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Important Notes:  

1. The first author has been proposing ANN-based models in former publications, in each case designed and tested 

for a fairly limited amount of data (especially when empirical). Regardless the high quality of the predictions yielded 

by some model for the used data, the reader should not blindly accept that model as accurate for any other 

instances falling inside the input domain of the design dataset. Any analytical approximation model must undergo 

extensive validation before it can be taken as reliable (the more inputs, the larger the validation process). Models 

proposed until that stage are part of a learning process towards excellence. 

2. If the reader can’t find any of Abambres’ papers referred as references of this work, please email the author. 

 

 

Abstract 

Artificial Intelligence is a cutting-edge technology expanding very quickly into every industry. It has 

made its way into structural engineering and it has shown its benefits in predicting structural performance 

as well as saving modelling and experimenting time. This paper is the first one (out of three) of a broader 

research where artificial intelligence was applied to the stability and dynamic analyzes of steel grid-shells. 

In that study, three Artificial Neural Networks (ANN) with 8 inputs were independently designed for the 

prediction of a single target variable, namely: (i) the critical buckling factor for uniform loading (i.e. over 

the entire roof), (ii) the critical buckling factor for uniform loading over half of the roof, and (iii) the 

fundamental frequency of the structure. This paper addresses target variable (i). The ANN simulations 

were based on 1098-point datasets obtained via thorough finite element analyzes. 

The proposed ANN for the prediction of the critical buckling factor in steel grid-shells under uniform 

loading yields mean and maximum errors of 1.1% and 16.3%, respectively, for all 1098 data points. 

Only in 10.6% of those examples (points), the prediction error exceeds 3%.  
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1. Introduction 

It is not easy to trace back the origin of grid-shells but Shukhov´s diagrids are 

probably the most agreed starting point (Edemskaya 2016). Especially when referring 

to modern steel grid-shells, his roof for the Vyksa workshop can be regarded the first 

double-curvature lattice roof. Yet it is not until the end of the 80’s, and especially the 

90’s, that they became really popular through the work of engineers like Schlaich and 

Schober (Schlaich 1996). 

Grid-shells are transparent, thin and typically exhibit high structural efficiency. Their 

design and fabrication are high precision jobs where tolerances are tight and flexibility 

low (Schlaich 2009). It is for these reasons that a suitable concept design that 

understands its failure mode is paramount down the line. 

This paper is the first one (out of three) of a broader research where artificial 

intelligence was applied to the stability and dynamic analyzes of steel grid-shells of 

paraboloid shape supported on a horizontal plane (see Fig. 1.1). In that study, three 

Artificial Neural Networks (ANN) with 8 inputs were independently designed for the 

analytical prediction of a single target variable, namely: (i) the critical (i.e. for the 1st 

mode) buckling factor for uniform loading (i.e. over the entire roof), (ii) the critical 

buckling factor for uniform loading over half of the roof, and (iii) the fundamental 

frequency of the structure. This paper provides a set of equations to obtain the critical 

buckling factor of the structure under uniform loading, where the latter is defined as 

the critical load / (external load + selfweight). That factor provides a good indication 

of the stability of a structure, even though a geometrically non-linear analysis is still 

mandatory for the final design. The 1st buckling mode identified in the analysis can be 

global or local, whichever is the lowest. The ANN was designed for a 1098-point 

dataset obtained via finite element analyzes. 
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Fig. 1.1. 1st buckling mode of a paraboloid shell (model 1030) supported along its perimeter. 
 

 

The characteristics of the finite element (FE) modelling carried out for data gathering 

are defined in section 2.1. The FE models meet some predetermined variables 

defining the scope under which the performed research is valid (section 2.2). 

The state of the art regarding the stability of grid-shells was thoroughly expounded 

by Gioncu (1994). Most of the available analytical solutions predicting buckling of 

reticulated shells resort to the homogenization technique, treating the structure as a 

continuum shell (Dulácska and Kollár 2000, Kato 2005, Lefevre 2015). The analytical 

solution presented in this paper doesn’t rely on this simplification. To the knowledge 

of the authors it hasn’t been formulated yet analytical models describing the buckling 

or dynamic behaviors of the family of grid-shells addressed in the current study.  

2. Data Gathering 

2.1 Modelling techniques 

A topology has been defined parametrically on Rhinoceros 3D (McNeel 2014) + 

Grasshopper (Rutten 2014), as illustrated in Fig. 1.2. The base geometry is a 

paraboloid shell obtained by means of two translational parabolas, the generatrix and 
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the directrix. The translational technique has the virtue of leading to flat quadrilateral 

surfaces that can be easily covered with planar glass panes (Pottmann 2014, Schober 

2016). 

Hundred and sixty (160) different paraboloids have been generated where the main 

dimensions L1, L2, and h, have been varied along with the spacing s between beam 

nodes (see Fig. 1.2), where the latter remains constant in each model. The domains 

considered for those variations are addressed in section 2.2. 

 

 

Fig. 1.2. Top view (left), side view (center), and perspective view (right) of the parametric topology. 
 
 
 

The aforementioned geometries were exported to the FE package GSA (Oasys 

2010), where all line segments (beams) were first transformed into beam FEs with 6 

DOF (degree of freedom) nodes, and later split into 3 equal elements as result of the 

sensitivity study explained in section 2.3. At this stage, a Visual Basic (VB) script was 

run to rotate each rectangular beam (i.e., around its longitudinal axis) by an angle , 

illustrated in Fig. 1.3 as the angle between the default beam local axis 𝑽𝟎
⃗⃗ ⃗⃗   (following 

global Z) and 𝑽𝟐x𝑽𝟏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (the cross product between 𝑽𝟐

⃗⃗ ⃗⃗   – vector joining transversally 

adjacent nodes to the beam, and 𝑽𝟏
⃗⃗ ⃗⃗   – vector joining beam nodes). This technique 

doesn´t provide the mathematically exact normal to the paraboloid surface (Makin 

2006) but it leads to equal angles  between the bar width and the supported glass 

panes, which is convenient engineering wise. 
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Fig. 1.3. Procedure carried out to rotate each beam’s coordinate system in all grid-shells. 

 

 

After orienting the bars, another VB script was run to generate 1098 distinct FE 

models from the 160 grid-shell geometries, by varying the parameters external load q, 

bar width a, bar breadth b, and node stiffness Kn, as explained in 2.2. A last VB routine 

run all models and stored the relevant results in a text file. 

The set of 1098 FE models used to collect the data that fed the neural network 

simulations, includes a bulk of reasonably suitable designs but also covers unrealistic 

under/over-conservative ones, which is precisely what makes the proposed ANN-

based tool useful. 

The GSA software is valid to analyze grid-shell structures since it has been 

successfully used on numerous occasions in the past, either as a design or validation 

tool. Examples range from steel shells (Dini 2013, Olsson 2012), to timber shells 

(Kuijvenhoven 2009, Toussaint 2007) or composite material shells (du Peloux 2013, 

Tayeb 2015). 

 

2.2 Modelling inputs 

The decision about the number of inputs to consider was a trade-off between (i) the 

versatility of the final ANN tool, and (ii) the time needed to perform all numerical 

simulations for data gathering – the more input variables, the more data points (no. of 
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different FE models) are needed to guarantee acceptable accuracy. The following 

parameters were deemed unchanged in all numerical simulations: 

- Beam Material: structural steel with linear elastic properties according to EN 

1993-1-1 (2005), namely Young’s modulus E = 210 GPa, shear modulus G = 81 

GPa, and Poisson´s ratio  = 0.3. The analyzed models include the self-weight of 

the steel considering a material density of 7.85 t/m3. 

- Roofing panels: the weight of the panels is small compared to that of the 

structural steel (if made of glass or polycarbonate) or even negligible (in case of 

ETFE). This weight is to be computed as part of the additional load q. 

- Boundary conditions: the paraboloids lay on a horizontal plane, defining an 

ellipse (see top view in Fig. 1.2). All nodes belonging to that plane were 

translationally fixed and rotationally constrained with the same bending stiffness 

(Kn) used for all grid-shell nodes. 

- Bracings: No (cable-)bracings were applied to any grid-shell. Examples of this 

type of structure are the Cabot Circus in Bristol or the Joe and Rika Mansueto 

Library in Chicago, among others. 

 

Tab. 1.1 shows the 8 (independent) input variables considered in all parts of this 

research, along with the corresponding upper and lower limit values they can take. 

Each of the 1098 distinct FE models corresponds to a specific combination of values 

taken by those variables. Tab. 1.1 also indicates the ANN input node corresponding 

to each variable. Further considerations about those variables read (recall Fig. 1.2): 

- Main dimensions of the paraboloid footprint (L1/2 and L2/2): the aspect ratio 

1 ≤ 𝐿1 𝐿2⁄ ≤ 2 is always fulfilled. 

- Height of the paraboloid (h): the rise / span ratio is limited to 0.15 ≤ ℎ 𝐿2⁄ ≤ 0.5. 

This is the range recommended by Schober (2016) for dome caps under uniform 

loading. For ratios below 0.14, the material usage and the risk of buckling increase 

considerably. 

- Beam spacing (s): it is the beam spacing in both directions (or the dimension of 

all grid-shell planar and squared panes – see Fig. 1.2), and the values taken lay 
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approximately in the range observed in the long list of built projects referenced by 

Schober (2016). 

- External load (q): It is uniformly distributed over the roof surface, with vertical 

direction and pointing downwards. It takes random values between 0 kPa and 3.5 

kPa. 

- Beam cross-section dimensions (a and b): the cross-section of all beams is 

rectangular and solid. Its dimensions come (roughly) from the range of values 

employed in the shells cited in Schober (2016). 

- Bending Stiffness of Grid-Shell Nodes (Kn): Considering appropriate 

connection stiffness is quite important, as demonstrated by Hwang (2010) when 

investigating its effects on grid-shells. From the several bolted systems he studied, 

rotational stiffness was approximately in the domain of 30 to 130 kNm/rad. Since 

the present study intends to be also applicable to stiffer connections (bolted or 

welded), the adopted Kn took values within 20 – 50000 kNm/rad, following the 

distribution shown in Tab. 1.2. For the sake of computational time, the rotational 

stiffness was not split into two variables – one for each bending axis, having 

assumed KnXX = KnYY = Kn. 

 

Tab. 1.1. Variables and ranges of values considered in the dataset. 
 

INPUT VARIABLES ANN INPUT 
VALUES 

min max average 

Grid-Shell 
Geometry 

L1 /2 (m) 1 5 25 19.11 

L2 /2 (m) 2 5 50 28.86 

h (m) 3 2 10 6.05 

s (m) 4 0.9 1.5 1.20 

External Load q (kN/m2) 5 0 3.5 1.71 

Beam 
Cross-Section 

b (mm) 6 30 200 114.73 

a (mm) 7 30 200 114.39 

Bending Stiffness of 
Grid-Shell Nodes 

Kn (kNm / rad) 8 20 49527 4989.15 

OUTPUT VARIABLE 

Critical Buckling Factor for Uniform Loading (-) 
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Tab. 2.2. Node bending stiffness (Kn) distribution for all 1098 FE models. 

 

 

 

The 1098-point dataset considered in ANN simulations is available in Abambres 

and Cabello (2020). 

 

2.3 Sensitivity studies 

Two sensitivity studies were carried out prior to the 1098 FE analyzes in order to 

better decide which mesh density and node stiffness values to adopt in the final FE 

models. Three models with different geometry were used for that purpose: model 323 

(L1 = 50, L2 = 100, h = 10, s = 1.3), model 1030 (L1 = 50, L2 = 95, h = 6, s = 0.9), and 

model 1071 (L1 = 15, L2 = 15, h = 2, s = 0.9). 

The first analysis aimed to understand how sensitive the FE models were to the 

mesh density. The grid-shell beams (aka bars) between nodes have been subdivided 

into 1, 2, 3 and 4 beam FE. It was adopted Kn = 990 kNm/rad for all of them. Assuming 

that 4 elements give the most accurate results, Tab. 1.3 (left) shows the remaining 

results as a percentage of the former. It turned out that any loss in accuracy when 

predicting the buckling factor with less than 4 subdivisions is indiscernible since it lies 

within the noise of the convergence. Thus, there isn’t much difference in the prediction 

of the fundamental frequency either. Since the computational time rises with the 

number of FEs, the authors have opted for 3 FEs per beam. 

The second study (Tab. 1.3, right) allowed to determine which node bending 

stiffness (Kn) yields results that are close enough to those obtained with fixed 

connections (i.e., infinite stiffness). Three subdivisions were adopted for the beam 

elements. It was observed that Kn = 50000 kNm/rad yields differences lower than 1% 

when the results are compared with the fixed connection counterparts, and for that 

reason that was the adopted upper bound for Kn. 

Probability 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13

Kn  random From:  20 50 80 120 200 320 510 810 1300 2100 3600 8000 20000

value To:  50 80 120 200 320 510 810 1300 2100 3600 8000 20000 50000
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Tab. 3.3. Sensitivity analysis to determine the suitable (i) number of FEs in each beam (left), 
and (ii) Kn upper bound (aiming to integrate a fixed connection scenario). 

 
 

 

3. Artificial Neural Networks 

3.1 Introduction 

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without 

which the task of having machines acting humanly could not be accomplished, allows 

us to ‘teach’ computers how to perform tasks by providing examples of how they 

should be done (Hertzmann and Fleet 2012). When there is abundant data (also called 

examples or patterns) explaining a certain phenomenon, but its theory richness is 

poor, machine learning can be a perfect tool. The world is quietly being reshaped by 

machine learning, being the Artificial Neural Network (also referred in this manuscript 

as ANN or neural net) its (i) oldest (McCulloch and Pitts 1943) and (ii) most powerful 

(Hern 2016) technique. ANNs also lead the number of practical applications, virtually 

covering any field of knowledge (Wilamowski and Irwin 2011, Prieto et. al 2016). In its 

most general form, an ANN is a mathematical model designed to perform a particular 

task, based in the way the human brain processes information, i.e. with the help of its 

processing units (the neurons). ANNs have been employed to perform several types 

of real-world basic tasks. Concerning functional approximation, ANN-based solutions 

Subdivisions          1 2 3 4

990 990 990 990 Kn [kNm/rad]         50 200 1000 10000 50000 Fixed

1st Buckling factor (fully loaded) 100 100 100 100 26 48 79 97 99.38 100

1st Buckling factor (half loaded) 100 100 100 100 22 46 77 97 99.44 100

Fundamental frequency 99.98 100 100 100 32 52 79 97 99.38 100

Computational time (seconds) 24.5 37.2 50.3 64.0

1st Buckling factor (fully loaded) 100 100 100 100 22 43 73 96 99.11 100

1st Buckling factor (half loaded) 100 100 100 100 18 40 72 96 99.10 100

Fundamental frequency 99.98 99.98 99.98 100 29 47 74 96 99.14 100

Computational time (seconds) 2.2 2.6 3.3 4.2

1st Buckling factor (fully loaded) 100 99.98 99.98 100 26 49 78 97 99.34 100

1st Buckling factor (half loaded) 99.98 99.98 100 100 21 39 70 96 99.17 100

Fundamental frequency 99.79 99.96 100 100 43 60 81 97 99.34 100

Computational time (seconds) 46.5 73.2 98.6 117.7

M
o

d
el

 1
0

3
0

M
o

d
el

 1
0

7
1

Percentage of the result w.r.t.

the fixed connection model

respect to 4 subdivisions
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are frequently more accurate than those provided by traditional approaches, such as 

multi-variate nonlinear regression, besides not requiring a good knowledge of the 

function shape being modelled (Flood 2008). 

The general ANN structure consists of several nodes disposed in L vertical layers 

(input layer, hidden layers, and output layer) and connected between them, as 

depicted in Fig. 2. Associated to each node in layers 2 to L, also called neuron, is a 

linear or nonlinear transfer (also called activation) function, which receives the so-

called net input and transmits an output (see Fig. 5). All ANNs implemented in this 

work are called feedforward, since data presented in the input layer flows in the 

forward direction only, i.e. every node only connects to nodes belonging to layers 

located at the right-hand-side of its layer, as shown in Fig. 2. ANN’s computing power 

makes them suitable to efficiently solve small to large-scale complex problems, which 

can be attributed to their (i) massively parallel distributed structure and (ii) ability to 

learn and generalize, i.e., produce reasonably accurate outputs for inputs not used 

during the learning (also called training) phase.  

 

 

Fig. 2. Example of a feedforward neural network. 

 

Further information on Artificial Neural Networks might be found in previous 

publications by Abambres et al. or Haykin (2009). 
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3.2 Learning 

Each connection between 2 nodes is associated to a synaptic weight (real value), 

which, together with each neuron’s bias (also a real value), are the most common types 

of neural net unknown parameters that will be determined through learning. Learning is 

nothing else than determining network unknown parameters through some algorithm in 

order to minimize network’s performance measure, typically a function of the difference 

between predicted and target (desired) outputs. When ANN learning has an iterative 

nature, it consists of three phases: (i) training, (ii) validation, and (iii) testing. From 

previous knowledge, examples or data points are selected to train the neural net, 

grouped in the so-called training dataset. Those examples are said to be ‘labelled’ or 

‘unlabeled’, whether they consist of inputs paired with their targets, or just of the inputs 

themselves – learning is called supervised (e.g., functional approximation, classification) 

or unsupervised (e.g., clustering), whether data used is labelled or unlabeled, 

respectively. During an iterative learning, while the training dataset is used to tune 

network unknowns, a process of cross-validation takes place by using a set of data 

completely distinct from the training counterpart (the validation dataset), so that the 

generalization performance of the network can be attested. Once ‘optimum’ network  

 

 

Fig. 3. Cross-validation - assessing network’s generalization ability. 

 

parameters are determined, typically associated to a minimum of the validation 

performance curve (called early stop – see Fig. 3), many authors still perform a final 
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assessment of model’s accuracy, by presenting to it a third fully distinct dataset called 

‘testing’. Heuristics suggests that early stopping avoids overfitting, i.e. the loss of ANN’s 

generalization ability. One of the causes of overfitting might be learning too many input-

target examples suffering from data noise, since the network might learn some of its 

features, which do not belong to the underlying function being modelled (Haykin 2009). 

 

3.3 Implemented ANN features 

The ‘behavior’ of any ANN depends on many ‘features’, having been implemented 15 

ANN features in this work (including data pre/post processing ones). For those features, 

it is important to bear in mind that no ANN guarantees good approximations via 

extrapolation (either in functional approximation or classification problems), i.e. the 

implemented ANNs should not be applied outside the input variable ranges used for 

network training. Since there are no objective rules dictating which method per feature 

guarantees the best network performance for a specific problem, an extensive parametric 

analysis (composed of nine parametric sub-analyzes) was carried out to find ‘the 

optimum’ net design. A description of all implemented methods, selected from state of art 

literature on ANNs (including both traditional and promising modern techniques), is 

presented next – Tabs. 2-4 present all features and methods per feature. The whole work 

was coded in MATLAB (The Mathworks, Inc. 2017), making use of its neural network 

toolbox when dealing with popular learning algorithms (1-3 in Tab. 4). Each parametric 

sub-analysis (SA) consists of running all feasible combinations (also called ‘combos’) of 

pre-selected methods for each ANN feature, in order to get performance results for each 

designed net, thus allowing the selection of the best ANN according to a certain criterion. 

The best network in each parametric SA is the one exhibiting the smallest average 

relative error (called performance) for all learning data.  

It is worth highlighting that, in this manuscript, whenever a vector is added to a 

matrix, it means the former is to be added to all columns of the latter (valid in MATLAB). 
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Tab. 2. Implemented ANN features (F) 1-5. 

FEATURE 
METHOD 

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 Eq Spaced in ]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 

4 - - Ortho Rand Proj 50-25-25 Nonlinear 

5 - - Sparse Rand Proj - Lin Mean Std 

6 - - No - No 

 

 

3.3.1 Qualitative Variable Representation (feature 1) 

A qualitative variable taking n distinct ‘values’ (usually called classes) can be 

represented in any of the following formats: one variable taking n equally spaced values 

in ]0,1], or 1-of-n encoding (boolean vectors – e.g., n=3: [1 0 0] represents class 1, [0 1 0] 

represents class 2, and [0 0 1] represents class 3). After transformation, qualitative 

variables are placed at the end of the corresponding (input or output) dataset, in the same 

original order. 

 

Tab. 3. Implemented ANN features (F) 6-10. 

FEATURE 
METHOD 

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 

4 - Linear Mean Std - - - 

5 Bilinear No - - - 

6 Compet - - - - 

7 Identity - - - - 
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Tab. 4. Implemented ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP - Batch 

2 Identity-Logistic Rands BPA - Mini-Batch 

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 

4 Bipolar Randnr (W) + Rands (b) ELM - - 

5 Bilinear Randsmall mb ELM - - 

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 

7 Sinusoid SVD CI-ELM - - 

8 Thin-Plate Spline MB SVD - - - 

9 Gaussian - - - - 

10 Multiquadratic - - - - 

11 Radbas - - - - 

 

3.3.2 Dimensional Analysis (feature 2) 

The most widely used form of dimensional analysis is the Buckingham's π-theorem, 

which was implemented in this work as described in Bhaskar and Nigam (1990). 

 

3.3.3 Input Dimensionality Reduction (feature 3) 

When designing any ANN, it is crucial for its accuracy that the input variables are 

independent and relevant to the problem (Gholizadeh et al. 2011, Kasun et al. 2016). 

There are two types of dimensionality reduction, namely (i) feature selection (a subset of 

the original set of input variables is used), and (ii) feature extraction (transformation of 

initial variables into a smaller set). In this work, dimensionality reduction is never 

performed when the number of input variables is less than six. The implemented methods 

are described next. 

 
Linear Correlation  

In this feature selection method, all possible pairs of input variables are assessed 

with respect to their linear dependence, by means of the Pearson correlation 
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coefficient RXY, where X and Y denote any two distinct input variables. For a set of n 

data points (xi, yi), the Pearson correlation is defined by 

( )( )

( ) ( )

1

2 2

1 1

( , )

( ) ( )

n

i i

i
XY

n n

i i

i i

x x y y
Cov X Y

R
Var X Var Y

x x y y

=

= =

− −

= =

− −



                ,   (1) 

where (i) Var(X) and Cov(X, Y) are the variance of X and covariance of X and Y, 

respectively, and (ii) �̅� and �̅� are the mean values of each variable. In this work, cases 

where |𝑅𝑋𝑌| ≥ 0.99 indicate that one of the variables in the pair must be removed from 

the ANN modelling. The one to be removed is the one appearing less in the remaining 

pairs (𝑋, 𝑌) where |𝑅𝑋𝑌| ≥ 0.99. Once a variable is selected for removal, all pairs (𝑋, 𝑌) 

involving it must be disregarded in the subsequent steps for variable removal. 

 
Auto-Encoder 

This feature extraction technique uses itself a 3-layer feedforward ANN called auto-

encoder (AE). After training, the hidden layer output (y2p) for the presentation of each 

problem’s input pattern (y1p) is a compressed vector (Q2 x 1) that can be used to replace 

the original input layer by a (much) smaller one, thus reducing the size of the ANN 

model. In this work, Q2=round(Q1/2) was adopted, being round a function that rounds 

the argument to the nearest integer. The implemented AE was trained using the 

‘trainAutoencoder(…)’ function from MATLAB’s neural net toolbox. In order to select the 

best AE, 40 AEs were simulated, and their performance compared by means of the 

performance variable defined in sub-section 3.4. Each AE considered distinct (random) 

initialization parameters, half of the models used the ‘logsig’ hidden transfer functions, 

and the other half used the ‘satlin’ counterpart, being the identity function the common 

option for the output activation. In each AE, the maximum number of epochs – number 

of times the whole training dataset is presented to the network during learning, was 

defined (regardless the amount of data) by  

1

1

3000, 8
max

1500, 8

Q
epochs

Q


= 


 .  (2)
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Concerning the learning algorithm used for all AEs, no L2 weight regularization was 

employed, which was the only default specification not adopted in 

‘trainAutoencoder(…)’. 

 
Orthogonal and Sparse Random Projections 

This is another feature extraction technique aiming to reduce the dimension of input 

data Y1 (Q1 x P) while retaining the Euclidean distance between data points in the new 

feature space. This is attained by projecting all data along the (i) orthogonal or (ii) 

sparse random matrix A (Q1 x Q2, Q2 < Q1), as described by Kasun et al. (2016).

 

 

 

3.3.4 Training, Validation and Testing Datasets (feature 4) 

Four distributions of data (methods) were implemented, namely pt-pv-ptt = {80-10-

10, 70-15-15, 60-20-20, 50-25-25}, where pt-pv-ptt represent the amount of training, 

validation and testing examples as % of all learning data (P), respectively. Aiming to 

divide learning data into training, validation and testing subsets according to a 

predefined distribution pt-pv-ptt, the following algorithm was implemented (all variables 

are involved in these steps, including qualitative ones after converted to numeric – see 

3.3.1): 

1) Reduce pt-pv-ptt values by 10 units each. 

2) For each variable q (row) in the complete input dataset, compute its minimum 

and maximum values. 

3) Select all patterns (if some) from the learning dataset where each variable takes 

either its minimum or maximum value. Those patterns must be included in the 

training dataset, regardless what pt is. However, if the number of patterns is 

lower than the rounding of pt * P/100, more patterns should be added to the 

training set in the following way: 

a. Compute the number of patterns (Lpt) that need to be added to the initially 

selected training patterns to equal round(pt * P/100). 

b. Randomly select 10.000 combinations of Lpt patterns from all those not 

included in the training set defined prior a).  
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c. For each combination/scenario in b), add those Lpt patterns to the set of 

training patterns defined prior a), and label all remaining learning patterns 

as “validation+testing”. 

d. For each scenario in c), and for each pattern labeled as 

“validation+testing”, check if that pattern has at least one input variable 

that takes a value not taken by any pattern in the training set. If it hasn´t, 

then that pattern should be moved to the training set. 

e. Among all 10.000 scenarios of training and “validation+testing” subsets 

addressed in b) till d), the “winner” should be the one guaranteeing the 

amount of training data (Pt*) closest to round(pt * P/100). 

f. If the winning training set selected in e) guarantees | Pt* / P - pt | ≤ 0.2, 

then that becomes the training data to be taken for simulation. Otherwise, 

the training data should be selected according to step 2 in subsection 

3.3.4 of Abambres et al. (2018). 

4) Increase pt-pv-ptt values by 10 units each (to re-obtain the original input values 

– recall step 1). 

5) In order to select the validation patterns, randomly select pv / (pv + ptt) of those 

patterns not belonging to the previously defined training dataset. The remainder 

defines the testing dataset. 

It might happen that the actual distribution pt-pv-ptt to be used in the simulation is 

not equal to the one imposed a priori (before step 1). 

 

3.3.5 Input Normalization (feature 5) 

The progress of training can be impaired if training data defines a region that is 

relatively narrow in some dimensions and elongated in others, which can be alleviated by 

normalizing each input variable across all data patterns. The implemented techniques are 

the following: 

 
Linear Max Abs 

Lachtermacher and Fuller (1995) proposed a simple normalization technique given by  



Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural 
Networks – Part 1, URL  

 

 
 

 
1

1

1

( ,:)
{ } ( ,:)   

max ( ,:)
n

Y i
Y i
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                ,   (3) 

where {Y1}n (i, :) and Y1 (i, :) are the normalized and non-normalized values of the ith input 

variable for all learning patterns, respectively. Notation ‘:’ in the column index, indicate the 

selection of all columns (learning patterns). 

 
Linear [0, 1] and [-1, 1] 

A linear transformation for each input variable (i), mapping values in Y1(i,:) from [a*, 

b*]=[min(Y1(i,:)), max(Y1(i,:))] to a generic range [a, b], is obtained from 

( )
( )( )
( )
1

1

,: *
{ ,:  

*
} )

*
(n

Y i a
Y aa

b
bi

a

−

−
−= +

               .   (4) 

Ranges [a, b]=[0, 1] and [a, b]=[-1, 1] were considered. 

 

Nonlinear 

Proposed by Pu and Mesbahi (2006), although in the context of output 

normalization, the only nonlinear normalization method implemented for input data 

reads  

  ( ) ( )( )
( )1

1 1

,
  ,  , ( )

10n t

Y i j
Y i j sign Y i j C i= +

               ,   (5) 

where (i) Y1(i, j) is the non-normalized value of input variable i for pattern j, (ii) t is the 

number of digits in the integer part of Y1(i, j), (iii) sign(…) yields the sign of the 

argument, and (iv) C(i) is the average of two values concerning variable i, C1(i) and 

C2(i), where the former leads to a minimum normalized value of 0.2 for all patterns, 

and the latter leads to a maximum normalized value of 0.8 for all patterns. 

 
Linear Mean Std 

Tohidi and Sharifi (2014) proposed the following technique  
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where 𝜇𝑌1(𝑖,:)
 and 𝜎𝑌1(𝑖,:) are the mean and standard deviation of all non-normalized 

values (all patterns) stored by variable i.  

 

3.3.6 Output Transfer Functions (feature 6) 

 
Logistic 

The most usual form of transfer functions is called Sigmoid. An example is the 

logistic function given by 

1
( )

1 s
s

e


−
=

+
                .   (7)

 

Hyperbolic Tang 

The Hyperbolic Tangent function is also of sigmoid type, being defined as 

( )
s s

s s

e e
s

e e


−

−

−
=

+
       .    (8) 

Bilinear 

The implemented Bilinear function is defined as  

, 0
( )

0, 0

s s
s

s



= 


 

.   (9) 

 
Identity 

The Identity activation is often employed in output neurons, reading 

( )s s =  

 .   (10) 
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3.3.7 Output Normalization (feature 7) 

Normalization can also be applied to the output variables so that, for instance, the 

amplitude of the solution surface at each variable is the same. Otherwise, training may 

tend to focus (at least in the earlier stages) on the solution surface with the greatest 

amplitude (Flood and Kartam 1994a). Normalization ranges not including the zero value 

might be a useful alternative since convergence issues may arise due to the presence of 

many small (close to zero) target values (Mukherjee et al. 1996). Four normalization 

methods were implemented. The first three follow eq. (4), where (i) [a, b] = 70% [φmin, 

φmax], (ii) [a, b] = 60% [φmin, φmax], and (iii) [a, b] = 50% [φmin, φmax], being [φmin, φmax] the 

output transfer function range, and [a, b] determined to be centered within [φmin, φmax] and 

to span the specified % (e.g., (b-a) = 0.7 (φmax - φmin)). Whenever the output transfer 

functions are unbounded (Bilinear and Identity), it was considered [a, b] = [0, 1] and [a, b] 

= [-1, 1], respectively. The fourth normalization method implemented is the one described 

by eq. (6). 

 

3.3.8 Network Architecture (feature 8) 

 
Multi-Layer Perceptron Network (MLPN) 

This is a feedforward ANN exhibiting at least one hidden layer. Fig. 2 depicts a 3-

2-1 MLPN (3 input nodes, 2 hidden neurons and 1 output neuron), where units in each 

layer link to nodes located ahead only. The network is said to be partially-connected 

(PC) since no connections across layers are allowed (between the source and output 

layers, in this case). At this moment, it is appropriate to define the concept of fully-

connected (FC) ANN. Although traditionally, the network shown in Fig. 2 would be 

called FC, in this work a FC feedforward network is characterized by having each node 

connected to every node in a different layer placed forward – any other type of 

feedforward network is said to be PC. According to Wilamowski (2009), PC MLPNs 

are less powerful than MLPN where connections across layers are allowed, which 

usually lead to smaller networks (less neurons).  
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Fig. 4 represents a generic MLFN composed of L layers, where l (l = 1,…, L) is a generic 

layer and ‘ql’ a generic node, being q = 1,…, Ql its position in layer l (1 is reserved to the top 

node). Fig. 5 represents the model of a generic neuron (l = 2,…, L), where (i) p represents 

the data pattern presented to the network, (ii) subscripts m = 1,…, Qn and n = 1,…, l-1 are 

summation indexes representing all possible nodes connecting to neuron ‘ql’ (recall Fig. 4), 

(iii) bql is neuron’s bias, and (iv) wmnql represents the synaptic weight connecting units ‘mn’ 

and ‘ql’. Neuron’s net input for the presentation of pattern p (Sqlp) is defined as  

Q 1

1 1

,
n l

lp

m n

q mnp mnp mnpmnql ql mnql mnqlw b w wS y y y
−

= =

= +   ,   (11) 

where ym1p is the value of the mth network input concerning example p. The output of 

a generic neuron can then be written as (l = 2,…, L) 

( )lqlp qlpy S=  ,   (12) 

where φl is the transfer function used for all neurons in layer l. 

 

 

Fig. 4. Generic multi-layer feedforward network. 
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Fig. 5. Generic neuron placed anywhere in the MLPN of Fig. 4 (l = 2,…, L). 

 

 
Radial-Basis Function Network (RBFN)  

Although having similar topologies, RBFN and MLPN behave very differently due 

to distinct hidden neuron models – unlike the MLPN, RBFN have hidden neurons 

behaving differently than output neurons. According to Xie et al. (2011), RBFN (i) are 

specially recommended in functional approximation problems when the function 

surface exhibits regular peaks and valleys, and (ii) perform more robustly than MLPN 

when dealing with noisy input data. Although traditional RBFN have 3 layers, a generic 

multi-hidden layer (see Fig. 4) RBFN is allowed in this work, being the generic hidden 

neuron’s model concerning node ‘l1l2’ (l1 = 1,…,Ql2, l2 = 2,…, L-1) presented in Fig. 6. 

In this model, (i) 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 (called RBF center) are vectors of the same size (𝜉𝑧𝑙1𝑙2 

denotes de z component of vector 𝜉𝑙1𝑙2, and it is a network unknown), being the former 

associated to the presentation of data pattern p,  (ii) 𝜎𝑙1𝑙2 is called RBF width (a positive 

scalar) and also belongs, along with synaptic weights and RBF centers, to the set of 

network unknowns to be determined through learning, (iii) 𝜑𝑙2 is the user-defined radial 

basis (transfer) function (RBF), described in eqs. (20)-(23), and (iv) 𝑦𝑙1𝑙2𝑝 is neuron’s 

output when pattern p is presented to the network. In ANNs not involving learning 

algorithms 1-3 in Tab. 4, vectors 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 are defined as (two versions of 𝑣𝑙1𝑙2𝑝 

where implemented and the one yielding the best results was selected) 
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whereas the RBFNs implemented through MATLAB neural net toolbox (involving 

learning algorithms 1-3 in Tab. 4) are based on the following definitions 

1 2 2 2 2
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−
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 =
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 .   (14) 

Lastly, according to the implementation carried out for initialization purposes (described 

in 3.3.12), (i) RBF center vectors per hidden layer (one per hidden neuron) are initialized 

as integrated in a matrix (termed RBF center matrix) having the same size of a weight 

matrix linking the previous layer to that specific hidden layer, and (ii) RBF widths (one per 

hidden neuron) are initialized as integrated in a vector (called RBF width vector) with the 

same size of a hypothetic bias vector. 

 

 

 

Fig. 6. Generic hidden neuron l1l2 placed anywhere in the RBFN of Fig. 4 (l2 = 2,…, L-1). 
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3.3.9 Hidden Nodes (feature 9) 

Inspired by several heuristics found in the literature for the determination of a suitable 

number of hidden neurons in a single hidden layer net (Aymerich and Serra 1998, Rafiq 

et al. 2001, Xu and Chen 2008), each value in hntest, defined in eq. (15), was tested in 

this work as the total number of hidden nodes in the model, ie the sum of nodes in all 

hidden layers (initially defined with the same number of neurons). The number yielding 

the smallest performance measure for all patterns (as defined in 3.4, with outputs and 

targets not postprocessed), is adopted as the best solution. The aforementioned hntest 

is defined by 

 

( )( )( )

1 1 1

1

2

1 1 1 2 2
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,   (15) 

 
where (i) Q1 and QL are the number of input and output nodes, respectively, (ii) P and 

Pt are the number of learning and training patterns, respectively, and (iii) F13 is the 

number of feature 13’s method (see Tab. 4). 

 

3.3.10 Connectivity (feature 10) 

For this ANN feature, three methods were implemented, namely (i) adjacent layers 

– only connections between adjacent layers are made possible, (ii) adjacent layers + 
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input-output – only connections between (ii1) adjacent and (ii2) input and output layers 

are allowed, and (iii) fully-connected (all possible feedforward connections). 

 

3.3.11 Hidden Transfer Functions (feature 11) 

Besides functions (i) Logistic – eq. (7), (ii) Hyperbolic Tangent – eq. (8), and (iii) Bilinear 

– eq. (9), defined in 3.3.6, the ones defined next were also implemented as hidden transfer 

functions. During software validation it was observed that some hidden node outputs 

could be infinite or NaN (not-a-number in MATLAB – e.g., 0/0=Inf/Inf=NaN), due to 

numerical issues concerning some hidden transfer functions and/or their calculated input. 

In those cases, it was decided to convert infinite to unitary values and NaNs to zero (the 

only exception was the bipolar sigmoid function, where NaNs were converted to -1).  

Other implemented trick was to convert possible Gaussian function’s NaN inputs to zero.  

 
 

Identity-Logistic 

In Gunaratnam and Gero (1994), issues associated with flat spots at the extremes 

of a sigmoid function were eliminated by adding a linear function to the latter, reading  

1
( )

1 s
s s

e


−
= +

+
 

.   (16) 

Bipolar   

The so-called bipolar sigmoid activation function mentioned in Lefik and Schrefler 

(2003), ranging in [-1, 1], reads  

1
( )

1

s

s

e
s

e


−

−

−
=

+
        .   (17) 

Positive Saturating Linear 

In MATLAB neural net toolbox, the so-called Positive Saturating Linear transfer 

function, ranging in [0, 1], is defined as   
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Sinusoid 

Concerning less popular transfer functions, reference is made in Bai et al. (2014) to 

the sinusoid, which in this work was implemented as  

( ) sin
2

s s



 

=  
          .   (19)

 

Radial Basis Functions (RBF) 

Although Gaussian activation often exhibits desirable properties as a RBF, several 

authors (e.g., Schwenker et al. 2001) have suggested several alternatives. Following 

nomenclature used in 3.3.8, (i) the Thin-Plate Spline function is defined by 

( ) ( )
2 1 2 1 2

2

ln ,l l l p l ls s s s v = = −  ,   (20) 

(ii) the next function is employed as Gaussian-type function when learning algorithms 

4-7 are used (see Tab. 4) 

( )
2 1 2 1 2 1 2

2
0.5 2

,
s

l l l p l l l ls s ve  
−

= = −  ,   (21) 

(iii) the Multiquadratic function is given by 

( )
2 1 2 1 2 1 2

2
2,l l l p l l l ls s s v  = = − +  ,   (22) 

and (iv) the Gaussian-type function (called ‘radbas’ in MATLAB toolbox) used by 

RBFNs trained with learning algorithms 1-3 (see Tab. 4), is defined by 

( )
2 1 2 1 2 1 2

2

,l l l p l l l l

ss s ve  −= = −
 ,   (23) 

where || … || denotes the Euclidean distance in all functions.  
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3.3.12 Parameter Initialization (feature 12) 

The initialization of (i) weight matrices (Qa x Qb, being Qa and Qb node numbers in layers 

a and b being connected, respectively), (ii) bias vectors (Qb x 1), (iii) RBF center matrices 

(Qc-1 x Qc, being c the hidden layer that matrix refers to), and (iv) RBF width vectors (Qc x 

1), are independent and in most cases randomly generated. For each ANN design carried 

out in the context of each parametric analysis combo, and whenever the parameter 

initialization method is not the ‘Mini-Batch SVD’, ten distinct simulations varying (due to their 

random nature) initialization values are carried out, in order to find the best solution. The 

implemented initialization methods are described next.  

 

Midpoint, Rands, Randnc, Randnr, Randsmall 

These are all MATLAB built-in functions. Midpoint is used to initialize weight and RBF 

center matrices only (not vectors). All columns of the initialized matrix are equal, being 

each entry equal to the midpoint of the (training) output range leaving the corresponding 

initial layer node – recall that in weight matrices, columns represent each node in the final 

layer being connected, whereas rows represent each node in the initial layer counterpart. 

Rands generates random numbers with uniform distribution in [-1, 1]. Randnc (only used to 

initialize matrices) generates random numbers with uniform distribution in [-1, 1], and 

normalizes each array column to 1 (unitary Euclidean norm). Randnr (only used to initialize 

matrices) generates random numbers with uniform distribution in [-1, 1], and normalizes 

each array row to 1 (unitary Euclidean norm). Randsmall generates random numbers with 

uniform distribution in [-0.1, 0.1]. 

 

Rand [-lim, lim] 

This function is based on the proposal in Waszczyszyn (1999), and generates random 

numbers with uniform distribution in [-lim, lim], being lim layer-dependent and defined by 

1/
, < 

 = 
0.5 , = 

aQ

bQ b L
 lim

b L





 ,   (24) 
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where a and b refer to the initial and final layers integrating the matrix being initialized, 

and L is the total number of layers in the network. In the case of a bias or RBF width 

vector, lim is always taken as 0.5.    

 
SVD  

Although Deng et al. (2016) proposed this method for a 3-layer network, it was 

implemented in this work regardless the number of hidden layers.  

 
Mini-Batch SVD  

Based on Deng et al. (2016), this scheme is an alternative version of the former 

SVD. Now, training data is split into min{Qb, Pt} chunks (or subsets) of equal size Pti = 

max{floor(Pt / Qb), 1} – floor rounds the argument to the previous integer (whenever it 

is decimal) or yields the argument itself, being each chunk aimed to derive Qbi = 1 

hidden node.  

 

3.3.13 Learning Algorithm (feature 13) 

The most popular learning algorithm is called error back-propagation (BP), a first-

order gradient method. Second-order gradient methods are known to have higher 

training speed and accuracy (Wilamowski 2011). The most employed is called 

Levenberg-Marquardt (LM). All these traditional schemes were implemented using 

MATLAB toolbox (The Mathworks, Inc 2017).  

 

Back-Propagation (BP, BPA), Levenberg-Marquardt (LM)  

Two types of BP schemes were implemented, one with constant learning rate (BP) 

–‘traingd’ in MATLAB, and another with iteration-dependent rate, named BP with 

adaptive learning rate (BPA) – ‘traingda’ in MATLAB. The learning parameters set 

different than their default values are: 

(i) Learning Rate = 0.01 / cs0.5, being cs the chunk size, as defined in 3.3.15. 

(ii) Minimum performance gradient = 0.  
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Concerning the LM scheme – ‘trainlm’ in MATLAB, the only learning parameter set 

different than its default value was the abovementioned (ii).  

 
 

Extreme Learning Machine (ELM, mb ELM, I-ELM, CI-ELM) 

Besides these traditional learning schemes, iterative and time-consuming by nature, 

four versions of a recent, powerful and non-iterative learning algorithm, called Extreme 

Learning Machine (ELM), were implemented (unlike initially proposed by the authors of 

ELM, connections across layers were allowed in this work), namely: (batch) ELM (Huang 

et al. 2006a), Mini-Batch ELM (mb ELM) (Liang et al. 2006), Incremental ELM (I-ELM) 

(Huang et al. 2006b), Convex Incremental ELM (CI-ELM) (Huang and Chen 2007).   

 

3.3.14 Performance Improvement (feature 14) 

None implemented. 

 

3.3.15 Training Mode (feature 15) 

Depending on the relative amount of training patterns, with respect to the whole 

training dataset, that is presented to the network in each iteration of the learning 

process, several types of training modes can be used, namely (i) batch or (ii) mini-

batch. Whereas in the batch mode all training patterns are presented (called an epoch) 

to the network in each iteration, in the mini-batch counterpart the training dataset is 

split into several data chunks (or subsets) and in each iteration a single and new chunk 

is presented to the network, until (eventually) all chunks have been presented. 

Learning involving iterative schemes (e.g., BP- or LM-based) might require many 

epochs until an ‘optimum’ design is found. The particular case of having a mini-batch 

mode where all chunks are composed by a single (distinct) training pattern (number 

of data chunks = Pt , chunk size = 1), is called online or sequential mode. Wilson and 

Martinez (2003) suggested that if one wants to use mini-batch training with the same 

stability as online training, a rough estimate of the suitable learning rate to be used in 

learning algorithms such as the BP, is ηonline /√𝑐𝑠, where cs is the chunk size and ηonline is 
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the online learning rate – their proposal was adopted in this work. Based on the proposal 

of Liang et al. (2006), the constant chunk size (cs) adopted for all chunks in mini-batch 

mode reads cs = min{mean(hn) + 50, Pt}, being hn a vector storing the number of hidden 

nodes in each hidden layer in the beginning of training, and mean(hn) the average of all 

values in hn.  

 

3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) 

maximum error, (ii) % errors greater than 3%, and (iii) performance, which are defined 

next. All abovementioned errors are relative errors (expressed in %) based on the 

following definition, concerning a single output variable and data pattern, 

100
qp qLp

qp

qp

d y

d
e

−
=

                               ,   (25) 

where (i) dqp is the qth desired (or target) output when pattern p within iteration i 

(p=1,…, Pi) is presented to the network, and (ii) yqLp is net’s qth output for the same 

data pattern. Moreover, denominator in eq. (25) is replaced by 1 whenever |dqp| < 0.05 

– dqp in the nominator keeps its real value.  This exception to eq. (25) aims to reduce 

the apparent negative effect of large relative errors associated to target values close 

to zero. Even so, this trick may still lead to (relatively) large solution errors while 

groundbreaking results are depicted as regression plots (target vs. predicted outputs).     

 

3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (25), among 

all output variables and learning patterns. 
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3.4.2 Percentage of Errors > 3% 

This variable measures the percentage of relative errors, as defined by eq. (25), 

among all output variables and learning patterns, that are greater than 3%. 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the 

average relative error, as defined in eq. (25), among all output variables and data 

patterns being evaluated (e.g., training, all data).  

 

3.5 Software Validation  

Several benchmark datasets/functions were used to validate the developed software, 

involving low- to high-dimensional problems and small to large volumes of data. Validation 

results are not presented herein but they were made public in Researcher (2018). 

Moreover, several papers involving the successful application of this software have 

already been published by Abambres and his co-workers. 

 

3.6 Parametric Analysis Results  

Aiming to reduce the computing time by cutting in the number of combos to be run – 

note that all features combined lead to hundreds of millions of combos, the whole 

parametric simulation was divided into nine parametric SAs, where in each one feature 7 

only takes a single value. This measure aims to make the performance ranking of all 

combos within each ‘small’ analysis more ‘reliable’, since results used for comparison are 

based on target and output datasets as used in ANN training and yielded by the designed 

network, respectively (they are free of any postprocessing that eliminates output 

normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs aimed to 

select the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a 

single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9: 

1, F10: 1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1 involved learning 
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algorithms 1-3 and SA 2 involved the ELM-based counterpart, (ii) the 3rd – 7th SAs combined 

all possible methods from features 3, 4, 6 and 7, and concerning all other features, adopted 

the methods integrating the best combination from the aforementioned SAs 1-2, (iii) the 8th 

SA combined all possible methods from features 11, 12 and 14, and concerning all other 

features, adopted the methods integrating the best combination (results compared after 

postprocessing) among the previous five sub-analyzes, and lastly (iv) the 9th SA combined 

all possible methods from features 9, 10 and 15, and concerning all other features, adopted 

the methods integrating the best combination from the previous analysis. Summing up the 

ANN feature combinations for all parametric SAs, a total of 475 combos were run for this 

work (note that this value is much lower than the total number of ANNs simulated).   

ANN feature methods used in the best combo from each of the abovementioned 

nine parametric sub-analyzes, are specified in Tab. 5 (the numbers represent the 

method number as in Tabs 2-4). Tab. 6 shows the corresponding relevant results for 

those combos, namely (i) maximum error, (ii) % errors > 3%, (iii) performance (all 

described in section 3, and evaluated for all learning data), (iv) total number of hidden 

nodes in the model, and (v) average computing time per example (including data pre- 

and post-processing). All results shown in Tab. 6 are based on target and output 

datasets computed in their original format, i.e. free of any transformations due to 

output normalization and/or dimensional analysis.  The microprocessor used in this 

work has the following features: OS: Win10Home 64bits, RAM: 128 GB, Local Disk 

Memory: 1 TB, CPU: Intel® Core™ i9 7960X @ 2.80-4.20 GHz. 

 

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 2 7 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 2 7 1 2 1 1 9 2 4 1 3 

3 1 2 6 4 2 3 1 1 1 1 3 2 3 1 3 

4 1 2 6 1 2 3 2 1 1 1 3 2 3 1 3 

5 1 2 1 2 2 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 1 2 7 4 1 1 1 3 2 3 1 3 

7 1 2 1 2 2 7 5 1 1 1 3 2 3 1 3 

8 1 2 1 2 2 7 5 1 1 1 3 5 3 1 3 

9 1 2 1 2 2 7 5 1 3 3 3 5 3 1 3 
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3.7 Proposed ANN-Based Model 

The proposed model is the one, among the best ones from all parametric SAs, 

exhibiting the lowest maximum error (SA 9). That model is characterized by the ANN 

feature methods {1, 2, 1, 2, 2, 7, 5, 1, 3, 3, 3, 5, 3, 1, 3} in Tabs. 2-4. Aiming to allow 

implementation of this model by any user, all variables/equations required for (i) data 

preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in 3.7.1-

3.7.3, respectively. 

 

Tab. 6. Performance results for the best design from each parametric sub-analysis. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 209.4 11.2 64.7 32 9.95E-05 

2 4148.6 177.4 94.7 250 1.21E-04 

3 248.4 10.5 59.1 32 9.68E-05 

4 202.4 11.9 60.0 32 1.02E-04 

5 241.7 11.7 59.1 32 1.09E-04 

6 219.5 11.4 59.1 32 9.73E-05 

7 246.3 12.7 65.8 32 1.05E-04 

8 247.0 14.2 66.3 32 1.02E-04 

9 16.3 1.1 10.6 33 1.06E-04 

 

 

The proposed model is a single MLPN with 5 layers and a distribution of nodes/layer 

of 8-11-11-11-1. Concerning connectivity, the network is fully-connected, and the hidden 

and output transfer functions are all Hyperbolic Tangent and Identity, respectively. The 

network was trained using the LM algorithm (1500 epochs). After design, the average 

network computing time concerning the presentation of a single example (including data 

pre/postprocessing) is 1.06x10-4 s – Fig. 7 depicts a simplified scheme of some of 

network key features. Lastly, all relevant performance results concerning the proposed 

ANN are illustrated in 3.7.4. The obtained ANN solution for every data point can be 

found in Abambres and Cabello (2020), making it possible to compute the exact (with 

all decimal figures) approximation errors. 
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Fig. 7. Proposed 8-11-11-11-1 fully-connected MLPN – simplified scheme. 

 

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, 

it means the former is to be added to all columns of the latter (valid in MATLAB). 

 

3.7.1 Input Data Preprocessing 

For future use of the proposed ANN to simulate new data Y1,sim (8 x Psim matrix) 

concerning Psim patterns, the same data preprocessing (if any) performed before 

training must be applied to the input dataset. That preprocessing is defined by the 

methods used for ANN features 2, 3 and 5 (respectively 2, 1 and 2 – see Tab. 2), 

which should be applied after all (eventual) qualitative variables in the input dataset 

are converted to numerical (using feature 1’s method). Next, the necessary 

preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully described.  

 
 

Dimensional Analysis and Dimensionality Reduction 

Since dimensional analysis (d.a.) was not carried out, and the dimensionality 

reduction (d.r.) tentative hasn´t yielded any result according to the described in 3.3.3 

(linear correlation), one has 

   1, 1, 1,. . . .
    

after after

sim sim simd r d a
Y Y Y= =  

.   (26)

 

 

8 11 11 11 1 

inputs output 

MLPN 
(computing time = 1.06x10-4 s/example) 
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Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛
𝑎𝑓𝑡𝑒𝑟

 is defined as function 

of the previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟
𝑎𝑓𝑡𝑒𝑟

, and they have the same size, reading 

   ( )1, 1, .

0 1 5 25

0 1 5 50

0 1 2 10

0 1 0.9 1.5

0 1 0 3.504

0 1 30 200

0 1 30 200

0 1 20 49527

INP IN = (:,1) + .x  - (:,3) ./

(:,2) - (

P

IN

:,1)

(:,4) - (:,3

P

INP IN

I )

P

NP INP

after after

sim simn d r
rab deY Y

rab

n

den

 
 
 
 
 
 
 
 
 
 
 
  

=

=

=

 

,   (27) 

where one recalls that operator ‘.x’ multiplies component i in vector rab by all 

components in row i of subsequent term (analogous definition holds for ‘./’).  

 

3.7.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after (8 x Psim matrix), the 

next step is to present it to the proposed ANN to obtain the predicted output dataset 

{Y5,sim}n
after (1 x Psim vector), which will be given in the same preprocessed format of the 

target dataset used in learning. In order to convert the predicted outputs to their ‘original 

format’ (i.e., without any transformation due to normalization or dimensional analysis – 

the only transformation visible will be the (eventual) qualitative variables written in their 

numeric representation), some postprocessing is needed, as described in detail in 3.7.3. 

Next, the mathematical representation of the proposed ANN is given, so that any user 
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can implement it to determine {Y5,sim}n
after

 , thus eliminating all rumors that ANNs are 

‘black boxes’. 

 

 ( )
 ( )
 ( )
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1 2
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where 

5

2 3 4

5
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s s

s s

e e
s

e e

s s





  



−

−

−
= = = =

+

= =

 

.  (29) 

Arrays Wj-s and bs are stored online in Abambres (2020), aiming to avoid an overlong 

article and ease model’s implementation by any interested reader. 

 

3.7.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n
after 

(1 x Psim vector), to its original format (Y5,sim), i.e. without the effects of dimensional 

analysis and/or output normalization (possibly) taken in target dataset preprocessing 

prior training, the postprocessing addressed next must be performed. 

 
 

Non-normalized (just after dimensional analysis) and Original formats  

Once obtained {Y5,sim}n
after, the following relations hold for its transformation to its 

non-normalized format {𝑌5,𝑠𝑖𝑚}𝑑.𝑎.
𝑎𝑓𝑡𝑒𝑟

, i.e. just after the dimensional analysis stage, and 

its original format. 
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sim sim simd

after

na
Y Y Y  

,   (30) 

since neither output normalization nor dimensional analysis were carried out.  

 
 

3.7.4 Performance Results 

Finally, results yielded by the proposed ANN, in terms of performance variables 

defined in sub-section 3.4, are presented in this section in the form of several graphs: 

(i) a regression plot (Fig. 8), where network target and output data are plotted, for each 

data point, as x- and y- coordinates respectively – a measure of linear correlation is 

given by the Pearson Correlation Coefficient (R), as defined in eq. (1); (ii) a performance 

plot (Fig. 9), where performance (average error) values are displayed for several 

learning datasets; and (iii) an error plot (Fig. 10) for functional approximation problems, 

where values concern all data (iii1) maximum error and (iii2) % of errors greater than 3%. 

 

 
Fig. 8. Regression plot for the proposed ANN. 
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Fig. 9. Performance plot (mean errors) for the proposed ANN. 

 

 

Fig. 10. Error plot for the proposed ANN. 
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4. Conclusions 

Any engineering structure must comply with the appropriate strength, stability and 

serviceability criteria defined by design standards. Since grid-shells are slender 

structures highly prone to buckling, understanding how they perform in terms of 

stability is a critical aspect of their design. This paper presents an application of 

Artificial Intelligence to predict the onset of elastic buckling on steel grid-shells of 

paraboloid shape when subjected to uniform vertical loading. 

The proposed Artificial Neural Network (ANN) yields mean and maximum errors of 

1.1% and 16.3%, respectively, for all 1098 data points (i.e., FE models). Only in 10.6% 

of those points the prediction error exceeds 3%. The analytical formulation 

corresponding to the proposed ANN is thoroughly described. This is a hands-on tool 

enabling any user to obtain the buckling factor of any grid-shell belonging to the family 

(and domain) of those described herein. Using an ANN to obtain such set of predictive 

formulas is a novel approach not relying on any homogenization of the structure, thus 

avoiding denaturing its discretized condition. 
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