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Abstract

With CPU times reduced by two to three orders of magnitude compared to shallow water
models, porosity models are considered as efficient tools for the modelling of urban floods on
the scale of a conurbation. However, they provide only upscaled hydraulic fields that yield
unreliable estimates of the flood risk in terms of financial losses and hazard to human lives.
Downscaling of the porosity model simulation outputs is thus necessary. The present work puts
forward a downscaling approach based on the decomposition of microscopic hydraulic fields
into linear combinations of spatial patterns. The coefficients of the linear combinations are
predicted with an Artificial Neural Network (ANN) whose input is derived from macroscopic
hydraulic fields. Principal Component Analysis is used both to decompose the microscopic
fields into linear combinations of spatial patterns and to project the macroscopic fields into
lower dimensional features that are fed to the ANN. This global downscaling approach, which
reconstruct the whole microscopic field at once, is compared with a local downscaling approach
that relies on a similar setup except that each cell of the microscopic field is estimated sepa-
rately by a dedicated ANN and that there are as many ANNs as cells. The two downscaling
approaches are evaluated and compared at estimating the water depth and the norm of the
unit discharge on five synthetic urban configurations and one field-test case. The analyses in
terms of absolute errors show that the global approach not only provides a valid downscaling
scheme but outperforms, in almost all instances, the local approach.

Keywords: Shallow water models, Porosity models, Flow variables for risk assessment,
Downscaling at multiple locations, Artificial Neural Networks, Principal Component Analysis

1. Introduction1

Two-dimensional shallow water models are widely accepted as a reference approach to the2

modelling of urban floods. However, they remain too computationally demanding in the cur-3

rent state of computer technology to be applicable to entire conurbations within reasonable4

computational times. For this reason, upscaled shallow water models have been under devel-5

opment over the past two decades. The earliest upscaled shallow water models were initially6
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developed for the simulation of flows over microtopography and in channels [3, 4, 19]. Versions1

specifically dedicated to the modelling of urban floods, known as “porosity models”, were later2

developed [9, 25, 26, 24, 27, 47, 38]. A salient advantage of shallow water models with porosity3

is their computational efficiency, with CPU times two to three orders of magnitude smaller4

than those of classical shallow water models [22, 25, 33]. Porosity models use computational5

cells that are typically 10 to 102 times as wide as those of classical two-dimensional models. As6

a consequence, the computational cell of a porosity model contains not only the water domain,7

but also buildings and other solid domains in which the flow is zero. The flow equations are8

solved on the average over the cells, the areas occupied by the solid phase being accounted9

for via statistical, geometric indicators such as porosities. The earliest versions of the model10

were developed using a single porosity [19, 24, 27]. More elaborate versions using storage and11

connectivity porosities [38, 47, 9, 25] or multiple porosities [22] were later proposed. Other12

upscaled versions such as the BCR/CRF model [16] use different indicators, the structure and13

function of which, however, bear similarities with the Integral Porosity model [38]. The price14

to pay for the computational efficiency of a porosity model is the coarseness of the approach.15

Porosity models provide simulation results in the form of upscaled (or averaged) flow variables16

over computational cells the size of a house to that of a building block.17

For practical purposes, the knowledge of the flow fields is required with a much finer res-18

olution. This is the case in particular with flood risk mapping. The flood risk results from19

the combination of local hydrodynamic factors (such as people’s, buildings’ and goods’ vul-20

nerability to the flood hazard) and hydrodynamic variables (derived from the water depths21

and flow velocities). As such, it cannot be inferred from the sole knowledge of averaged22

flow fields. A first example is that of the assessment of financial flood damage to build-23

ings. The water depth is widely recognized as a prominent factor in flood damage modelling24

[8, 30, 36, 35, 43]. The damage to buildings is reported to be highly non-linear with respect25

to the water depth, which is reflected in most micro-scale flood damage models [44]. Conse-26

quently, using average depth values alone cannot be expected to yield reliable vulnerability27

assessments. Failing to incorporate such non-linearity on coarser scales is known to provide28

substantially erroneous damage estimates [40]. A second example is that of pedestrian vulner-29

ability. Pedestrians’ mobility (and with it the likelihood that pedestrians might safely evacuate30

high risk areas) is known to be subjected to threshold-based behaviours. When certain flow31

variables or their combinations (such as the water depth, unit discharge and specific force per32

unit width) exceed given thresholds (that are usually functions of size, age, physical condi-33

tion, standing attitude, clothing etc.), pedestrians are likely to slip, tumble or start floating34

[1, 6, 15, 14, 18, 21, 29, 31, 32, 34, 41, 45]. In such cases, considered as “danger situations”,35

pedestrian evacuation is compromised and lives are at threat. The risk function takes the36

form of a step with respect to the local flow variables, a function for which spatial averag-37

ing is meaningless. Therefore, in cases such as the two aforementioned examples, a form of38

downscaling of the upscaled model simulations is needed to perform relevant risk assessment.39

In the context of climate change studies, statistical downscaling methods are developed40

to bridge the gap between the low resolution of General Circulation Models (GCMs) which41
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is in the order of hundreds of km and the resolution needed for impact studies, from tens of1

km down to station locations [2]. Conventional downscaling approaches are univariate, i.e.2

they seek to estimate a climatic variable at a single site, either a station or a grid cell, given3

information deduced from a simulation generated by a GCM [2]. Artificial Neural Networks4

(ANNs) have long been applied in this context [28]. ANNs are non-parametric non-linear5

regression algorithms that are considered as “universal approximators”, i.e. they can approxi-6

mate any continuous function when trained on informative enough data and provided that the7

number of hidden neurons is selected adequately [7]. A choice has to be made concerning the8

subset of GCM grid boxes to use as input in the downscaling method. A common approach9

consists in selecting all the grid boxes in a sufficiently large region and to reduce their dimen-10

sion with Principal Component Analysis (PCA) [2, 28]. More recent downscaling approaches11

perform a multivariate estimation by accounting for dependence structures, e.g. to estimate12

a climatic variable jointly in several sites. In [42], “Schaake shuffle” is applied to restore the13

empirical dependence structure present in a calibration data set thereby assuming that the14

co-occurrences of the ranks of the variables always remain the same. This assumption might15

be too restrictive in the urban flood risk context as the range of spatial patterns displayed by16

the flow field might vary according to values taken by the initial and boundary conditions.17

In contrast, [11] relies on univariate techniques applied iteratively to random projections of18

the climatic variables. It is not clear that this approach can scale to very high dimensions.19

Indeed, refined shallow water models simulate flow variables on meshes that can contain tens20

of thousands of discrete cells.21

In this work, a statistical downscaling approach is proposed that relies on PCA to scale22

with the very high dimensions of the refined shallow water models’ simulations and on ANNs23

to tackle the potential non-linearities in the relationships between low and high resolution24

simulations. PCA is applied on the high resolution flow fields to learn a representative basis25

of spatial patterns. The PCA decomposition means that each high resolution field can be26

seen as a linear combination of spatial patterns. The coefficients of the linear combination27

can be thought of as low dimensional features. An ANN with a feed-forward architecture28

and a direct linear connection is set up to learn these low dimensional features that represent29

the high resolution flow field. The input of the ANN is, as described above, a projection in a30

lower dimensional space of the low resolution field obtained with PCA. This global downcaling31

approach that estimates the whole high resolution field at once is compared with a more con-32

ventional univariate approach used as a reference. In the reference approach, the flow variable33

of interest is estimated at each cell of the high resolution mesh separately by setting up as34

many ANNs as there are cells. These two statistical downscaling approaches are evaluated and35

compared on a number of typical flooding configurations (a configuration being defined as the36

combination of building geometry, initial and boundary conditions). Refined flow simulations37

are carried out and exact upscaled solutions are obtained by averaging each reference solution38

over a coarse grid. The focus of the downscaling algorithms is on two risk variables : the water39

depth and the norm of the unit discharge.40

The paper is organised as follows. Section 2 presents the reference model, reviews the41
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variables of interest in flood risk assessment and poses the upscaling problem. In particu-1

lar, upscaling, an underlying concept to porosity models but never identified as such in the2

publications, is defined formally for the purpose of the present work. Section 2 ends by intro-3

ducing the downscaling framework used for urban flood risk assessment. Section 3 is devoted4

to the downscaling approaches developed in the present work. Section 4 describes the five5

synthetic configurations and the field-scale test for which simulations of the refined and up-6

scaled solutions are carried out. Section 5 reports the evaluation and the comparison of the7

two downscaling methods. In Section 6, a discussion of the results together with conclusions8

and research perspectives are presented.9

2. Urban flood risk assessment10

2.1. The shallow water model11

In what follows, the reference, microscopic model is the two-dimensional shallow water12

model, written in conservation form as13

∂tu +∇.F = s (1a)

14

u =

 h

q

r

 , F =

 q r
q2
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qr
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 , s =

 0

gh (S0,x − Sf,x)

gh (S0,y − Sf,y)

 (1b)

[
Sf,x

Sf,y

]
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n2

h10/3
|q|q (1c)

where g is the gravitational acceleration, h is the water depth, n is Manning’s friction coeffi-15

cient, q = (q, r)T is the flow velocity vector, (S0,x, S0,y)T and (Sf,x, Sf,y)T are respectively the16

bottom and friction slope vectors.17

2.2. Variables for risk assessment18

The water depth h (and more specifically its maximum with respect to time) influences19

directly the local damage caused to buildings and private property [8, 36, 44, 43]. In addition to20

the water depth, the norm of the unit discharge vector |q| and the specific force per unit width21

f are considered key indicators for pedestrian safety assessment [1, 6, 15, 18, 21, 31, 32, 34, 39,22

41, 45]. The water depth is also related to the liability of a pedestrian to start floating [18]. The23

unit discharge is a criterion for pedestrian instability related to tumbling (moment instability),24

while the specific force per unit width is an indicator for friction instability (slipping) [31].25

Moreover, the specific force per unit width is also reported to influence pedestrian evacuation26

speed [29], an important issue to assess and simulate evacuation patterns during floods [6]. The27

hydraulic head has occasionally been mentioned as a criterion for vehicle stability. However,28

it is much less used than the specific force per unit width.29

4



It is acknowledged that the above criteria might not be sufficient to fully characterise1

pedestrian stability. For instance, [14, 15] report situations where the classical, steady state-2

based human instability criteria described in previous publications are strongly inaccurate3

because of the non-stationary character of the flow. As a consequence, situations that would4

be considered as “safe” by applying the average value of |q| and f turn out to be hazardous5

when experienced in a real-world event. Moreover, the acceptable threshold for pedestrian6

stability is not only a function of the flow variables but also of the pedestrian’s age, weight7

and size, physical condition, etc . . . [18].8

The analysis reported hereafter focuses on the water depth and the norm of the unit9

discharge vector, that are the most widely acknowledged indicators for flood risk and the10

easiest variables to measure or compute. More precisely, let ψ be the variable of interest for11

risk assessment derived from u = [h, q, r]T . In what follows12

ψ =

h or

|q| =
√
q2 + r2.

(2)

2.3. Upscaling framework13

As discussed in the introductory section, refined shallow water models such as presented in14

sub-section 2.1 are too computationally demanding to be run on large areas. For this reason,15

porosity-based models have been developed in the past years, with CPU times reduced by16

two to three orders of magnitude compared to refined 2D models. Porosity models, however,17

are only one of the many possible options for upscaling the two-dimensional shallow water18

equations. In what follows, upscaling is understood as a filtering problem, as in [20].19

Consider a fine-scale (also called microscopic) model obeying a set of governing equations20

Lm (Θm,um) = 0 (3)

where Lm is a (vector) differential operator forming the governing equations, Θm and um are21

the fine scale parameter and variable vectors. Note that the two-dimensional shallow water22

model (1a)-(1c) is a particular case of the general form (3).23

Upscaling consists in deriving a model with macroscopic parameters and variables obeying24

a set of macroscopic governing equations25

LM (ΘM ,uM ) = 0 (4)

where the subscript M denotes the upscaled, or macroscopic, operator, parameter set and26

solution. By assumption, the scale of the fluctuations in (ΘM ,uM ) is larger than that of the27

fluctuations in (Θm,um). In other words, the fields (ΘM ,uM ) are significantly smoother than28

the fields (Θm,um). Upscaling is understood as the process of deriving LM (model upscaling),29

ΘM (parameter upscaling) and/or uM (solution upscaling) from the known microscopic model30

(3).31

The purpose of a successful upscaling is that the macroscopic solution variable uM be “as32
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close as possible” to the microscopic solution um. Since um and uM are usually defined using1

different space-time resolutions, upscaling involves a filtering process. The filtered variable at2

a point x = (x, y) is defined as3

< um > (x) =

∫
Ω

um

(
x′
)
f
(
x,x′

)
dx′ (5)

where f (x,x′) is the filtering kernel and Ω is the solution domain. In the case of a perfect4

upscaling, one has5

uM (x) =< um > (x) ∀x ∈ Ω. (6)

The most widely used filter in the field of upscaled urban flood models is the averaging operator6

over the computational cells of the macroscopic model:7

f
(
x,x′

)
=

1

|Ωi|
εi(x,x

′) ⇒ < um > (x) =
1

|Ωi|

∫
Ωi

um dΩi ∀x ∈ Ωi (7a)

8

εi(x,x
′) =

{
1 if (x,x′) ∈ Ωi × Ωi

0 otherwise
(7b)

where Ωi is the subdomain occupied by the ith computational cell in the macroscopic model9

and |Ωi| is its area. In this approach, the subdomains {Ωi}i form a partition of the overall10

computational domain Ω. The filtered microscopic solution < um > is compared directly to11

the finite volume solution uM of the macroscopic model over the computational cells [9, 25, 26,12

33, 47]. Such a comparison is particularly meaningful when um and uM are both conserved13

variables.14

Perfect upscaling can be thought of as a particular upscaled solution achieved by applying15

the domain averaging (7a) to the microscopic solution:16

uM,i =
1

|Ωi|

∫
Ωi

um dΩ (8)

uM,i = (hM,i, qM,i, rM,i)
T thus denotes the average of the conserved flow variable vector over17

the subdomain Ωi. In what follows, the upscaled solution is considered as perfect as defined18

in (8).19

2.4. Downscaling framework20

To obtain an operational framework, downscaling methodologies have to be developed in21

order to estimate, with low computational cost, high resolution variables needed for urban22

flood risk assessment, such as the ones in (2), from upscaled ones. It is assumed that an23

upscaled 2D shallow water model has been run for a given domain geometry with given initial24

and boundary conditions over a partition {Ωi; 1 ≤ i ≤ D} of Ω into D subdomains and for25

sample times {tk}k of the simulation period [0, T ]. The averaged risk variable, denoted Ψi,k,26

is thus available over each subdomain Ωi ⊂ Ω and each time tk ∈ [0, T ]. In addition, let {ωj}j27

be the cells of a high resolution mesh within Ω that could be used to run a microscopic model.28
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Then, downscaling consists in estimating {ψj,k; ∀k, j}, the high resolution risk variable, from1

{Ψi,k;∀k, i} based on statistical relationships.2

To calibrate these statistical relationships to perform downscaling as described, pairs of3

upscaled and microscopic simulations for a given configuration and various initial and boundary4

conditions must be available. The microscopic solution um is computed by solving the two-5

dimensional shallow water equations (1a)-(1c) numerically over a fine mesh {ωj}j . In this6

work, the upscaled solution is the perfect solution obtained from (8) by averaging the refined7

simulation over the subdomains Ωi. Once calibrated, it is assumed that the downscaling8

relationships can be applied to upscaled simulations for the same configuration but for initial9

and boundary conditions that were not necessarily seen during calibration.10

3. Statistical downscaling approaches11

A global downscaling approach whose output at any time tk is an estimate of the whole field12

{ψj,k;∀j} of the high resolution risk variable is introduced in subsection 3.2. A local approach13

that performs downscaling for each cell of the high resolution grid separately is presented first14

in subsection 3.1 as some of its building blocks are also used in the global approach.15

3.1. Local downscaling approach16

This approach seeks to learn a relationship between information drawn from the whole low17

resolution risk field (i.e. over all subdomains) and the value of the high resolution risk field at18

a given cell, see Fig. 1a. There are as many relationships as cells. More precisely, at a given19

time tk, let Ψk ∈ RD be the concatenation into a vector of {Ψi,k; 1 ≤ i ≤ D}, the averaged20

risk field over all subdomains deduced from the upscaled simulation. The dimension of Ψk can21

be reduced by performing a Principal Component Analysis (PCA) yielding a decomposition22

of the form23

Ψk = AΦk ⇔ Φk = ATΨk (9)

where A ∈ RD ×Rd with d < D and Φk ∈ Rd is the low dimensional representation of Ψk.24

The relationship between the pairs {(Φk, ψj,k)}k is learned with an Artificial Neural Network25

(ANN). There are as many ANNs as cells j where ψj needs to be estimated.26

The ANNs are implemented as shown in Fig. 2a with a standard feed-forward architecture27

that includes one hidden layer plus a direct linear connection such that the case with no neuron28

in the hidden layer boils down to classical linear regression [7]. More precisely, in Fig. 2a, the29

input layer consists of Φ = (Φ1, . . . ,Φd), the vector of dimension d of low dimensional features30

extracted by PCA from the upscaled simulation where the dependence on time, i.e. the31

subscript k, is dropped for convenience ; in addition, there is a special neuron in the input32

layer permanently set to 1 to account for constants in the calculations ; the hidden layer has33

Nh neurons denoted a1, . . . , aNh
; the output layer has a single neuron that yields ψ̂j , an34

estimate to the value of the high resolution risk field value at the cell j. The weight vector w35

of the ANN includes the weight matrix whid of dimensions (d+ 1)×Nh connecting the input36
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(a) Local approach : for each cell j, a ded-
icated ANN learns to estimate ψj , the high
resolution risk field value at the cell j.

(b) Global approach : a single ANN learns
to estimate φ, the PCA projection in a low
feature space of ψ, the high resolution risk
field concatenated into a vector.

Figure 1: Common building blocks of the two downscaling approaches : PCA is applied to reduce the
dimensionality of Ψ, the low resolution risk field concatenated into a vector for a given time step, yielding
the lower dimensional vector Φ used as input vector for the ANN.

layer to the hidden layer ; a weight vector wout of length Nh connecting the hidden layer to1

the output layer and the weight vector wlin of length 1+d that links directly the input layer to2

the output layer. The calculations performed at the hidden and the output layers, see Fig. 2a,3

are given respectively by4

an(Φ;whid
n ) = tanh

(
d∑

i=1

whid
n,i Φi + whid

n,0

)
n = 1, . . . , Nh (10)

ψ̂j(Φ;w) = g


Nh∑
n=1

wout
n an(Φ;whid)︸ ︷︷ ︸
non-linear

+

d∑
i=1

wlin
i Φi + wlin

0︸ ︷︷ ︸
linear

 for a given j, (11)

where g(·) = log(1 + exp(·)) serves to enforce positivity.5

For each cell j, an ANN is trained by optimizing its weigths w so as to minimise, over a6

so-called training set made of pairs of the form {(Φk, ψj,k)}k, the following sum of squared7

errors :8

Eloc(w; j) =
1

2

∑
k

(ψ̂j(Φk;w)− ψj,k)2. (12)

A gradient descent optimisation algorithm is used resorting to the back-propagation algorithm9

to efficiently compute the gradient [37]. The optimisation is performed 10 times with random10

initial parameter values and the optimised parameters yielding the lowest error computed on11

the training set are retained.12

The hyper-parameters in the local approach are the number of hidden units Nh in the ANN13

and the dimension d of the feature space derived from PCA, see (9). Indeed, they control the14

overall number of weights in the ANN which is directly related to the complexity level of the15

function that can be learned by the ANN. Therefore, for each cell j, suitable values for Nh16
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(a) Local approach : one ANN for each cell
j with a single output neuron that estimates
directly the high resolution risk field value at
the cell, see (10)-(11).

(b) Global approach : a single ANN whose
output layer seeks to estimate a low dimen-
sional representaton of the whole high resolu-
tion field, see (10)-(14).

Figure 2: Standard feed-forward artificial neural network architectures with one hidden layer plus a
direct linear connection used in the two downscaling approaches.

and d must be selected with a validation procedure that works as follows [7]. Several potential1

pairs of values are considered for the hyper-parameters. For each such pair of hyper-parameter2

values, the ANN’s weights are optimized on the training set. The performance of the ANN3

associated to each particular choice of hyper-parameter values is evaluated in terms of the sum4

of squared errors as in (12) but computed on a validation set, a data set distinct from the5

training set. The hyper-parameter values yielding the lowest validation error are retained. As6

a result, different hyper-parameter values are likely to be selected for different cells when the7

complexity of the relationship learned by ANNs differ.8

3.2. Global downscaling approach9

This approach is based on the assumption that the high resolution risk field can be de-10

composed into a linear combination of spatial patterns. A single ANN seeks to estimate the11

weights of the linear combination based on the information drawn from the whole low resolu-12

tion risk field, see Fig. 1b. As for the low resolution risk field, at a given time tk, let ψk ∈ RP ,13

be the concatenation into a vector of {ψj,k; 1 ≤ j ≤ P}, the high resolution risk field, where14

P is the total number of cells of the high resolution grid. PCA is used again to obtain the15

following linear decomposition16

ψk = Bφk ⇔ φk = BTψk, (13)

where B ∈ RP × Rp, p < P and φk ∈ Rp. The ANN in this approach seeks to learn the17

relationship between the pairs {(Φk,φk)}k, see Fig. 2b.18

To this end, the ANN’s calculations at the hidden layer are as in (10) while at the output19
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layer, the ANN has p neurons which perform the following calculations1

φ̂j(Φ;w) =

Nh∑
n=1

wout
j,n an(Φ;whid)︸ ︷︷ ︸
non-linear

+
d∑

i=1

wlin
j,iΦi + wlin

j,0︸ ︷︷ ︸
linear

j = 1, . . . , p, (14)

where, as previously, the time index k is dropped and wout is a now a Nh × p matrix instead2

of a vector of length Nh. The size of the output layer and the absence of positivity constraints3

on the output neurons are thus the only differences with the architecture of the ANNs used in4

the local approach. For any time tk, the estimated values of the high resolution risk field are5

given by6

ψ̂(Φk;w, B) = Bφ̂(Φk;w), (15)

where φ̂(Φk;w) = (φ̂1(Φk;w), . . . , φ̂p(Φk;w)) are the ANN outputs as provided in (14) and7

Φk = ATΨk, see (9).8

Much like in the local approach except that there is a single ANN to train, the ANN’s9

weigths w are optimized by minimising the following sum of squared errors :10

Efea(w) =
1

2

p∑
j=1

∑
k

(φ̂j(Φk;w)− φj,k)2. (16)

The same optimisation strategy as in the local approach is used : best optimised parameters11

out of 10 runs of back-propagated gradient descent algorithm with random initialisations.12

There are three hyper-parameters in this downscaling approach : Nh and d, as in the local13

approach, and p, the dimension of the feature space of the high resolution risk variable, see14

(13). These hyper-parameters must also be selected with a validation procedure, as described15

in the local approach’s subsection. In this case, the sum of squared error that measures the16

performance on the validation set is different than the one in (16) used for training :17

Etot(w;B) =
1

2

P∑
j=1

∑
k

(ψ̂j(Φk;w, B)− ψj,k)2. (17)

In contrast to (16), this validation error takes into account the impact of the choice of p, the18

dimension of the feature space of the high resolution risk variable.19

4. Low and high resolution simulated data sets20

4.1. Synthetic urban configurations21

Five synthetic urban configurations are considered. They rely on a common layout con-22

sisting of a periodic array of length L made of building blocks (see Fig. 3 and Table 1). The23

buildings are aligned along the x− and y−directions. The spatial period and building spacing24

in the X−direction (X = x, y) are denoted by LX and WX respectively. The computational25

domain Ω is discretised into a high resolution mesh with 62.5 cm × 62.5 cm square cells, for26

46080 cells in total. The subdomains Ωi used to derive the perfectly upscaled solution uM (see27
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(8)) are delineated by connecting the centroids of the building blocks (dashed line in Fig. 3).1

There are 20 such subdomains in total. Other options are available for the definition of Ωi.2

For instance, the subdomains might be centred around the building blocks, or shifted by any3

distance in the x− and/or y−direction. Besides, Ωi may include more than one x− and/or y−4

building period. The present choice is motivated by two main reasons: (i) the size Lx × Ly is5

the smallest possible one that keeps the averaging domain periodic, thus ensuring maximum6

spatial resolution for the upscaled solution, (ii) defining Ωi by connecting the centroids of the7

buildings is consistent with the meshing strategies required by a number of porosity-based8

shallow water models, such as the IP or DIP models [25, 26, 38].9

L
x

W
x

L
y

W
y

L

Buildings

Averaging domain W
i

Figure 3: Synthetic urban configurations : definition sketch for the geometry.

Parameter Meaning Numerical value
L Total domain length 1000 m
Lx x−Period length 50 m
Ly y−period length 50 m
Wx Width of N-S streets 10 m
Wy Width of E-W streets 10 m

Table 1: Synthetic urban configurations : geometric parameters.

In practice, the application of the downscaling approaches is restricted to the cells of the10

high resolution mesh that belong to three subdomains located slightly after the beginning,11

at the middle and slightly before the end of the computational domain. The subdomains’12

x -limits are [250 m, 300 m], [500 m, 550 m] and [750 m, 800 m]. Each subdomain contains13

2304 cells for a total of 6912 cells considering the three subdomains. The global approach14

from subsection 3.2 is applied on the full set of 6912 cells. As the local approach described15

in subsection 3.1 requires to learn a separate relationship for each cell, the number of cells16

was reduced to 125 within each subdomain to keep the computation time within reasonable17

limits. For each of the three subdomains, the 125 cells are selected as follows, see Fig. 4. The18

subdomain is divided into 5 rectangular zones : one for the central crossroads and four for19

each of the branches departing from the intersection. Each of these five zones comprises 5× 520

cells spread regularly so as to allow for a maximum coverage of the rectangular zone.21

The first two synthetic configurations considered are 1D negative and positive waves with-22

out friction that are 1D Boundary Value Problems (BVPs). These configurations, identified23

as N-wave-nf and P-wave-nf respectively for short, are one of the simplest possible BVPs for24

layouts of this type. The frictionless propagation along the x−direction of a wave into still25

11
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Figure 4: Synthetic urban configurations : locations of the 125 cells within a given subdomain. The
origin of the coordinates are taken from the SW corner of the subdomain.

water is simulated (Fig. 5). The bottom is flat, the water is initially at rest in the domain,1

with an initial depth h0. The water level is set instantaneously to a constant value h1 at2

the Western boundary of the domain. In N-wave-nf, h1 < h0, which yields a negative wave3

(rarefaction wave). In P-wave-nf, h1 > h0 and a positive wave (shock wave) appears. The4

macroscopic solution uM is self-similar in the (x, t) domain [23, 25, 26].5
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Figure 5: Negative and positive wave configurations : initial and boundary condition definition sketch.

The next two synthetic configurations use the same geometry as N-wave-nf and P-wave-nf6

(Fig. 5) but with a non-zero bottom friction coefficient. These configurations, identified as7

N-wave-wf and P-wave-wf respectively, are cases study closer to real-world situations. As a8

consequence of the non-zero friction coefficient, the upscaled solution is no longer self-similar9

in the (x, t) space. Both the microscopic and upscaled solutions and their spatial gradients10

span a different range of hydraulic configurations from that of N-wave-nf and P-wave-nf.11

The last synthetic configuration, identified as Dam-break, is a 2D oblique urban dam break12

problem. The dam break problem is a Riemann, Initial Value Problem (IVP) where the water13

is initially at rest and the water depth is piecewise constant, equal to hL and hR respectively14

on the left- and right-hand sides of a broken, divide line with average orientation SE-NW15

(Fig. 6a). This results in an average flow field and wave propagation pattern oriented in the16

SW-NE direction. Since the flow is diagonal to the main street directions, fully meshing the17

domain involves as many block periods in both directions of space. This makes the mesh size18

and the subsequent computational effort prohibitive. The difficulty can be overcome [23] by19

12



meshing only a single block period in the transverse direction (Fig. 6b). The topology of the1

mesh is modified by connecting the Northern side of the ith lateral street (boundary segment2

Ni in the Figure) with the Southern side of the i+ 1th lateral street (boundary segment Si+13

in Fig. 6b). While the upscaled solution of an urban dam break problem parallel to the main4

street axis is known to be self-similar in (x, t) [22, 25, 23], self-similarity disappears when the5

propagation is oblique with respect to the street axes [23].6

h (x,y,0) = h
L

h (x,y,0) = h
R

N
i-1

N
i

N
i+1

S
i-1

S
i

S
i+1

(a)

(b)

Figure 6: 2D oblique dam break problem. Definition sketch : (a) building layout and IVP geometry
in plan view (b) periodic model mesh for computational efficiency. Bold lines: impervious boundaries.
Dashed lines: boundary segments with staggered connection scheme.

4.2. Field-scale test case7

The field-scale test case considered was reported in [25] for the evaluation of a porosity-8

based, shallow water model. The propagation of a dike break flood wave into a neighbourhood9

of the Sacramento urban area is simulated. The test, which is referred to as Sacramento for10

short, is informative in many aspects: (i) the geometry is real, non-periodic, (ii) the upscaled11

hydraulic pattern is genuinely two-dimensional, and (iii) the microscopic flow field exhibits12

a strong polarisation along two preferential flow directions [25]. The dike breach is located13

on the left-hand side of the domain in Fig. 7. The Sacramento neighbourhood is discretised14

using a microscopic mesh made of 77 963 cells (average cell area 6.5 m2). The macroscopic15

mesh used for upscaling is much coarser, with 1682 subdomains (average subdomain area 28516

m2). These two meshes are used for the refined and porosity-based shallow water simulations17

reported in Guinot et al. [25]. Fig. 8 shows close-up views of the microscopic and macroscopic18

meshes of the area where the 575 cells on which the local downscaling approach is applied are19

13



located. In contrast, the global downscaling approach is applied on the full set of 77 963 cells.1
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Figure 7: Field-scale test : Sacramento neighbourhood with the bold rectangle indicating the zooming
areas in Fig. 8.
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Figure 8: Field-scale test (Sacramento) : area where the 575 cells (shown as red dots) on which the local
downscaling approach is applied are located. Top: microscopic mesh. Bottom: macroscopic mesh.

4.3. Training, validation and test sets2

Training sets are defined to optimise the parameters of each downscaling approach (i.e. the3

ANNs’ weights), validation sets to select optimal hyper-parameter values for each downscaling4

14



approach and test sets to compare the performance of the two downscaling approaches. These1

sets are made of a number of pairs of micro and macro simulations from the same configuration2

but with different values for the BC and/or IC. The underlying rationale is that, in a practical3

application, it is assumed that the configuration - such as positive or negative waves - can4

be known a priori but the appropriate values of BC and/or IC cannot. As a consequence,5

downscaling approaches should perform well, given a configuration, for any BC and/or IC6

values.7

The values of BC and/or IC used to define the training, validation and test sets are labelled8

by a letter as indicated in Table 2 for the synthetic urban configurations and in Table 3 for the9

field-scale test. Fig. 9 illustrates the principle of the training-validation-test sets’ design. The10

training set is designed so as to cover representative BC and/or IC values. For the synthetic11

urban configurations, there are three pairs of BC and/or IC values taken so as to form a right-12

angled triangle in the BC and/or IC space, see Fig. 9, whereas for the test-field case, there is13

a single initial condition for which two values are considered. The validation set includes two14

pairs of BC and/or IC values for the synthetic urban configuration taken as the midpoints of15

the two legs of the right-angled triangle while for the test-field case, a single value of the IC16

is considered for the validation set, the midpoint between the values forming the training set.17

The test set concerns BC and/or IC values that are different from those seen for training and18

validation. For the synthetic urban configurations, five such pairs of BC and/or IC values are19

considered. The field-scale test, in contrast, has only two possible IC values that form the test20

set.21

Set Label N-wave-nf / wf P-wave-nf / wf Dam-break
(h0, h1) (m) (h0, h1) (m) (hL, hR) (m)

Training
a (1, 0.9) (0.9, 1) (3, 2.5)
b (1, 0.5) (0.5, 1) (3, 0.5)
c (0.6, 0.5) (0.5, 0.6) (1, 0.5)

Validation d (0.8, 0.5) (0.7, 1) (2, 0.5)
e (1, 0.7) (0.5, 0.8) (3, 1.5)

Test

f (0.85, 0.75) (0.65, 0.85) (2.3, 1.2)
g (0.8, 0.4) (0.7, 1.5) (2, 0.01)
h (1, 0.7) (0.3, 0.8) (5, 1.5)
i (0.4, 0.3) (0.3, 0.4) (0.1, 0.01)
j (1.5, 1) (1.3, 1.5) (5, 4.5)

Table 2: Training, validation and two test sets for the synthetic urban configurations in terms of BC
and/or IC values. The BC and/or IC values for the negative waves N-wave-nf / wf are not exact mir-
rors of those for positive waves P-wave-nf / wf in order to ensure the feasibility of boundary condition
prescription.

Set Label h0 (m)
Training a 6 m

b 4.5 m
Validation c 5.25 m
Test d 3.5 m

e 7 m
Table 3: Field-scale test (Sacramento). Values of h0, the initial water depth in the channel, used to form
the training, validation and test sets.

The length of the simulation period T and the sampling time step are set as follows (see22
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Figure 9: Experiment plan definition sketch for each configuration.

Table 2 for a compilation of the total number of time steps available for training, validation and1

test). The sampling time step is 10 s in configurations N-wave-nf, N-wave-wf, P-wave-nf and2

P-wave-wf and 5 s for Dam-break and Sacramento. For each synthetic urban configuration,3

the length of the simulation period may change with the BC and/or IC values so as to ensure4

that there is no wave reflection phenomena. The negative wave configurations, N-wave-nf5

and N-wave-wf, have a duration of 400 s - 41 time steps - for all BC and/or IC values except6

for the “j” one which is set to 260 s - 27 time steps. P-wave-nf has a duration of 300 s - 317

time steps -in call cases except for the BC and/or IC pair of values labelled “g” that has a8

time span of 200 s - 21 time steps. P-wave-wf has a duration of 300 s - 31 time steps - in all9

cases. Dam-break has a 100 s duration - 21 time steps - for all BC and/or IC values except10

the one labelled “j” that has a duration of 80 s - 17 time steps. The field scale simulation has11

a duration of 240 s - 49 time steps - except for the IC labelled “d” which spans 480 s - 97 time12

steps - to allow the water to reach most areas.13

Configuration Training Validation Test
N-wave-nf 123 82 191
N-wave-wf 123 82 191
P-wave-nf 93 62 145
P-wave-wf 93 62 155
Dam-break 63 42 101
Sacramento 98 49 146

Table 4: Number of time steps available for training, validation and test for each configuration.
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5. Evaluation and comparison of downscaling methods1

5.1. Principal spatial patterns2

The global downscaling approach described in subsection 3.2 relies on the assumption that3

a representative enough basis of spatial patterns B in (13) can be identified with PCA. Before4

applying the global approach systematically, a preliminary analysis of the spatial patterns5

uncovered by PCA is presented in order to provide some insights into this approach. To this6

end, PCA is applied on the training set, see Table 2, and the first six Principal Components7

(PCs) are illustrated for each configuration. As PCs are adimensional, their value is relative8

to one another. The spatial patterns are computed for the two risk variables considered, i.e.9

the water depth and the norm of the unit discharge, see the discussion in subsection 2.2.10

The dimension of the high resolution field, i.e. the number of cells in the fine mesh11

considered, is P = 6912 for the synthetic urban configurations and P = 77 963 for the field-12

scale test. For the synthetic urban configurations, only the subdomain located in the middle of13

the computational domain, with x -limits [500 m, 550 m], is shown, the other two subdomains14

have similar patterns. In addition, for the positive and negative waves, only the configurations15

without friction are shown, the ones with friction having similar albeit smoother patterns are16

deferred to Appendix A.17

For N-wave-nf, the water depth has spatial patterns oriented along the x-direction on the18

horizontal branch, see Fig. 10. In contrast, the norm of the unit discharge exhibits complex19

spatial patterns along the y-direction on the vertical branches, see Fig. 11. For P-wave-nf,20

similar differences between the water depth and the norm of the unif discharge spatial patterns21

can be observed, see Figs. 12-13, though the patterns are more jagged. Similar remarks hold22

for N-wave-wf and P-wave-wf, see Figs. A.26-A.29. For Dam-break, the oblique orientation23

of the spatial patterns is visible for both the water depth and the norm of the unit discharge,24

see Fig. 14-15. Last, in Fig. 16-17, the spatial patterns of the water depth and the norm of25

the unit discharge for Sacramento are shown. Although the spatial patterns of the norm of26

the unit discharge are sharper than those of the water depth, the general shape, with the27

propagation of the water from the breach in the dike located at the top left (see Fig. 7), is28

similar for both risk variables.29

5.2. Hyper-parameter selection30

For the five synthetic urban configurations and the field-scale test, the hyper-parameters31

selected for the two downscaling approaches described in section 3 and for the two risk variables32

considered (water depth and norm of the unit discharge) are provided in Table 5. Several values33

are considered for each hyper-parameter so as to span the range of possibilities, starting from34

the lowest admissible value up to a value large enough to ensure that the selected value is not35

involuntarily bounded. The combination of all the values considered for each hyper-parameter36

are evaluated, i.e. the corresponding ANNs are trained, and the best combination, i.e. the37

one that yields the lowest validation error, is retained.38

As expected, the number of spatial patterns (or equivalently, the number of PCs) selected39

is much lower when the risk variable is in a configuration yielding smoother dynamics, see the40
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(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure 10: Spatial patterns of the water depth for N-wave-nf obtained with PCA (first six PCs) over
the subdomain located in the middle of the computational domain. The same adimensional color scale is
used for all PCs.

(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure 11: Spatial patterns of the norm of the unit discharge for N-wave-nf obtained with PCA (first
six PCs) over the subdomain located in the middle of the computational domain. The same adimensional
color scale is used for all PCs.
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(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure 12: Spatial patterns of the water depth for P-wave-nf obtained with PCA (first six PCs) over
the subdomain located in the middle of the computational domain. The same adimensional color scale is
used for all PCs.

(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure 13: Spatial patterns of the norm of the unit discharge for P-wave-nf obtained with PCA (first
six PCs) over the subdomain located in the middle of the computational domain. The same adimensional
color scale is used for all PCs.
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(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure 14: Spatial patterns of the water depth for Dam-break obtained with PCA (first six PCs) over
the subdomain located in the middle of the computational domain. The same adimensional color scale is
used for all PCs.

(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure 15: Spatial patterns of the norm of the unit discharge for Dam-break obtained with PCA (first
six PCs) over the subdomain located in the middle of the computational domain. The same adimensional
color scale is used for all PCs.
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(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure 16: Spatial patterns of the water depth for Sacramento obtained with PCA (first six PCs) over
the subdomain located in the middle of the computational domain. The same adimensional color scale is
used for all PCs.

(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure 17: Spatial patterns of the norm of the unit discharge for Sacramento obtained with PCA (first
six PCs) over the subdomain located in the middle of the computational domain. The same adimensional
color scale is used for all PCs.
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p-column of Table 5. This is the case for the water depth in the negative or positive wave1

configurations, with or without friction. In contrast, the water depth in the Dam-break and2

Sacramento configurations and the norm of the unit discharge, especially in the P-wave-nf3

/ wf and Sacramento configurations, require higher numbers of spatial patterns. The only4

configuration in which the norm of the unit discharge requires less spatial patterns than the5

water depth is the Dam-break configuration. The input size and the number of hidden units6

of the ANNs, see the columns d and Nh in Table 5, in the local and global approaches are7

similar for P-wave-nf / wf but otherwise can be very different, see for instance the water8

depth in N-wave-nf / wf. The number of hidden units of the ANN in the global approach is9

almost always zero, indicating that a linear relationship is sufficient.10

Configuration
Water depth Norm of unit discharge

Local approach Global approach Local approach Global approach
d Nh d Nh p d Nh d Nh p

N-wave-nf 20 (0) 12 (16) 8 0 5 10 (5) 12 (19) 12 0 20
N-wave-wf 20 (0) 12 (16) 8 0 5 10 (5) 12 (18) 10 0 10
P-wave-nf 19 (1) 1 (4) 19 0 5 19 (3) 4 (14) 19 0 40
P-wave-wf 16 (3) 1 (1) 16 0 5 12 (3) 2 (4) 15 2 60
Dam-break 8 (10) 0 (1) 18 0 40 19 (6) 1 (8) 8 0 10
Sacramento 3 (3) 2 (0) 57 0 70 3 (12) 1 (1) 78 0 80

Table 5: Selected hyper-parameters for each configuration : d input dimension, Nh number of hidden
neurons and p output dimension, see Fig. 2. For the local approach, the median selected value is given
with the inter-quartile range in parentheses.

5.3. Test set comparisons11

The comparison of the global and local approaches at downscaling the water depth and12

the norm of the unit discharge is carried on the test sets of each configuration, see Table 2,13

with the hyper-parameters selected on the validation sets, see Table 5. To this end, the ANNs14

of the local approach - one per cell - and the ANN of the global approach with the selected15

hyper-parameters are trained anew on a larger data set that merges together the training and16

validation sets. As in the subsection 5.1 on the spatial patterns uncovered by PCA, for the17

positive and negative waves, only configurations without frictions are shown, the ones with18

friction bring similar conclusions and are deferred to Appendix B.19

For the water depth, the global approach performs generally better, as can be seen from20

the box-plots of the absolute errors for each test set provided in Fig. 18-21. One exception is21

N-wave-nf, see Fig. 18 (similarly for N-wave-wf, see Fig. B.30), for which the local approach22

performs slightly better for Test f, Test g and Test h but the overall absolute error is small23

(< 8× 10−3 m). For Test i and Test j, the global approach performs better and the absolute24

error of the local approach jumps up to ≈ 0.5 m for Test j. For P-wave-nf shown in Fig. 1925

(similarly for P-wave-wf, see Fig. B.31), the local approach performs worst on all test sets,26

especially Test g, Test h, Test i and Test j, with an absolute error up to ≈ 4 m, whereas27

the global approach’s absolute error is bounded below 0.5 m for Test g and is much lower on28

the other test sets. For Dam-break, the global approach outperforms the local approach on29

most test sets although some test sets, such as Test g and Test h, are more challenging for30

22



both approaches, see Fig. 20. For Sacramento, the global approach also outperforms the local1

approach, especially for Test e, see Fig. 21.2

(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure 18: Downscaling of the water depth for N-wave-nf : box-plots of absolute errors for the global
and the local downscaling approaches over the three selected subdomains (375 cells) for each of the five
test sets, see Table 4. The maximum error is indicated in red over each box-plot.

For the norm of the unit discharge, the global approach performs much better for all con-3

figurations and all test sets, see Fig. 22-25. For N-wave-nf in Fig. 22 (similarly for N-wave-wf4

in Fig. B.32), the absolute error for the global approach is bounded below 0.05 m2/s. In5

contrast, the local approach’s error exceeds 12 m2/s for Test j. For P-wave-nf in Fig. 236

(similarly for P-wave-wf in Fig. B.33), one can observe that, again, the global approach has7

low absolute errors < 0.7 m2/s whereas the local approach’s absolute errors are very large,8

especially for Test f, Test g, Test h and Test j. Much like for the water depth, Dam-break is9

more challenging for both approaches, see Fig. 24. In particular, the global approach has an10

absolute error of up to ≈ 6 m2/s on Test h but on the other test sets, the error is below ≈11

2 m2/s or less. In contrast, the absolute errors of the local approach are very large, greater12

than 10 m2/s for Test h and Test j. For Sacramento, much like for the water depth, the global13

approach outperforms the local approach with greated discrepancy between them for Test e,14

see Fig. 25.15

6. Discussion and conclusion16

We proposed a statistical model that is capable of downscaling very high dimensional fields17

such as the ones simulated by refined shallow water models, see subsection 3.2 and Fig. 1b18
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(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure 19: Downscaling of the water depth for P-wave-nf : box-plots of absolute errors for the global
and the local downscaling approaches over the three selected subdomains (375 cells) for each of the five
test sets, see Table 4. The maximum error is indicated in red over each box-plot.

(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure 20: Downscaling of the water depth for Dam-break : box-plots of absolute errors for the global
and the local downscaling approaches over the three selected subdomains (375 cells) for each of the five
test sets, see Table 4. The maximum error is indicated in red over each box-plot.
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(a) Test d (b) Test e
Figure 21: Downscaling of the water depth for Sacramento : box-plots of absolute errors for the global
and the local downscaling approaches over the selected subregion (575 cells) for each of the five test sets,
see Table 4. The maximum error is indicated in red over each box-plot.

(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure 22: Downscaling of the norm of the unit discharge for N-wave-nf : box-plots of absolute errors
for the global and the local downscaling approaches over the three selected subdomains (375 cells) for
each of the five test sets, see Table 4. The maximum error is indicated in red over each box-plot. The
scale is capped at 12.
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(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure 23: Downscaling of the norm of the unit discharge for P-wave-nf : box-plots of absolute errors
for the global and the local downscaling approaches over the three selected subdomains (375 cells) for
each of the five test sets, see Table 4. The maximum error is indicated in red over each box-plot. The
scale is capped at 12.
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(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure 24: Downscaling of the norm of the unit discharge for Dam-break : box-plots of absolute errors
for the global and the local downscaling approaches over the three selected subdomains (375 cells) for
each of the five test sets, see Table 4. The maximum error is indicated in red over each box-plot. The
scale is capped at 12.

(a) Test d (b) Test e
Figure 25: Downscaling of the norm of the unit discharge for Sacramento : box-plots of absolute errors
for the global and the local downscaling approaches over the three selected subdomains (375 cells) for
each of the five test sets, see Table 4. The maximum error is indicated in red over each box-plot. The
scale is capped at 12.
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that summarizes the downscaling model. A key step of this downscaling approach consists in1

decomposing the high dimensional field into a linear combination of spatial patterns. PCA is2

often used to obtain spatial patterns from fields of climatic variables in order to infer weather3

types, i.e. recurring patterns that can be found, for instance, in large scale atmospheric4

circulation [46]. From the simulated fields of flow variables for urban flood risk assessment,5

PCA yielded spatial patterns that are visually interpretable with respect to expert knowledge6

for each configuration and for the two risk variables considered - water depth and norm of the7

unit discharge, see Figs. 10-17 and Figs. A.26-A.29.8

The coefficients of the linear combination of spatial patterns can be thought of as a pro-9

jection of the high dimensional field onto a low dimensional feature space. In the weather10

type approach mentioned above, clustering can be performed on the features obtained from11

PCA to classify each time steps, e.g. days, into weather types. In contrast, in the proposed12

global downscaling approach, these features are taken as the multivariate dependent variable13

in a regression model, a feed-forward neural network with a direct linear connection as in14

Fig. 2b. Model selection, see Table 5, showed that, as was anticipated, more spatial patterns,15

i.e. a larger dimension of the feature space, are needed to reconstruct the spatial field of more16

turbulent risk variables. With no hidden units selected in most cases for the ANN, the global17

approach is in fact a large dimensional multivariate linear regression. The estimation of the18

model is carried out by combining three steps : (1) PCA of the low resolution field, (2) PCA19

of the high resolution field and (3) regression between the feature space of the low and high20

resolution fields. Despite being a linear model, the estimation could not be achieved with a21

single direct estimation step, as is the case with conventional linear regression, owing to the22

large dimension of the dependent variable.23

We compared the global statistical downscaling approach proposed in this work with a24

local approach that is in fact a set of downscaling models, one for each cell of the mesh on25

which the high resolution risk variable is simulated, see subsection 3.1 and Fig. 1a. A potential26

alternative to this local approach would be to consider a single ANN that would be able to27

downscale all the cells of the mesh, one at a time, by including in its input specific information28

from each cell. For instance in [13], a climate variable simulated on a 25 km resolution grid29

by a Regional Climate Model (RCM) constrained by a GCM on a lower resolution grid of30

1.89◦ is downscaled with a single ANN, one RCM cell at a time. Among the ANN input,31

there is information from the large scale variable at the four GCM grid cells surrounding32

the RCM grid cell of interest. By using information that changes with each RCM cell, the33

ANN is able to learn a relationship that can vary from cell to cell. Such an approach was34

considered initially in the shallow water models’ context but was put aside. Indeed, as the35

number of cells within each subdomain is very high, the question of which spatial information36

- geographical coordinates not being sufficient - would be useful to help discriminate each cell37

has no straightforward answer.38

The results from section 5 showed that the proposed global approach yields good overall39

performance and outperforms in most cases the local approach with an equivalent performance40

only in a few cases. Nevertheless, absolute errors on test sets can be unacceptably high, e.g.41
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almost 0.5 m for the water depth in P-wave-nf, see Fig. 19b, or about 2 m2/s for the norm1

of the unit discharge in Dam-break, see Fig. 24b. Further work is needed to understand when2

and why the global downscaling approach is successful and how to bring improvements when3

it performs poorly. An interesting avenue of research would be to investigate the representa-4

tiveness of the spatial pattern basis. Does the training set contain informative enough data5

to uncover the spatial pattern basis ? In other words, does the training set include all the6

spatial patterns that are present in the validation and test sets ? Another avenue would be7

to consider techniques other than PCA to deduce the spatial patterns such as frames [17].8

Besides, stochasticity could be introduced in the downscaling methods which would be helpful9

to account for uncertainties in the estimation. For the local approach, it suffices to see the10

outputs of the ANN as the parameters of a given probability distribution [10, 12]. For the11

global approach, the stochastic version of PCA could be implemented [7].12

Other perspectives for this work are as follows. The hydraulic simulations reported involve13

a flat topography. The performance of the downscaling approaches in the case of a variable14

topography should be explored. In the case of a spatially variable bottom elevation, the free15

surface elevation is often smoother than the water depth. Whether the surface elevation is16

easier to downscale than the water depth should be assessed. In addition, imperfect upscaling17

should be tested as nonlocal effects are to be expected. As mentioned in subsection 2.2, the18

water depth and the norm of the unit discharge are not the only possible variables for flood19

risk assessment. The possibility of downscaling additional variables such as the specific force20

per unit width and the hydraulic head should also be investigated. This might induce an21

increased level of complexity compared to the downscaling of the water depth and the unit22

discharge because the specific force and the hydraulic head are not conserved variables. Last,23

in some cases, only the maximum of a given flow variable within a given area might be needed24

for risk assessment. In such cases, downscaling techniques developed within the theory of25

extreme values could be useful [5].26
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Appendix A. Principal spatial patterns

(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure A.26: Spatial patterns of the water depth for N-wave-wf obtained with PCA (first six PCs) over
the subdomain located in the middle of the computational domain. The same adimensional color scale is
used for all PCs.
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(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure A.27: Spatial patterns of the norm of the unit discharge for N-wave-wf obtained with PCA (first
six PCs) over the subdomain located in the middle of the computational domain. The same adimensional
color scale is used for all PCs.

(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure A.28: Spatial patterns of the water depth for P-wave-wf obtained with PCA (first six PCs) over
the subdomain located in the middle of the computational domain. The same adimensional color scale is
used for all PCs.
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(a) PC 1 (b) PC 2 (c) PC 3

(d) PC 4 (e) PC 5 (f) PC 6
Figure A.29: Spatial patterns of the norm of the unit discharge for P-wave-wf obtained with PCA (first
six PCs) over the subdomain located in the middle of the computational domain. The same adimensional
color scale is used for all PCs.
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Appendix B. Evaluation and comparison of downscaling methods

(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure B.30: Downscaling of the water depth for N-wave-wf : box-plots of absolute errors for the global
and the local downscaling approaches over the three selected subdomains (375 cells) for each of the five
test sets, see Table 4. The maximum error is indicated in red over each box-plot.
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(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure B.31: Downscaling of the water depth for P-wave-wf : box-plots of absolute errors for the global
and the local downscaling approaches over the three selected subdomains (375 cells) for each of the five
test sets, see Table 4. The maximum error is indicated in red over each box-plot.
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(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure B.32: Downscaling of the norm of the unit discharge for N-wave-wf : box-plots of absolute errors
for the global and the local downscaling approaches over the three selected subdomains (375 cells) for
each of the five test sets, see Table 4. The maximum error is indicated in red over each box-plot. The
scale is capped at 12.
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(a) Test f (b) Test g (c) Test h

(d) Test i (e) Test j
Figure B.33: Downscaling of the norm of the unit discharge for P-wave-wf : box-plots of absolute errors
for the global and the local downscaling approaches over the three selected subdomains (375 cells) for
each of the five test sets, see Table 4. The maximum error is indicated in red over each box-plot. The
scale is capped at 12.
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