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ABSTRACT
This paper introduces a multi-modal network that learns to
retrieve by content vertical aerial images of French urban and
rural territories taken about 15 years apart. This means it
should be invariant against a big range of changes as the (nat-
ural) landscape evolves over time. It leverages the original
images and semantically segmented and labeled regions. The
core of the method is a Siamese network that learns to extract
features from corresponding image pairs across time. These
descriptors are discriminative enough, such that a simple kNN
classifier on top, suffices as final geo-matching criteria. The
method outperformed SOTA ”off-the-shelf” image descrip-
tors GEM and ResNet50 on the new aerial images dataset.

Index Terms— Siamese networks, multi-modal CBIR.

1. INTRODUCTION
Aerial images, such as images from satellites or other aerial
imaging devices, are distinctly different from image datasets
such as CIFAR [1], Imagenet [2], etc. These images are much
more semantically similar in composition as they capture nat-
ural and urban landscapes, which are all made up of visu-
ally near-identical elements such as vegetation and man-made
structures. Lately, a great volume of historical images was
digitized, among them many aerial images through national
surveys mainly from mapping agencies [3]. They are a unique
resource to study landscape evaluation, urbanization, land us-
age, historical events, and others. Alegoria project [4] aims
to create content-based image retrieval (CBIR) tools to help
end users accessing such volumes of images. The difficulty
is that many photographic materials are scarcely, or not at all
annotated, which makes it hard to link them to modern pho-
tographic images of the same territory.

State-of-the-art (SOTA) approaches for image retrieval [5,
6] are designed to deal with cross-view and multi-modality
challenges but are trained and tested on benchmarks com-
posed of important and distinct man-made architectures [7, 8],
which are very different from aerial images, if only by the
resolution and composition. It is, therefore, an open research
question whether these methods can be used for cross-time
aerial image retrieval. An additional question is whether the
semantic information from cartographic maps can be benefi-
cial for such a cross-time image retrieval task and if so, how
it can be exploited and encoded by a descriptor? This paper
aims to match urban and rural vertical aerial images, taken

15 years apart. Obviously, these images differ as the land-
scape evolves over time, which makes matching non-trivial.
The core idea is to learn an embedding that retains all in-
formation required to recover the scene appearance through
time and under varying acquisition conditions. The dataset
contains images in pairs, one from each decade, next to man-
ually labeled segmented semantic masks. An example of the
data can be seen in Figure 1. The sought-after method must
be able to distinguish between images that are semantically
close, as all contain similar elements, yet also must be robust
against change, the appearance and disappearance of objects
over time and even seasonal effects. Lastly, as we are learn-
ing to match image pairs, each image pair is a class by itself.
Unlike Imagenet object recognition tasks containing at least
500 images per class, we deal with only 2 training images per
correspondence.

Our contributions are the following. Firstly, we evaluate
the performance of existing methods for a new cross-time re-
trieval task using a dataset created for this purpose. We de-
termine the most important data modality and evaluate sev-
eral scenarios for multi-modal fusion. Secondly, we propose
a novel descriptor for multi-modal data and fine-tune it on our
dataset. The core of our method is formed by a Siamese net-
work that takes image pairs as an input. The image pairs con-
tain not only natural images but also the semantic labels cor-
responding to each image, which makes our approach multi-
modal. The net outputs a single descriptor per image pair that
captures the similarity whilst being robust against all changes
occurred over time. This descriptor is low-dimensional but
powerful enough such that the final classification whether an
image pair is a temporal match may be done by a simple un-
supervised k-nearest neighbors (kNN) method.

2. PROBLEM STATEMENT AND BACKGROUND
The dataset originates from French Mapping Agency (IGN)
[9] and contains vertical aerial images taken from three

Fig. 1. Image and semantic data evolution 2004-2019. Note also
the seasonal changes and lighting condition differences.



data type color RGB # 2004 # 2019
road (255,165,0) 380731 326882
church & chapel (255,255,0) 1292 2195
fort & blockhaus(128,128,128) 481 734
other building (255,0,0) 251294 3475104
water resource (0,0,255) 28043 12040
sport ground (138,43,226) 1409 2859
cemetery (75,0,130) 928 1299
vegetation zone (0,255,0) 224101 164435
railroad (255,0,255) 3308 3972

Table 1. Main semantic categories stats. Moselle 2004-2019.

French regions (Moselle, Bas-Rhin, and Meurthe-and-Moselle)
in 2004 and 2019. Consequently, we call it FR-0419. The
extra modality is formed by per pixel semantic annotations,
similar to those found in traditional cartographic maps. The
number of image pairs for the regions is 6000, 4430 and 5855.

We selected several categories of semantic objects (See
Table 2). Note that the number of annotated objects may dif-
fer significantly, partly due to the different annotation strate-
gies and partly due to landscape evolution. The aerial images
are 50cm/pixel and used in patches of a square kilometer. We
use perfectly matching image coordinates between the years
- i.e. the image regions are aligned. This scenario is not re-
alistic but allows us to test and demonstrate the robustness of
descriptors against changes and evolutions in the landscape.
Problem statement. This paper ascertains to what extent ex-
isting descriptors may be used to match aerial images through
time, and which information (visual, semantic, or both) is
more relevant for this task. We test different fusion strategies
to encapsulate all modalities into a single multi-dimensional
descriptor. Images from 2019 are used queries against their
2004 counterparts, and different geographical regions are se-
lected to form a training, validation, and testing sets. Lastly,
we introduce our new Siamese net-based descriptor.
Background. Recently with the progress of segmentation
Convolutional Neural Network (CNN) architectures the task
of fully automated scene segmentation became possible [10].
Semantic maps are an incredible additional source of infor-
mation that can potentially improve geolocalisation, cross-
view and cross-time retrieval. Combining different informa-
tion sources and modalities to improve (CNN) models was ex-
plored in [11, 12, 13, 14]. However, to the best of our knowl-
edge, using multi-modal data to retrieve aerial images taken in
different years, is novel. A related research problem is visual
localization, where acquisitions differ in viewing conditions
and suffer from a wide range of distortions [5, 6, 15] or ex-
treme view-point changes [16, 17]. Traditionally the goal is to
represent image features as robust feature vectors, contempo-
rary work focuses on learning based methods [14, 5, 6]. How-
ever, current methods are designed to handle object-specific
features and are not tailored to retrieve images over time,
where the scenes might not contain a single outstanding key
object being composed of repetitive man-made structures in-

stead. Hence these methods cannot be applied straightfor-
wardly in the case of large landscape changes over time along
with non-characteristic (distinct) image features.

Aerial image descriptors can greatly benefit from the data
of other modalities. This was successfully demonstrated by
Audebert et al. [13], where better segmentation maps were
obtained using an encoder-decoder architecture and images
along with semantic data originating from OpenStreetMap
[18]. Up to our knowledge, this is the only work that directly
uses semantic labels along with images in an aerial image
context. Li et al. [19] proposed a multi-modal late feature
fusion-based framework to improve the geographic image an-
notation. However, they source from a single image, where
the different modalities are simply features extracted by dif-
ferent algorithms. Chen et al. [20] propose a CBIR method
benefiting from multi-modal (spatial and spectral) informa-
tion content of Remote Sensing images, however, they use
hand-crafted descriptors and focus on the retrieval task.

Siamese network architectures aim to construct an embed-
ding, where two extracted features corresponding to the same
identity are likely to be closer, than features from different
identities [21]. They are a popular choice for problems deal-
ing with so-called one-shot learning problems, when a sin-
gle training sample is available for each class. The efficiency
of Siamese networks was previously demonstrated for visual
object tracking [22], person reidentification [23], cross-view
image matching [24] and other tasks.

We propose to use a custom Siamese architecture to obtain
an embedding, which encodes the visual features and learn to
ignore any temporal induced changes. It allows us to train
descriptors on our single-pair correspondence dataset, whilst
the backbone architecture is simultaneously designed to ben-
efit from multi-modal information.

3. PERFORMANCE BASELINE
Up to our knowledge, there are no publicly available pre-
trained image descriptors, that are fine-tuned on aerial im-
ages, nor are there any quantitative studies comparing image
presentations specifically for multi-modal aerial images. We,
therefore, establish our own baseline performance benchmark
using existing image descriptors.

The baseline is formed by Resnet [25] and GEM [5], both
global in their nature. They are pre-trained on Imagenet [26]
and Oxford5k [26] respectively. We use the output of the last
convolutional layer followed by max-pooling to obtain a de-
scriptor for Resnet and the pre-trained framework as provided
by the authors for GEM. The first step is to comparatively
evaluate methods, their combinations, and parameters for ac-
curate cross-year image matching. The baseline study using
the algorithm(s) is schematically depicted in Figure 2.
Cross-time image retrieval setup. As a benchmark, we eval-
uate the retrieval accuracy of the ”off-the-shelf” descriptors
for different data modalities. We resize the input images to the
size of 512x512x3 for Resnet50 and 1024x1024x3 for GEM
[5]. We evaluate three scenarios:



Fig. 2. The proposed descriptor evaluation baseline.
• concatenation of multi-modal descriptors;
• prior to CNN image fusion via convolution;
• late fusion.

The weights of the convolutional fusion layer are pre-defined.
We use the Mean Average Precision (map@N) to evalu-

ate the results: map@N =
∑M

m=1

∑N
n=1

r
n

M , where N is 5, r is
equal to 1 if the retrieved image is correct and 0 otherwise and
n is the order of retrieved images, M the total number of im-
ages. Tables 2 and 3 summarise the averaged map@N results.
We experimented the retrieval with different distances (Eu-
clidean, Cosine), RGB and grayscale semantic masks, differ-
ent types of re-scaling techniques (L1, L2, standardization),
and concatenation or sum of the obtained descriptors. We ob-
served that different parameter combinations affect the final
map@5 accuracy significantly yielding up to 5% variations.
However, we did not establish a single common trend for the
three regions tested apart of cosine distance constantly out-
performing the euclidean in the kNN matching stage. We,
therefore, report the best map@5 score and a parameter set.
Baseline results. Firstly, descriptors based on semantic in-
formation give better results in terms of map@5 value than
descriptors based on natural images. The best map@5 scores
were obtained using both modalities which confirms that the
additional information is beneficial for the cross-time image
retrieval task. Moreover, the combination of visual and se-
mantic data at the late stage allows improving the results even
further for the descriptors tested. Overall, the obtained results
are not good, showing the limitations of existing CNN-based
approaches when dedicated training datasets are not available.

4. SIAMESE ARCHITECTURE
Our multi-modal Siamese network architecture is schemati-
cally illustrated in Figure 3. The architecture has two copies
of the function GW , which share the same set of parameters
W , consists of two branches and and a distance module. A
loss module is placed on top of the architecture.

The network architecture is designed to handle the multi-
modal input and fine-tune the descriptors for the image re-
trieval task. The input to the CNN is a pair of multi-modal im-
ages (X1, L1;X2, L2) and a label Y . One branch processes
corresponding image pairs originating from the same geo-
graphical zone through time (2019-2004), the other processes

a non-corresponding pair from the same year (2019). The
images are passed through, yielding two outputs G(X1, L1)
and G(X2, L2). The cost module then generates the distance
DW (GW (X1, L1), GW (X2, L2)). The loss function com-
bines the probability p predicted by the classification layer
with the sigmoid activation based on DW with label Y to pro-
duce the scalar loss value:

L(W ) = − 1

M

M∑
m=1

L(W, (Y,X1, X2, S1, S2)
m) (1)

DW (X1, S1, X2, S2) = |GW (X1, S1)−GW (X2, S2)| (2)
L(W, (Y,X1, X2, S1, S2)

m) = Y log(p)+(1−Y )log(1−p)
(3)

where m is the number of pairs. The first layer of the network
is a convolutional layer with pre-defined trainable weights
which serves to warm-up the training. The backbone of the
network is Resnet50 pre-trained on ImageNet. The output of
the last convolutional layer of Resnet is passed through 3 con-
volutional layers C1-C3 followed by a fully connected layer.
We found that using the tanh activation and batch normaliza-
tion in all the added convolutional layers gives the best result.

Mining so-called hard image pairs is essential to make
proper training of Siamese nets possible [27]. We adopted
the following learning strategy: every 5 epochs, the map@5
score is calculated for the training dataset. Hard image pairs
are the ones that have wrong retrieved images (i.e retrieved
images do not correspond to the same geographical zone).
The code and weights of the trained model are available1

5. EXPERIMENTS
In this section, we describe the experimental setup used to
compare our method to the baseline results obtained with
”off-the-shelf” image descriptors on FR-0419 benchmark
dataset. We fine-tune the proposed architecture in an end-
to-end fashion using the images from the Moselle region for
training, whereas Bas-Rhin is a validating set and Meurthe
and Moselle form the testing set. Throughout all experiments,
the architecture from Figure 3 is used and the input size of
both aerial and semantic images is 256x256. The fusion by
convolution is deployed to combine the multi-modal data and
allow end-to-end training. The first convolutional layer is
pre-initialized. The 3 convolutional layers C1-C3 on top of
the Resnet have 3× 3 kernels and the number of filters equals
1024, 512, and 256. The final descriptor dimension is D128,
next to testing the values of 256, and 512. See Table 5, R=128
dimensions generalizes the best.

The network learns to predict whether two multi-modal
descriptors correspond to the same geographical zone through
time, based on the L1 distance between them. The idea is sim-
ilar to contrastive loss [28] commonly employed in Siamese
networks, but we found this approach to work better.

We use BCE loss, next to Adam optimizer with a fixed
lr 8e-4 and decay 8e-7. We re-determine hard samples af-
ter every 5 epochs based on the training set map@5 scores.
The kNN algorithm with cosine distance is used to retrieve

1https://github.com/margokhokhlova/siamese_net



mean average precision @5
data norm fusion distance R Moselle Bas-Rhin Meurthe & Moselle average
visual image n/a none cosine 2048 0.48 0.70 0.65 0.60
semantic image n/a none cosine 2048 0.67 0.57 0.72 0.65
vis + semantic mean std D concatenation cosine 4096 0.66 0.69 0.71 0.69
vis + RGB sem none image conv cosine 2048 0.62 0.64 0.64 0.63
vis + RGB sem none late fusion cosine 2048 0.76 0.75 0.84 0.79

Table 2. Off-the-shelf descriptor map@5 for pre-trained Resnet50 [25]. Best scores per per department are shown in bold.
mean average precision @5

data norm fusion distance R Moselle Bas-Rhin Meurthe & Moselle average
visual image mean std none cosine 2048 0.54 0.63 0.59 0.60
semantic image mean std none euclidean 2048 0.63 0.64 0.61 0.63
vis + semantic none D concatenation cosine 4096 0.66 0.69 0.71 0.68
vis + RGB sem none image fusion cosine 2048 0.51 0.52 0.56 0.53
vis + RGB sem none late fusion cosine 2048 0.75 0.73 0.84 0.77

Table 3. Off-the-shelf descriptor map@5 for pre-trained Gem [5], architecture resnet101-gem-reg-whiten.

Fig. 3. Siamese Architecture used to fine tune cross-time image descriptors exploiting multi-modal data.

the most similar images given a query. During training, each
batch is composed of 12 pairs of positive and negative im-
ages, half of which are randomly selected and half are the
hard images. In each epoch we go through all training set im-
ages, each time selecting random negatives and adding hard-
mining samples into a batch. Data augmentation consisted
solely of vertical and horizontal image flips. The final model
was trained 120 epochs. The map@5 score on the validation
set determines the best descriptor parameters. We also cross-
validated by swapping the regions for training/validation and
test and re-training the net from zero. Once the net is tuned,
we use one branch to calculate a multi-modal input descriptor.

Table 5 summarises the final map@5 scores obtained.
They demonstrate that the proposed Siamese architecture
successfully improves the baseline results and is capable to
deal with temporally misaligned images. We attain the map
of 0,90 for our validation and training datasets which is a
10% improvement over the best baseline results. Moreover,
the resulting descriptor is >10 times more compact than ’off-
the-shelf’ counterparts having just 128 dimensions instead on
2048 (or even 4096 if concatenated), which allows it to better
scale for large databases and reduce the retrieval time.

6. CONCLUSION

In this study we tackle cross-time aerial image retrieval. We
introduced a novel approach for learning from multi-modal
data to fine-tune any CNN-based image descriptor. We per-

R map@5 training map@5 validation testing
Moselle Bas-Rhin M Moselle

128 0.92 0.88 0.94
256 0.93 0.91 0.90
512 0.86 0.70 0.62

Table 4. Map@5 precision obtained with different R in DR.
data baseline tuned

map@5 set map@5
Moselle 0.76 training 0.87
Bas-Rhin 0.75 validation 0.88
Meurthe-and-Moselle 0.84 testing 0.94
Table 5. Baseline best vs fine-tuned model performance.

formed a comprehensive comparison of different strategies to
use multi-modal information and proposed a custom Siamese
network architecture. The resulting descriptor is powerful
enough to distinguish between images that are semantically
close and is robust against evolutionary landscape changes
through time. Experiments show that our method improves
the baseline and outperforms SOTA image descriptors. We
demonstrated how to use both image and semantic modalities
in a single descriptor. In addition, the method is generalizable
to any CNN-based feature extractor.

7. ACKNOWLEDGEMENTS
This work is supported by ANR, the French National Re-
search Agency, within the ALEGORIA project, under Grant
ANR-17-CE38-0014-01.



8. REFERENCES

[1] Alex Krizhevsky, Geoffrey Hinton, et al., “Learning multi-
ple layers of features from tiny images,” Tech. Rep., Citeseer,
2009.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in IEEE conference on computer vision and pattern
recognition. Ieee, 2009, pp. 248–255.

[3] “Catalogue collectif de france. fonds lapie de photographies
aériennes,” https://ccfr.bnf.fr/portailccfr/
ark:/06871/0033535.

[4] “Alegoria: Advanced linking and exploitation of digi-
tized ge0graphic iconographic heritage,” http://www.
alegoria-project.fr.

[5] Filip Radenović, Giorgos Tolias, and Ondřej Chum, “Fine-
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