V q V
as the set { } 

{ } [ ] { } ) ( ), ( ), ( ) ( ), ( ), ( 3 2 1 3 2 1 3 q V q V q V q V q V q V A = (52) 
In particular, we have:

[ ] [ ] X q V q V q V q V q V q V X = - - + - - + - - = + + Γ = Γ )) ( )( ( )) ( )( ( )) ( )( ( ) ( ) ( ) ( 3 3 1 1 2 2 3 3 12 2 1 1 12 12 δ δ δ δ δ δ (53)
The fact that Therefore, in order to keep the invariance of X, each ) (q V i must be replaced by

) (q V i + . The consequence is that: 0 ) ( ) ( ) ( or ) ( ) ( ) ( ) ( ) ( ) ( 3 2 1 3 2 1 3 2 1 = + + - - - = + + q V q V q V q V q V q V q V q V q V (54)
By replacing in Eq. ( 51), 2 δ by ( )

3 1 δ δ + - , X becomes: ( ) ( ) 
) ( ) ( ) ( ) ( 2 3 3 2 1 1 q V q V q V q V X - + - = δ δ (55) The functions ) ( 1 q V , ) ( 2 q V and ) ( 3 q V
are solutions of the system of equations:

       = - = - = + + ) ( ) ( ) ( ) ( ) ( ) ( 0 ) ( ) ( ) ( 3 1 2 3 2 1 3 2 1 q Q q V q V q Q q V q V q V q V q V b b δ δ (56)
The solutions written as vectors in the basis B are:

                    - - - + - - - - - - + - + =                     - - + - - + - + - =                     + - - + - + - + - + + - = ) 3 ( ) 3 ( ) ( 2 ) ( ) 2 ( ) 2 ( 3 1 ) ( ) ( 2 ) 3 ( ) 3 ( ) 2 ( ) ( ) 2 ( 3 1 ) ( ) 3 ( ) ( 2 ) 3 ( ) 2 ( ) 2 ( ) ( 3 
1 ) ( 3 2 1 1 3 3 2 1 3 2 2 1 2 1 2 1 2 3 3 1 2 2 3 2 2 1 3 3 1 1 3 3 2 1 3 2 3 2 1 2 1 2 1 2 3 3 1 2 2 3 2 2 1 2 3 2 1 1 3 3 2 3 2 3 2 1 2 1 2 1 2 3 3 1 2 2 3 2 2 1 1 c c c c c
We can check that all ) (q V i satisfy table 1. We now move on to show that we can associate one

) (q V i
to the function that determines the number of one species (for example N3) with respect to the two others (N1+N2). There are three such functions. We define one of these three functions from the quantity:

2 1 3 2 1 3 ) ( ) ( ) ( c c c r N r N r N + - + (58) 
Thanks to Eq. ( 46), we define: 

      + - + - - + + - - + + + = ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) ( ) ( 33 2 1 3 31 3 2 1 1 23 3 2 1 2 22 2 2 12 2 1 11 2 1 3 12 r N c c c r N c c c c r N c c c c r N c r N c c r N c c r N NC (59) The term ) ( ) ( 2 ) 

= Γ

). We set:

[ ]

) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 33 2 1 3 31 3 2 1 1 23 3 2 1 2 12 3 12 r N c c c r N c c c c r N c c c c r N c r N NN NC + - + - - + + - - + = (60) 
We suppose that the species 1 and 2 are identical, then

) ( ) ( ) ( 22 12 11 r N r N r N = = , ) ( ) ( 31 23 r N r N = and 2 1 c c + is replaced by 1 c . We have ) ( ) ( 11 12 r N r N NN = and ) ( 12 r N NC becomes: [ ] ) ( ) ( ) ( ) ( ) ( 33 3 31 1 3 11 1 3 1 12 r N c r N c c r N c c c r N NC - - + = (61) 
We exactly retrieve the expression of ) (r N NC for a binary alloy (see Eq. ( 7) of Ref. [START_REF] Grosdidier | Accurate determination of the radii and order parameter of the layers of a binary alloy, liquid or amorphous, from the eigenstates of the exchange operator of its components[END_REF]). 

= Ε + Ε + = + + + + r N Id r N r N r N NC NC NC NC (62)
This is due to Eq. ( 1). Only two of the three functions ) (r N NCij are independent. From the ) (r N NCij and thanks to Eqs. ( 2) and (4), we can define the three partial structure factors ) (q S NCij . For example, we have:

      + - + - - + + - - + + + = ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) ( ) ( 33 2 1 3 31 3 2 1 1 23 3 2 1 2 22 2 2 12 2 1 11 2 1 3 12 q a c c c q a c c c c q a c c c c q a c q a c c q a c c q S NC (63) 
From Eq. ( 3), by adding the multiplicative terms of the ) (q a ij in Eq. ( 63), we show that:

( ) 0 ) ( lim 12 = ∞ → q S NC q (64)
We also have:

0 ) ( ) ( ) ( 31 23 12 = + + q S q S q S NC NC NC (65)
This allows us to conclude that it exists a linear application F , which binds the set

{ } ) ( ), ( ), ( 31 23 12 q S q S q S NC NC NC to the set { } ) ( ), ( ), ( 3 2 1 q V q V q V
. The results of the operators of the symmetry group S3 on the ) (q S NCij are given in table 1. The exchange operators ij Γ are involutive,

Id ij = Γ 2 ) (
, which implies that their eigenvalues are equal to 1 or -1 for their even eigenstates or for their odd eigenstates, respectively. In table 1, we notice, for example, that ) ( 12 q S NC and ) ( 3 q V are eigenstates of the operator 12 Γ but their parities are opposite. As a consequence of the existence of the linear application F , we can write:

) ( ) ( ) ( ) ( 31 23 12 3 q S q S q S q V NC NC NC ⋅ + ⋅ + ⋅ = δ γ β (66)
where β , γ and δ are three real numbers. By application of the operator 12 Γ on both members of Eq. (66), we obtain: ( )

[ ] [ ] [ ] [ ] ) ( ) ( ) ( ) ( 31 12 23 12 12 12 3 12 q S q S q S q V NC NC NC Γ ⋅ + Γ ⋅ + Γ ⋅ = Γ δ γ β (67) or ) ( ) ( ) ( ) ( 23 31 12 3 q S q S q S q V NC NC NC ⋅ + ⋅ + ⋅ = - δ γ β
) ( ) ( ) ( 31 23 3 q S q S q V NC NC - ⋅ = γ (70) 
A more accurate calculation shows that 3 1 -= γ . Thus:

( )

) ( ) ( 3 
1 ) ( 23 31 3 q S q S q V NC NC - ⋅ = (71) 
The two other relationships are deduced from the application of the cyclic operator + Ε in order to obtain the system of equations:

     ⋅ = - ⋅ = - ⋅ = - ) ( 3 ) ( ) ( ) ( 3 ) ( ) ( ) ( 3 ) ( ) ( 3 23 31 2 12 23 1 31 12 q V q S q S q V q S q S q V q S q S NC NC NC NC NC NC (72)
Thanks to Eqs. ( 56) and (65), we can now deduce both quantities

) ( 1 q Q b δ and ) ( 3 q Q b δ : ) ( ) ( and ) ( ) ( 23 12 3 1 q S q Q q S q Q NC b NC b - = = δ δ (73)

The "Order term"

For the order term, the solutions of the system S written in the basis B are:

                    + - - + + + - + - + =                     + - + - + =                     + - + - + = ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( 2 2 ) ( 2 ) ( ) ( ) ( 2 ) ( 2 2 ) ( ) ( 3 1 2 3 2 1 2 3 2 1 2 2 1 3 2 2 3 2 1 1 3 3 2 3 3 2 3 2 2 2 3 2 2 2 3 2 2 1 2 1 1 2 1 2 2 1 2 2 1 2 2 2 1 2 3 1 3 3 3 1 1 c c c c c c c c c c c c c c c c c c c c q Q c c c c c c c c c c c c c q Q c c c c c c c c c c c c c q Q δ δ δ δ δ δ (74)
By a similar procedure to the one used to obtain Eq. ( 48), it is easy to show that ) ( )] ( [

3 3 1 1 31 q Q q Q δ δ δ δ = Γ
. As in subsection 3.2, we are going to search the function that remains invariant. We suppose that this function can be written in the form:

) ( ) ( ) ( 3 2 3 2 2 2 1 2 1 q W q W q W Y δ δ δ + + = ( 75 
)
where the three functions 

) ( 1 q W , ) ( 2 q W and ) ( 3 q W are
) (q W i ). The three functions ) ( 1 q W , ) ( 2 q W and ) ( 3 q W constitute an invariant set { } ) ( ), ( ), ( 3 2 1 q W q W q W
under the symmetry group S3, but they are not bound as the three functions ) (q V i . We substitute in Eq. ( 75), 2 δ by ( )

3 1 δ δ + - , thus Y becomes: ( ) ( ) ) ( ) ( ) ( 2 ) ( ) ( 3 2 2 3 2 3 1 2 1 2 1 q W q W q W q W q W Y + + + + = δ δ δ δ (76)
By comparing Y to Term 3 of Eq. (33), we obtain the system of equations:

     = + = = + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 3 1 3 1 1 3 2 2 2 1 q Q q W q W q Q q W q Q q W q W δ δ δ δ δ δ (77)
whose solutions written in the basis B are:

                    + + - + - + - - + + =                     + - - + + + - + - + =                     - + + - + - + + - = ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( 3 2 1 3 2 1 3 2 1 3 2 1 2 1 3 2 1 2 3 2 1 3 1 2 2 1 3 2 2 2 1 3 3 1 2 3 1 3 2 1 3 2 1 3 2 1 3 2 1 2 1 2 3 1 3 2 2 1 3 2 3 2 1 2 3 2 1 3 2 1 3 2 1 3 2 3 2 1 3 2 1 2 1 2 3 2 3 1 3 2 2 3 2 2 1 1 c c c c c c
As the species ratio terms are defined for a determined species with respect to the two others, the three order terms must be defined in the same way. Both species 1 and 2 play an identical role for the order term that describes the behaviour of the species 3 with respect to species 1 and 2. If species 1 and 2 are identical, then 0 ( )

) ( ) ( 2 1 2 1 q W q W Y + = δ (79) 
The quantities ) ( ) (

2 1 q W q W + and ) ( 3 q W
have the same dependence on the operators of the

symmetry group S3, because ) ( ) ( ) ( 3 2 1 q W q W q W + +
remains invariant under S3. We find:

        + + + - + - + + = + ) ( ) ( ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( ) ( 33 2 2 1 31 2 1 1 23 2 1 2 22 2 2 12 2 1 11 2 1 2 3 2 1 q a c c q a c c c q a c c c q a c q a c c q a c c q W q W (80) or: [ ] ) ( ) ( ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( ) ( 33 2 2 1 31 2 1 1 23 2 1 2 12 2 3 2 1 q a c c q a c c c q a c c c q S c q W q W NN + + + - + - = + (81)
As written in subsection 3.2, if the species 1 and 2 are identical, we can replace

) ( 12 q S NN by ) ( ) ( 11 2 2 1 q a c c + and 2 1 c c + is replaced by 1 c . We also have ) ( ) ( ) ( 22 12 11 q a q a q a = = and ) ( ) ( 31 23 q a q a = , thus ) ( ) ( 2 1 q W q W + becomes:
( )

) ( ) ( 2 ) ( ) ( ) ( 33 31 11 2 3 2 1 2 1 q a q a q a c c q W q W + - = + (82)
We exactly retrieve the q-dependant term of the Bhatia-Thornton concentration-concentration partial structure factor ) (q S CC of a binary alloy. Thus the quantity

) ( ) ( ) ( 12 2 1 q R q W q W CC = +
may be considered as linked to the order. The two others, ) ( 23 q R CC and ) ( 31 q R CC , are deduced from

) ( 12 q R CC
by successive applications of the cyclic operator + Ε .

     = + = + = + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 31 1 3 23 3 2 12 2 1 q R q W q W q R q W q W q R q W q W CC CC CC (83)
and its solutions: 

( ) ( ) ( )      + + - = - + + = + - + = 2 ) ( ) ( ) ( ) ( 2 ) ( ) ( ) ( ) ( 2 ) ( ) ( ) ( ) 
q R q R q R q W q R q R q R q W q R q R q R q W CC CC CC CC CC CC CC CC CC (84)
Eqs. (83) also allows calculating the results of the operators of the symmetry group S3 on the

) (q R CCij
. They are presented in table 1. By using Eq. ( 3) and by adding the ) (q a ij multiplicative terms in Eq. ( 81), we verify that:

( ) 0 ) ( lim 12 = ∞ → q R CC q (85)
We can also deduce that:

( )      = - + = = ) ( ) ( 2 ) ( ) ( ) ( ) ( ) ( ) ( 23 31 23 12 12 3 3 1 3 1 1 q R q Q q R q R q R q Q q R q Q CC CC CC CC CC δ δ δ δ δ δ (86)
From Eqs. ( 2) and ( 4), we can associate the number function ) (r M CCij to the corresponding partial structure factor ) (q R CCij . For example, we have:

[ ] ) ( ) ( ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( 33 2 2 1 31 2 1 1 23 2 1 2 12 2 3 12 r N c c r N c c c r N c c c r N c r M NN CC + + + - + - = (87) 
4. Calculation of the quantities intrinsic to the ternary alloy

Total structure factors

Tanks to our results in section 3 (Eqs. ( 42), ( 73) and ( 86)), Eq. (33) becomes: 

[ ] ( ) 4 
) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) ( ) ( ' Eq CC CC CC CC CC Eq NC NC Eq NN q R q R q R q R q R q S q S b q S b q S b Q - + + + + - + = = δ δ δ δ δ δ (88) where 2 1 3 b b - = δ , [ ] ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( 33 2 1 3 31 3 2 1 1 23 3 2 1 2 12 3 12 q a c c c q a c c c c q a c c c c q S c q S NN NC + - + - - + + - - + = (89) and: [ ] ) ( ) ( ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( 33 
q a c c q a c c c q a c c c q S c q R NN CC + + + - + - = (90) 
Others quantities appearing in Eq. (90) are deduced by application of the cyclic operators + Ε or - Ε .

We can also write the total structure factor ) (q S in the AL formalism. For that, from Eqs. (13), ( 14) and (88), ) (q S Tot may be written as:

( )

2 2 1 3 2 1 3 2 2 3 2 1 2 1 ) ( δ δ δ c c c c c c Q b q S Tot + + + = (91) 
By substituting in Eq. (91), 2 δ by ( )

3 1 δ δ + -
and Q by its expression given by Eq. (88), Eq. (

[ ] [ ] [ ] ( )          - + + + + + + + + + - + = ) ( ) ( ) ( 2 ) ( ) ( ) ( ) ( ) ( ) ( 2 ) ( 1 ) ( 31 23 12 3 1 3 1 23 3 2 1 2 3 12 2 1 3 2 1 23 3 12 1 2 2 q R q R q R c c q R c c c q R c c c q S q S b q S b b q S CC CC CC CC CC NC NC NN Tot δ δ δ δ δ δ (92) 91) becomes: 
Thanks to Eqs. (44), (64), (85), we show that:

( ) 1 ) ( lim = ∞ → q S Tot q (93)
The expression of the total structure factors is not unique, because we can apply any operator belonging to the group S3. It exists six different ways of expressing for each total structure factor. If we reconsider that the species 1 and 2 are identical, then 0 3 = δ and Eq. ( 92) can be written as:

[ ] [ ] { } ) ( ) ( ) ( 2 ) ( 1 ) ( 12 2 1 3 2 1 12 1 2 2 q R c c c q S b q S b b q S CC NC NN Tot + + + + = δ δ (99) By replacing 2 1 c c + by 1
c , we retrieve the expression of the total structure in the Bhatia-Thornton Formalism for a binary alloy ( 

q S q S q S q S q S q S S CC CC CC CC CC CC = ( 95 
)
where we have, for example:

          + + + - + ⋅ - + + + + = + + = )] ( ) ( ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( 2 ) ( [ ) ( ) ( ) ( ) ( 33 2 2 1 31 2 1 1 23 2 1 2 22 2 2 12 2 1 11 2 1 3 2 1 3 12 2 1 3 12 q a c c q a c c c q a c c c q a c q a c c q a c c c c c q R c c c q S CC CC (96)
The two other elements of this set are deduced from the application of the cyclic operator + Ε .

The three order parameters

In the ternary alloy, complete knowledge of the order requires the accurate determination of three order parameters ij α . We can define the set { } 

α α α α α α = S ( 97 
)
The order is determined in the real space by the set { } 

r N r N r N r N r N r N r N r N r N r N r N r N r N r N S CC CC CC NC NC NC NN CC CC CC NC NC NC NN = (98) or: [ ] { } [ ] { } { } [ ] { }      = = = ) ( ), ( ) ( ) ( ), ( ) ( ) (
= = = r N r N r N NC NC NC .
The physical meaning of this important result is that the order in the ternary alloys is only 

( ) ( )        - + ⋅ ⋅ = = - + ⋅ ⋅ = = ) ( ) ( ) ( ) ( ) , , ( ) ( ) ( ) , , ( ) ( ) ( ) ( ) ( ) ( ) , , ( ) ( ) ( ) , , ( ) ( 33 
CC n R N c R N c R N c c c c c c c h R N R M c c c h R R N c R N c R N c c c c c c c h R N R M c c c h R α α (114)
We suppose, that the compounds 1 and 2 are totally homo-coordinated, thus 0 )

( 12 = n R N and
Eq. ( 114) becomes: We now suppose, that the compounds 1 and 2 are hetero-coordinated. Let us consider, for example, that 0

     ⋅ + = ⋅ + = ) , , ( ) ( ) ( ) , , ( ) ( ) ( 
[ ] [ ] ) , , ( ) ( ) ( 1 ) , , ( ) , , ( ) ( 1 ) 
) ( 22 = n R N (but 0 ) ( 11 ≠ n R N ). ) ( 11 n R N is equal to: 0 ) ( ) ( ) ( 2 1 33 2 1 3 11 > - = c R N c c c R N n n (117)
this implies 2 1 c c > . From Eq. (112), we have

1 33 3 12 ) ( ) ( c R N c R N n n = , yielding: [ ]        + - = ⋅ + - = + = + - = ⋅ + ⋅ - + = + = 1 3 2 33 1 3 3 33 3 2 31 1 3 2 31 3 2 1 R N R M c c c R c c c c R N c c R N c c c c R N R M c c c R n n n NN n CC n n n n NN n CC n α α (118)
We notice that the order parameter of species 2 with respect to the species 1 and 3 is negative, which demonstrates homo-coordination.

) ( 31 n R α reaches an extremum (see Eqs. 49 and 50 of Ref [START_REF] Grosdidier | Accurate determination of the radii and order parameter of the layers of a binary alloy, liquid or amorphous, from the eigenstates of the exchange operator of its components[END_REF]). Its value is equal to ratio of the concentration 2 c of the species 2 to the concentration As a last consideration in this subsection, if 0 3 = c , the ternary alloy becomes a binary alloys, for which we have:

) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 2 1 / 2 2 / 1 ) 31 /( 2 ) 23 /( 1 31 23 n n n n n n n R c c R R R R R R α α α α α α α = - = = = = = = (124) 
We retrieve the unique order parameter ) ( n R α of the binary alloy. We can conclude that the relationship (110) and its conditions of applicability are correct. We have established the exact expression of the three order parameters for a ternary alloy as well as their conditions of applicability. We have extended our model developed for binary alloys to the ternary alloys [START_REF] Grosdidier | Accurate determination of the radii and order parameter of the layers of a binary alloy, liquid or amorphous, from the eigenstates of the exchange operator of its components[END_REF].

Present formalism application

The purpose of this section is to apply and to explain the formalism presented in this work. The complete determination of the structure of a ternary alloy requires the knowledge of six partial quantities obtained by six different experiments. They may be also obtained by numerical simulation. Not owning this kind of data, we will apply our formalism to the = liquid alloy at the temperature of K 1111 and whose structure has been calculated from square-well atomic effective potentials [START_REF] Saadeddine | Structure Factors of Binary Aluminum-Nickel and Ternary Aluminum-Nickel-Silicon Liquid Alloys[END_REF][START_REF] Silbert | Liquid metals with structure factor shoulders[END_REF]. The details of the calculation are presented in reference [START_REF] Saadeddine | Structure Factors of Binary Aluminum-Nickel and Ternary Aluminum-Nickel-Silicon Liquid Alloys[END_REF]. The parameters of the effective potentials are given in subsections (2.3) 

- = = = = - = = = = + = = = = AlSi Ni AlSi NiSi Al NiSi AlNi Si AlNi R R R α α α α α α α α α α α α (127)
The signs of the three order parameter reflect the order in this alloy [START_REF] Saadeddine | Structure Factors of Binary Aluminum-Nickel and Ternary Aluminum-Nickel-Silicon Liquid Alloys[END_REF]. We observe that the value of these order parameters are close to 0, which is consistent with physical intuition. For example, the parameter 1 ) /( AlSi Ni α is an indicator of the order between nickel and the subsystem AlSi, thus of the attractive or repulsive nature of the average of interactions between one nickel atom and atoms of the subsystem AlSi. Because Ni-Al interaction is attractive and Ni-Si interaction is repulsive [START_REF] Saadeddine | Structure Factors of Binary Aluminum-Nickel and Ternary Aluminum-Nickel-Silicon Liquid Alloys[END_REF], on average they approximatively balance out and thus the value of 1 ) /( AlSi Ni α is close to 0. The determination of the order parameters lies on integrated quantities, which should not diverge at infinity (except ) (r N NN ). This is why the very accurate determination of the pair correlation functions is essential, particularly their limit at infinity, which must be equal to 1 for all of them. The quality of our present results is deteriorated by slight inaccuracies of the partial number functions. These inaccuracies arise from the discontinuities of the effective atomic potentials [START_REF] Saadeddine | Structure Factors of Binary Aluminum-Nickel and Ternary Aluminum-Nickel-Silicon Liquid Alloys[END_REF][START_REF] Silbert | Liquid metals with structure factor shoulders[END_REF].

It is however noted that the aim of this section is not to precisely calculate this specific case, but rather to demonstrate the applicability of the method to a real case.

Conclusion

By investigating the invariance of the total structure factor under the symmetry group S3 of exchanges of the components of a ternary alloy, we have found important results. Three physical quantities exhibiting different levels of invariance have been identified. The first quantity is bound to the number of atoms in the volume of study, without distinction of their chemical species. The second quantity is linked to the relative presence of the species in the volume of study. The third quantity is related to the order. Thanks to their invariance properties, we have determined the expression of the partial structure factors corresponding to these three physical quantities. The calculations show that the ternary alloy can be described as a set of three subsystems. Each such subsystem describes the behaviour of one species with respect to the other two, regarding both stoichiometry and order.

The order of the ternary alloy is described by a set of three order parameters. This set is intrinsic to the alloy. It allows order parameters to be studied in a volume where the number of atoms of the different species are exactly in the ratio of their corresponding concentrations, and this independently of size or chemical effects. It is possible to determine the layers and their three order parameters at any distance by generalizing the approach that we have previously established for binary alloys [START_REF] Grosdidier | Accurate determination of the radii and order parameter of the layers of a binary alloy, liquid or amorphous, from the eigenstates of the exchange operator of its components[END_REF]. This makes possible to observe the slightest effect of the temperature or of the values of the cut-offs of interatomic potentials on the thickness of the layers and on their three order parameters in a ternary alloy.

Thanks to the concept of invariance, we have extended the Bhatia-Thornton formalism used for binary alloys to ternary alloys by a different method from the original one [START_REF] Bhatia | Structural Aspects of the Electrical Resistivity of Binary Alloys[END_REF], which was extended to multicomponent alloys by Blétry [START_REF] Blétry | Partial Structure Factors in Multicomponent Liquid Amorphous Alloys[END_REF]. The present approach, using the concept of invariance under the symmetry group of the exchanges of the alloy components, may also be extended to multicomponent alloys with or without spherical symmetry. It always provides the conditions for an accurate calculation of the radii of the layers and their order parameters. This is, to our knowledge, the first time that the link between invariance and order is established and generalized.
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  the symmetry group S3.

  The functions f and g are two independent linear combinations of the quantities 1 b , 2 b and 3 b .

For

  

  invariant by the alternating subgroup A3:

  the quantity Y becomes:

  order parameters. This set is an intrinsic quantity to the alloy, thus it must be invariant under the symmetry group S3:

  the rest of alloy, which is composed by the species 1 and 3. The parameter ) proof of hetero-coordination) or positive (proof of homo-coordination). to a homo-coordinated subsystem, the sign of these two order parameters is positive, correctly reflecting the homo-coordination. An analogous verification is performed in the case of hetero-coordination when N ∆ is negative.

Figure 1 Study

 1 Figure 1

  Figure 2

Figure 2

 2 Figure 2

  Term 1 is composed by three multiplicative terms, that are all separately invariant by S3. This is the term that possesses the highest level of invariance. We shall show that Term 1 is related to the number of particles; we call it "Particle Number Term". Term 2 is composed of two multiplicative terms (excluding the number 2). Its level of invariance is intermediate. The first term b is invariant under the group S3, thus the second term

  for the moment unknown. The quantity Y

	remains invariant under the group S3 only if the functions	W i	(q	)	have the same behavior under the
	group S3 than the quantities 2				

i δ , respectively (see table 1, by replacing 2 i δ by

3 1 3 31 = Γ ⋅ Γ

meaningful a in spherical volumes of radius n R , which exactly contains ) (

of type 3, whose ratios are exactly equal to the concentration ratios:

The two other relationships are deduced from Eq. (100) by successive applications of the cyclic operator + Ε . The three relationships must be checked for the radii n R . This makes be possible to accurately determine the spherical layers in the ternary alloy. The argumentation is similar to that established for binary alloys [START_REF] Grosdidier | Accurate determination of the radii and order parameter of the layers of a binary alloy, liquid or amorphous, from the eigenstates of the exchange operator of its components[END_REF]. The order has physical meaning only it is investigated in samples which exactly have the stoichiometry of the alloy.

We now look for the expression of one the order parameter 12 α . It must be calculated only for a spherical sample whose radius satisfies Eq. (100), thus ) (

. This order parameter is an indicator of the trend of atoms of type 3 to separate from the atoms of species 1 and 2 (homocoordination of atoms of species 3 or higher affinity between neighbours of type 3) or of the tendency of atoms of type 3 to be surrounded by atoms of species 1 and 2 (higher affinity for the atoms of species 3 to have neighbours of different species 1 and 2). This order parameter in not an indicator of the nature of the order between the atoms of species 1 and 2. It is calculated for one representative atom of the studied sphere of radius n R , thus:

is a function to be determined. We consider the case where the atoms of species 3 are totally separated from the atoms of species 1 and 2, i.e. a total homo-coordination of atoms of species 3, thus:

The quantity ) (

and thanks to Eq. (103), we obtain:

Finally, we get: 

We have:

This allows us to extend the expression of the order parameter of the binary alloys [START_REF] Grosdidier | Accurate determination of the radii and order parameter of the layers of a binary alloy, liquid or amorphous, from the eigenstates of the exchange operator of its components[END_REF] to the ternary alloys by:

, where the radii n R and 

Then, we deduced the two numbers ) (

and the two order parameters:

This result shows that the value of the concentration 3 c of the totally homo-coordinated atoms of type 3 strongly influences the nature of the order of species 1 relative to the rest of the alloy composed by the species 2 and 3. Indeed, the parameter ) ( We can also calculate the three order parameters for a toy model, which is a special case of a ternary alloy whose partial functions ) (r N ij are all identical. Thanks to Eq. ( 60) and by application of the cyclic operator + Ε , we can show that all 0 ) ( = r N NCij . We applied the same procedure to the quantity ) ( 12 r N NC given by Eq. ( 109), and we find that all 0 ) ( = r N CCij . We deduce from Eq. ( 110) that all 0 ) ( = r ij α . The three order parameters are equal to 0 at any distance. The calculations agree that the "toy model" is simply a substitution alloy and this independently of the values of the concentrations i c .

Next we consider a second toy model, consisting of a ternary alloy of atoms of the same size with a chemical interaction between two of its species, which we denote species 1 and 2. We also suppose that

) in order to impose a symmetrical exchange given by N ∆ between the species 1 and 2. In the sphere of radius n R , the partial numbers ) ( n ij R N are given by: ∆ is positive, the subsystem 1-2 is homo-coordinated, whereas if N ∆ is negative the subsystem is hetero-coordinated. By using Eq. ( 60) and by applying the cyclic operator + Ε to this toy model, we show that all 0 ) ( = r N NCij for any r value. Thus the choice of n R is free. We next apply Eq. ( 110) associated to the operator + Ε to calculate the three order parameters. We obtain: (ρ = 0.0567 at/Å 3 ). The latter six are displayed in Fig. 2. The function ) (r N NN , which grows as 3 r , is not presented. We observe that these partial functions display abrupt variations, which is due to the discontinuities of the effective atomic potentials [START_REF] Saadeddine | Structure Factors of Binary Aluminum-Nickel and Ternary Aluminum-Nickel-Silicon Liquid Alloys[END_REF][START_REF] Silbert | Liquid metals with structure factor shoulders[END_REF] in this alloy. Here, the condition

) for the determination of the radii n R of the layers cannot be rigorously satisfied. We propose a method allowing to approximate this condition. For each component i C of the ternary alloy we define the quantity: