
HAL Id: hal-02903288
https://hal.science/hal-02903288

Preprint submitted on 20 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Analytical Prediction of Steel Grid-Shell Stability and
Dynamic Behaviors Using Neural Networks - Part 1

Miguel Abambres, Adrián Cabello

To cite this version:
Miguel Abambres, Adrián Cabello. Analytical Prediction of Steel Grid-Shell Stability and Dynamic
Behaviors Using Neural Networks - Part 1. 2020. �hal-02903288�

https://hal.science/hal-02903288
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Analytical Prediction of Steel Grid-Shell
Stability and Dynamic Behaviors Using
Neural Networks – Part 1

Miguel Abambres a, Adrián Cabello b

a Num3ros, 1600-275 Lisbon, Portugal; amgg@mailfence.com

b acg.adrian@gmail.com

Important Notes:

1. The first author has been proposing ANN-based models in former publications, in each case designed and tested

for a fairly limited amount of data (especially when empirical). Regardless the high quality of the predictions yielded

by some model for the used data, the reader should not blindly accept that model as accurate for any other

instances falling inside the input domain of the design dataset. Any analytical approximation model must undergo

extensive validation before it can be taken as reliable (the more inputs, the larger the validation process). Models

proposed until that stage are part of a learning process towards excellence.

2. If the reader can’t find any of Abambres’ papers referred as references of this work, please email the author.

Abstract

Artificial Intelligence is a cutting-edge technology expanding very quickly into every industry. It has

made its way into structural engineering and it has shown its benefits in predicting structural performance

as well as saving modelling and experimenting time. This paper is the first one (out of three) of a broader

research where artificial intelligence was applied to the stability and dynamic analyzes of steel grid-shells.

In that study, three Artificial Neural Networks (ANN) with 8 inputs were independently designed for the

prediction of a single target variable, namely: (i) the critical buckling factor for uniform loading (i.e. over

the entire roof), (ii) the critical buckling factor for uniform loading over half of the roof, and (iii) the

fundamental frequency of the structure. This paper addresses target variable (i). The ANN simulations

were based on 1098-point datasets obtained via thorough finite element analyzes.

The proposed ANN for the prediction of the critical buckling factor in steel grid-shells under uniform

loading yields mean and maximum errors of 1.1% and 16.3%, respectively, for all 1098 data points.

Only in 10.6% of those examples (points), the prediction error exceeds 3%.

Keywords: Artificial Neural Networks, Soft Computing, Formula, Structural Engineering, Dataset, Grid-

Shell Design, Lightweight Engineering, Buckling, Dynamic Analysis.

© 2020 by Abambres and Cabello

CC BY 4.0

mailto:amgg@mailfence.com
mailto:acg.adrian@gmail.com

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

1. Introduction

It is not easy to trace back the origin of grid-shells but Shukhov´s diagrids are

probably the most agreed starting point (Edemskaya 2016). Especially when referring

to modern steel grid-shells, his roof for the Vyksa workshop can be regarded the first

double-curvature lattice roof. Yet it is not until the end of the 80’s, and especially the

90’s, that they became really popular through the work of engineers like Schlaich and

Schober (Schlaich 1996).

Grid-shells are transparent, thin and typically exhibit high structural efficiency. Their

design and fabrication are high precision jobs where tolerances are tight and flexibility

low (Schlaich 2009). It is for these reasons that a suitable concept design that

understands its failure mode is paramount down the line.

This paper is the first one (out of three) of a broader research where artificial

intelligence was applied to the stability and dynamic analyzes of steel grid-shells of

paraboloid shape supported on a horizontal plane (see Fig. 1.1). In that study, three

Artificial Neural Networks (ANN) with 8 inputs were independently designed for the

analytical prediction of a single target variable, namely: (i) the critical (i.e. for the 1st

mode) buckling factor for uniform loading (i.e. over the entire roof), (ii) the critical

buckling factor for uniform loading over half of the roof, and (iii) the fundamental

frequency of the structure. This paper provides a set of equations to obtain the critical

buckling factor of the structure under uniform loading, where the latter is defined as

the critical load / (external load + selfweight). That factor provides a good indication

of the stability of a structure, even though a geometrically non-linear analysis is still

mandatory for the final design. The 1st buckling mode identified in the analysis can be

global or local, whichever is the lowest. The ANN was designed for a 1098-point

dataset obtained via finite element analyzes.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Fig. 1.1. 1st buckling mode of a paraboloid shell (model 1030) supported along its perimeter.

The characteristics of the finite element (FE) modelling carried out for data gathering

are defined in section 2.1. The FE models meet some predetermined variables

defining the scope under which the performed research is valid (section 2.2).

The state of the art regarding the stability of grid-shells was thoroughly expounded

by Gioncu (1994). Most of the available analytical solutions predicting buckling of

reticulated shells resort to the homogenization technique, treating the structure as a

continuum shell (Dulácska and Kollár 2000, Kato 2005, Lefevre 2015). The analytical

solution presented in this paper doesn’t rely on this simplification. To the knowledge

of the authors it hasn’t been formulated yet analytical models describing the buckling

or dynamic behaviors of the family of grid-shells addressed in the current study.

2. Data Gathering

2.1 Modelling techniques

A topology has been defined parametrically on Rhinoceros 3D (McNeel 2014) +

Grasshopper (Rutten 2014), as illustrated in Fig. 1.2. The base geometry is a

paraboloid shell obtained by means of two translational parabolas, the generatrix and

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

the directrix. The translational technique has the virtue of leading to flat quadrilateral

surfaces that can be easily covered with planar glass panes (Pottmann 2014, Schober

2016).

Hundred and sixty (160) different paraboloids have been generated where the main

dimensions L1, L2, and h, have been varied along with the spacing s between beam

nodes (see Fig. 1.2), where the latter remains constant in each model. The domains

considered for those variations are addressed in section 2.2.

Fig. 1.2. Top view (left), side view (center), and perspective view (right) of the parametric topology.

The aforementioned geometries were exported to the FE package GSA (Oasys

2010), where all line segments (beams) were first transformed into beam FEs with 6

DOF (degree of freedom) nodes, and later split into 3 equal elements as result of the

sensitivity study explained in section 2.3. At this stage, a Visual Basic (VB) script was

run to rotate each rectangular beam (i.e., around its longitudinal axis) by an angle ,

illustrated in Fig. 1.3 as the angle between the default beam local axis 𝑽𝟎
⃗⃗ ⃗⃗ (following

global Z) and 𝑽𝟐x𝑽𝟏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (the cross product between 𝑽𝟐

⃗⃗ ⃗⃗ – vector joining transversally

adjacent nodes to the beam, and 𝑽𝟏
⃗⃗ ⃗⃗ – vector joining beam nodes). This technique

doesn´t provide the mathematically exact normal to the paraboloid surface (Makin

2006) but it leads to equal angles between the bar width and the supported glass

panes, which is convenient engineering wise.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Fig. 1.3. Procedure carried out to rotate each beam’s coordinate system in all grid-shells.

After orienting the bars, another VB script was run to generate 1098 distinct FE

models from the 160 grid-shell geometries, by varying the parameters external load q,

bar width a, bar breadth b, and node stiffness Kn, as explained in 2.2. A last VB routine

run all models and stored the relevant results in a text file.

The set of 1098 FE models used to collect the data that fed the neural network

simulations, includes a bulk of reasonably suitable designs but also covers unrealistic

under/over-conservative ones, which is precisely what makes the proposed ANN-

based tool useful.

The GSA software is valid to analyze grid-shell structures since it has been

successfully used on numerous occasions in the past, either as a design or validation

tool. Examples range from steel shells (Dini 2013, Olsson 2012), to timber shells

(Kuijvenhoven 2009, Toussaint 2007) or composite material shells (du Peloux 2013,

Tayeb 2015).

2.2 Modelling inputs

The decision about the number of inputs to consider was a trade-off between (i) the

versatility of the final ANN tool, and (ii) the time needed to perform all numerical

simulations for data gathering – the more input variables, the more data points (no. of

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

different FE models) are needed to guarantee acceptable accuracy. The following

parameters were deemed unchanged in all numerical simulations:

- Beam Material: structural steel with linear elastic properties according to EN

1993-1-1 (2005), namely Young’s modulus E = 210 GPa, shear modulus G = 81

GPa, and Poisson´s ratio = 0.3. The analyzed models include the self-weight of

the steel considering a material density of 7.85 t/m3.

- Roofing panels: the weight of the panels is small compared to that of the

structural steel (if made of glass or polycarbonate) or even negligible (in case of

ETFE). This weight is to be computed as part of the additional load q.

- Boundary conditions: the paraboloids lay on a horizontal plane, defining an

ellipse (see top view in Fig. 1.2). All nodes belonging to that plane were

translationally fixed and rotationally constrained with the same bending stiffness

(Kn) used for all grid-shell nodes.

- Bracings: No (cable-)bracings were applied to any grid-shell. Examples of this

type of structure are the Cabot Circus in Bristol or the Joe and Rika Mansueto

Library in Chicago, among others.

Tab. 1.1 shows the 8 (independent) input variables considered in all parts of this

research, along with the corresponding upper and lower limit values they can take.

Each of the 1098 distinct FE models corresponds to a specific combination of values

taken by those variables. Tab. 1.1 also indicates the ANN input node corresponding

to each variable. Further considerations about those variables read (recall Fig. 1.2):

- Main dimensions of the paraboloid footprint (L1/2 and L2/2): the aspect ratio

1 ≤ 𝐿1 𝐿2⁄ ≤ 2 is always fulfilled.

- Height of the paraboloid (h): the rise / span ratio is limited to 0.15 ≤ ℎ 𝐿2⁄ ≤ 0.5.

This is the range recommended by Schober (2016) for dome caps under uniform

loading. For ratios below 0.14, the material usage and the risk of buckling increase

considerably.

- Beam spacing (s): it is the beam spacing in both directions (or the dimension of

all grid-shell planar and squared panes – see Fig. 1.2), and the values taken lay

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

approximately in the range observed in the long list of built projects referenced by

Schober (2016).

- External load (q): It is uniformly distributed over the roof surface, with vertical

direction and pointing downwards. It takes random values between 0 kPa and 3.5

kPa.

- Beam cross-section dimensions (a and b): the cross-section of all beams is

rectangular and solid. Its dimensions come (roughly) from the range of values

employed in the shells cited in Schober (2016).

- Bending Stiffness of Grid-Shell Nodes (Kn): Considering appropriate

connection stiffness is quite important, as demonstrated by Hwang (2010) when

investigating its effects on grid-shells. From the several bolted systems he studied,

rotational stiffness was approximately in the domain of 30 to 130 kNm/rad. Since

the present study intends to be also applicable to stiffer connections (bolted or

welded), the adopted Kn took values within 20 – 50000 kNm/rad, following the

distribution shown in Tab. 1.2. For the sake of computational time, the rotational

stiffness was not split into two variables – one for each bending axis, having

assumed KnXX = KnYY = Kn.

Tab. 1.1. Variables and ranges of values considered in the dataset.

INPUT VARIABLES ANN INPUT
VALUES

min max average

Grid-Shell
Geometry

L1 /2 (m) 1 5 25 19.11

L2 /2 (m) 2 5 50 28.86

h (m) 3 2 10 6.05

s (m) 4 0.9 1.5 1.20

External Load q (kN/m2) 5 0 3.5 1.71

Beam
Cross-Section

b (mm) 6 30 200 114.73

a (mm) 7 30 200 114.39

Bending Stiffness of
Grid-Shell Nodes

Kn (kNm / rad) 8 20 49527 4989.15

OUTPUT VARIABLE

Critical Buckling Factor for Uniform Loading (-)

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Tab. 2.2. Node bending stiffness (Kn) distribution for all 1098 FE models.

The 1098-point dataset considered in ANN simulations is available in Abambres

and Cabello (2020).

2.3 Sensitivity studies

Two sensitivity studies were carried out prior to the 1098 FE analyzes in order to

better decide which mesh density and node stiffness values to adopt in the final FE

models. Three models with different geometry were used for that purpose: model 323

(L1 = 50, L2 = 100, h = 10, s = 1.3), model 1030 (L1 = 50, L2 = 95, h = 6, s = 0.9), and

model 1071 (L1 = 15, L2 = 15, h = 2, s = 0.9).

The first analysis aimed to understand how sensitive the FE models were to the

mesh density. The grid-shell beams (aka bars) between nodes have been subdivided

into 1, 2, 3 and 4 beam FE. It was adopted Kn = 990 kNm/rad for all of them. Assuming

that 4 elements give the most accurate results, Tab. 1.3 (left) shows the remaining

results as a percentage of the former. It turned out that any loss in accuracy when

predicting the buckling factor with less than 4 subdivisions is indiscernible since it lies

within the noise of the convergence. Thus, there isn’t much difference in the prediction

of the fundamental frequency either. Since the computational time rises with the

number of FEs, the authors have opted for 3 FEs per beam.

The second study (Tab. 1.3, right) allowed to determine which node bending

stiffness (Kn) yields results that are close enough to those obtained with fixed

connections (i.e., infinite stiffness). Three subdivisions were adopted for the beam

elements. It was observed that Kn = 50000 kNm/rad yields differences lower than 1%

when the results are compared with the fixed connection counterparts, and for that

reason that was the adopted upper bound for Kn.

Probability 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13

Kn random From: 20 50 80 120 200 320 510 810 1300 2100 3600 8000 20000

value To: 50 80 120 200 320 510 810 1300 2100 3600 8000 20000 50000

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Tab. 3.3. Sensitivity analysis to determine the suitable (i) number of FEs in each beam (left),
and (ii) Kn upper bound (aiming to integrate a fixed connection scenario).

3. Artificial Neural Networks

3.1 Introduction

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without

which the task of having machines acting humanly could not be accomplished, allows

us to ‘teach’ computers how to perform tasks by providing examples of how they

should be done (Hertzmann and Fleet 2012). When there is abundant data (also called

examples or patterns) explaining a certain phenomenon, but its theory richness is

poor, machine learning can be a perfect tool. The world is quietly being reshaped by

machine learning, being the Artificial Neural Network (also referred in this manuscript

as ANN or neural net) its (i) oldest (McCulloch and Pitts 1943) and (ii) most powerful

(Hern 2016) technique. ANNs also lead the number of practical applications, virtually

covering any field of knowledge (Wilamowski and Irwin 2011, Prieto et. al 2016). In its

most general form, an ANN is a mathematical model designed to perform a particular

task, based in the way the human brain processes information, i.e. with the help of its

processing units (the neurons). ANNs have been employed to perform several types

of real-world basic tasks. Concerning functional approximation, ANN-based solutions

Subdivisions 1 2 3 4

990 990 990 990 Kn [kNm/rad] 50 200 1000 10000 50000 Fixed

1st Buckling factor (fully loaded) 100 100 100 100 26 48 79 97 99.38 100

1st Buckling factor (half loaded) 100 100 100 100 22 46 77 97 99.44 100

Fundamental frequency 99.98 100 100 100 32 52 79 97 99.38 100

Computational time (seconds) 24.5 37.2 50.3 64.0

1st Buckling factor (fully loaded) 100 100 100 100 22 43 73 96 99.11 100

1st Buckling factor (half loaded) 100 100 100 100 18 40 72 96 99.10 100

Fundamental frequency 99.98 99.98 99.98 100 29 47 74 96 99.14 100

Computational time (seconds) 2.2 2.6 3.3 4.2

1st Buckling factor (fully loaded) 100 99.98 99.98 100 26 49 78 97 99.34 100

1st Buckling factor (half loaded) 99.98 99.98 100 100 21 39 70 96 99.17 100

Fundamental frequency 99.79 99.96 100 100 43 60 81 97 99.34 100

Computational time (seconds) 46.5 73.2 98.6 117.7

M
o

d
el

 1
0

3
0

M
o

d
el

 1
0

7
1

Percentage of the result w.r.t.

the fixed connection model

respect to 4 subdivisions

Percentage of the result

M
o

d
el

 3
2

3

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

are frequently more accurate than those provided by traditional approaches, such as

multi-variate nonlinear regression, besides not requiring a good knowledge of the

function shape being modelled (Flood 2008).

The general ANN structure consists of several nodes disposed in L vertical layers

(input layer, hidden layers, and output layer) and connected between them, as

depicted in Fig. 2. Associated to each node in layers 2 to L, also called neuron, is a

linear or nonlinear transfer (also called activation) function, which receives the so-

called net input and transmits an output (see Fig. 5). All ANNs implemented in this

work are called feedforward, since data presented in the input layer flows in the

forward direction only, i.e. every node only connects to nodes belonging to layers

located at the right-hand-side of its layer, as shown in Fig. 2. ANN’s computing power

makes them suitable to efficiently solve small to large-scale complex problems, which

can be attributed to their (i) massively parallel distributed structure and (ii) ability to

learn and generalize, i.e., produce reasonably accurate outputs for inputs not used

during the learning (also called training) phase.

Fig. 2. Example of a feedforward neural network.

Further information on Artificial Neural Networks might be found in previous

publications by Abambres et al. or Haykin (2009).

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

3.2 Learning

Each connection between 2 nodes is associated to a synaptic weight (real value),

which, together with each neuron’s bias (also a real value), are the most common types

of neural net unknown parameters that will be determined through learning. Learning is

nothing else than determining network unknown parameters through some algorithm in

order to minimize network’s performance measure, typically a function of the difference

between predicted and target (desired) outputs. When ANN learning has an iterative

nature, it consists of three phases: (i) training, (ii) validation, and (iii) testing. From

previous knowledge, examples or data points are selected to train the neural net,

grouped in the so-called training dataset. Those examples are said to be ‘labelled’ or

‘unlabeled’, whether they consist of inputs paired with their targets, or just of the inputs

themselves – learning is called supervised (e.g., functional approximation, classification)

or unsupervised (e.g., clustering), whether data used is labelled or unlabeled,

respectively. During an iterative learning, while the training dataset is used to tune

network unknowns, a process of cross-validation takes place by using a set of data

completely distinct from the training counterpart (the validation dataset), so that the

generalization performance of the network can be attested. Once ‘optimum’ network

Fig. 3. Cross-validation - assessing network’s generalization ability.

parameters are determined, typically associated to a minimum of the validation

performance curve (called early stop – see Fig. 3), many authors still perform a final

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

assessment of model’s accuracy, by presenting to it a third fully distinct dataset called

‘testing’. Heuristics suggests that early stopping avoids overfitting, i.e. the loss of ANN’s

generalization ability. One of the causes of overfitting might be learning too many input-

target examples suffering from data noise, since the network might learn some of its

features, which do not belong to the underlying function being modelled (Haykin 2009).

3.3 Implemented ANN features

The ‘behavior’ of any ANN depends on many ‘features’, having been implemented 15

ANN features in this work (including data pre/post processing ones). For those features,

it is important to bear in mind that no ANN guarantees good approximations via

extrapolation (either in functional approximation or classification problems), i.e. the

implemented ANNs should not be applied outside the input variable ranges used for

network training. Since there are no objective rules dictating which method per feature

guarantees the best network performance for a specific problem, an extensive parametric

analysis (composed of nine parametric sub-analyzes) was carried out to find ‘the

optimum’ net design. A description of all implemented methods, selected from state of art

literature on ANNs (including both traditional and promising modern techniques), is

presented next – Tabs. 2-4 present all features and methods per feature. The whole work

was coded in MATLAB (The Mathworks, Inc. 2017), making use of its neural network

toolbox when dealing with popular learning algorithms (1-3 in Tab. 4). Each parametric

sub-analysis (SA) consists of running all feasible combinations (also called ‘combos’) of

pre-selected methods for each ANN feature, in order to get performance results for each

designed net, thus allowing the selection of the best ANN according to a certain criterion.

The best network in each parametric SA is the one exhibiting the smallest average

relative error (called performance) for all learning data.

It is worth highlighting that, in this manuscript, whenever a vector is added to a

matrix, it means the former is to be added to all columns of the latter (valid in MATLAB).

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Tab. 2. Implemented ANN features (F) 1-5.

FEATURE
METHOD

F1 F2 F3 F4 F5

Qualitative
Var Represent

Dimensional
Analysis

Input Dimensionality
Reduction

%
Train-Valid-Test

Input
Normalization

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs

2 Eq Spaced in]0,1] No Auto-Encoder 70-15-15 Linear [0, 1]

3 - - - 60-20-20 Linear [-1, 1]

4 - - Ortho Rand Proj 50-25-25 Nonlinear

5 - - Sparse Rand Proj - Lin Mean Std

6 - - No - No

3.3.1 Qualitative Variable Representation (feature 1)

A qualitative variable taking n distinct ‘values’ (usually called classes) can be

represented in any of the following formats: one variable taking n equally spaced values

in]0,1], or 1-of-n encoding (boolean vectors – e.g., n=3: [1 0 0] represents class 1, [0 1 0]

represents class 2, and [0 0 1] represents class 3). After transformation, qualitative

variables are placed at the end of the corresponding (input or output) dataset, in the same

original order.

Tab. 3. Implemented ANN features (F) 6-10.

FEATURE
METHOD

F6 F7 F8 F9 F10

Output
Transfer

Output
Normalization

Net
Architecture

Hidden
Layers

Connectivity

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected

4 - Linear Mean Std - - -

5 Bilinear No - - -

6 Compet - - - -

7 Identity - - - -

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Tab. 4. Implemented ANN features (F) 11-15.

FEATURE
METHOD

F11 F12 F13 F14 F15

Hidden
Transfer

Parameter
Initialization

Learning
Algorithm

Performance
Improvement

Training
Mode

1 Logistic Midpoint (W) + Rands (b) BP - Batch

2 Identity-Logistic Rands BPA - Mini-Batch

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online

4 Bipolar Randnr (W) + Rands (b) ELM - -

5 Bilinear Randsmall mb ELM - -

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - -

7 Sinusoid SVD CI-ELM - -

8 Thin-Plate Spline MB SVD - - -

9 Gaussian - - - -

10 Multiquadratic - - - -

11 Radbas - - - -

3.3.2 Dimensional Analysis (feature 2)

The most widely used form of dimensional analysis is the Buckingham's π-theorem,

which was implemented in this work as described in Bhaskar and Nigam (1990).

3.3.3 Input Dimensionality Reduction (feature 3)

When designing any ANN, it is crucial for its accuracy that the input variables are

independent and relevant to the problem (Gholizadeh et al. 2011, Kasun et al. 2016).

There are two types of dimensionality reduction, namely (i) feature selection (a subset of

the original set of input variables is used), and (ii) feature extraction (transformation of

initial variables into a smaller set). In this work, dimensionality reduction is never

performed when the number of input variables is less than six. The implemented methods

are described next.

Linear Correlation

In this feature selection method, all possible pairs of input variables are assessed

with respect to their linear dependence, by means of the Pearson correlation

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

coefficient RXY, where X and Y denote any two distinct input variables. For a set of n

data points (xi, yi), the Pearson correlation is defined by

()()

() ()

1

2 2

1 1

(,)

() ()

n

i i

i
XY

n n

i i

i i

x x y y
Cov X Y

R
Var X Var Y

x x y y

=

= =

− −

= =

− −

 , (1)

where (i) Var(X) and Cov(X, Y) are the variance of X and covariance of X and Y,

respectively, and (ii) �̅� and �̅� are the mean values of each variable. In this work, cases

where |𝑅𝑋𝑌| ≥ 0.99 indicate that one of the variables in the pair must be removed from

the ANN modelling. The one to be removed is the one appearing less in the remaining

pairs (𝑋, 𝑌) where |𝑅𝑋𝑌| ≥ 0.99. Once a variable is selected for removal, all pairs (𝑋, 𝑌)

involving it must be disregarded in the subsequent steps for variable removal.

Auto-Encoder

This feature extraction technique uses itself a 3-layer feedforward ANN called auto-

encoder (AE). After training, the hidden layer output (y2p) for the presentation of each

problem’s input pattern (y1p) is a compressed vector (Q2 x 1) that can be used to replace

the original input layer by a (much) smaller one, thus reducing the size of the ANN

model. In this work, Q2=round(Q1/2) was adopted, being round a function that rounds

the argument to the nearest integer. The implemented AE was trained using the

‘trainAutoencoder(…)’ function from MATLAB’s neural net toolbox. In order to select the

best AE, 40 AEs were simulated, and their performance compared by means of the

performance variable defined in sub-section 3.4. Each AE considered distinct (random)

initialization parameters, half of the models used the ‘logsig’ hidden transfer functions,

and the other half used the ‘satlin’ counterpart, being the identity function the common

option for the output activation. In each AE, the maximum number of epochs – number

of times the whole training dataset is presented to the network during learning, was

defined (regardless the amount of data) by

1

1

3000, 8
max

1500, 8

Q
epochs

Q

=

 . (2)

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Concerning the learning algorithm used for all AEs, no L2 weight regularization was

employed, which was the only default specification not adopted in

‘trainAutoencoder(…)’.

Orthogonal and Sparse Random Projections

This is another feature extraction technique aiming to reduce the dimension of input

data Y1 (Q1 x P) while retaining the Euclidean distance between data points in the new

feature space. This is attained by projecting all data along the (i) orthogonal or (ii)

sparse random matrix A (Q1 x Q2, Q2 < Q1), as described by Kasun et al. (2016).

3.3.4 Training, Validation and Testing Datasets (feature 4)

Four distributions of data (methods) were implemented, namely pt-pv-ptt = {80-10-

10, 70-15-15, 60-20-20, 50-25-25}, where pt-pv-ptt represent the amount of training,

validation and testing examples as % of all learning data (P), respectively. Aiming to

divide learning data into training, validation and testing subsets according to a

predefined distribution pt-pv-ptt, the following algorithm was implemented (all variables

are involved in these steps, including qualitative ones after converted to numeric – see

3.3.1):

1) Reduce pt-pv-ptt values by 10 units each.

2) For each variable q (row) in the complete input dataset, compute its minimum

and maximum values.

3) Select all patterns (if some) from the learning dataset where each variable takes

either its minimum or maximum value. Those patterns must be included in the

training dataset, regardless what pt is. However, if the number of patterns is

lower than the rounding of pt * P/100, more patterns should be added to the

training set in the following way:

a. Compute the number of patterns (Lpt) that need to be added to the initially

selected training patterns to equal round(pt * P/100).

b. Randomly select 10.000 combinations of Lpt patterns from all those not

included in the training set defined prior a).

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

c. For each combination/scenario in b), add those Lpt patterns to the set of

training patterns defined prior a), and label all remaining learning patterns

as “validation+testing”.

d. For each scenario in c), and for each pattern labeled as

“validation+testing”, check if that pattern has at least one input variable

that takes a value not taken by any pattern in the training set. If it hasn´t,

then that pattern should be moved to the training set.

e. Among all 10.000 scenarios of training and “validation+testing” subsets

addressed in b) till d), the “winner” should be the one guaranteeing the

amount of training data (Pt*) closest to round(pt * P/100).

f. If the winning training set selected in e) guarantees | Pt* / P - pt | ≤ 0.2,

then that becomes the training data to be taken for simulation. Otherwise,

the training data should be selected according to step 2 in subsection

3.3.4 of Abambres et al. (2018).

4) Increase pt-pv-ptt values by 10 units each (to re-obtain the original input values

– recall step 1).

5) In order to select the validation patterns, randomly select pv / (pv + ptt) of those

patterns not belonging to the previously defined training dataset. The remainder

defines the testing dataset.

It might happen that the actual distribution pt-pv-ptt to be used in the simulation is

not equal to the one imposed a priori (before step 1).

3.3.5 Input Normalization (feature 5)

The progress of training can be impaired if training data defines a region that is

relatively narrow in some dimensions and elongated in others, which can be alleviated by

normalizing each input variable across all data patterns. The implemented techniques are

the following:

Linear Max Abs

Lachtermacher and Fuller (1995) proposed a simple normalization technique given by

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

1

1

1

(,:)
{ } (,:)

max (,:)
n

Y i
Y i

Y i
=

 , (3)

where {Y1}n (i, :) and Y1 (i, :) are the normalized and non-normalized values of the ith input

variable for all learning patterns, respectively. Notation ‘:’ in the column index, indicate the

selection of all columns (learning patterns).

Linear [0, 1] and [-1, 1]

A linear transformation for each input variable (i), mapping values in Y1(i,:) from [a*,

b*]=[min(Y1(i,:)), max(Y1(i,:))] to a generic range [a, b], is obtained from

()
()()
()
1

1

,: *
{ ,:

*
})

*
(n

Y i a
Y aa

b
bi

a

−

−
−= +

 . (4)

Ranges [a, b]=[0, 1] and [a, b]=[-1, 1] were considered.

Nonlinear

Proposed by Pu and Mesbahi (2006), although in the context of output

normalization, the only nonlinear normalization method implemented for input data

reads

 () ()()
()1

1 1

,
 , , ()

10n t

Y i j
Y i j sign Y i j C i= +

 , (5)

where (i) Y1(i, j) is the non-normalized value of input variable i for pattern j, (ii) t is the

number of digits in the integer part of Y1(i, j), (iii) sign(…) yields the sign of the

argument, and (iv) C(i) is the average of two values concerning variable i, C1(i) and

C2(i), where the former leads to a minimum normalized value of 0.2 for all patterns,

and the latter leads to a maximum normalized value of 0.8 for all patterns.

Linear Mean Std

Tohidi and Sharifi (2014) proposed the following technique

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

 ()
() ()

()

1

1

1 ,:

1

,:

,:
 ,:

Y i

n

Y i

Y i
Y i

−
=

 , (6)

where 𝜇𝑌1(𝑖,:)
 and 𝜎𝑌1(𝑖,:) are the mean and standard deviation of all non-normalized

values (all patterns) stored by variable i.

3.3.6 Output Transfer Functions (feature 6)

Logistic

The most usual form of transfer functions is called Sigmoid. An example is the

logistic function given by

1
()

1 s
s

e

−
=

+
 . (7)

Hyperbolic Tang

The Hyperbolic Tangent function is also of sigmoid type, being defined as

()
s s

s s

e e
s

e e

−

−

−
=

+
 . (8)

Bilinear

The implemented Bilinear function is defined as

, 0
()

0, 0

s s
s

s

=

. (9)

Identity

The Identity activation is often employed in output neurons, reading

()s s =

 . (10)

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

3.3.7 Output Normalization (feature 7)

Normalization can also be applied to the output variables so that, for instance, the

amplitude of the solution surface at each variable is the same. Otherwise, training may

tend to focus (at least in the earlier stages) on the solution surface with the greatest

amplitude (Flood and Kartam 1994a). Normalization ranges not including the zero value

might be a useful alternative since convergence issues may arise due to the presence of

many small (close to zero) target values (Mukherjee et al. 1996). Four normalization

methods were implemented. The first three follow eq. (4), where (i) [a, b] = 70% [φmin,

φmax], (ii) [a, b] = 60% [φmin, φmax], and (iii) [a, b] = 50% [φmin, φmax], being [φmin, φmax] the

output transfer function range, and [a, b] determined to be centered within [φmin, φmax] and

to span the specified % (e.g., (b-a) = 0.7 (φmax - φmin)). Whenever the output transfer

functions are unbounded (Bilinear and Identity), it was considered [a, b] = [0, 1] and [a, b]

= [-1, 1], respectively. The fourth normalization method implemented is the one described

by eq. (6).

3.3.8 Network Architecture (feature 8)

Multi-Layer Perceptron Network (MLPN)

This is a feedforward ANN exhibiting at least one hidden layer. Fig. 2 depicts a 3-

2-1 MLPN (3 input nodes, 2 hidden neurons and 1 output neuron), where units in each

layer link to nodes located ahead only. The network is said to be partially-connected

(PC) since no connections across layers are allowed (between the source and output

layers, in this case). At this moment, it is appropriate to define the concept of fully-

connected (FC) ANN. Although traditionally, the network shown in Fig. 2 would be

called FC, in this work a FC feedforward network is characterized by having each node

connected to every node in a different layer placed forward – any other type of

feedforward network is said to be PC. According to Wilamowski (2009), PC MLPNs

are less powerful than MLPN where connections across layers are allowed, which

usually lead to smaller networks (less neurons).

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Fig. 4 represents a generic MLFN composed of L layers, where l (l = 1,…, L) is a generic

layer and ‘ql’ a generic node, being q = 1,…, Ql its position in layer l (1 is reserved to the top

node). Fig. 5 represents the model of a generic neuron (l = 2,…, L), where (i) p represents

the data pattern presented to the network, (ii) subscripts m = 1,…, Qn and n = 1,…, l-1 are

summation indexes representing all possible nodes connecting to neuron ‘ql’ (recall Fig. 4),

(iii) bql is neuron’s bias, and (iv) wmnql represents the synaptic weight connecting units ‘mn’

and ‘ql’. Neuron’s net input for the presentation of pattern p (Sqlp) is defined as

Q 1

1 1

,
n l

lp

m n

q mnp mnp mnpmnql ql mnql mnqlw b w wS y y y
−

= =

= + , (11)

where ym1p is the value of the mth network input concerning example p. The output of

a generic neuron can then be written as (l = 2,…, L)

()lqlp qlpy S= , (12)

where φl is the transfer function used for all neurons in layer l.

Fig. 4. Generic multi-layer feedforward network.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Fig. 5. Generic neuron placed anywhere in the MLPN of Fig. 4 (l = 2,…, L).

Radial-Basis Function Network (RBFN)

Although having similar topologies, RBFN and MLPN behave very differently due

to distinct hidden neuron models – unlike the MLPN, RBFN have hidden neurons

behaving differently than output neurons. According to Xie et al. (2011), RBFN (i) are

specially recommended in functional approximation problems when the function

surface exhibits regular peaks and valleys, and (ii) perform more robustly than MLPN

when dealing with noisy input data. Although traditional RBFN have 3 layers, a generic

multi-hidden layer (see Fig. 4) RBFN is allowed in this work, being the generic hidden

neuron’s model concerning node ‘l1l2’ (l1 = 1,…,Ql2, l2 = 2,…, L-1) presented in Fig. 6.

In this model, (i) 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 (called RBF center) are vectors of the same size (𝜉𝑧𝑙1𝑙2

denotes de z component of vector 𝜉𝑙1𝑙2, and it is a network unknown), being the former

associated to the presentation of data pattern p, (ii) 𝜎𝑙1𝑙2 is called RBF width (a positive

scalar) and also belongs, along with synaptic weights and RBF centers, to the set of

network unknowns to be determined through learning, (iii) 𝜑𝑙2 is the user-defined radial

basis (transfer) function (RBF), described in eqs. (20)-(23), and (iv) 𝑦𝑙1𝑙2𝑝 is neuron’s

output when pattern p is presented to the network. In ANNs not involving learning

algorithms 1-3 in Tab. 4, vectors 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 are defined as (two versions of 𝑣𝑙1𝑙2𝑝

where implemented and the one yielding the best results was selected)

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

1 2 2 2 1 2 2 2 1 2 2 2 1 2

1 2 2 2 2

1 2 1 2 1 2 1 2

1 12 2

12

12

1(1) 1(1) (1) (1) (1) (1)

1(1) (1) (1)

1

or

and

... ...

... ...

... ...

l l

l

l

p

p

l l l p l l l z l p z l l l Q l p Q l l l

l l l p z l p Q l p

l l l l zl l Q l l

v w w w

v

y y y

y y y

− −

−

−

− − − − − −

− − −

 =

 =

 =

, (13)

whereas the RBFNs implemented through MATLAB neural net toolbox (involving

learning algorithms 1-3 in Tab. 4) are based on the following definitions

1 2 2 2 2

1 2 2 1 2 2 1 2 2 1 2

12

12

1(1) (1) (1)

1(1) (1) (1)

... ...

... ...

l

l

pl l l p z l p Q l p

l l l l l z l l l Q l l l

v

w w w

y y y

−

−

− − −

− − −

 =

 =

 . (14)

Lastly, according to the implementation carried out for initialization purposes (described

in 3.3.12), (i) RBF center vectors per hidden layer (one per hidden neuron) are initialized

as integrated in a matrix (termed RBF center matrix) having the same size of a weight

matrix linking the previous layer to that specific hidden layer, and (ii) RBF widths (one per

hidden neuron) are initialized as integrated in a vector (called RBF width vector) with the

same size of a hypothetic bias vector.

Fig. 6. Generic hidden neuron l1l2 placed anywhere in the RBFN of Fig. 4 (l2 = 2,…, L-1).

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

3.3.9 Hidden Nodes (feature 9)

Inspired by several heuristics found in the literature for the determination of a suitable

number of hidden neurons in a single hidden layer net (Aymerich and Serra 1998, Rafiq

et al. 2001, Xu and Chen 2008), each value in hntest, defined in eq. (15), was tested in

this work as the total number of hidden nodes in the model, ie the sum of nodes in all

hidden layers (initially defined with the same number of neurons). The number yielding

the smallest performance measure for all patterns (as defined in 3.4, with outputs and

targets not postprocessed), is adopted as the best solution. The aforementioned hntest

is defined by

()()()

1 1 1

1

2

1 1 1 2 2

 = [4, 4, 4, 10, 10, 10, 10]

 = [1, 1, 1, 10, 10, 10, 10]

 = min round max 2 + , 4 , , 1500
ln()

 = max min round 0.1 ,1500 , 300

 = [, , , ,

L

incr

minimum

P
max Q Q Q

Q P

max P

maximum max max max max max

2

3 13

2

13 1(F

, ,]

) : (F) : (F)hntest minimum incr maxi

max ma

m

x

mu=

, (15)

where (i) Q1 and QL are the number of input and output nodes, respectively, (ii) P and

Pt are the number of learning and training patterns, respectively, and (iii) F13 is the

number of feature 13’s method (see Tab. 4).

3.3.10 Connectivity (feature 10)

For this ANN feature, three methods were implemented, namely (i) adjacent layers

– only connections between adjacent layers are made possible, (ii) adjacent layers +

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

input-output – only connections between (ii1) adjacent and (ii2) input and output layers

are allowed, and (iii) fully-connected (all possible feedforward connections).

3.3.11 Hidden Transfer Functions (feature 11)

Besides functions (i) Logistic – eq. (7), (ii) Hyperbolic Tangent – eq. (8), and (iii) Bilinear

– eq. (9), defined in 3.3.6, the ones defined next were also implemented as hidden transfer

functions. During software validation it was observed that some hidden node outputs

could be infinite or NaN (not-a-number in MATLAB – e.g., 0/0=Inf/Inf=NaN), due to

numerical issues concerning some hidden transfer functions and/or their calculated input.

In those cases, it was decided to convert infinite to unitary values and NaNs to zero (the

only exception was the bipolar sigmoid function, where NaNs were converted to -1).

Other implemented trick was to convert possible Gaussian function’s NaN inputs to zero.

Identity-Logistic

In Gunaratnam and Gero (1994), issues associated with flat spots at the extremes

of a sigmoid function were eliminated by adding a linear function to the latter, reading

1
()

1 s
s s

e

−
= +

+

. (16)

Bipolar

The so-called bipolar sigmoid activation function mentioned in Lefik and Schrefler

(2003), ranging in [-1, 1], reads

1
()

1

s

s

e
s

e

−

−

−
=

+
 . (17)

Positive Saturating Linear

In MATLAB neural net toolbox, the so-called Positive Saturating Linear transfer

function, ranging in [0, 1], is defined as

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

1, 1

() , 0 1

0, 0

s

s s s

s

=

. (18)

Sinusoid

Concerning less popular transfer functions, reference is made in Bai et al. (2014) to

the sinusoid, which in this work was implemented as

() sin
2

s s

=
 . (19)

Radial Basis Functions (RBF)

Although Gaussian activation often exhibits desirable properties as a RBF, several

authors (e.g., Schwenker et al. 2001) have suggested several alternatives. Following

nomenclature used in 3.3.8, (i) the Thin-Plate Spline function is defined by

() ()
2 1 2 1 2

2

ln ,l l l p l ls s s s v = = − , (20)

(ii) the next function is employed as Gaussian-type function when learning algorithms

4-7 are used (see Tab. 4)

()
2 1 2 1 2 1 2

2
0.5 2

,
s

l l l p l l l ls s ve
−

= = − , (21)

(iii) the Multiquadratic function is given by

()
2 1 2 1 2 1 2

2
2,l l l p l l l ls s s v = = − + , (22)

and (iv) the Gaussian-type function (called ‘radbas’ in MATLAB toolbox) used by

RBFNs trained with learning algorithms 1-3 (see Tab. 4), is defined by

()
2 1 2 1 2 1 2

2

,l l l p l l l l

ss s ve −= = −
 , (23)

where || … || denotes the Euclidean distance in all functions.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

3.3.12 Parameter Initialization (feature 12)

The initialization of (i) weight matrices (Qa x Qb, being Qa and Qb node numbers in layers

a and b being connected, respectively), (ii) bias vectors (Qb x 1), (iii) RBF center matrices

(Qc-1 x Qc, being c the hidden layer that matrix refers to), and (iv) RBF width vectors (Qc x

1), are independent and in most cases randomly generated. For each ANN design carried

out in the context of each parametric analysis combo, and whenever the parameter

initialization method is not the ‘Mini-Batch SVD’, ten distinct simulations varying (due to their

random nature) initialization values are carried out, in order to find the best solution. The

implemented initialization methods are described next.

Midpoint, Rands, Randnc, Randnr, Randsmall

These are all MATLAB built-in functions. Midpoint is used to initialize weight and RBF

center matrices only (not vectors). All columns of the initialized matrix are equal, being

each entry equal to the midpoint of the (training) output range leaving the corresponding

initial layer node – recall that in weight matrices, columns represent each node in the final

layer being connected, whereas rows represent each node in the initial layer counterpart.

Rands generates random numbers with uniform distribution in [-1, 1]. Randnc (only used to

initialize matrices) generates random numbers with uniform distribution in [-1, 1], and

normalizes each array column to 1 (unitary Euclidean norm). Randnr (only used to initialize

matrices) generates random numbers with uniform distribution in [-1, 1], and normalizes

each array row to 1 (unitary Euclidean norm). Randsmall generates random numbers with

uniform distribution in [-0.1, 0.1].

Rand [-lim, lim]

This function is based on the proposal in Waszczyszyn (1999), and generates random

numbers with uniform distribution in [-lim, lim], being lim layer-dependent and defined by

1/
, <

 =
0.5 , =

aQ

bQ b L
 lim

b L

 , (24)

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

where a and b refer to the initial and final layers integrating the matrix being initialized,

and L is the total number of layers in the network. In the case of a bias or RBF width

vector, lim is always taken as 0.5.

SVD

Although Deng et al. (2016) proposed this method for a 3-layer network, it was

implemented in this work regardless the number of hidden layers.

Mini-Batch SVD

Based on Deng et al. (2016), this scheme is an alternative version of the former

SVD. Now, training data is split into min{Qb, Pt} chunks (or subsets) of equal size Pti =

max{floor(Pt / Qb), 1} – floor rounds the argument to the previous integer (whenever it

is decimal) or yields the argument itself, being each chunk aimed to derive Qbi = 1

hidden node.

3.3.13 Learning Algorithm (feature 13)

The most popular learning algorithm is called error back-propagation (BP), a first-

order gradient method. Second-order gradient methods are known to have higher

training speed and accuracy (Wilamowski 2011). The most employed is called

Levenberg-Marquardt (LM). All these traditional schemes were implemented using

MATLAB toolbox (The Mathworks, Inc 2017).

Back-Propagation (BP, BPA), Levenberg-Marquardt (LM)

Two types of BP schemes were implemented, one with constant learning rate (BP)

–‘traingd’ in MATLAB, and another with iteration-dependent rate, named BP with

adaptive learning rate (BPA) – ‘traingda’ in MATLAB. The learning parameters set

different than their default values are:

(i) Learning Rate = 0.01 / cs0.5, being cs the chunk size, as defined in 3.3.15.

(ii) Minimum performance gradient = 0.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Concerning the LM scheme – ‘trainlm’ in MATLAB, the only learning parameter set

different than its default value was the abovementioned (ii).

Extreme Learning Machine (ELM, mb ELM, I-ELM, CI-ELM)

Besides these traditional learning schemes, iterative and time-consuming by nature,

four versions of a recent, powerful and non-iterative learning algorithm, called Extreme

Learning Machine (ELM), were implemented (unlike initially proposed by the authors of

ELM, connections across layers were allowed in this work), namely: (batch) ELM (Huang

et al. 2006a), Mini-Batch ELM (mb ELM) (Liang et al. 2006), Incremental ELM (I-ELM)

(Huang et al. 2006b), Convex Incremental ELM (CI-ELM) (Huang and Chen 2007).

3.3.14 Performance Improvement (feature 14)

None implemented.

3.3.15 Training Mode (feature 15)

Depending on the relative amount of training patterns, with respect to the whole

training dataset, that is presented to the network in each iteration of the learning

process, several types of training modes can be used, namely (i) batch or (ii) mini-

batch. Whereas in the batch mode all training patterns are presented (called an epoch)

to the network in each iteration, in the mini-batch counterpart the training dataset is

split into several data chunks (or subsets) and in each iteration a single and new chunk

is presented to the network, until (eventually) all chunks have been presented.

Learning involving iterative schemes (e.g., BP- or LM-based) might require many

epochs until an ‘optimum’ design is found. The particular case of having a mini-batch

mode where all chunks are composed by a single (distinct) training pattern (number

of data chunks = Pt , chunk size = 1), is called online or sequential mode. Wilson and

Martinez (2003) suggested that if one wants to use mini-batch training with the same

stability as online training, a rough estimate of the suitable learning rate to be used in

learning algorithms such as the BP, is ηonline /√𝑐𝑠, where cs is the chunk size and ηonline is

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

the online learning rate – their proposal was adopted in this work. Based on the proposal

of Liang et al. (2006), the constant chunk size (cs) adopted for all chunks in mini-batch

mode reads cs = min{mean(hn) + 50, Pt}, being hn a vector storing the number of hidden

nodes in each hidden layer in the beginning of training, and mean(hn) the average of all

values in hn.

3.4 Network Performance Assessment

Several types of results were computed to assess network outputs, namely (i)

maximum error, (ii) % errors greater than 3%, and (iii) performance, which are defined

next. All abovementioned errors are relative errors (expressed in %) based on the

following definition, concerning a single output variable and data pattern,

100
qp qLp

qp

qp

d y

d
e

−
=

 , (25)

where (i) dqp is the qth desired (or target) output when pattern p within iteration i

(p=1,…, Pi) is presented to the network, and (ii) yqLp is net’s qth output for the same

data pattern. Moreover, denominator in eq. (25) is replaced by 1 whenever |dqp| < 0.05

– dqp in the nominator keeps its real value. This exception to eq. (25) aims to reduce

the apparent negative effect of large relative errors associated to target values close

to zero. Even so, this trick may still lead to (relatively) large solution errors while

groundbreaking results are depicted as regression plots (target vs. predicted outputs).

3.4.1 Maximum Error

This variable measures the maximum relative error, as defined by eq. (25), among

all output variables and learning patterns.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

3.4.2 Percentage of Errors > 3%

This variable measures the percentage of relative errors, as defined by eq. (25),

among all output variables and learning patterns, that are greater than 3%.

3.4.3 Performance

In functional approximation problems, network performance is defined as the

average relative error, as defined in eq. (25), among all output variables and data

patterns being evaluated (e.g., training, all data).

3.5 Software Validation

Several benchmark datasets/functions were used to validate the developed software,

involving low- to high-dimensional problems and small to large volumes of data. Validation

results are not presented herein but they were made public in Researcher (2018).

Moreover, several papers involving the successful application of this software have

already been published by Abambres and his co-workers.

3.6 Parametric Analysis Results

Aiming to reduce the computing time by cutting in the number of combos to be run –

note that all features combined lead to hundreds of millions of combos, the whole

parametric simulation was divided into nine parametric SAs, where in each one feature 7

only takes a single value. This measure aims to make the performance ranking of all

combos within each ‘small’ analysis more ‘reliable’, since results used for comparison are

based on target and output datasets as used in ANN training and yielded by the designed

network, respectively (they are free of any postprocessing that eliminates output

normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs aimed to

select the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a

single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9:

1, F10: 1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1 involved learning

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

algorithms 1-3 and SA 2 involved the ELM-based counterpart, (ii) the 3rd – 7th SAs combined

all possible methods from features 3, 4, 6 and 7, and concerning all other features, adopted

the methods integrating the best combination from the aforementioned SAs 1-2, (iii) the 8th

SA combined all possible methods from features 11, 12 and 14, and concerning all other

features, adopted the methods integrating the best combination (results compared after

postprocessing) among the previous five sub-analyzes, and lastly (iv) the 9th SA combined

all possible methods from features 9, 10 and 15, and concerning all other features, adopted

the methods integrating the best combination from the previous analysis. Summing up the

ANN feature combinations for all parametric SAs, a total of 475 combos were run for this

work (note that this value is much lower than the total number of ANNs simulated).

ANN feature methods used in the best combo from each of the abovementioned

nine parametric sub-analyzes, are specified in Tab. 5 (the numbers represent the

method number as in Tabs 2-4). Tab. 6 shows the corresponding relevant results for

those combos, namely (i) maximum error, (ii) % errors > 3%, (iii) performance (all

described in section 3, and evaluated for all learning data), (iv) total number of hidden

nodes in the model, and (v) average computing time per example (including data pre-

and post-processing). All results shown in Tab. 6 are based on target and output

datasets computed in their original format, i.e. free of any transformations due to

output normalization and/or dimensional analysis. The microprocessor used in this

work has the following features: OS: Win10Home 64bits, RAM: 128 GB, Local Disk

Memory: 1 TB, CPU: Intel® Core™ i9 7960X @ 2.80-4.20 GHz.

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA).

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

1 1 2 6 2 2 7 1 1 1 1 3 2 3 1 3

2 1 2 6 2 2 7 1 2 1 1 9 2 4 1 3

3 1 2 6 4 2 3 1 1 1 1 3 2 3 1 3

4 1 2 6 1 2 3 2 1 1 1 3 2 3 1 3

5 1 2 1 2 2 1 3 1 1 1 3 2 3 1 3

6 1 2 6 1 2 7 4 1 1 1 3 2 3 1 3

7 1 2 1 2 2 7 5 1 1 1 3 2 3 1 3

8 1 2 1 2 2 7 5 1 1 1 3 5 3 1 3

9 1 2 1 2 2 7 5 1 3 3 3 5 3 1 3

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

3.7 Proposed ANN-Based Model

The proposed model is the one, among the best ones from all parametric SAs,

exhibiting the lowest maximum error (SA 9). That model is characterized by the ANN

feature methods {1, 2, 1, 2, 2, 7, 5, 1, 3, 3, 3, 5, 3, 1, 3} in Tabs. 2-4. Aiming to allow

implementation of this model by any user, all variables/equations required for (i) data

preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in 3.7.1-

3.7.3, respectively.

Tab. 6. Performance results for the best design from each parametric sub-analysis.

SA

ANN

Max Error
(%)

Performance
All Data

(%)

Errors > 3%
(%)

Total Hidden
Nodes

Running Time /
Data Point

(s)

1 209.4 11.2 64.7 32 9.95E-05

2 4148.6 177.4 94.7 250 1.21E-04

3 248.4 10.5 59.1 32 9.68E-05

4 202.4 11.9 60.0 32 1.02E-04

5 241.7 11.7 59.1 32 1.09E-04

6 219.5 11.4 59.1 32 9.73E-05

7 246.3 12.7 65.8 32 1.05E-04

8 247.0 14.2 66.3 32 1.02E-04

9 16.3 1.1 10.6 33 1.06E-04

The proposed model is a single MLPN with 5 layers and a distribution of nodes/layer

of 8-11-11-11-1. Concerning connectivity, the network is fully-connected, and the hidden

and output transfer functions are all Hyperbolic Tangent and Identity, respectively. The

network was trained using the LM algorithm (1500 epochs). After design, the average

network computing time concerning the presentation of a single example (including data

pre/postprocessing) is 1.06x10-4 s – Fig. 7 depicts a simplified scheme of some of

network key features. Lastly, all relevant performance results concerning the proposed

ANN are illustrated in 3.7.4. The obtained ANN solution for every data point can be

found in Abambres and Cabello (2020), making it possible to compute the exact (with

all decimal figures) approximation errors.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Fig. 7. Proposed 8-11-11-11-1 fully-connected MLPN – simplified scheme.

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix,

it means the former is to be added to all columns of the latter (valid in MATLAB).

3.7.1 Input Data Preprocessing

For future use of the proposed ANN to simulate new data Y1,sim (8 x Psim matrix)

concerning Psim patterns, the same data preprocessing (if any) performed before

training must be applied to the input dataset. That preprocessing is defined by the

methods used for ANN features 2, 3 and 5 (respectively 2, 1 and 2 – see Tab. 2),

which should be applied after all (eventual) qualitative variables in the input dataset

are converted to numerical (using feature 1’s method). Next, the necessary

preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully described.

Dimensional Analysis and Dimensionality Reduction

Since dimensional analysis (d.a.) was not carried out, and the dimensionality

reduction (d.r.) tentative hasn´t yielded any result according to the described in 3.3.3

(linear correlation), one has

 1, 1, 1,. . . .

after after

sim sim simd r d a
Y Y Y= =

. (26)

8 11 11 11 1

inputs output

MLPN
(computing time = 1.06x10-4 s/example)

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Input Normalization

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛
𝑎𝑓𝑡𝑒𝑟

 is defined as function

of the previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟
𝑎𝑓𝑡𝑒𝑟

, and they have the same size, reading

 ()1, 1, .

0 1 5 25

0 1 5 50

0 1 2 10

0 1 0.9 1.5

0 1 0 3.504

0 1 30 200

0 1 30 200

0 1 20 49527

INP IN = (:,1) + .x - (:,3) ./

(:,2) - (

P

IN

:,1)

(:,4) - (:,3

P

INP IN

I)

P

NP INP

after after

sim simn d r
rab deY Y

rab

n

den

=

=

=

, (27)

where one recalls that operator ‘.x’ multiplies component i in vector rab by all

components in row i of subsequent term (analogous definition holds for ‘./’).

3.7.2 ANN-Based Analytical Model

Once determined the preprocessed input dataset {Y1,sim}n
after (8 x Psim matrix), the

next step is to present it to the proposed ANN to obtain the predicted output dataset

{Y5,sim}n
after (1 x Psim vector), which will be given in the same preprocessed format of the

target dataset used in learning. In order to convert the predicted outputs to their ‘original

format’ (i.e., without any transformation due to normalization or dimensional analysis –

the only transformation visible will be the (eventual) qualitative variables written in their

numeric representation), some postprocessing is needed, as described in detail in 3.7.3.

Next, the mathematical representation of the proposed ANN is given, so that any user

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

can implement it to determine {Y5,sim}n
after

 , thus eliminating all rumors that ANNs are

‘black boxes’.

 ()
 ()
 ()

 ()

1 2

3 1 3

1,

1,

1,

5,

2 3 2

4 1 4 2 4 2 3 4 3

1 5 2 5 2 3 5 3 4 5 41,

2 2 2

3 3

4 4

5 5

afterT

n

afterT T

n

after

sim

sim

sim

s

T T T

n

after afterT T T T

ni nm sim

Y W b

Y W W Y b

Y W W Y W Y b

W

Y

W Y W Y

Y

W

Y

Y Y Y b

−

− −

− − −

− − − −

= +

= + +

= + + +

= + + + +

, (28)

where

5

2 3 4

5

()

()

s s

s s

e e
s

e e

s s

−

−

−
= = = =

+

= =

. (29)

Arrays Wj-s and bs are stored online in Abambres (2020), aiming to avoid an overlong

article and ease model’s implementation by any interested reader.

3.7.3 Output Data Postprocessing

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n
after

(1 x Psim vector), to its original format (Y5,sim), i.e. without the effects of dimensional

analysis and/or output normalization (possibly) taken in target dataset preprocessing

prior training, the postprocessing addressed next must be performed.

Non-normalized (just after dimensional analysis) and Original formats

Once obtained {Y5,sim}n
after, the following relations hold for its transformation to its

non-normalized format {𝑌5,𝑠𝑖𝑚}𝑑.𝑎.
𝑎𝑓𝑡𝑒𝑟

, i.e. just after the dimensional analysis stage, and

its original format.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

 5, 5, 5,. .
 = =

after

sim sim simd

after

na
Y Y Y

, (30)

since neither output normalization nor dimensional analysis were carried out.

3.7.4 Performance Results

Finally, results yielded by the proposed ANN, in terms of performance variables

defined in sub-section 3.4, are presented in this section in the form of several graphs:

(i) a regression plot (Fig. 8), where network target and output data are plotted, for each

data point, as x- and y- coordinates respectively – a measure of linear correlation is

given by the Pearson Correlation Coefficient (R), as defined in eq. (1); (ii) a performance

plot (Fig. 9), where performance (average error) values are displayed for several

learning datasets; and (iii) an error plot (Fig. 10) for functional approximation problems,

where values concern all data (iii1) maximum error and (iii2) % of errors greater than 3%.

Fig. 8. Regression plot for the proposed ANN.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Fig. 9. Performance plot (mean errors) for the proposed ANN.

Fig. 10. Error plot for the proposed ANN.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

4. Conclusions

Any engineering structure must comply with the appropriate strength, stability and

serviceability criteria defined by design standards. Since grid-shells are slender

structures highly prone to buckling, understanding how they perform in terms of

stability is a critical aspect of their design. This paper presents an application of

Artificial Intelligence to predict the onset of elastic buckling on steel grid-shells of

paraboloid shape when subjected to uniform vertical loading.

The proposed Artificial Neural Network (ANN) yields mean and maximum errors of

1.1% and 16.3%, respectively, for all 1098 data points (i.e., FE models). Only in 10.6%

of those points the prediction error exceeds 3%. The analytical formulation

corresponding to the proposed ANN is thoroughly described. This is a hands-on tool

enabling any user to obtain the buckling factor of any grid-shell belonging to the family

(and domain) of those described herein. Using an ANN to obtain such set of predictive

formulas is a novel approach not relying on any homogenization of the structure, thus

avoiding denaturing its discretized condition.

Author Contributions

Abambres was in charge of section 3 (Artificial Neural Networks), and Cabello of all

remaining sections. Both authors equally contributed to the Conclusions section.

References

Abambres M (2020). W and b arrays, URL.

Abambres M, Marcy M, Doz G (2018). Potential of Neural Networks for Structural Damage
Localization, hal-02074844v2

Abambres M, Cabello A (2020). Dataset + Tabled Results, URL.

Anderson D, Hines EL, Arthur SJ, Eiap EL (1997). Application of Artificial Neural Networks to
the Prediction of Minor Axis Steel Connections, Computers & Structures, 63(4), 685-692.

Aymerich F, Serra M (1998). Prediction of fatigue strength of composite laminates by means
of neural networks, Key Eng. Materials, 144(September), 231–240.

https://1drv.ms/x/s!AlhdwNvcY7spgv0M3G9BSTH20b-ikQ?e=CP00uT
https://hal.archives-ouvertes.fr/hal-02074844v2
https://1drv.ms/x/s!AlhdwNvcY7spgvwHHDIvBcga99t-wQ?e=ZWC4tf

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Bai Z, Huang G, Wang D, Wang H, Westover M (2014). Sparse extreme learning machine for
classification, IEEE Transactions on Cybernetics, 44(10), 1858–70.

Beyer W, Liebscher M, Beer M, Graf W (2006). Neural Network Based Response Surface
Methods - A Comparative Study, 5th German LS-DYNA Forum, October 2006, 29-38, Ulm.

Bhaskar R, Nigam A (1990). Qualitative physics using dimensional analysis, Artificial
Intelligence, 45(1-2), 111–73.

Deng W-Y, Bai, Z., Huang, G.-B. and Zheng, Q.-H. (2016). A fast SVD-Hidden-nodes based
extreme learning machine for large-scale data Analytics, Neural Networks, 77(May), 14–
28.

Dini M, Estrada G, Froli M, Baldassini N. (2013). Form-finding and buckling optimisation of
gridshells using genetic algorithms. Proceedings of the International Association for Shell
and Spatial Structures (IASS) Symposium.

Dulácska E, Kollár L (2000) Buckling analysis of reticulated shells. International Journal of
Space Structures. Vol 15, 3-4.

Edemskaya E, Agkathidis A. (2016). Rethinking Complexity: Vladimir Shukhov’s Steel Lattice
Structures. Journal of the International Association for Shell and Spatial Structures. Vol. 57

EN 1993-1-1 (2005) Eurocode 3: Design of steel structures - Part 1-1: General rules and rules
for buildings. European Committee for Standardization.

Flood I (2008). Towards the next generation of artificial neural networks for civil engineering,
Advanced Engineering Informatics, 22(1), 4-14.

Flood I, Kartam N (1994a). Neural Networks in Civil Engineering: I-Principals and
Understanding, Journal of Computing in Civil Engineering, 8(2), 131-148.

Gholizadeh S, Pirmoz A, Attarnejad R (2011). Assessment of load carrying capacity of
castellated steel beams by neural networks, Journal of Constructional Steel Research,
67(5), 770–779.

Gioncu V (1994). Buckling of reticulated shells: State-of-the-art, International Journal of Space
Structures. Vol 10, 1.

Gunaratnam DJ, Gero JS (1994). Effect of representation on the performance of neural networks in
structural engineering applications, Computer-Aided Civil and Infrastructure Engineering, 9(2),
97–108.

Haykin SS (2009). Neural networks and learning machines, Prentice Hall/Pearson, New York.

Hern A (2016). Google says machine learning is the future. So I tried it myself. Available at:
www.theguardian.com/technology/2016/jun/28/all (Accessed: 2 November 2016).

Hertzmann A, Fleet D (2012). Machine Learning and Data Mining, Lecture Notes CSC
411/D11, Computer Science Department, University of Toronto, Canada.

Huang G, Chen L, Siew C (2006b). Universal approximation using incremental constructive
feedforward networks with random hidden nodes, IEEE transactions on neural networks, 17(4),
879–92.

Huang G-B, Chen L (2007). Convex incremental extreme learning machine, Neurocomputing,
70(16–18), 3056–3062.

http://www.theguardian.com/technology/2016/jun/28/all

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Huang G-B, Zhu Q-Y, Siew C-K (2006a). Extreme learning machine: Theory and applications,
Neurocomputing, 70(1-3), 489-501.

Hwang K J. (2010). Advanced Investigations of Grid Spatial Structures. Considering various
connection systems. PhD thesis. ITKE, University of Stuttgart.

Kasun LLC, Yang Y, Huang G-B, Zhang Z (2016). Dimension reduction with extreme learning
machine, IEEE Transactions on Image Processing, 25(8), 3906–18.

Kato S, Yamauchi Y, Ueki T, Okuhira K (2005). Buckling load of elliptic paraboloidal single
layer reticulated roofs with simple supports under uniform load. International Journal of
Space Structures. Vol 20, 4.

Kuijvenhoven M. (2009). A design method for timber grid shells. MSc thesis. Department of
Structural Mechanics. Delft University of Technology.

Lachtermacher G, Fuller JD (1995). Backpropagation in time-series forecasting, Journal of
Forecasting 14(4), 381–393.

Lefevre B, Douthe C, Baverel O (2015) Buckling of elastic gridshells. Journal of the
International Association of Shell and Spatial Structures. Vol 56, 153-171.

Lefik M, Schrefler BA (2003). Artificial neural network as an incremental non-linear constitutive
model for a finite element code, Computer Methods in Applied Mechanics and Engineering,
192(28–30), 3265–3283.

Liang N, Huang G, Saratchandran P, Sundararajan N (2006). A fast and accurate online
Sequential learning algorithm for Feedforward networks, IEEE Transactions on Neural
Networks, 17(6), 1411–23.

Makin T. (2006). Timber Gridshell structures. Final Project. Oxford University, Department of
Engineering Science

McCulloch WS, Pitts W (1943). A logical calculus of the ideas immanent in nervous activity,
Bulletin of Mathematical Biophysics, 5(4), 115–133.

McNeel (2014) Rhinoceros v.5, USA.

Mukherjee A, Deshpande JM, Anmala J (1996), Prediction of buckling load of columns using
artificial neural networks, Journal of Structural Engineering, 122(11), 1385–7.

Oasys Ltd (2010) General Structural Analysis GSA v.8.5 Manual, London.

Olsson J. (2012). Form finding and size optimisation. Implementation of beam elements and
size optimization in real time form finding using dynamic relaxation. MSc thesis. Chalmers
University of Technology. Department of Applied Mechanics.

Peloux (du) L, Baverel O, Caron J-F, Tayeb F. (2013). From shape to shell: a design tool to
materialize freeform shapes using gridshell structures. Rethinking Prototyping, Design
Modelling Symposium.

Pottmann H, Eigensatz M, Vaxman A, Wallner J. (2014) Architectural Geometry. Computers
& Graphics. Vol 47.

Prieto A, Prieto B, Ortigosa EM, Ros E, Pelayo F, Ortega J, Rojas I (2016). Neural networks:
An overview of early research, current frameworks and new challenges, Neurocomputing,
214(November), 242-268.

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Pu Y, Mesbahi E (2006). Application of artificial neural networks to evaluation of ultimate
strength of steel panels, Engineering Structures, 28(8), 1190–1196.

Rafiq M, Bugmann G, Easterbrook D (2001). Neural network design for engineering
applications, Computers & Structures, 79(17), 1541–1552.

Researcher, The (2018). “Annsoftwarevalidation-report.pdf”, figshare,
10.6084/m9.figshare.6962873.

Rutten D (2014) Grasshopper v. 0.9.0076, USA.

Schlaich J, Schober H. (1996). Glass-Covered Grid-shells. Structural Engineering International
2/96 Aesthetics in Structural Engineering.

Schlaich M, Burkhardt U, Irisarri L, Goñi J (2009). Palacio de Comunicaciones – a single layer
glass grid-shell over the courtyard of the future town hall of Madrid. Proceedings of the
International Association for Shell and Spatial Structures (IASS) Symposium.

Schober H. (2016). Transparent Shells. Form, Topology, Structure. Ernst & Sohn

Schwenker F, Kestler H, Palm G (2001). Three learning phases for radial-basis-function
networks, Neural networks, 14(4-5), 439–58.

Tayeb F, (2015). Simulation numérique du comportement mécanique non linéaire de
gridshells composés de poutres élancées en matériaux composites et de sections
quelconques. PhD Thesis. École Nationale des Ponts et Chaussées.

The Mathworks, Inc (2017). MATLAB R2017a, User’s Guide, Natick, USA.

Tohidi S, Sharifi Y (2014). Inelastic lateral-torsional buckling capacity of corroded web opening
steel beams using artificial neural networks, The IES Journal Part A: Civil & Structural Eng,
8(1), 24–40.

Toussaint M. (2007). A Design Tool for Timber Gridshells. Delft University of Technology
Department of Structural and Building Engineering.

Waszczyszyn Z (1999). Neural Networks in the Analysis and Design of Structures, CISM
Courses and Lectures No. 404, Springer, Wien, New York.

Wilamowski BM (2009). Neural Network Architectures and Learning algorithms, IEEE
Industrial Electronics Magazine, 3(4), 56-63.

Wilamowski BM (2011). How to not get frustrated with neural networks, 2011 IEEE
International Conference on Industrial Technology (ICIT), 14-16 March 2011, IEEE (eds),
Auburn University, Auburn, AL, USA.

Wilamowski BM, Irwin JD (2011). The industrial electronics handbook: Intelligent Systems,
CRC Press, Boca Raton.

Wilson DR, Martinez TR (2003). The general inefficiency of batch training for gradient descent
learning, Neural Networks, 16(10), 1429–1451.

Xie T, Yu H, Wilamowski B (2011). Comparison between traditional neural networks and radial
basis function networks, 2011 IEEE International Symposium on Industrial Electronics
(ISIE), IEEE(eds), 27-30 June 2011, Gdansk University of Technology Gdansk, Poland,
1194–99.

https://doi.org/10.6084/m9.figshare.6962873
http://www.eng.auburn.edu/~wilambm/pap/2009/Neural%20network%20architectures%20and%20learning%20algorithms.pdf

Abambres M, Cabello A (2020). Analytical Prediction of Steel Grid-Shell Stability and Dynamic Behaviors Using Neural
Networks – Part 1, URL

Xu S, Chen L (2008). Novel approach for determining the optimal number of hidden layer
neurons for FNN’s and its application in data mining, In: International Conference on
Information Technology and Applications (ICITA), Cairns (Australia), 23–26 June 2008, pp
683–686.

© 2020 by Abambres and Cabello. Open access publication under the terms and conditions of

the Creative Commons Attribution 4.0 (CC BY 4.0) license.

http://creativecommons.org/licenses/by/4.0/

