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Data Descriptor: FRY, a global
database of fire patch functional
traits derived from space-borne
burned area products
Pierre Laurent1, Florent Mouillot2, Chao Yue1, Philippe Ciais1, M. Vanesa Moreno2

& Joana M. P. Nogueira3

Vegetation fires are intrinsic ecosystem disturbances of the Earth system. Global burned area products have
been delivered from several space-borne instruments, and have recently provided pixel-level information
underpinning fire spread processes. Here we present FRY, a global database of fire patches with
morphology-based functional traits reconstructed from pixel-based burned areas derived from the MODIS
and MERIS imagery using a flood-fill algorithm. Each fire patch is characterized by the geo-location of its
center, area, perimeter, the features of the ellipse fitted over its pixel’s spatial distribution, and different
indices of patch complexity. We obtained a consistent spatial distribution of global fire patch functional
traits between the MCD64A1 Collection 6 and the MERIS fire_cci v4.1 datasets during their overlap period
(2005-2011), confirming the robustness of the applied algorithm and the consistency between both
products. This database is relevant to a broad spectrum of fire-related applications such as local to global
functional pyrodiversity, fire emissions quantification, and the benchmarking of fire modules embedded in
dynamic global vegetation models.
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data integration objective • source-based data analysis objective • image
analysis objective

Measurement Type(s) land fire

Technology Type(s) image analysis

Factor Type(s) spatiotemporal_interval

Sample Characteristic(s) Earth (Planet)

1Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, UMR8212 Gif-sur-Yvette, France.
2UMR CEFE 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université
Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement
(IRD), 1919 route de Mende, 34293 Montpellier CEDEX 5, France. 3National Institute for Space Research
(INPE) Department of Meteorology, room 14 Av. dos Astronautas, 1758, Jardim da Granja São José dos Campos
State of São Paulo, 12227-010 SP, Brazil. Correspondence and requests for materials should be addressed to P.L.
(email: pierre.laurent@lsce.ipsl.fr) or to F.M. (email: florent.mouillot@cefe.cnrs.fr).

OPEN

Received: 6 October 2017

Accepted: 8 May 2018

Published: 10 July 2018

www.nature.com/scientificdata

SCIENTIFIC DATA | 5:180132 | DOI: 10.1038/sdata.2018.132 1

mailto:pierre.laurent@lsce.ipsl.fr
mailto:florent.mouillot@cefe.cnrs.fr


Background & Summary
Vegetation fires play an important role in the Earth system. They affect vegetation dynamics through
biomass burning and post-fire recovery1, thus significantly impacting the terrestrial carbon cycle2.
Gaseous and particulate matter emissions from vegetation fires, including CO2, methane, NOx and black
carbon3, alter atmospheric radiative forcing and in turn the climate. Fire processes and the associated
impacts on vegetation are therefore included in Dynamic Global Vegetation Models (DGVM)4, which are
used to predict future fire activities and vegetation dynamics5. Understanding fire processes at a global
scale contributes to properly representing biosphere–atmosphere interactions and reliably predicting
future climate change and carbon cycle dynamics. Fires, of course, also have strong local economic and
health consequences on the human population6,7.

Global burned area (BA) products, derived from remote sensing and available since the 2000s, are
widely used in various applications given their acknowledged spatial and temporal consistency, and
global coverage8–10. Remote sensing offers the possibility to map fire-affected areas across the globe, with
moderate resolution sensors and frequent revisit time, like the Medium Resolution Imaging Spectrometer
(MERIS), or the Moderate-Resolution Imaging Spectroradiometer (MODIS). The reliability of BA
retrieval is affected by the quality of input data (through spatial and spectral resolution, and atmospheric
correction of the sensor images), the algorithms processing surface reflectance information, and other
background observing conditions such as land cover type and cloudiness. Furthermore, the spatial
accuracy of BA is critically limited by the spatial resolution of the sensors. Despite these limitations,
global satellite data products allow for continuous, frequent and global coverage of burned areas, and are
suitable for a systematic analysis of fire dynamics over the globe.

Global fire patch data derived from pixel-level BA information have recently emerged as an important
source of information for climate, vegetation and carbon cycle modeling. They are used to capture the key
role of driving factors that influence burn area11 and benchmark fire module in DGVMs4. Process-based
fire modules in DGVMs simulate BA as the product of the number of ignitions multiplied by the
simulated mean spreading area of a typical fire patch12–14, and the results of these models can be
compared to global BA products. But this is a less rigorous way to calibrate fire models than a direct
comparison between observed and simulated fire patch area, since it is unknown whether a discrepancy
between the simulated and observed BA results from differences in the ignition pattern or missing
processes in fire propagation. While global or local pyrogeographical analyses could derive significant
information from fire patches15–17, only a few modeling studies have tried to benchmark fire-DGVM
upon fire size distribution14 based on local fire patch datasets. In addition to fire patch size distribution,
fire patch complexity is another piece of information needed to capture the spreading conditions during
fire events. The resulting complexity of fire boundaries also affects post-fire recovery rate in forested area,
since it is found that remaining islands of living vegetation18,19 can accelerate the recolonization process
after a fire. Fire patch size is closely linked to meteorological, fuel continuity and topographical20

conditions and can modify carbon emissions according to fire observations in Alaskan boreal forests21.
Pyrodiversity22, which describes the diversity of fire types in a given fire regime, is a promising approach
to investigate continental and global spatio-temporal variations in fire spreading processes, recurrence or
rarity of events and their drivers. This new field of research in fire science resembles the emerging topic of
functional biogeography23, where the functioning of biomes is assessed from the assemblage of
continuous functional traits rather than species composition and relies on databases of plant traits24,25.
Similarly, global databases of fire patch morphological features (or traits) that reflect the underlying
spreading processes could be used to explore functional pyrogeography as an analytical and modeling
framework. Fire regimes could be more precisely described and modeled with an assemblage of fire traits,
rather than simple burned area.

This paper presents FRY, a global database of fire patch functional traits that includes patch areas and
other morphological features derived from burned areas of the MODIS and MERIS sensors. We first
describe the algorithm known as flood-fill26 that we use to group individual burned pixels with a burn
date into fire patches, defined as groups of adjacent pixels with temporal coincidence parameterized by a
temporal cut-off value (section Methods). We extensively compared the functional traits of individual fire
patches obtained from the two sensors (section Technical validation), and thoroughly investigated the
influence of the cut-off parameter on the measured fire patch functional traits. We concluded that
increasing the cut-off value yields larger, longer, and correlatively more complex fire patches without
changing the global spatial pattern of the different metrics. Moreover, we showed that the main source of
uncertainties on fire patch traits arises from the difference between the two BA products rather than the
choice of the cut-off value.

Methods
Original burned area input data
The MCD64A1 Collection 6 BA product27 is derived from the MODIS sensors onboard the Aqua and
Terra satellites. The Terra satellite has a morning overpass time (10h30am), and the Aqua satellite has an
afternoon (1h30pm) overpass time. It provides global coverage of burned area with daily revisit at the
equator at a resolution of 463x463m over the period 2000-2017. The MCD64A1 Collection 6 algorithm
detects BA from daily changes with a burn-sensitive vegetation index computed from the difference
between channels 5 and 7 of the spectrometer (corresponding to infrared light) and combined with
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MODIS active fire observations to discriminate unburned from burned pixels. A burn date, with its
uncertainty, is then attributed to each detected burned pixel27. The MERIS fire_cci v4.1 BA product is
delivered by the European Space Agency Climate Change Initiative Fire Disturbance project (ESA Fire
CCI, https://www.esa-fire-cci.org/) using the ENVISAT-MERIS sensor with a resolution of 300x300m
and a 10am time of overpass, and covers the period 2005-2011 with a 3-day revisit frequency at the
equator. The MERIS fire_cci v4.1 burned area detection algorithm first combines the difference between
the measured reflectance in the near-infrared (band 10) and the reflectance in the red (band 8) from the
MERIS sensor with active fire observations from MODIS28. In a second step, the algorithm uses MERIS
reflectance information to grow fire patches from the seed pixels identified during the first step. The final
product provides global coverage of burned area every three days (at the equator) from 2005 to
2011 (refs 29,30). Both MCD64A1 Collection 6 and MERIS fire_cci v4.1 datasets are available in
separated GeoTIFF tiles, providing the burn date of each burned pixel. Using both datasets allows for
comparison of fire patch functional traits calculated from BA. The two burned area products have
different advantages, namely a finer spatial resolution for MERIS fire_cci v4.1, and a smaller temporal
resolution and longer time series for MCD64A1.

Figure 1. Example of fire patch reconstruction. Figures (a) to (d) show the fire patches calculated from

individual adjacent burned pixels, with temporal coincidence being defined by a temporal cut-off value of 3, 5,

9 and 14, for the MCD64A1 product in a region of northern hemisphere Africa. Continuous areas with the

same color indicate the same fire patch. Figure (e) shows the burn dates of the pixels (in days). Figures (f) and

(g) show examples of Standard Deviation Ellipses (SDE, dark blue) for three fire patches with cut-off of 5

(zoomed portion of b) and one patch with cut-off of 14 (zoomed portion of d). The half-axes (σX and σy) and
the azimuthal (θ) angle are displayed in red. The so-called core areas (Acore, Table 1), corresponding to the area

of pixels totally surrounded by other burned pixels in a given patch, are displayed in light blue for the four

considered fire patches. Computed values for the functional traits of these patches are shown in Table 2.
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Construction of fire patches by aggregating neighboring/burned pixels
Here, fire patches were constructed using the ‘flood-fill’ algorithm which aggregates neighboring burned
pixels with sequential burn dates into individual fire patches. An important parameter of the algorithm is
the cut-off value, defined as the maximum burn date difference between two neighboring pixels
considered belonging to the same fire event. The value of this cut-off parameter has an influence on the
size of the reconstructed patches, which can differ depending on land cover type and cloudiness at
satellite overpass31. It is therefore important to test different cut-off values and to analyze their effects on
fire patch size distribution and fire morphology. For both MERIS fire_cci v4.1 and MCD64A1 products,
fire patches were processed with four different cut-off values of 3, 5, 9 and 14 days. These values were
chosen as the possible time lapse between two detected neighboring burned pixels belonging to the same
fire event considering uncertainties, so they span the majority of cut-off values used in previous
studies17,26,32.

The flood-fill algorithm processing daily global burned area data were implemented using the R
CRAN package ‘raster’. To optimize the processing time, we made use of the ‘clump’ function which
allows pixels of burned areas to be efficiently combined into clumps, defined here as a group of
neighboring pixels (in a so-called queen scheme). Working directly at the clump level was more efficient
than working at the pixel level and enabled the use of parallelized features of the ‘raster’ package. The
algorithm proceeded as follows.

A burn date tbd was identified in the BA product, and only the pixels within the time span tbd o t o
tbd + Δtco were selected, where Δtco is the cut-off parameter. The clump routine from the R-CRAN raster
package was applied to these pixels to attribute a unique ID number to each clump, defined as a group of
burned pixels totally isolated by unburned pixels during the considered cut-off dependent time span. We
performed the same two previous steps for the next burn date (tbd + 1). When a new clump overlapped
with one or more clumps from the previous step, these clumps were considered to belong to the same
patch and therefore were merged. For every month, the latitude/longitude coordinates, IDs and burn
dates of pixels belonging to a detected fire patch were saved. This information was saved on a monthly
time step rather than on a yearly time step since some pixels were susceptible to be detected as burned
more than once per year. The resulting fire patches in the same 0.4 × 0.4º subregion for the four tested
cut-off values, with the burn dates associated to the burned pixels, are displayed as an example of the
flood-fill algorithm output (Fig. 1).

In order to parallelize the processing of BA into patches, we separated both MCD64A1 and MERIS
fire_cci v4.1 products in 3.5 × 3.5º tiles. To avoid splitting a fire patch that overlaps two tiles, all tile

Patch ID ID number of the fire patch

Npixels Total number of burned pixels

Ncore pixels Number of core burned pixels

A Area of the fire patch (ha)

Acore Core area of the fire patch (ha)

P Perimeter of the fire patch (pixel sides)

P.A.R. Perimeter to Area Ratio (= P/Npixels)

S.I. Shape Index (= 0.25*P/(Npixels)
0.5)

D2 Fractal Correlation Dimension ( = 2*ln(0.25*P)/ln(Npixels))

C.A. Core Area index (= Acore/A)

X Longitudinal coordinate of the fire patch center (deg)

Y Latitudinal coordinate of the fire patch center (deg)

σX Small half axis of the SDE (deg)

σy Big half axis of the SDE (deg)

θ Rotation angle of the ellipse (in lat/long coordinates). Corresponds to the angle between north and σY, (deg)

σX,km Small half axis of the SDE (km)

σY,km Big half axis of the SDE (km)

θkm Rotation angle of the ellipse (in flat projection). Corresponds to the angle between north and σY,km (deg)

RSDE Ellipse Ratio ( = σX,km/σY,km,0 o RSDE o 1)

ESDE Ellipse Eccentricity (= (1 – min(σX,km,σY,km)2/max(σX,km,σY,km)2))0.5)

BDmin Minimum pixel burn date of the fire patch

BDmax Maximum pixel burn date of the fire patch

BDmean Mean value of pixel burn date of the fire patch

Year Year associated with Mean_BD

Table 1. List of the output fire patch functional traits of the FRY database.
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borders overlapped with neighboring tiles with a width of 0.5º. We attributed to a given tile all fire patches
whose centers were within the central 2.5 × 2.5º area, to avoid double counting.

Calculation of fire patch functional traits
From the monthly patches described above, we used the R CRAN package ‘SDMtools’ (Species
Distribution Modeling Tools) to compute all fire patch functional traits including morphological features
and spatio-temporal information32 (Table 1). The perimeter (P), the total number of burned pixels
(Npixels) and the number of core burned pixels (Ncore pixels) were computed for each patch, where a core
burned pixel is defined as a pixel which is totally surrounded by other burned pixels. These three
quantities were computed in pixel units. The corresponding patch areas (in hectares) were also computed
(A for Npixels, and Acore for Ncore pixels). Traits that describe the fire patch complexity are the Perimeter to
Area Ratio P.A.R. (=P/Npixels), the Shape Index S.I. (= 0.25*P/(Npixels)

0.5), the Fractal Correlation
Dimension D2 (= 2*ln(0.25*P)/ln(Npixels)) and the Core Area Index C.A. (=Acore/A). We also provided
the minimum and maximum burn date (i.e., corresponding to the date of the first and last detected
burned pixel of the fire patch), the mean burn date of the pixels belonging to the same fire patch and the
year corresponding to the mean burn date of the fire patch.

The Standard Deviation Ellipse (SDE) was calculated from the spatial coordinates of the burned pixels
composing each fire patch, simplifying its geometry to a fitted ellipse by determining the elongation and
directional azimuthal angle of the fire patch (Fig. 1). Ellipses are commonly used to simulate theoretical
fire patches in most DGVM, for example following the Rothermel equation for fire propagation to
compute the ellipse axes33,34. The R CRAN package ‘aspace’35 was used to compute the center position of
the SDE (X and Y), its azimuthal angle (θ), and the minor and major half-axes (σX and σY) of the fitted
ellipse to each patch (Table 1). The ellipse half-axes and azimuthal angle, initially computed in latitude/
longitude coordinates in degrees, were also computed after projecting the fire patch in a local flat
projection (σX,km and σY,km, in kilometers, and θkm). The eccentricity (ESDE) and ratio of half-axes of the
ellipse (RSDE) were also computed. As an example, the values of these different metrics are provided for
the patches highlighted in Fig. 1 (Table 2).

The fire patch functional traits were only computed for patches composed of at least 5 burned pixels.
This arbitrary threshold allowed us to lighten the database files by removing very small fire patches with
unreliable information about the fire patch complexity or orientation.

Global maps of fire patch functional traits and power law size distribution
Previous studies tried to explain fire patch size distribution with Self-Organized Criticality (SOC)36,37.
SOC models predict that the distribution of fire patch size follows a power law:

Nf ¼ α:A - β
f

Patch Fire patch 1 Fire patch 2 Fire patch 3 Fire patch 4

Npixels 63 171 49 295

Ncore pixels 21 51 16 99

A (ha) 146.40 397,44 113.90 685.6

Acore (ha) 48.80 118.53 37.19 230.1

P 52 136 42 220

P.A.R. 0.825 0.795 0.857 0.746

S.I. 1.625 2.51 1.5 3.14

D2 1.24 1.37 1.21 1.41

C.A. 0.33 0.30 0.33 0.40

X (deg) − 9.39 − 9.34 − 9.29 − 9.34

Y (deg) 13.82 13.77 13.74 13.78

σX (deg) 0.012 0.024 0.009 0.024

σY (deg) 0.020 0.039 0.019 0.063

σX,km (km) 1.31 2.57 1.03 2.60

σY,km (km) 2.15 4.30 2.07 6.90

RSDE 0.61 0.60 0.51 0.38

ESDE 0.79 0.80 0.85 0.93

θ (deg) 46.5 150.6 87.1 131.9

Table 2. Values of the different functional traits for the four patches shown in Fig. 1f,g. The selected
fire patches are annotated by their corresponding numbers in Fig. 1f,g.
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Where Af is the area of the fire patch, Nf is the number of fire patches of a given size Af, α is a
normalization constant and β is the exponent of the power law. SOC models usually assume a constant
value of β, but a number of analyses have detected significant variations of this parameter at a global
scale17,38. The β parameter provides information on asymmetry in the fire patch size distribution. A value
β = 0 tells us that the number of large fire patches is equal to the number of small fire patches per bin
unit; when β increases, the frequency of small fire patches increases with respect to large ones. This
parameter can be used as an index to investigate potential differences between different burned area
products and to test the sensitivity of β to different patch reconstruction methods.

We fitted the parameter β to the distribution of fire patches in 1º× 1º grid cells covering the
entire globe during the periods 2005-2011 for MCD64A1 and MERIS fire_cci v4.1. For each cell,
we proceeded as follows: first, we produced the profile histogram of Nf and Af, defined as the
normalized number of fires Nf for different logarithmic bins of fire patch sizes. We attribute to each
value of the profile histogram a Poisson uncertainty equal to the square root of the number of fire
patches in each size bin. We then fitted the power law by using the Minuit minimization algorithm
(https://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/) which provides an efficient way
to minimize χ2.

As a level 2 product, the maps of β and σβ, the standard deviation of β obtained from the fit (computed
from the β values at χ2 ± 1), are also provided because they assess the quality of the fit and allow inter-
comparisons between the different datasets. We also produced maps of the mean values and standard
deviation for the perimeter-to-area ratio, shape index, fractal correlation dimension, ellipse ratio and
ellipse eccentricity, and maps of the number of fire events within each grid cell.

Code availability
The R-CRAN ‘raster’ (https://CRAN.R-project.org/package=raster), ‘SDMTools’ (https://CRAN.R-
project.org/package=SDMTools) and ‘aspace’ (https://CRAN.R-project.org/package=aspace) packages
can be found on CRAN, the global repository of open-source packages for R.

Due to the heavy CPU resources required to create the FRY database, the full code has been designed
to run on a specific cluster architecture, and providing it would be of limited interest. However, any user
interested in creating another database from a pixel BA product can contact the corresponding author
who can share snippets of the code and provide help in adapting the code to another architecture.

Figure 2. Fire patch density from the fire patch datasets for the years 2005-2011. (a) Fire patch density

calculated from the MERIS fire_cci v4.1 BA product according to the algorithm described in the Methods

section, with a cut-off of 5 days (b) Same for the MCD64A1 BA product (c) Difference between MERIS fire_cci

v4.1 and MCD64A1.
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Data Records
The FRY database is organized in 8 datasets (2 burned area products for 4 cut-off values), which can be
downloaded from the OSU-OREME repository. For each survey SURVEY (MERIS for MERIS fire_cci
v4.1 or MODIS_6 for MCD64A1) and each cut-off value N (3, 5, 9 or 14), values for all traits listed in
Table 1 are provided for each fire patch in Comma-Separated Format (csv) under the name
fire_patches_SURVEY_final_co_N.csv (Data Citation 1). The names and order of the different fields are
described in the header of each csv file and in the meta-data associated with the repository.

The NetCDF maps of the parameters described at the end of the Methodology section for the survey
SURVEY and the cut-off value N are provided under the name trait_map_SURVEY_1.0deg_co_N.nc
(Data Citation 1). The NetCDF files are self-described.

Technical Validation
In this section, we compare fire patch functional traits between the MERIS fire_cci v4.1 and the
MCD64A1 products for 2005-2011. Among the different traits listed in Table 1, we focus on the spatial
distribution of the density of individual fire patches (Fig. 2), defined as the number of individual fire

Figure 3. β parameter from the fire patch datasets for the years 2005-2011. (a) β parameter calculated from

MERIS fire_cci v4.1 BA product with a cut-off of 5 days (b) Same for MCD64A1 BA product (c) Uncertainty of

β for MERIS fire_cci v4.1 for the years 2005-2011 (d) Uncertainty of β for MCD64A1 (e) Difference between

MERIS fire_cci v4.1 and MCD64A1 considering only patches with an area larger than 107 ha (f) Level of

agreement between the two products (in number of standard errors).
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patches per square kilometer, the slope of the patch size distribution (β parameter, Fig. 3), and the shape
index (S.I., Fig. 4) as an indicator of fire patch complexity. We display 1º×1º grid maps of these three
metrics for the MCD64A1 and MERIS fire_cci v4.1 with a cut-off value of 5 days. We focused first on the
5 days cut-off value because it corresponds to an intermediate value of the considered cut-off range. We
removed from the database all fire patches with less than 5 pixels (Methods section). The actual size of a
5-pixel fire patch in MCD64A1 is larger than a 5-pixel patch in MERIS fire_cci v4.1, and, for a given
survey, larger at the equator than at high latitudes. In order to compare fire patches belonging to the same
size category, we further removed from MERIS fire_cci v4.1 and MCD64A1 all fire patches smaller than
107 ha, which corresponds to the size of a 5-pixel fire at the equator for a sensor with a 463 x 463m spatial
resolution (i.e. the coarser resolution of the two sensors).

Fire patch density
The distribution of fire patch density is similar between the two products with most of the individual fire
patches detected in African tropical savannas, Northern Australia, central Eurasia, Brazilian Cerrado and
South-Eastern Asia (Fig. 2). In these regions, MERIS fire_cci v4.1 detects more fire patches than
MCD64A1. Conversely, MCD64A1 significantly detects more fires than MERIS fire_cci v4.1 in the other
regions of Africa and South America. In total, for a cut-off value of 5, the MERIS fire_cci v4.1 product
detected over 2.35 million individual fire events larger than 107 ha, and the MCD64A1 product detected
2.49 million fires larger than 107 ha between the years 2005-2011. When including all detected fire
patches (bigger and smaller than 107 ha) for the MERIS fire_cci v4.1 patch data, the fire patch density of
the product is larger in all regions. However, the MCD64A1 patch data still indicate more fires in the
aforementioned regions. The differences in South America and South-Western Africa most probably
arise from the lower number of available MERIS fire_cci v4.1 images in these regions39. In boreal regions,
the slight discrepancy between the two products is also found when comparing burned area30. The lower
total number of detected fire patches for MERIS fire_cci v4.1 could arise from missed seeds by the fire_cci
algorithm. The 3-day time of overpass can lower the probability of matching burned pixels detected by
MERIS imagery with active fire pixels from MODIS if there is a long delay between the two detections.
This suggests that the temporal resolution of the sensors is an important parameter for detecting
individual fire events when using a two-step algorithm to detect BA.

Slope of the fire patch size distributions (β)
The maps of the fitted β parameter for MCD64A1 and MERIS fire_cci v4.1 describing fire patch size
distribution were computed with their uncertainties, the difference of β between the two products, and
their degree of agreement in each cell (Fig. 3). The degree of agreement is measured in units of standard
deviation (also noted σβ) and is equal to N if the fitted values of β for a given grid cell are compatible
within N σβ for the two products. The spatial distribution of β is similar between the two fire patch
datasets, with higher values in Africa, Eastern Europe (Ukraine and Western Russia) and South Eastern
Asia, and lower values in northern Australia, Russia and North America. The uncertainty of the β
parameter is intrinsically smaller than in regions with a large number of fire events. However, when
computing the level of agreement between the products, there are discrepancies in the β parameter
between the MERIS fire_cci v4.1 and MCD64A1 derived fire patches products in Africa and in North-
West Australia, where many cells do not match even within 5 sigmas. These regions correspond to the
areas where MERIS fire_cci v4.1 yields more fire patches than MCD64A1, and the power law is usually
steeper for MERIS fire_cci v4.1 (higher value of β) than for MCD64A1. Under the assumption that the
probability of missing big fires is low in both BA products, this means that the MERIS fire_cci v4.1
product detects more small fire patches in these regions with respect to MCD64A1 during the considered

Figure 4. Shape Index (S.I.) from the fire patch datasets for the years 2005-2011. (a) S.I. calculated from

MERIS fire_cci v4.1 with a cut-off of 5 (b) Same for patches calculated with MCD64A1.
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time span. It should also be noted that we used Poisson uncertainties for the fit of the power law, which
frequently underestimates the uncertainties. This underestimation could degrade the diagnosed level of
agreement between the products. Except for these areas, the agreement is fair, with most cells matching
within 2 sigmas.

Shape index (S.I.)
S.I. is systematically higher in the MERIS fire_cci v4.1 product (68% higher on average, Fig. 4). This
relative difference does not vary much at global scale and can be explained by the higher spatial
resolution of the MERIS sensor, which allows capturing more complex features of fire patches than
MCD64A1. This difference can also be linked to the different algorithm used to reconstruct BA: the
MERIS fire_cci v4.1 algorithm contains a ‘growing’ phase which was especially designed to reconstruct
accurate fire patch shapes. Within each product, S.I. is higher in boreal regions, Australia and South
Eastern Asia.

The authors would like to remind potential users of the FRY database that the perimeter of the fire
patches are computed from pixel data. All diagonal border lines (NW, NE, SE and SW directions) of the
perimeters will appear as ‘stair-step’ lines because of aliasing, and will therefore be biased upward with
respect to the real fire patch perimeters. Since this bias depends on the spatial resolution of the pixel
product, this renders difficult the direct comparison of the complexity indices between MERIS fire_cci
v4.1 and MCD64A1. However, it is still possible to discriminate regions with more complex fire patches
from regions with simpler fire patches for products with similar resolution.

Figure 5. Median values of β parameter, shape index and ellipse ratio for different GFED regions. The

values are displayed for MERIS fire_cci v4.1 and MCD64A1, and for the 4 different cut-off values. The bottom

plot displays the ratio of the median GFED values between the two products (MERIS fire_cci v4.1 divided by

MCD64A1) for each displayed fire patch functional traits.
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Sensitivity to varying the cut-off parameter on regional statistics of fire patch functional
traits
We next compare the values of β, S.I. and RSDE averaged over the 14 Global Fire Emissions Database
(GFED) regions for the 4 considered cut-off values (Fig. 5). To compute the average, the mean values in
the 1º× 1º cells are weighted by their uncertainties. We also display the ratio of the average values
obtained for MERIS fire_cci v4.1 and MCD64A1. The cut-off value is arbitrarily chosen to reconstruct the
fire patches. Here, we use the dispersion of the different cut-off values as a rough estimation of the
uncertainty due to the arbitrary choice of the cut-off parameter value to reconstruct fire patches.

The value of the β parameter decreased as the cut-off value increased. Increasing the cut-off tends to
group together fire patches which would have been separated with a lower cut-off. As a result, the number
of small fires decreases and the number of large fires increases for increasing cut-off values (Fig. 1),
resulting in a steeper power law for small cut-off values. If we consider the dispersion of β for the 4 tested
cut-off values, β values are in agreement between the two products for a given cut-off value, except for
Northern Hemisphere Africa (NHAF) and Australia (AUST). As mentioned above, the difference
between the two products is emphasized by the underestimation of the uncertainty when performing the
fit of the β parameter.

Increasing the cut-off value produces patches with a higher shape index, which corresponds to more
complex fire patches. This effect is probably linked to the significant correlation between fire patch size
and shape index (ρ = 0.405, p-val o 0.001, Fig. 6). Larger and longer fires can experience more
variations in wind orientation while they burn, and are therefore susceptible to have a shape much

Figure 6. Profile histograms between different fire patch functional traits for a cut-off value of 5. The red

lines represent the weighted mean of the ordinate in different bins of the abscissa, and the error bars the

standard deviation on the weighted mean. The error bars are sometimes not noticeable because they are smaller

than the width of the line.
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different from a simple ellipse. When comparing the average values of S.I. across the GFED regions, S.I. is
higher in boreal regions for both products. This effect probably arises from the gridded BA pixel product:
a fire patch of a given size will be composed of more pixels in high latitudes than at the equator, which
will result in an artificially more complex shape.

Higher cut-off values also yielded higher RSDE. As for the correlation between S.I. and patch size, we
would expect longer and larger fires to propagate further and have more elongated ellipses than small fire
patches. The correlation between A and RSDE was found to be close to zero, but there is a slight
correlation between RSDE and core area (Fig. 6). This can be explained by the fact that the SDE is defined
to contain 66% of the burned pixels of a fire patch. A core area pixel has a higher probability to be located
within the ellipse. RSDE is therefore more sensible to the core area than the total area of the fire patch.
MCD64A1 fire patches are slightly more elongated (~1-2%) than MERIS fire_cci v4.1, except for boreal
regions and NHSA, whereas the MERIS fire_cci v4.1 product yields slightly higher ellipse ratio than
MCD64A1.
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