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Cold dark matter subhalos are expected to populate galaxies in numbers. If dark matter selfannihilates, these objects turn into prime targets for indirect searches, in particular with gamma-ray telescopes. Incidentally, the Fermi-LAT catalog already contains many unidentified sources that might be associated with subhalos. In this paper, we infer the statistics of those subhalos which could be identified as gamma-ray point-like sources from their predicted distribution properties. We use a semi-analytical model for the Galactic subhalo population, which, in contrast to cosmological simulations, can be made fully consistent with current kinematic constraints in the Milky Way and has no resolution limit. The model incorporates tidal stripping, predicted from a realistic distribution of baryons in the Milky Way. The same baryonic distribution contributes a diffuse gamma-ray foreground, which adds up to that, often neglected, induced by the smooth dark matter and the unresolved subhalos. This idealized configuration, as viewed by an idealized telescope à la Fermi-LAT, implies a correlation between point-like subhalo signals and diffuse background. Based on this modeling, we compute the full statistics semi-analytically, and accurately determine the distribution properties of the most luminous subhalos in the sky (relative to background). We find a number of visible subhalos of order O(0 -1) for optimistic model parameters and a WIMP mass of 100 GeV, maximized for a cored host halo. This barely provides support to the current interpretation of several Fermi unidentified sources as subhalos. We also find that it is more likely to detect the smooth Galactic halo itself before subhalos, should dark matter in the GeV-TeV mass range self-annihilate through s-wave processes.

I. INTRODUCTION

While under experimental or observational pressure, the thermal dark matter (DM) scenario is still considered as appealing owing to its simple production mechanism and to the fact that it is within reach of current experiments. A typical realization amounts to assuming that DM is made of exotic particles with masses and couplings to standard model particles such that they can be produced from the hot plasma in the early universe, and to selecting model parameters for which DM is cold [1][2][3] and with a predicted cosmological abundance that matches with the one measured by cosmological probes [4][5][6][7]. If there is no matter-antimatter asymmetry in the dark sector, and if DM is driven to chemical equilibrium before freezing out, then weakly-interacting massive particles (WIMPs) arise as prototypical self-annihilating DM candidates, leading to a diversity of potentially observable signatures 1 [11][12][13][14][15][16]. In this article, we focus on indirect DM searches [16][17][18] with gamma-rays, and therefore assume that DM self-annihilates in DM halos nearly at rest and into standard model particles, producing gamma-rays through direct emission, hadronization of the final states, or Bremsstrahlung [19]. This implicitly restricts the available WIMP parameter space to s-wave annihilation processes (typically mediated by pseudo-scalar interactions if DM is made of fermions), for which the annihilation rate does not depend on DM particle velocities. Other parts of the WIMP parameter space (e.g. scalar interactions) can still be probed by indirect detection techniques [20,21], but are more efficiently so with direct detection [15,22,23] and at colliders [9,24,25]. We also restrict the target space by focusing on searches in the Milky Way (MW) only [26].

The generically rather small scattering rate between WIMPs and the hot plasma in the early universe leads to a very small cutoff scale in the matter power spectrum, implying a typical mass ranging from 10 -3 -10 -12 M for the first DM structures to collapse in the matter cosmological era [27][28][29][30][31][32][33][34]. In the standard hierarchical picture of structure formation [35][36][37], these first minihalos, or subhalos, merge into larger DM halos, but a significant fraction of them survives tidal disruption and populates new particles has been discovered at the LHC has strongly affected approaches to that issue, see e.g. [8], and motivations for WIMPs are now mostly phenomenological [9,10].

galactic halos in numbers today [38][39][40][41][42]. These DM inhomogeneities have long be invoked as potential boosters of the DM annihilation rate in galaxies, enhancing the production of gamma-rays and antimatter cosmic rays [43][44][45][46][47]. They could also enhance the gamma-ray power spectrum on specific angular scales [48,49]. They actually also represent interesting point-source targets for gamma-ray telescopes [47,[50][51][52][53][54][55][56], with essentially no Xray nor radio counterparts (but see [57]). This possibility has generated a particular attention in the recent years as the Fermi-LAT satellite has enriched its catalog with many unidentified and unassociated sources [58,[START_REF]The Fermi[END_REF], some being interpreted as potential DM subhalos [START_REF] Belikov | [END_REF][61][62][63][64][65][66][67][68][69].

In this study, we take advantage of the recent analytical Galactic subhalo population model developed in Ref. [41] (SL17 henceforth)-see complementary analytical approaches in e.g. Refs [42,[70][71][72][73][74]. This model was built to be consistent with both structure formation theory [40,75] and kinematic constraints on the MW similar to those discussed in Ref. [76]. Some gamma-ray properties of this model were already derived in Ref. [77] using the Clumpy code [78,79], which aimed at comparing them with predictions from cosmological simulations [80] (so-called MW-like simulations, but obviously with DM and baryonic distributions that may significantly depart from the real MW), but without fully addressing the detectability of individual objects in a realistic diffuse foreground. This issue was partly covered in [66]. Here, we want to inspect the potential of Fermi-like gamma-ray telescopes to detect subhalos in such a model, but going farther than previous studies in the attention given to the contribution of DM annihilation itself to the diffuse background. The model includes a subhalo population, a smooth dark matter halo, and a baryonic distribution, all made consistent with kinematic constraints, and the gravitational tides that prune or disrupt subhalos are calculated from the very same components (see SL17 for details). This internal self-consistency leads to a spatial correlation between the subhalos, the smooth DM, and the baryonic content, which affects the observational properties of the former through the contribution to the diffuse emission of the latter. Baryons induce gravitational tides that deplete the subhalo population and select the most concentrated objects. Besides, they set the intensity of the Galactic gamma-ray foreground (mostly the pionic component), which also plays a role in the balance between diffuse emission and potential point-like emissions from subhalos. Finally, assessing the detectability of subhalos should also account for the fact that the diffuse DM emission is also bounded by current constraints to be less than the level of Galactic foreground statistical fluctuations [19,[81][82][83][84][85][86][87][88]. This means that part of the naively available parameter space is actually already excluded, and this can be fully characterized in a complete model. We will show that self-consistently combining all these ingredients leads to interesting, though not necessarily optimistic, consequences in terms of subhalo detectability.

The paper develops according to a very pedestrian approach and is organized as follows. We begin by quickly reviewing our global Galactic model in Sect. II. In Sect. III, we describe the parameter space of subhalos and the related statistical ensemble, from which derive the statistical properties of their gamma-ray emissivity presented in Sect. IV. We further discuss the detectability of DM subhalos in Sect. V, which is the main part of the paper, and where we pay a particular attention to the possible background configurations. In particular, we exploit a simplified statistical method and derive useful analytical results showing e.g. the consequence of imposing to detect subhalos before the smooth halo on the sensitivity, which we further confirm with a more sophisticated analysis based on a full likelihood method applied to mock data. In that way, we can place ourselves in the context of an idealized experiment resembling Fermi-LAT, and derive predictions for both current and future observations. We summarize our results and draw our conclusions Sect. VI, to which we invite the expert reader to go directly, and provide additional technical details in the appendix sections.

II. REVIEW OF THE SUBHALO POPULATION MODEL

In this section, we motivate the need for a dynamically consistent model for the DM distribution in the MW which globally include both the subhalo population and the smooth Galactic halo-see a more detailed discussion in SL17.

It is well known that in the cold DM scenario, structure formation leads to a high level of self-similarity that translates into an almost universal shape for the dark halos over a large range of scales, close to a parametric Navarro-Frenk-White (NFW henceforth) profile, as found in cosmological simulations [89,90]. Such a (spherical) halo shape should characterize systems like the MW down to all pre-existing layers of inhomogeneities like subhalos, the latter also glabally contributing to shaping the former. Increasing the spatial/mass resolution of cosmological simulations does not modify this picture, it only uncovers a larger population of smaller subhalos in their host halos, sharing similar morphologies [91][92][93]-the overall profiles of the host halos remaining unaffected. Consistency therefore demands that the sum of the smooth DM component and its substructure be globally following an NFW profile (or any variant motivated by improved fitting formulae [94][95][96], with possible alterations in the central regions due to baryonic feedback [97][98][99]).

This actually implies a spatial correlation between the smooth halo and its substructure, the details of which are related to the accretion history and more importantly to the tidal stripping experienced by subhalos and induced both by the total gravitational potential of the host halo and by baryons (disk shocking, stellar encounters, etc.). This spatial correlation is expected to have some impact on the gamma-ray observability properties of subhalos as point-like sources, because it translates into a correlation between the hunted sources and the background in which they lurk. Such a correlation was partly accounted for in e.g. Refs. [47,78], but without realistic treatment of gravitational tides. At this stage, it is worth recalling that the global DM content of the MW is better and better constrained as the quality of stellar kinematic data improves. This implicitly translates into limits on the distribution of dark subhalos-except for those "visible" subhalos hosting stars and already identified as MW satellites.

Here, we take advantage of the SL17 analytical subhalo population model for the MW. This model is consistent with recent kinematic constraints on the MW, as it is constructed to recover the best-fit Galactic mass model found in [76] (McM17). Note that the McM17 best-fit model (which includes both DM and baryons) is itself consistent with more recent results (e.g. Refs. [100,101]) based on analyses of big samples of RR Lyrae or redgiant stars with accurate proper motions inferred from the Gaia survey [102][103][104]. In the SL17 subhalo population model, subhalo tidal stripping is determined from the detailed distributions of both DM and baryons derived in McM17. The total DM density profile ρ tot is assumed to be spherical and a mixture of two components:

ρ tot (R) = ρ sm (R) + ρ sub (R) , (1) 
where R is here the distance to the Galactic center (GC), ρ sm describes the smooth DM component, and ρ sub describes the average mass density in the form of subhalos. More precisely, the latter can formally be expressed as

ρ sub (R) = dm t m t dn(R) dm t , (2) 
where n(R) is the number density of subhalos and the integral runs over the tidal mass m t -all this will be properly defined later. Kinematic data set constraints on ρ tot , and therefore, though more indirectly, on n. The SL17 model assumes that if subhalos were hard spheres, they would simply track the smooth component, and then ρ sub would be proportional to ρ sm . Further calculating the effect of tidal stripping allows to determine how DM initially in ρ sub migrates to ρ sm , a leakage that increases in strength toward the inner parts of the MW where the gravitational potential gets deeper and where the baryonic disk is located. The SL17 model also predicts the spatial dependence of the subhalo concentration distribution function and of the mass function as a consequence of gravitational tides. All this is in perfect qualitative agreement with what is found in cosmological simulations with [105,106] and without baryons [92,93,107].

The main modeling aspects to bear in mind before discussing the gamma-ray properties of subhalos are the following:

• The total DM halo of Eq. ( 2) is described either as a spherical NFW halo or as a cored halo, whose parameters are given in Sect. A, and which are both consistent with current kinematic constraints.

• We assume inner NFW profiles for subhalos, and consider initial mass and concentration functions inferred from standard cosmology (before tidal stripping).

• The final spatial distribution of subhalos follows the overall DM profile in the outskirts of the MW, but gets suppressed in the central regions of the MW as an effect of gravitational stripping-there is no simple parametric form to describe the smooth and subhalo components together, since the latter depend on the details of tidal stripping: they are predicted from the model.

• Tidal effects make the final mass and concentration functions fully intricate and spatially dependent; they cannot be factorized out and the SL17 model accounts for this physical intrication.

• Gravitational tides prune more efficiently the less concentrated subhalos, hence the more massive objects.

• The tidal subhalo mass m t (tidal radius r t ) is generically much smaller than the mass m 200 (the virial radius r 200 ) it would have in a flat cosmological background-the actual minimal mass can therefore be much smaller than the minimal mass considered for subhalos in terms of m 200 (this will depend on the tidal disruption criterion discussed around Eq. 7).

• the baryonic content of the model comprises a multi-component axisymmetric disk (thick and thin disks of stars and gas) and a spherical bulge; all these components are taken into account for the gravitational tides, but only the gaseous component is considered to model the regular Galactic diffuse gamma-ray emission.

In the next section, we discuss the statistical properties of subhalos, which are inherited from their cosmological origin.

III. THE SUBHALO POPULATION STATISTICAL ENSEMBLE

In this section, we review the internal properties of subhalos and fully characterize their statistical ensemble. This will later translate into statistical gamma-ray properties.

A. Structural properties of subhalos and distribution functions

Here, we introduce the basic definitions inherent to subhalos, which are rather standard [46,78]. We assume a spherical NFW inner profile for subhalos, defined as

ρ(x) = ρ s × g(x) ≡ x -1 (1 + x) -2 , (3) 
where ρ s is the scale density, and the scale variable x ≡ r/r s expresses the distance r to the subhalo center in units of the scale radius r s , and where the dimensionless parametric function g is explicitly defined as an NFW profile, though it needs not be the case. Note that g encodes all the details of the profile, such that switching to another profile simply amounts to changing g. In the following, we use ρ(x) and ρ(r) interchangeably, letting the reader adapt the definition accordingly. The integrated mass reads

m(x) = 4 π r s 3 ρ s µ(x) ≡ x 0 dx x 2 g(x ) , (4) 
where we define the dimensionless mass µ(x) that encodes the morphological details of the inner profile. Again, we use m(x) and m(r) interchangeably in the following.

A subhalo is conventionally defined from its mass on top of a flat background density and its concentration. It is common practice to adopt m 200 ≡ m(r 200 ) for the initial subhalo mass definition. This corresponds to the mass contained inside a radius r 200 , often called virial radius, over which the subhalo has an average density of 200 times the critical density ρ c ≡ 3 H2 0 M 2 P /8π, where H 0 is the Hubble parameter value today, and M P is the Planck mass 2 . In the following, we use H 0 = 68 km/s/Mpc. The scale parameters of subhalos are then entirely defined once the concentration parameter c 200 ≡ r 200 /r s is fixed. The latter is not really a physical parameter since it formally depends on the cosmological background density, but tells us how dense the subhalo is inside r s . Since smaller subhalos have formed first in a denser universe, the concentration is a decreasing function of the mass. In this paper, we use the SL17 model as derived from the concentration-mass relation given in Ref. [108], to which we associate a log-normal distribution function (p c (c 200 ), used below in e.g. Eq. ( 9)), with a variance set (in dex) to σ dex c = 0.14. To simplify the notations, we further use m for m 200 and c for c 200 , unless specified otherwise.

Although the mass m and the concentration c fix the internal properties of a subhalo, the only relevant physical parameters are actually ρ s and r s , and more importantly the tidal radius r t . We also introduce

x t ≡ r t /r s , (5) 
its dimensionless version. Subhalos are indeed not moving in a flat background. Tidal radii are actually difficult to determine since they depend on the details of all gravitational effects felt by subhalos along their orbits in the host halo. The SL17 model precisely provides us with a prediction of subhalos' tidal radii which depend on their structural properties, their position in the halo, and on the details of the DM and baryonic components featuring the MW. Therefore, the real mass and extension of a subhalo are not m 200 nor r 200 , but instead the tidal radius r t (m, c, R) ≤ r 200 , (6a) and the tidal mass

m t = m(r t ) ≤ m , (6b) 
where the dependence of the tidal radius on the subhalo structural properties and on its average position R in the MW has been made explicit. It is important to keep in mind that the tidal extension of a subhalo is usually much smaller than r 200 , which may strongly decrease the subhalo gamma-ray luminosity with respect to a naive estimate using r 200 . The SL17 model further proposes a criterion for tidal disruption, which is expressed as a lower limit in x t . This can be understood as the fact that tidal stripping can be so efficient that the remaining subhalo core has not enough binding energy left to survive, and gets disrupted. In the following, we will mainly use two different disruption thresholds according to the following rule:

tidal disruption ∀x t < t = 1 (fragile subhalos) 0.01 (resilient subhalos) .

The fragile case refers to a criterion found in early simulation studies of tidal stripping [109], while the latter case accounts for the fact that the disruption efficiency found in simulations is very likely overestimated due to the lack of resolution and to spurious numerical effects [110]. It can actually be reasonably conceived that the very inner parts of subhalos, which are also very dense, could actually survive tidal stripping for a very long time, simply as a consequence of adiabatic invariance [111,112]. One of the advantage of the SL17 model is that we can really check the impact of the disruption efficiency on gammaray predictions by tuning the disruption parameter t . Including further evolution of the structural properties themselves is possible in principle [113,114], but it is actually not straightforward to scale that up to a population study. We will therefore just assume a hard cut of the subhalo density profile at the tidal radius, which can be considered as an optimistic assumption in terms of gamma-ray emissivity. Self-consistently accounting for tidal stripping is anyway already a significant improvement with respect to many past studies.

Beside the individual properties of subhalos, the SL17 model also provides the population's global properties, which amounts to define a probability distribution function (pdf henceforth) for subhalos. Assuming subhalos are independent from each other, the subhalo number density per unit of (virial) mass can be expressed as

dn(R, m) dm = N tot ∞ 1 dc pt (R, m, c) , (8) 
where the integral runs over concentration, N tot is the total number of subhalos in the MW, which will be discussed later below Eq. ( 14), and the global pdf pt is given by

pt (R, m, c) = θ(x t (R, m, c) -t ) K t (9) × p V (R) × p m (m) × p c (c) .
In these equations, m = m 200 stands for the virial (fictitious) mass in a flat background, c = c 200 is the concentration parameter, and K t allows for the normalization to unity over the whole parameter space defined by the product of the volume element 4 π R 2 dR with the concentration element dc, the reference mass element dm, and the associated pdfs. All pdfs p's above are normalized to unity over their own individual range. Tidal disruption, despite its quite simple implementation in the form of a step function θ(), induces an intrication of the individual pdfs. Moreover, since the dimensionless tidal radius x t depends on all parameters, the same holds true for the tidal mass: a subhalo with a given m can obviously have a different m t depending on its concentration and position in the MW.

For the "fictitious-mass" function p m (m), we adopt a power law for simplicity,

p m (m) = K m (m/m 0 ) -α , (10) 
where K m and m 0 are dimensionful constants that allow us to normalize the mass function to unity over the full subhalo mass range. More involved functions can actually be used, but it turns out that the extended Press-Schechter formalism, reflecting the state-of-the-art analytical formalism in this framework [35-37, 115, 116], gives a mass function close to a power law of index α ∼ 1.95-see Fig. 1 for illustration. We will therefore use values of 1.9 and 2 as reference cases. The real(tidal)mass function, in contrast, also depends on position, and can be written

pmt (m t , R) = dm p m (m) dc p c (c) (11) ×θ(x t (R, m, c) -t ) ×δ(m -m t (R, m, c)) .
This expression makes it clear that the tidal mass function is spatial dependent not only because of tidal disruption (in the step function), but also because of tidal stripping (in the delta function). In the SL17 model, as a function of m200 at redshift z = 0, assuming a cutoff mass mmin = 10 -12 M . The Press-Schechter and Sheth-Tormen mass functions are calculated using Planck best-fit cosmological parameters [117] for different window filters and fall in all cases between the power-law functions of indices α = 1.9 and α = 2.0. The gray band corresponds to halos too massive to be accounted for MW subhalos.

surviving subhalos are more stripped and more concentrated as they are found closer to the central regions of the MW. More precisely, tidal stripping acts as a highpass filter by moving upward a threshold in the concentration distribution function (for a given mass), leading to a strong depletion of the subhalo population as one approaches the central Galactic regions. This effect is genuinely observed in cosmological simulations, and usually parametrically modeled as an additional radial dependence in the median mass-concentration relation (see e.g. Refs. [47,107]). In the SL17 model it is not parameterized but predicted from the constrained distributions of the Galactic components. The SL17 subhalo spatial distribution is built upon assuming that if subhalos were hard spheres, they would simply follow the global DM profile, as is the case for "particles" in cosmological simulations. Therefore, the hard-sphere spatial distribution of the total population of subhalos (including the disrupted ones) is simply

p V (R) = ρ tot (R) M halo , (12) 
where M halo is the total DM mass in the assumed extent of the MW halo. However, tidal stripping and disruption strongly distorts that hard-sphere distribution, and the actual one only describing surviving subhalos has to integrate the disrupted ones out. It can be written as

pV (R) = dm dc pt (R, m, c) (13) 
= p V (R) ,
where pt is the global pdf that includes tidal stripping, given in Eq. (9). The whole population of subhalos is then described from its number density per unit (tidal) mass as follows,

dn(R, m t ) dm t = N tot dm dc pt (R, m, c) × δ(m -m t (R, m, c)) . (14) 
Note that N tot , the total number of subhalos, can be normalized according to different choices. A possibility is to normalized it from the number of dwarf galaxy satellites in the relevant mass range [46] (correcting for sky and efficiency completion), from merger-tree arguments [37,118], or similarly from a global subhalo mass fraction also in a given mass range ∆ m [47]. We adopt the normalization of SL17 that matches the Via Lactea II DM-only simulation results [92], and conventionally sets the fictitious mass fraction3 to fsub ∼ 10% (for ∆ m taken in the heavy tail of the subhalo mass range, which is very well resolved in simulations). Then

N tot = K t K t fsub M halo m ∆m , (15) 
where K t is the global pdf normalization introduced in Eq. ( 9), and the tilde indicates quantities for which baryonic tides are unplugged-see Ref. [41] for details.

It is instructive to calculate the expected number of subhalos that might fall in the mass range of satellite dwarf galaxies in this model, which we give in Tab. I for different assumptions in the mass function index and in the tidal disruption efficiency. We see that the number of objects more massive than a typical threshold of 10 8 M [113] is of order ∼ 100, consistent with current observations.

Finally, we show the radial distribution of the number density of subhalos for a mass function index α = 1.9 in the left panel of Fig. 2, where we have considered both the fragile and resilient subhalos, several values of minimal cutoff mass, and started from two different assumptions for the global Galactic halo-an NFW or a cored halo, both consistent with kinematic constraints [76]. In this section, we relate the gamma-ray properties of subhalos to their internal properties. This will fully characterize the statistical properties of their gamma-ray emission, an important step before rigorously determining their detectability properties.

A. Subhalo luminosity

Since we consider DM annihilation in subhalos, it is convenient to define an intrinsic luminosity or emissivity function (in units of squared mass per volume),

ξ(r, m, c) = 3 ξ ∞ ≡ 4 π 3 r s 3 ρ 2 s ( 16 
)
× x 0 dx x 2 g 2 (x ) ,
where x = r /r s , and where we have introduced a reference luminosity ξ ∞ which is such that for an NFW profile ξ ∞ = lim r→∞ ξ(r) and

ξ(2 r s ) = 26 27 ξ ∞ = 0.963 ξ ∞ ≈ ξ ∞ . (17) 
The tidal luminosity of a given object depends only on its position, viral mass, and concentration, which we can express as

ξ t (R, m, c) = ξ(r t (R, m, c), m, c) . (18) 
For simplicity, we fix the "luminosity" size of a subhalo to

r t if r t < 2 r s 2 r s if r t ≥ 2 r s . ( 19 
)
This defines the spatial/angular extension of a subhalo in the gamma-ray sky. It will be used when discussing point-like subhalos in Sect. IV D.

B. Gamma-ray fluxes and J-factors

Here we introduce our conventions to deal with gamma-ray fluxes. For a target seen by an observer on Earth, we use the common distance-longitude-latitude triplet (Galactic coordinates), s = (s, l, b), such that in the direct Cartesian frame attached to the observer and defined by the unit vectors ( e x , e y , e z ), where e y points to the GC and e x is also attached to the Galactic plane, s = s (cos b sin l e x + cos b cos l e y + sin b e z ) . (20) The GC is therefore located at R = (0, R , 0), where R is the distance of the Sun to the GC, such that the target distance R to the GC is simply

R 2 (s, l, b) = ( s -R ) 2 (21) = s 2 + R 2 -2 s R {cos ψ ≡ cos b cos l} ,
where we have introduced the angle ψ = ( s, R ) between the line of sight sustaining the target and the observer-GC axis. Since the SL17 model is spherically symmetric, the averaged amplitude of the gamma-ray flux induced by DM annihilation is fully specified by ψ.

Gamma rays accumulate inside a cone characterized by the angular resolution of the telescope, so the spherical MW volume element associated with the spatial distribution of subhalos 4 π R 2 dR (see Sect. III A) has to be replaced by the conical volume element about the line of sight s 2 dΩ ds = s 2 sin θ dθ dφ ds , (22) where θ is the polar angle defining the aperture about the line of sight, and φ the azimuthal angle. The distance R of the target to the GC then acquires an extra dependence in θ and φ which amounts to replace cos ψ -→ (cos ψ cos θsin ψ cos θ sin φ)

in Eq. ( 21). In practice, conical volume integrals are performed over the resolution angle under consideration.

We can now write the gamma-ray flux induced by DM annihilation along the line of sight of angle ψ (equivalently all corresponding pairs (l, b) in Galactic coordinates):

dφ γ,χ (E, ψ) dEdΩ = S χ (m χ , E) 4 π smax(ψ) 0 ds ρ 2 χ (s, ψ) , (24) 
where ρ χ denotes any DM mass density profile under consideration, and s max (ψ) ≈ R 200 +R cos ψ is the distance to the virial border of the halo in the ψ direction. We have introduced a spectral function,

S χ (m χ , E) ≡ δ χ σv 2 m 2 χ dN γ (E) dE , (25) 
that carries all the WIMP-model-dependent information, namely the particle mass m χ , its total s-wave annihilation cross section into photons σv , and the differential photon spectrum dN γ /dE, which sums up the contributions of all relevant annihilation channels to the photon budget. The parameter δ χ = 1 (1/2) for scalar DM or Majorana (Dirac) fermionic DM.

Integrating this flux over a solid angle δΩ r = δΩ(θ r ), where θ r is a fixed resolution angle, we can define a first version of the usual J-factor [119] as follows:

dφ γ,χ (E, ψ, θ r ) dE = S χ (m χ , E) J ψ (θ r ) , (26) 
that is

J ψ (θ r ) ≡ 1 4 π δΩr dΩ j ψ (ψ, θ, φ) (27) 
with j ψ (ψ, θ, φ)

≡ smax 0 ds ρ 2 χ (s, ψ, θ, φ)
This J-factor carries the dimensions of a squared mass per (length) 5 and may slightly differ from other conventions found in the literature. Note that in the general case, an experimental resolution angle θ r depends on energy, hence the J-factor as defined above. We will account for this energy dependence whenever relevant. Following up with practical declensions, the flux averaged over the resolution angle θ r in the ψ direction is simply

dφ γ,χ (E, ψ) dE dΩ δΩr = S χ (m χ , E) J ψ (θ r ) (28) 
with

J ψ (θ r ) ≡ J ψ (θ r ) δΩ r , (29) 
where we implicitly assume a flat and maximal collection efficiency over θ r . This angular average of the J-factor, J ψ , is directly related to the gamma-ray flux per solid angle provided by experimental collaborations in diffuse gamma-ray studies. Finally, we introduce a last variant of the J-factor, more directly related to the real measurements performed by experiments:

J ψ (∆E) ≡ ∆E dE A(E) S χ (E) J ψ (θ r (E)) ∆E AS χ , (30a) 
J ψ (∆E) ≡ ∆E dE A(E) S χ (E) J ψ (θ r (E)) ∆E AS χ , (30b) 
AS χ (∆E) ≡ 1 ∆E dE A(E) S χ (E) (30c) = σv 2 m 2 χ N γ A ∆E ∆E ,
where ∆E is an energy range to be specified and A is an effective experimental collection area. The latter should depend both on the energy and the angle with respect to the pointing direction, but for simplicity we assume a flat and maximal angular acceptance within the resolution angle θ r , which can itself depend on energy. We have also introduced the number of photons per annihilation N γ in the energy range ∆E. These experiment-averaged definitions will allow us to formulate the observational sensitivity more accurately. Note that when the resolution angle does not depend much on energy within ∆E, then J J and J J . Independently, if the line-ofsight integral does not vary much within the resolution angle, whatever large may the latter be, then J Jthis is typically the case at reasonable angular distance from the Galactic center. Finally, one can easily convince oneself that for a point-like object, J pt = J pt (see Sect. IV D 3).

C. Diffuse emission from the smooth and subhalo components

The total averaged DM contribution to the gamma-ray flux is the sum of the smooth contribution, the global subhalo contribution, and the cross-product (e.g. [41,78]). It can be expressed as

dφ γ,χ (E, ψ, θ r ) dE = S χ (E) J diff ψ ≡ J sm ψ + J sub ψ + J cross ψ , (31) 
where we have introduced the total diffuse contribution J diff ψ , which is the sum of

J sm ψ = 1 4 π δΩr dΩ smax(ψ) 0 ds ρ 2 (s, ψ) (32a) 
J sub ψ = 1 4 π δΩr dΩ smax(ψ) 0 ds dm dn(s, ψ) dm × dc ξ t θ(x t -t ) (32b) J cross ψ = 1 2 π δΩr dΩ smax(ψ) 0 ds dm dn(s, ψ) dm × dc m t ρ sm (s, ψ) θ(x t -t ) . (32c) 
All these terms characterize the DM contribution to diffuse gamma rays. Note that in the averaged subhalo contribution J sub ψ , featuring the differential subhalo number density dn given in Eq. ( 8), we have actually integrated the contribution of all subhalos assuming that they are point-like (i.e. their tidal radii are contained in the solid angle characterized by the resolution θ r )-hence the presence of the full ξ t luminosity function. This is formally an approximation, but a very accurate one in fact because the number of point-like objects is much larger than the extended ones in the resolution angles we will consider (see Sect. IV D 2). The Heaviside function allows us to integrate only over those subhalos which have not been destroyed by gravitational tides in our model.

D. Point-like subhalos

Here we give a practical definition to the concept of point-like subhalo. To avoid any confusion, we emphasize here that this notion applies to both resolved and unresolved sources, in the observational sense (i.e. above and below background).

Definition

We start with a geometric definition (see e.g. Refs. [78,120]). A subhalo located at a distance s from the observer is considered as point-like if most of its luminosity is contained in the resolution angle θ r assumed for the telescope, i.e.

min(r t , 2 r s ) s ≤ sin(θ r ) , (33) 
where we have used the luminosity radius introduced in Eq. ( 19), and based on that 96% of the luminosity is contained within 2 r s for NFW (sub)halos [see Eq. ( 17)].

Trading the scale radius for a combination of the virtual (virial) mass m and the concentration c, this inequality relation for the tidal radius becomes an inequality relation for the (virial, not tidal) mass, reading

m ≤ m max pt (s, c, x t ) ≡ 4 π 3 (200 ρ c ) c s sin(θ r ) min(x t , 2) 3 . (34) 
This relation only tells us that the probability for a subhalo to be point-like increases with its concentration, its distance to the observer increases, or a combination of both. It allows us to define a maximal mass m max pt that depends on that distance and on the subhalo properties. Remember that the dimensionless tidal radius x t is a function of position and concentration in our model, x t (R(s, ψ), c). That can further be rephrased in terms of virial (virtual) radius as

r 200 (m) ≤ c s sin(θ r ) min(x t , 2) ≈ c s θ r 2 ⇔ r s (m, c) s θ r 2 , (35) 
Since we only consider resolution angles such that sin(θ r ) ∼ θ r 1, we see that the size of a point-like subhalo is always much smaller than its distance to the observer.

Number of point-like subhalos

It is instructive to compute the fraction f pt ψ of pointlike subhalos lying in the solid resolution angle δΩ r in any direction ψ in the sky. Given the subhalo parameter space introduced in Sect. III A and the definition introduced in the previous paragraph, then

f pt ψ = {m≤m max pt (s,c)} dσ pt (R(s, ψ), m, c) {m≤mmax} dσ pt (R(s, ψ), m, c) (36) 
with dσ ≡ s 2 ds sin θ dθ dφ dm dc .

(
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We have used Eq. ( 22) to define the full phase-space volume element dσ about the line of sight. It is easy to understand that f pt ψ 1 for all angles ψ and for the resolution angles we consider, just because the volume where most subhalos would appear as extended is strongly confined around the observer. This is shown in the right panel of Fig. 2, where we have evaluated this fraction (more precisely 1f pt ψ ) numerically as a function of the line-of-sight angle ψ for different assumptions on the minimal subhalo mass, the initial mass index α, and the tidal disruption efficiency ε t .

J-factor for a single object

If a subhalo of mass m t,i is point-like, located at a distance s i r t , its J-factor J pt ψ,i should actually account 10 -8

1 -f pt ψ α = 1.9 m min = 10 -10 M m min = 10 -6 M α = 2.0 m min = 10 -10 M m min = 10 -6 M t = 10 -2 t = 1 θ r = 0.1 • FIG. 2.
Left panel: Radial distribution of the number density of subhalos assuming a function mass slope of α = 1.9, different lower cutoff masses, for subhalos either resilient ( t = 0.01) or fragile ( t = 1) against tidal disruption. Right panel: Total fraction of extended subhalos per solid angle as a function of the line-of-sight angle ψ, for different mass functions and cutoff masses. As expected, the fraction of point-like subhalos f pt ψ 1, such that the fraction of extended objects (1 -

f pt ψ ) 1.
for the fact that its occupancy volume δV i , assumed centered about the line of sight and characterized by an angular radius equal to or smaller than the considered experimental resolution angle, contains both the subhalo density and the smooth halo density. This should lead to

J pt/δVi ψ,i = J pt ψ,i + J sm ψ,i + J cross ψ,i , (38) 
where

J pt ψ,i ≡ J pt ψ,i (m, c, s i ) = ξ t 4 π s 2 i (39a) J sm ψ,i ≡ 1 4 π dΩ s∈δVi ds ρ 2 sm (R(s, ψ)) ρ 2 sm (R(s i , ψ))δV i 4 π s 2 i (39b) J cross ψ,i ≡ J cross ψ,i (m, c, s i ) = 1 2 π dΩ s∈δVi ds ρ sm (R(s, ψ)) ρ(s) ρ sm (R(s i , ψ)) m t,i 2 π s 2 i . (39c) 
The smooth contribution J sm ψ,i is actually already included in the foreground contribution of the smooth halo, so we can formally remove it. Besides, since the DM mass density at the border of the subhalo is always such that ρ(r t,i ) > ρ sm (R(s i , ψ)) as a consequence of tidal stripping [41], we always have J pt ψ,i J cross ψ,i J sm ψ,i . Therefore, in the following, we only consider

J pt/δVi = J pt ψ,i = J pt i ( 40 
)
for the J-factor associated with a point-like subhalo, which is precise at the sub-percent level. Note that for a point source, we also have J pt i = J pt i , where J, defined in Eq. ( 30), involves an average over the experimental acceptance. The associated gamma-ray flux is simply given by

dφ γ,i (E) dE = S χ (m χ , E) J pt i , (41) 
consistently with Eq. ( 26).

Statistical properties of point-like subhalo J-factors

In order to assess the possibility of detecting subhalos as point-like sources, we have to derive the full statistical properties of J pt ψ . They are obviously related to the properties of subhalos themselves, which are encoded in the global pdf pt introduced in Eq. ( 11). However, now, the parameter space becomes limited by the maximal mass m max pt attainable by a point-like object, and defined in Eq. (34). Actually, given a resolution angle θ r and a lineof-sight angle ψ, the differential probability dP pt J for a subhalo to have a J-factor equal to J 0 can be formally expressed as

dP pt J dJ ψ (J 0 ψ ) = {m≤m max pt (s,c)} dσ pt (R(s, ψ), m, c) × δ(J ψ (s(R, ψ), m, c) -J 0 ψ ) . (42) 
The volume element dσ about the line of sight was introduced in Eq. (37). One can then define the integrated probability to have a J-factor larger than some value as

P pt J (J pt ψ ≥ J 0 ψ ) = {m≤m max pt (s,c)} dσ pt (R(s, ψ), m, c) × θ(J pt ψ (s(R, ψ), m, c) -J 0 ψ ) = ∞ J 0 ψ dJ dP pt J dJ ψ (J ) . (43) 
Note that P pt J (J pt ψ ≥ 0) < 1 because it defines the probability in the ψ direction only. It normalizes to unity only after integration over the full sky. In the left panel of Fig. 3, we show the shapes of these pdf's assuming line-of-sight angles of ψ = 20 • and 90 • , the former being optimal for subhalo searches and the later possibly minimizing the foreground. We also considering two minimal virial subhalo masses, m min = 10 -10 M and 10 -4 M , for a conservative initial mass function index α = 1.9. Here, the subhalo population is embedded in a global NFW halo. We also anticipate as a green vertical band a range of threshold J-factors that expresses the sensitivity of a Fermi-like experiment for 100 GeV DM particles annihilating in τ + τ -in an observation time of 10 yr. This will be discussed extensively in Sect. V, notably in Sect. V C.

This plot illustrates the non-trivial dependence of the P pt J on the pointing angle, characterized by a sharp decrease beyond a given J at small angles, which can be asociated with the ring structure arising within ∼ 50 • from the GC (we shall discuss this in more details later when reaching Fig. 5). This transition just reflects the position of the peak in the number density arising the inner regions of the MW, close to the solar circle, as shown in Fig. 2. This peak corresponds to the region where tidal effects start depleting the subhalo population beyond the peak of the concentration pdf associated with the smallest objects, hence the dramatic decline of subhalos inward. On the other hand, around this peak is where subhalos are still both numerous enough and highly concentrated. One can integrate subhalos over this peak within ∼ 50 • from the GC (corresponding to a height of ∼ 10 kpc from the GC), which explains this particular feature in P pt J . Much less important than it seems is the difference of probability amplitude between m min = 10 -10 M and 10 -4 M , which only comes from the fact that the total number of subhalos scales like ∝ 1/m min (hence the 6 orders of magnitude between the amplitudes); once rescaled by the total number of subhalos, the pdfs actually match with one another very well (except, obviously, for the very low J 0 ψ tail, not appearing in the plot).

The right panel of Fig. 3 shows the same results in terms of the number of point-like subhalos with J-factors larger than a threshold J 0 as a function of J 0 , still for a subhalo population embedded in a global NFW halo. We report the number distributions obtained with different line-of-sight angles ψ, and in the bottom frame, we also indicate the relative difference when assuming subhalos embedded either in an NFW or in a cored global DM halo. We see that the global cored DM halo configuration generically leads to more visible subhalos, Except in the range of J ∈∼ [10 18 , 10 19 ] GeV 2 /cm 5 , which just reflects the fact that the sharp decrease in P pt J for a cored host halo occurs at lower values of J.

From these pdf's, one can also calculate the n th moments of the J-factors (including the mean value with n = 1) using

(J pt ψ ) n = ∞ 0 dJ (J) n dP pt J dJ ψ (J) . (44) 

V. DETECTABILITY OF SUBHALOS AS POINT-LIKE SOURCES

This section enters the prevailing discussion of the paper: assessing the detectability of point-like subhalos. To proceed, we need to carefully define what are the main foregrounds or backgrounds (generically background henceforth) to any potential detection. In most past studies, the main background considered was the "baryonic" contribution to the γ-ray flux. This comprises the diffuse Galactic emission induced by interactions of cosmic rays with the interstellar gas or radiation (pion production, Bremsstrahlung, and inverse Compton processes) and by unresolved conventional Galactic sources, and the isotropic diffuse extragalactic background. A lot of effort has been invested in describing the sensitivity of current gamma-ray experiments to exotic point-like sources based on as accurate as possible models of such Galactic and extragalactic backgrounds, inferred from both phenomenological cosmic-ray modeling, or from more agnostic template fitting methods [58,[START_REF]The Fermi[END_REF]62,65,66]. Here, by contrast, we consider a very simplified model of baryonic background, and instead focus our attention onto another background component often neglected, i.e. the one induced by DM annihilation itself, which is made up of contributions from the smooth halo and from unresolved subhalos. That DM background has already been defined in Sect. IV C.

We further want to place ourselves within the framework of an idealized Fermi-LAT-like experiment, in which we assume that a diffuse emission has been measured in pre-defined regions of interest (RoI's), which is consistent, while not perfectly, with the baryonic foreground (hence limiting the diffuse DM contribution to statistical or systematic fluctuations at maximum). This will allow us to set limits on the contribution of DM annihilation to the diffuse emission, hence on the annihilation cross section, which also impacts on the detectability of DM subhalos.

In Sect. V A, we provide the details of our background model. In Sect. V B, we describe the statistics of the number of point-like subhalos contributing a flux above a given threshold. In Sect. V C, we review the full statistical analysis we perform to infer the sensitivity to point- Prob.
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FIG. 3.
Left panel: Probability distribution functions dP pt J (J)/dJ ψ (differential) and P pt J (J pt ψ ≥ J) (integrated), for a resolution angle θr = 0.1 • , line-of-sight angles ψ = 20 • (intermediate latitude) and ψ = 90 • (Galactic pole), and a subhalo population configuration of resilient subhalos with (α, mmin, t) = (1.9, 10 -10 -10 -4 , 0.01) embedded in an NFW Galactic halo. The green vertical thick line gives the typical sensitivity for a Fermi-LAT-like experiment calculated for an observation time of 10 yr. Right panel: Corresponding distribution of the number of subhalos with J-factors larger than J0 as a function of J0, for different line-of-sight angles. The bottom part of the plot shows the relative difference when using a subhalo population model embedded in a cored Galactic halo.

like subhalos in our idealized framework. We start with a simplified statistical reasoning (see Sect. V C 2), which allows us to derive useful analytical results for the threshold flux of subhalo detection as a function of time and annihilation cross section. Most notably, we derive useful time-independent asymptotic limits arising in the case of infinite observational time, which correspond to the most optimistic case for the detection of DM subhalos. Finally, we generate mock data and apply a complete likelihood analysis (i) to mimic the current Fermi data analysis, (ii) to qualitatively validate the aforementioned simplified statistical reasoning, and (iii) to get more definite results for the detectability of subhalos. We discuss these results in Sect. V C 4.

A. Baryonic background model

We consider two types of contributions to the diffuse background that may shield DM subhalos as individual sources: one coming from DM annihilation itself, already discussed in Sect. IV C, and another one coming from conventional astrophysical processes, dubbed baryonic background. To maximize the self-consistency of our study, we base our baryonic background model on the same ingredients used to determine the tidal stripping induced by the baryonic disk, i.e. those included in the Galactic mass model derived from kinematic data in Ref. [76]. They consist of the spatial distributions for the atomic and molecular interstellar gas. We remind the reader that our goal is to have a realistic modeling of the background, though not necessarily a precise one. Indeed, we shall not discuss the Fermi data themselves, but instead provide a realistic insight as to what to expect to find in them in terms of any putative subhalo contribution.

For space-borne observatories like Fermi-LAT [121], the genuine background includes many different astrophysical contributions, as shortly stated above. However, for simplicity, we restrict ourselves to the pion decay contribution induced by the interactions of cosmic rays with the interstellar gas, which is the dominant one in the 1-100 GeV energy range we consider [122]. There are of course other contirbutions, but the spatial distribution of their amplitudes should not change much with respect to the pion decay one-we will leave some freedom in the overall normalization, but this will anyway not be critical in our analysis. We add by hand the isotropic diffuse emission assumed to be of extragalactic origin, for which we simply consider the spectrum derived in Ref. [122]. In the following, we only consider gamma-ray energies above 1 GeV, to avoid modeling issues with the pion bump at ∼ 100 MeV.

Consistently with our Galactic mass model, we can predict the relative intensity of the pionic emission by convoluting of a cosmic-ray flux, assumed homogeneous in the MW for simplicity, and the spatial-dependent hydrogen number density, n ism . The latter can be expressed as

n ism ( x) = n H ( x) + 2 n H2 ( x) = ρ H ( x) m H + 2 ρ H2 ( x) m H2 , (45) 
where indices H and H 2 refer to atomic and molecular hydrogen, respectively, m H/H2 being their masses, and where, consistently with the SL17 subhalo model, we take the associated gas mass densities ρ's from McM17. Further integrating this density along the line of sight, within a resolution solid angle δΩ r , we get

dφ π (E, l, b) dE dΩ δΩr = f π (E) 4 π δΩ r δΩr dΩ ds n ism (s, l, b) f π (E) 4 π ds n ism (s, l, b) , (46) 
where l and b are the longitude and latitude, respectively. The spectral function f π (E) is taken as a power law,

f π (E) = f 0 E 1 MeV -2.72 , (47) 
where the normalization f 0 = 1.2 × 10 -21 MeV -1 s -1 is tuned to give a decent fit to the pionic contribution estimated in Ref. [122]. The latitudinal profiles of this pionic gamma-ray flux background model integrated over two energy ranges, [1.6-13] GeV and GeV are shown in Fig. 4 (left and central panels), and are compared with the observed profiles provided in Ref. [122].

We see that the shapes are nicely recovered both in the central regions and in the outskirts of the MW, with errors in amplitude fluctuating by a factor of 2 at most. This angular gradient is realistic enough for our study. The full baryonic background flux is then given by

dφ b (E, l, b) dE dΩ δΩr = α b dφ π (E, l, b) dE dΩ δΩr (48) 
+ dφ iso (E, l, b) dE dΩ δΩr ,
where φ iso is the isotropic component that we extract from Ref. [122]. We have introduced a tuning parameter α b , which will later allow us to mimic additional systematic uncertainties or missing sources of background; for the moment, we assume α b = 1 unless specified otherwise. In the right panel of Fig. 4, we show the full skymap obtained for this baryonic background. It shines at low latitudes, as expected, but these regions will actually be discarded when looking for DM subhalos.

B. Number of subhalos above threshold and associated probability

Before entering the details of the determination of the sensitivity to point-like subhalos in our idealized model, hence of the detection threshold in terms of gamma-ray flux, it is useful to describe how we can translate a sensitivity estimate into a number of observable subhalos and associated probability. For given DM particle mass, annihilation cross section and channel, the gamma-ray flux is fully determined by the J-factor (see Eq. 41). Therefore the sensitivity to point-like subhalos can be expressed in terms of a minimal J-factor, that we call J min . Since the background is not isotropic,

J min = J min (l, b) = J (l,b) min .
The integrated probability for a point-like subhalo to have a J-factor larger than J (l,b) min in the direction characterized by the angle ψ(l, b) such that cos ψ = cos b cos l is given in Eq. ( 43), for a resolution solid angle δΩ r -see also Fig. 3. We can further integrate this probability over the full sky, accounting for the fact that J min depends on the pointing angle. We then get

P pt vis = db cos b dl P pt J (J pt ψ ≥ J (l,b) min ) (49) 
Here, P pt vis is normalized by construction in such a way that it is 1 for J (l,b) min = 0. From now on, we denote this probability p for short.

Given a total number of point-like subhalos N pt N tot , the probability to detect k subhalos is given by the binomial probability

P (k|N pt ) = N pt k p k (1 -p) Npt-k . ( 50 
)
Using the fact that in realistic situations we expect k N pt and N pt 1, we can use the Poissonian limit of the previous equation,

P (k|N pt ) ν k k! e -ν with ν ≡ N pt p . (51) 
Therefore the probability to observe at least n objects is given by

P (≥ n|N pt ) 1 - n-1 i P (i|N pt ) . ( 52 
)
We can further consider the cumulative of the probability given in Eq. ( 51) by promoting k to a real number x, such that

P x (x|N pt ) = e -ν x -1 k=0 ν k k! = Γ( x , ν) Γ( x ) , ( 53 
)
where the Γ functions in the denominator and in the numerator are the standard and incomplete gamma functions, respectively. We can then define a confidence interval at 100(1c)% that x be measured in the range

[N - c , N + c ] by solving c 2 = Γ(N - c + 1, ν) Γ(N - c + 1) = 1 - Γ(N + c , ν) Γ(N + c ) . ( 54 
)
In the following, we use this formalism to determine the number of subhalos that could be observed with a Fermi-LAT-like observatory. The fundamental quantity that should now be characterized is the minimal J-factor, J

(l,b)
min , that we address below. C. Sensitivity to point-like subhalos

Specifications of our virtual Fermi-LAT-like instrument and of our DM benchmarks

Since we wish to address the potential of Fermi-LAT or any other similar experiment to detect subhalos, we first have to fix the main specifications that will be used to make predictions. These specifications need not match exactly those of Fermi-LAT, but need to be close enough to be quantitatively realistic 4 . We do not seek for percent precision, but rather order 1 precision in terms of subhalo searches. We can therefore simplify the experimental characteristics such that they can be manipulated with ease at the level of calculations. Consequently, in the following, unless specified otherwise, we assume:

• a search energy window 5 of [1-100] GeV with a flat effective area A of 0.9 m 2 , and a field of view of 1/5 of the sky (consistent with the acceptance of ∼ 2.3 m 2 sr quoted in [124,125], and with the exposure of 2.7-4.5 × 10 11 cm 2 s = 0.86-1.43 m 2 yr quoted in the fourth Fermi catalog and corresponding to 8 yr of data taking [START_REF]The Fermi[END_REF]);

• two benchmark resolution angles of θ r = 0.1 • and 1 • , with the latter to very roughly address the search for extended subhalos;

• a uniform coverage of the sky.

For WIMP DM, we assume a default canonical swave thermal annihilation cross section fixed to σv = 4 Details can be found on the dedicated Fermi-LAT webpage. 5 We restrict ourselves to a limited energy range where the effective area is constant. A maximum of 100 GeV allows a reach in WIM mass of ∼ 300 GeV (∼ 2 TeV) for an annihilation in τ + τ - (b b) [65,119,123].

3 × 10 -26 cm 3 /s (neglecting changes with the WIMP mass, see e.g. [126,127]), and consider the b b or τ + τ - annihilation channels using the spectral tables provided in Ref. [123].

A simplified but helpful warm-up statistical analysis

We start with a very simple statistical method based on On-Off event number counting [128]. Given the gammaray fluxes for a point-like source and associated background, we can very roughly define the sensitivity in terms of rudimentary Poisson statistics [128][129][130][131]. For a subhalo of index i located at position s i in the observer's frame, and characterized by an angle ψ i and Galactic coordinates (s i , l i , b i ), with cos ψ i = cos b i cos l i , we can estimate the number of gamma-ray events N i γ collected in an arbitrary energy range ∆E by a telescope of time-area efficiency set by the effective collection area A and and observation time T obs . Neglecting for simplicity dependencies other than on energy for the effective collection area, this event number reads

N i γ (l i , b i , ∆E) = ∆E dR i dE T i obs , (55) 
with

dR i dE ≡ AS χ (m χ , σv , ∆E) J i (56) = N γ A ∆E ∆E J i .
We have introduced the differential event rate dR/dE. The flux factor J i is given by Eq. ( 40), and the spectral function S χ by Eq. ( 25), with the effective collection area A. Since this expression is for a point source, J i needs not be modified by the average over the experimental acceptance [see discussion below Eq. ( 39)].

Similarly, the background event number is given by

N bg γ (l i , b i , ∆E) = ∆E dR bg dE T bg obs , (57) 
with the background rate averaged over ∆E

dR bg dE ≡ 1 ∆E ∆E dE δΩr(E) dΩ dφ bg γ (E, l i , b i ) dE dΩ A(E) π θ 2 r ∆E ∆E dE dφ bg γ (E, l i , b i ) dE dΩ A(E) . (58) 
Again, we have assumed that the angular efficiency is flat and maximal within the energy-dependent angular resolution θ r (E) of the instrument, such that Θ(θ r (E)θ) can be traded for the solid angle domain δΩ r (E). The latest approximated equation assumes a vanishingly small energy-independent resolution angle and that the background flux varies by less than a statistical fluctuation within this angle. In that case the angular integral factorizes out, giving 2 π(1-cos θ r ) π θ 2 r . In the following, we actually neglect the energy dependence of θ r for the sake of simplicity, and because it has negligible impact on our results (it would have impact in studies of the Galactic center emission).

Without loss of generality, a point-like source can be detected (or resolved, equivalently) when the number of signal events becomes larger than some threshold number n σ times the Poissonian fluctuation of background events, assuming the same exposure for both the signal and background. This is expressed as

N i γ (l i , b i , ∆E) N bg γ (l i , b i , ∆E) > n σ . (59) 
We can actually artificially absorb any exposure difference between the target and reference background in the number of fluctuations n σ , which should then be thought of as an effective threshold number of order ∼ 1-10 [128].

In the classical case of exact Poisson statistics with equal on-and off-source exposure, a detection threshold corresponds to n σ ≥ 5. From the above equation, we can define a minimal J-factor for a point-like subhalo to be detected as follows:

J (l,b) min (∆E, m χ , σv ) = n σ T obs N bg γ (l, b, ∆E) AS χ (m χ , σv , ∆E) (60) = n σ √ T obs 2 m 2 χ σv ∆E dR bg dE N γ A ∆E .
This equation explicitly shows that the pointing-direction dependence of J

(l,b)
min is only set by that of the background. This is important to realize, because in essence, this means that the most visible point-source subhalos (relative to background) may have different internal properties depending on the pointing direction, and are not necessarily the most intrinsically luminous. The dependence in σv is rather trivial at first sight since, obviously, J (l,b) min increases as the annihilation cross section decreases. A quick inspection of the right panel of Fig. 3 already tells us that increasing a bit J (l,b) min can have a dramatic impact on the number of visible subhalos: if constraints on σv get stronger and stronger, the probability to detect subhalos is going to shrink accordingly. However, we will see below that this is less trivial if the constraint is set from the analysis of the diffuse Galactic emission, and if one insists on detecting subhalos before the smooth halo.

Eventually, one can translate J 

∝ σv J (l,b) min ,
where the integral is performed over an arbitrary energy range ∆E.

Impact of different background configurations

The composite nature of the background affects the behavior of the sensitivity to point-like subhalos. Here we inspect several background configurations still in the framework of the simplified statistical method introduced above. We first consider subhalo searches neglecting the baryonic foreground and accounting only for the smooth DM and unresolved subhalos background emission. Then we do the contrary, i.e. neglecting the diffuse DM contribution and considering only baryons. Finally, we study a more realistic background case including both the baryonic and diffuse DM contributions, and further derive the conditions for a subhalo to be detected before the diffuse DM component. As we will see, the latter configuration gives rise to asymptotic conditions that do depend neither on the annihilation cross section nor on the observation time. That result will actually be recovered by means of a more sophisticated statistical analysis resembling that used by the Fermi Collaboration.

a. DM-only background model: Neglecting the baryonic background is obviously not realistic, but this allows us to figure out quickly where the most visible subhalos should concentrate in the sky, notably if the smooth halo were to be discovered first. These are not necessarily the most intrinsically luminous, since they still have to contrast with the background. However, in this case, the background is the lowest possible, i.e. induced by DM itself (both the smooth halo and unresolved subhalos). That background configuration also leads to a dependence of the sensitivity to point-like subhalos on the annihilation cross section different from the baryonic background case, which characterizes the case of subhalo searches after the detection of the smooth halo. In the DM-only case, the number of background events is given by

N bg γ (l, b, ∆E) = N bg/dm γ (l, b, ∆E) = N diff γ (l, b, ∆E) = σv 2 m 2 χ N γ A J diff ψ T diff obs , (62) 
which implies

J (l,b) min = J ψ min ∝ θ r σv T obs ⇔ φ ψ min ∝ θ r σv T obs .( 63 
)
The number of background events is therefore similar to that of signal events defined in Eq. ( 55), except for the J-factor of the diffuse DM component J diff ψ , defined in Eqs. (31) and (30). Note that for an energy-independent resolution angle and a flat angular acceptance

J diff ψ = J diff ψ .
Since the diffuse DM background is itself proportional to σv , the threshold J-factor J min given in Eq. ( 60) scales like 1/ σv T , not like 1/( σv √ T ), which only holds when the background is independent of the DM annihilation rate. Consequently, itnerestingly enough, although the sensitivity to point-like subhalos increases as σv increases (J min decreases-see the right panel of Fig. 3), the point-like flux sensitivity φ min actually degrades because of the brighter background. The additional factor of θ r arises from the assumption that the diffuse background varies by less than a statistical fluctuation within the resolution angle of the instrument, see Eq. (58). That assumption essentially holds while not pointing toward the Galactic center, and shows that both the subhalo and flux sensitivities degrade (J min and φ min increases) when the resolution angle increases simply as a consequence of collecting more background photons.

In the left panels of Fig. 5, we show skymaps of the effective number of visible subhalos per solid angle unit. They are computed using the nominal subhalo population model self-consistently embedded either within an NFW Galactic halo (top panels) or in a cored one (middle panels), and point-like subhalos were defined by taking a resolution angle of θ r = 0.1 • . Although we consider the DM-only induced diffuse gamma-ray background for the moment, the subhalo population model still includes baryonic tidal stripping. The model parameters are set to (α, m min /M , t ) = (1.9, 10 -10 , 0.01). We further assume WIMPs of 100 GeV annihilating into τ + τ -with the canonical annihilation cross section, and restrict the spectral gamma-ray window to the GeV energy range-we define "visible" by demanding n σ ≥ 3 in Eq. ( 60), and taking an observation time of 10 yr. With this setup, we get < 1 photon in the virtual detector, so the discussion here is only to be taken at the qualitative level, and numbers to be compared only relatively between one another. We see that visible subhalos concentrate in a ring around the Galactic center, whose width and peak actually depend on the subhalo sensitivity J ψ min . The right panels of Fig. 5 show the corresponding angular distributions as a function of the line-of-sight angle ψ, and also show the results obtained with a broader resolution angle of θ r = 1 • , as well as the impact of changing the mass slope α (1.9 or 2) and the minimal virial mass (10 -10 or 10 -4 M )-the shaded areas correspond to the 68% and 95% statistical uncertainties, and are derived according to Eq. ( 54). It appears from these angular projections that in both NFW and cored Galactic halos, potentially visible subhalos for θ r = 0.1 • are concentrated in a ring about the GC extending up to ψ ∼ 50 • with a peak around ψ ∼ 30 • (reddish curves). It also appears that a larger resolution angle of θ r = 1 • drastically changes this angular distribution (blueish curves) due to two different effects: (i) as seen from Eq. ( 63), the sensitivity degrades simply as the detector integrates more background photons; (ii) changing the resolution angle allows bigger (hence intrinsically more luminous) subhalos to become point sources, and bigger subhalos are more suppressed by gravitational tides in the central Galactic regions. As an outcome, increasing the angular window for individual subhalo searches has the effect of shifting the angular distribution to much larger values of ψ (larger latitude, longitude, or both)-with a very flattened peak now around ψ ∼ 70 • . The precise angular distribution of visible subhalos strongly depends on that of the diffuse background. The latter is affected by unresolved subhalos at large angles, which makes it important to include them in the background. In contrast, changing the global DM halo from an NFW (top panels) to a cored profile (middle panels) does not significantly affect these features, except for enlarging the peaks toward low angles and slightly flattening them as well (less diffuse background in the central regions, but also slightly less subhalos within the halo scale radius). All this is summarized in the bottom panel of Fig. 5, where the level of background and subhalo sensitivity are varied by tuning σv instead-see Eq. (63).

Such trends are consistent with the Monte Carlo results obtained in [77], which instead describe the distribution of the brightest point-source subhalos as a function of distance to the observer. We stress that these are not necessarily the most visible when contrasted with the diffuse background. Our analytical calculations have the advantage of very easily covering the full dynamical range and as many model configurations as necessary, in a very short CPU time.

Still in the right panels of Fig. 5, we explore the impact of changing the main subhalo population model parameters, by taking different combinations within (α, m min /M , t ) = (1.9 -2, 10 -10 -10 -4 , 0.01). It is well known that varying the minimal virial subhalo mass m min has only significant (non-logarithmic) impact for α > 1.9 (see e.g. [46,47,78]). Therefore, we vary m min only for α = 2. This self-consistently keeps the global Galactic halo profile (sum of all components) unchanged once it has been fixed (NFW or cored halo) in the SL17 model, and therefore remains consistent with kinematic constraints by construction. We see that α = 1.9 results in significantly more visible point-like subhalos than α = 2. This might look surprising because the number of subhalos is much larger in the latter case, for a given m min . However, there are two compensating effects: (i) there are relatively bigger subhalos (hence more luminous) in the α = 1.9 case because the mass function is less steep, and (ii) the diffuse background induced by unresolved subhalos (equivalently the boost factor) is larger in the α = 2 case. The impact of the unresolved subhalo contribution to the diffuse background can actually be evaluated by changing m min from 10 -10 to 10 -4 M , in the α = 2 case. This shrinks the total number of subhalos (hence that of unresolved) by orders of magnitude (N tot ∝ m 1-α min ), but that depletion concerns only subhalos in the range 10 -10 -10 -4 M , which are not massive enough to detach from the background. Therefore, increasing m min in this mass range only reduces the DMinduced diffuse background emission, leading to more visible subhalos. On general grounds, increasing m min corresponds to decreasing m χ [32,34].

Finally, it would be tempting to discuss the absolute numbers of detectable subhalos read off from the angular distribution plots. Caution is of order though, since these numbers are for the moment based on the very rudimentary statistical analysis defined in Eq. ( 59), and the observation configuration used is such that there is < 1 photon detected. A more refined statistical method will be presented later, but will actually not qualitatively change these results. Anyway, we already see from the right panels of Fig. 5 that even when turning the baryonic background off, the expected number of visible subhalos is or order O(1), which only slowly varies with σv and time, as shown in Eq. ( 63).

b. Baryon-only background model: Considering only the baryonic foreground is a common practice to estimate the sensitivity to point-like subhalos (e.g. [64,66]), and amounts here to plug the foreground fluxes defined in Sect. V A into Eq. ( 57), such that

N bg γ (l, b, ∆E) = N bg/cr γ (l, b, ∆E) , (64) 
where the subscript "cr" stands for "cosmic rays" (we neglect unresolved conventional astrophysical sources here).

In this simplified analysis, we use α b = 1 in Eq. ( 48).

In the absence of DM-induced background, the sensitivity to point-like subhalos simply scales like

J (l,b) min ∝ θ r σv √ T obs ⇔ φ (l,b) min ∝ θ r √ T obs , (65) 
where we see that the flux sensitivity (φ

(l,b)
min ) has the standard scaling in time, and does not depend on σv anymore as expected (it is fixed by the baryonic background within ∆E); as for the sensitivity to subhalos (J (l,b) min ), it does obviously depend on σv . Therefore, the reach in terms of J (l,b) min improves faster with σv than in the DM-only background case-see Eq. ( 63). This has consequences in the determination of the number of visible subhalos, since the pdf of the J-factor is a sharp function of J-see Fig. 3. However, one should bear in mind the preliminary result obtained in the previous paragraph that if detected after the diffuse DM component, the dependency in σv becomes much shallower.

The corresponding sensitivity map of visible subhalos is shown in Fig. 6 (top left panel). To increase the contrast, we have masked a region defined by ψ < 40 • in the middle top panel. In the right top panel, we show the skymap obtained for J (l,b) min , which defines the sensitivity map to point-like subhalos, after masking the region |b| < 5 • where most of the conventional diffuse Galactic emission and of the Galactic sources concentrate, and which is less suited for subhalo searches. These maps have been derived from a full likelihood analysis performed on mock data, which will be extensively discussed later, but would be qualitatively the same if derived from the simplified statistical analysis introduced above. Further comparing with the maps of Fig. 5 still on the qualitative level (they have been inferred from a different map of J (l,b) min set by the DM-only background), we see a similar concentration of visible subhalos in the central regions of the MW, except for the degraded sensitivity in the disk. The sensitivity to subhalos is less attenuated toward the very center because the increasing smooth halo contribution to the background is unplugged. The angular distribution of visible subhalos is not shown, but has similar trends as in Fig. 5, except for the different angular dependence of the background, and the fact that it is independent from σv (the angular peak would be at lower angle).

c. Complete DM+baryon background model: Finally, we consider a more realistic background model in which both the diffuse DM contribution and the baryonic foreground are included. The number of background events is now given by

N bg γ (l, b, ∆E) = N bg/cr γ (l, b, ∆E) + N bg/dm γ (l, b, ∆E) , (66) 
where the number of DM-induced background events has been defined in Eq. ( 62), and that of standard astrophysical processes in Eq. ( 64).

To make this configuration even more realistic, we need to account for the fact that in the absence of departure from the background hypothesis, which is the current situation [84,87,88], there are actually independent constraints on σv . Therefore, especially in the context of a consistent subhalo model in which all components of the MW are dynamically linked together, the sensitivity to subhalos inherently correlates with the sensitivity to the diffuse DM contribution. This needs to be properly considered.

The constraint on the diffuse DM contribution can be expressed as a limit on the annihilation cross section that derives, in this preliminary simplified statistical analysis, from the condition

N diff γ (l, b, ∆E) N bg γ (l, b, ∆E) < ñσ , (67) 
where ñσ = O(1) can be considered as an effective number of background fluctuations below which the number of diffuse signal events must confined to remain consistent with the background-only hypothesis. In the classical case of Poisson statistics, a ∼95% (∼99%) confidencelevel (CL) limit is usually set with ñσ = 2 (3). Since current statistical tools in gamma-ray data analyses are well more advanced, as we shall see later, this number is only to be taken as indicative here. Assuming that N bg/cr γ ñ2 σ > 1, and that the diffuse DM-induced signal remains unseen after an observational time T , the above inequality becomes

AS χ J diff ψ T < ñσ T ∆E dR bg/cr dE , (68) 
where we have used Eqs. (30,31, and 58). This translates into an upper bound on the cross section:

σv max = 2 m 2 χ ñσ T N γ A min (lc,bc)        ∆E dR bg/cr dE J diff ψ        . ( 69 
)
We emphasize that the minimum appearing above within braces is uniquely determined for a given configuration of DM and baryonic foreground. It is found at Galactic coordinates (l c , b c ) (and may have replicates by symmetry). The scaling with m χ is not fully explicit here, since the number of photons N γ also depends on m χ , almost ∝ √ m χ for a large variety of annihilation final states [119]; hence σv max

∝ ∼ m 3/2
χ . In Fig. 7, we show the results obtained using Eq. ( 69) for the determination of σv max as a function of the WIMP mass m χ , after integration of the gamma-ray fluxes in the 1-100 GeV energy range and using typical efficiency parameters for Fermi, recalled at the beginning of Sect. V C 3. We report the limits derived from the simplified statistical analysis as dashed (θ r = 0.1 • ) and dotted curves (θ r = 1 • , respectively), which have been obtained in a pointing direction (l c , b c ) = (0 • , 10 • )-"approx." in the legends. We assume DM annihilation into b b (left panels) and τ + τ -pairs (right panels), use ñσ = 3, and take two values for the observation time T : 2 (blue), and 10 yr (red curves, respectively). We have consider both an NFW Galactic halo (top panels) and a cored halo (bottom panels). We compare our results with the limits obtained by the Fermi Collaboration from the analysis of the diffuse Galactic emission [84] (dark gray area), using two years of data, and, for the sake of completeness, from satellite dwarf galaxies [132,133] (light gray area). We also report results from a more complete likelihood analysis that will be discussed later (solid curves). We see that the simplified approach underestimates the real experimental sensitivity by almost an order of magnitude, but has a rather similar dependence in WIMP mass. The difference in sensitivity mostly comes from the fact that we use a single angular and energy bin, and therefore neglect a significant amount of available information. However, it is interesting to note that once we correctly rescale our effective sensitivity number ñσ , we can grossly match with the correct limit. This means that this simplified formalism may help capture the asymptotic behavior of the sensitivity to DM subhalos.

Assuming that the limit on σv reaches the upper bound σv max , i.e. the diffuse DM component is at the verge of being detected but is still not so, we can replace σv by σv max in Eq. ( 60). This provides us with a critical value for the point-like subhalo detection threshold:

J crit min (l, b, ∆E) = η eff σ ∆E dR bg/cr dE (70) 
× max (lc,bc)

J diff ψ ∆E dR bg/cr /dE ,
where

η eff σ ≡ ñσ n σ T T ≈ ñσ n σ . (71) 
Interestingly, this critical J-factor does not depend on the annihilation cross section anymore. Note that the background event rate dR bg/cr /dE is calculated at Galactic coordinates (l c , b c ) in the max term, while it is calculated at the target coordinates (l, b) outside from the max term-all this is therefore fixed for a Galactic emission model. This critical J-factor actually depends on the ratio of the observation time T used to set the limit on σv , to the observation time T allocated to subhalo searches; on the ratio of the corresponding effective numbers of statistical fluctuations ñσ and n σ as well. It is therefore convenient to define an effective sensitivity parameter η eff σ in terms of these ratios (with n σ /ñ σ ≈ 5/2 or 5/3 in classical Poisson statistics). For non-pointing experiments, like Fermi, T ≈ T , and J crit min further becomes timeindependent (this holds in the large-event-number limit, or equivalently large-time limit, when Poisson statistics can safely be applied). To connect with more advanced statistical analysis methods which use more complete information, we can reasonably allow η eff σ to vary between ∼1 and ∼10 per energy bin. Such a range should cover most of realistic cases.

The fact that J crit min is independent from both the annihilation cross section and the observation time (in the infinite-time limit) is, though readily derived here, a very important result. It is actually recovered when using a more sophisticated statistical analysis as we will see later. It means that we can rigorously answer the question of whether or not subhalos can be detected before the diffuse DM component, should DM self-annihilate and produce gamma-ray photons. Indeed, the derivation of J crit min is based upon requiring the diffuse DM contribution to remain below the baryonic background. Therefore, irrespective of the annihilation cross section, one can simply infer the number of observable subhalos by integrating the probability distribution function of the J-factor shown in Fig. 3 above J crit min . If one finds the minimal J-factor needs to be lower than this critical value to get a sizable number of observable subhalos, then that means that subhalos could hardly be detected as individual sources before the smooth Galactic DM halo itself.

The fact that J crit min does not depend on time needs further explanation. Indeed, there is actually a time dependence which is somewhat hidden in that is is calculated from a very specific cross section: the upper bound σv max , which does depend on time. Consequently, following the evolution of J crit min as a function of time T implicitly assumes that in the meantime, one has to set the annihilation cross section to σv max (T ).

In Fig. 8, we trace J crit min as a function of observation time from both Eq. ( 70) (with a conveniently rescaled η eff σ -blue dashed curve) and a more sophisticated likelihood analysis of mock data (blue solid curve). When inferred from the simplified analysis, J crit min is a flat function of time, as explained above; it becomes flat only after a time of several years with the full likelihood analysis, because the latter correctly deals with the statistics of small numbers, but still confirms the prediction obtained from the simplified method. The left and right panels differ only by the resolution angle (see caption). We also report the sensitivity to point-like subhalos J min (in the direction where it is minimized) as a function of time, assuming an annihilation cross section set by a 3-σ limit on the diffuse DM flux after 10 yr (red curves) or 20 yr (green curves)-the latter being ∼ √ 2 smaller. The J min curves cross the flattish J crit min ones at corresponding times, as they should. Beyond these special times, the decrease of J min with time as ∝ 1/ √ T implicitly hides the fact that the diffuse DM-induced emission should have been detected at these times. If not, then one should keep on following the blue lines until the detection of the diffuse emission (time from which J min scales like ∝ 1/ √ T again). Therefore, if the values of J min needed to detect a sizable number of subhalos lie below J crit min , that means that one should detect the diffuse DM-induced emission first.

A full likelihood analysis of mock data

In order to validate the previous results, we upgrade our statistical analysis method to get closer to the standards employed in the Fermi collaboration for both the smooth Galactic DM searches [84,87,88] and the subhalo or point-like source searches [58][START_REF]The Fermi[END_REF][START_REF] Belikov | [END_REF][61][62][63][64][65][66][67][68][69]. We therefore set up a full likelihood analysis.

a. Mock data generation : We first generate mock data based on the signal and background configurations discussed above. However, here, we need to add a layer of subtlety. Indeed, to be as realistic as possible, Limits on σv for a reference NFW Galactic halo The likelihood limits correspond to 3-σ exclusion curves (solid curves). Top panels: Limits for both our reference NFW halo and the halo shape used in the Fermi-LAT analysis (dubbed "diffuse+12"-the dotted-dashed curve), together with the Fermi-LAT limits obtained from the diffuse Galactic emission [84] (dark gray area), and from dwarf galaxies [132,133] (light gray area). Bottom panels: Same for our reference cored halo profile. Left/right panels: Full annihilation to b b/τ + τ -is assumed.

we want to artificially reproduce the fact that like in the Fermi data analysis, our background model be not perfect, and that positive fluctuations arising from uncontrolled systematic effects degrade the sensitivity to DM searches. We also want to implement the fact that so far the smooth DM has not been convincingly detected. Therefore, our mock data will be based on a biased version of our baryonic diffuse emission model introduced in Sect. V A, which will leave room for positive fluctuations possibly interpreted as DM annihilation in the absence of systematic uncertainties. To make it simple, the bias will simply amount to a systematic shift by 30% of the Galactic baryonic foreground.

We divide the sky into N θ angular bins each divided into N E energy bins. We denote b i the averaged number of photons expected from our emission model an instrumental specifications [see Sect. V A, Sect. V C 1, Eqs. ( 57) and (58)] in a bin of index i, and we build our mock data by drawing a corresponding number of gamma-ray pho- FIG. 8. Minimal J-factor (sensitivity to point-like subhalos) a function of time, assuming a subhalo population embedded in an NFW Galactic halo, and a WIMP of 100 GeV annihilating into τ + τ -. Plain curves show the results obtained with the full likelihood analysis of mock data, and dashed curves show the results obtained with the simplified statistical analysis, with a rescaled effective sensitivity parameter η eff σ = ησ. Red curves assume an annihilation cross section set from the 3-σ limit (non-detection of the smooth DM contribution) obtained from the likelihood analysis for 10 yr of observation, while green curves assume a lower annihilation cross section set from the limit corresponding to 20 yr (see Fig. 7). Blue curves indicate the critical J-factor J crit min obtained by demanding that the smooth DM contribution remain at its 3-σ limit (blue curves cross the red ones at 10 yr and the green ones at 20 yr, as expected). Left panel: θr = 0.1 • . Right panel: θr = 1 • (mimicking the sensitivity to extended sources).

tons n i in that bin according to the distribution

p(n i | b i ; σb,i ) = 1 n i ! 2 π 1 + erf b i √ 2σ i -1 (72) 
× 1 σi ∞ 0 dx x ni exp -x - (x -ᾱb b i ) 2 2σ 2 b,i
, where ᾱb represents the systematic shift in the background model and σb,i the associated dispersion. Such a shift was actually already introduced in Eq. ( 48) where we anticipated a possible mismodeling of the background. It is meant to affect only the diffuse Galactic emission here, not the isotropic background that we treat with standard Poisson statistics. In practice we use σb,i = ηb i , i.e. a dispersion proportional to the expected number of counts without shift. When that dispersion vanishes, we recover, as expected, a shifted Poisson draw given by

p(n i | b i ; σb,i → 0) → 1 n i ! ∞ 0 dx x ni e -x δ (x -ᾱb b i ) = (ᾱ b b i ) ni n i ! e -ᾱb bi . (73) 
In Fig. 9, we show an example of such mock data, generated with ᾱb = 1.3 and σb = 0, for a collection time of 2 yr. This kind of mock data will be processed through a likelihood analysis which will consist of two different steps: (i) setting the limit on σv from the diffuse emission; (ii) defining the sensitivity to point-like subhalos.

b. Likelihood analysis of the diffuse emission: limits on σv : In order to analyze our mock data, we set up a likelihood analysis similar to the one performed by the Fermi-LAT collaboration to get limits on the diffuse Galactic DM-induced emission. We wish to calibrate our bias parameters ᾱb and σb to get results in reasonably good agreement with the actual ones, in spite of the simplicity of our background model. We construct a simple likelihood function that should allow us to describe our signal and background models with a limited number of parameters: the annihilation cross section σv and the background bias parameter α b . The chance of getting a number n i of photons in bin i can be estimated from the likelihood function

L i (n i | σv , α b ) = (a i σv + α b b i ) ni n i ! e -(ai σv +αbi) ×      L sys (α b ) ≡ e - (α b -1) 2 2σ 2 b 2πσ 2 b      , (74) 
where a i is defined such that the averaged number of photons expected from DM annihilation in bin i be s i = σv a i . L sys is a nuisance sub-function that adds up a Gaussian penalty of σ b if the bias parameter α b departs from 1. This helps the model get closer to the biased mock data (generated with ᾱb ), while not too close to leave room for a possible DM contribution. This is our trick to mimic a mismodeling of the background, which typically leads to 30% fluctuations around the background-only hypothesis in the Fermi data [84,87,88]. This parameterizes our uncertainty in the background model, and allows us to calibrate our likelihood analysis to get results close enough to past or current data analyses, and then to more confidently extrapolate it to future times. Such a likelihood function is often called a profiled likelihood, because it is not normalized to unity with respect to the data. The total profiled likelihood associated with all bins is given by

L( σv , α) = i L i (n i | σv , α b ) . (75) 
Equipped with this improved statistical setup, the first step is to find the best-fitting parameters of the model (including both the signal and the background), which we denote ( σv , α b ) for a given WIMP mass and given annihilation channels. We proceed semi-analytically, as explained in B 1.

Eventually, to set a conservative upper bound on σv without trying to compare the background-only and the signal-and-background hypotheses, we standardly define our null hypothesis as our signal-and-background bestfitting model characterized by ( σv , α b ), and compute the likelihood ratio to that null hypothesis,

R( σv ) ≡ L( σv , αb ( σv )) L( σv , α b ) . (76) 
Here, αb ( σv ) characterizes the best-fitting model for which σv is now a fixed parameter, and is obtained by solving the implicit equation

i b i ni σv ai+ αb ( σv )bi -1 (77) 
-

N S N E αb ( σv )-1 σ 2 b = 0 .
Let us now present as clearly as possible the way we set a limit, and its precise statistical meaning. Wilks' theorem [134,[START_REF] Wilks | Mathematical Statistics[END_REF] tells us that when the number of data points goes to infinity, on condition that the null hypothesis holds true, the log-likelihood ratio defined as -2 ln R( σv ) satisfies a χ 2 (1) distribution [START_REF] Cowan | [END_REF], where the probability density of χ 2 (k) is given by

f χ 2 (k) (x) ≡ 1 2 k/2 Γ(k/2) x k/2-1 e -x/2 . (78) 
If we denote p 0 the probability to have -2 ln R( σv ) > t under the null hypothesis, then t is implicitly defined by

p 0 = ∞ t dy f χ 2 (1) (y) = ∞ t dy 1 √ 2πy e -y/2 = 2 π ∞ √ t dx e -x 2 /2 . (79) 
Therefore, if we demand a constraint at ñσ σ, then this translates into

p 0 = 1 - 1 √ 2π +ñσ -ñσ dx e -x 2 /2 = 2 π ∞ ñσ dx e -x 2 /2 , (80) 
which implies from the previous equation that t = ñ2 σ . To summarize, a limit at ñσ σ can be set by looking for the value of σv such that -2 ln R( σv ) = t = ñ2

σ . If instead we want to define the limit from the probability itself, for example p 0 = 0.05 (equivalently a limit at 95% confidence level), then we just have to solve

erfc t 2 = 0.05 , (81) 
which has solution t 3.85. Actually, parameter t represents here what is generically called the Test Statistics (TS) [130] in Fermi-LAT data analyses.

We use this likelihood approach to derive limits on σv from the analysis of our mock data. This limit is important to assess whether point-like subhalos can be detected before or after the DM-induced diffuse emission itself. It is the likelihood equivalent to σv max , defined in Eq. ( 69) and derived from our simplified statistical analysis. It fully determines J crit min (see Eq. 70), the critical threshold J-factor for subhalos, below which the DMinduced diffuse emission should have been detected first.

We first check whether the limit we get is consistent with the one derived by the Fermi-LAT collaboration in Ref. [84], calculated with two years of data. In fact, this comparison will help us tune both ᾱb , which fixes the bias of the mock data with respect to the background model, and σ b , which is the Gaussian penalty the likelihood function has to pay to depart from the unbiased background model. This trick injects a tunable systematic error which degrades the limit on σv .

We select the same RoI as in Ref. [84], i.e. 5 • < |b| < 15 • and |l| < 80 • , which we divide into 160 angular bins of size 1 • × 1 • . We collect photons in an energy range of 1-100 GeV further split into 5 logarithmic bins, using the experimental specifications listed in Sect. V C 1, and setting a flat angular resolution of θ r = 0.1 • . By setting the bias parameter ᾱb = 1.3 in the generation of the mock data, we reach a total of ∼ 270, 000 collected photons in the RoI after two years, similar to the statistics found in Ref. [84] after subtraction of conventional gamma-ray point sources. Further setting the Gaussian width of systematic error to σ b = 0.1 in the likelihood function, we derive the limits shown as solid curves in Fig. 7 (using our Galactic halo model). We also report the likelihood limit inferred from the very same NFW halo parameters as in Ref. [84] as the dotted-dashed curve (top right panel, τ + τ -channel), which can more directly be compared with the limit derived in Ref. [84] (dark gray shaded area). We see that the "spectral" agreement is quite reasonable up to WIMP masses of 1 TeV for the τ + τ -channel, as expected (we cut the analysis above 100 GeV). The agreement is also very good for the b b channel (top left panel), up to higher masses also as expected.

These very good qualitative matching and reasonably good quantitative agreement with a real data analysis validate the method, and make us confident to extrapolate our results to longer observation times. This is what we show also in Fig. 7, by extracting limits for 10 and 20 years of observation (red and green curves, respectively). Since our mock data are generated without DM signal, we see that the limits improve as ∼ √ T , as expected. The next step is to figure out whether point-like subhalos could be detected.

c. Likelihood analysis to set the sensitivity to point-like subhalos :

To determine the sensitivity to point-like subhalos, we have to implement a statistical method similar to the standards used in the Fermi collaboration [58,[START_REF]The Fermi[END_REF], which are also based on a likelihood approach. In the following, the search for point-like subhalos is performed over the full sky, except for for the disk region |b| < 5 • which is masked.

In the case of point-like subhalo searches, the likelihood function should have the same form as the one used to set constraints on the diffuse emission model, at variance of the model itself. Indeed, the model is now based on the insertion of a point-like subhalo in a pixel whose size is defined from the angular resolution.

Focusing on a specific direction in the sky and slightly around, we explicitly label by the letter i the angular bins and by letter j the energy bins. For a resolution angle θ r = 0.1 • , we define the point-source search window as a region of 2.2 • ×2.2 • about the pointing direction, divided in angular bins of 0.2 • × 0.2 • (for θ r = 1 • we extend the region to 6 • × 6 • divided in bins of 2 • × 2 • ). We still use 5 logarithmic energy bins covering the 1-100 GeV energy range. The null hypothesis amounts to having no point source at all. We want to quantify the likelihood ratio change if we introduce a source in pixel i 0 . We therefore generate new mock data in the same way as for the diffuse emission for i = i 0 , with the probability

p(n ij | b ij ; ᾱb ) = ( ᾱb b ij + a ij σv ) nij n ij ! e -( ᾱb bij +aij σv ) , (82) 
where we know that σv ≤ σv max (T = 2 yr) since we consider cases for which we had not detected DM through the diffuse component at that time (we could use ∼ 8 yr [88] instead, but this would not qualitatively change our results). In the central pixel i 0 we simply set

n ij = ᾱb b ij + a ij σv + J σv c ij , (83) 
where J σv c ij represents the number of photons received from a point subhalo in pixel i = i 0 with J-factor J and an annihilation cross section σv . The factor c ij obviously satisfies c ij = c 0 ij δ i,i0 . We stress that here σv has to be considered as a fixed parameter of the model. Remind also that J is the true J-factor injected in the mock data.

The likelihood function to consider should then be characterized by two free parameters: J, i.e. the J-factor of the point-like subhalo to estimate, and α b , which represents the departure from central value of the background model. That likelihood function reads

L ij (n i | J, α ; σv ) = c 0 ij σv Jδ i,i0 + a ij σv + αb ij nij n ij ! × e -(c 0 ij σv Jδi,i 0 +aij σv +αbij ) × 1 2πσ 2 b e - (α-1) 2 2σ 2 b . (84) 
Again, we see that departing from α b = 1 to better match with the mock data costs a Gaussian penalty of width σ b , which allows to artificially account for background mismodeling, as in the diffuse emission analysis. The total likelihood function is then simply given by

L(J, α ; σv ) = ij L ij (n i | J, α ; σv ) . (85) 
We first want to determine the bias parameter αb that maximizes the likelihood function in the null hypothesis (no point source). This can be done semi-analytically. However, contrary to the previous case, the signal hypothesis is characterized by two maximizing parameters ( α b , J), which are solutions to a system of equations hardly solvable by semi-analytical methods. Therefore, in the signal hypothesis, we have to resort to the Newton-Ralphson algorithm, as explained in B 2.

We can eventually write down the likelihood ratio of the signal-to-null hypotheses

R ≡ L( J, α b ; σv ) L(0, αb ; σv ) , (86) 
and unambiguously define a 5-σ detection by demanding 2 ln R > 25. It is clear that the higher J in the generated mock data the higher R in the analysis, as it drives the likelihood ratio further and further away from the null hypothesis. We denote J min the value of J such that in average 2 ln R = 25, similarly to Eq. ( 60) in the simplified statistical analysis. More formally:

J (l,b) min = J | ln R(l, b) = 25 2 . ( 87 
)
This time, the sensitivity to point-like subhalos J min , still a function of Galactic coordinates (l, b), is determined from a much more rigorous statistical likelihood analysis of mock data, which is aimed at resembling the ones currently used on real data. It obviously still depends on the pointing direction coordinates. Skymaps of J min are shown in the right panels of Fig. 6 (baryonic background only in the top panel, and both baryonic and diffuse DM background in the bottom panel, setting σv to its 3-σ limit in the latter case, ∼ 5 × 10 -26 cm 3 s -1 , which can be read off from Fig. 7). We see that the angular distribution strongly depends on the background, with a stronger contrast toward the central regions of the MW when the diffuse DM contribution is included. This obviously affects the angular distribution of visible objects, as we will discuss later. We note that we get values of J min ≈ 10 18 GeV 2 /cm 5 , which provide a rather generic order of magnitude for the subhalo detection threshold, which can be compared w ith the probability density function of subhalo J-factors in Fig. 3.

The time dependence of J min is further shown in Fig. 8 as the red and green solid curves (while the dashed curves illustrate the simplified analysis). The former is obtained by setting the annihilation cross section to its limit after 10 yr of (virtual) observation without detection of the smooth halo, while the latter is based on the 20-yr limit (hence a σv value smaller by a factor of ∼ √ 2). The left (right) panel assumes an experimental angular resolution of θ r = 0.1 • (1 • , respectively). We see that the prediction from the simplified analysis J min ∝ 1/ √ T is only recovered in the large θ r case, while for nominal angular resolution J min decreases slightly faster with time. This is a purely statistical effect which derives from the fact that some energy bins are empty or almost so in the latter case. This cannot be captured with our simplified analysis, while it is properly addressed with the likelihood method. In particular, we see that the values obtained for J min in that case are much more conservative at small observation time with the likelihood determination.

By combining the sensitivity J min with the 3-σ limit on σv obtained from the diffuse emission analysis in the absence of DM-induced signal found in the (mock) data, we can determine the critical sensitivity J crit min by setting σv = σv max (T ) in the mock data generated for pointlike source searches, and compute the corresponding J min from the likelihood analysis presented just above. This can be formulated as

J crit min (T ) = J min (T, σv max (T )) . (88) 
Like in the simplified statistical analysis [see Eq. ( 70)], J crit min is the critical J-factor sensitivity below which the DM-induced diffuse emission should have already been detected. Therefore, integrating the pdf of point-like subhalos' J-factor above J crit min (see Fig. 3) formally allows us to determine whether subhalos can be detected as point-like objects before the smooth DM itself. With the involved statistical method described above, we can already check one of the main predictions of the earlier simplified statistical treatment: the fact that J crit min becomes asymptotically constant with time, and independent of annihilation cross section (as long as it sticks to its 3-σ limit, which does depend on observation time).

Values of J crit min computed from the likelihood analysis are reported in Fig. 8 as the solid blue curves (the dashed blue curves show the results obtained with the simplified analysis). The left (right) panel assumes an angular resolution of θ r = 0.1 • (1 • , respectively). Note that the J crit min curves cross the J min red (green) ones at 10 yr (20 yr, respectively), as expected. Indeed, the J min curves have been derived assuming σv max (10/20 yr). These final results for J crit min do confirm the prediction: J crit min flattens and tends to a constant value at large observation time, which can be more accurately determined from a likelihood analysis. It might look surprising that J crit min is independent of time, but recall that it is build by plugging in σv max (T ) which does depend on time. The deep meaning of this time independence is that not detecting the diffuse component intrinsically limits the luminosity of subhalos, which is proportional to σv . Hence, this parameter self-consistently accounts for all the physical degeneracies of the problem.

VI. SUMMARY RESULTS AND CONCLUSION

After this pedestrian exploration of the issue of subhalo searches with Fermi-LAT-like gamma-ray experiments, it is worth trying to summarize our main results.

First of all, the way we have adopted in this study is complementary to many other similar works in that (i) it does not rely on a real data analysis, only on educated modeling, (ii) it is based on subhalo population models self-consistently embedded in full kinematically constrained Galactic mass models, and (iii) it relies on semianalytical calculations that allow us to integrate over the full available phase space that describes subhalos. The subhalo population model accounts for tidal stripping induced by both the DM component and the baryonic disk, which is properly evaluated from the actual distributions of DM and baryons. It is therefore not based on ad hoc formulations. This induces a tight dynamical correlation between the subhalo properties and the other Galactic components which has to be considered for a proper estimate of the detectability of subhalos, since this correlation strongly affects the angular distribution of the signal-to-noise ratio.

We have tried to address two different questions: (i) can have subhalos been plausibly detected and are they already present in the Fermi catalog as unidentified sources? (ii) how probable is it to detect subhalos without having detected the smooth halo first? We have not fully answered these questions yet but shall do so below. However, we have introduced the physical and statistical quantities designed to help us answer. As well known in the field, the physical quantity that best defines the gamma-ray flux of a dark matter object for an observer on Earth is the J-factor, first introduced in [119].

The probability density function of subhalo J-factors, which is fully determined from the main subhalo characteristics (effective 6 mass and concentration functions, and spatial distribution after tidal stripping), provides the most important piece of statistical information [see Eq. ( 42) and Fig. 3]. This was already noticed in e.g. [56], but our probability function differs significantly from theirs because we account for tidal effects, which modifies the naive scaling relations. This probability distribution of J-factors actually combines a complex mixture of different elements, each weighted by a specific though intricate probability: apparent size of a subhalo (fixed by angular resolution, position, mass and concentration), its intrinsic luminosity (mass and concentration), and its distance to the observer-all these distorted by tidal effects. This is of course not enough, since one also needs to figure out what the gamma-ray background is as precisely as possible, in particular its angular distribution. 6 Effective because they depend both on cosmological input functions (initial conditions) and on tidal stripping.

A rather sound model for the background allows us to define the sensitivity to point-like subhalos, which has a statistical meaning and can be expressed as a threshold J-factor. It is denoted J (l,b) min in this paper [see a simplified definition Eq. ( 60), and a more statistically rigorous one in Eq. ( 87)], and depends on Galactic coordinates (l, b) via the background. It defines the J-factor necessary for a point-like subhalo to fluctuate above the background emission significantly enough to be detected. That sensitivity to point-like subhalos is closely related to the point-source flux sensitivity, more familiar to gamma-ray astronomers and defined in Eq. ( 61). The accurate calculation of J (l,b) min is the key element to answer to question (i) above. Once it is calculated over the full sky (see the right panels of Fig. 6), one can easily derive the expected number of visible subhalos by integrating the probability density of subhalo J-factors above J (l,b) min over the full sky (see Fig. 3, where the green vertical thick line piles up the values of J min in all directions).

We have explored the dependence of J min on the main physical parameters with a simplified statistical method in Sect. V C 2, and confirmed our results from a full likelihood analysis performed on mock data in Sect. V C 4. We can summarize the main dependencies as follows:

• σv : The sensitivity to subhalos increases linearly with σv (i.e. J min ∼ ∝ 1/ σv ) in a baryonic background domination, but only ∼ ∝ σv when the DM-induced diffuse background becomes important as well. In contrast, the point-source flux sensitivity φ min is independent of σv in a baryonic background domination, and degrades like ∼ ∝ σv when the DM-induced diffuse background takes over. These scaling relations assume that the Poissonian regime is reached.

• α: Interestingly enough, the sensitivity to subhalos slightly degrades if the initial mass function slope α > 1.9, because this increases the relative fraction of light (hence faint) subhalos with respect to heavier (hence brighter) ones, and thereby increases the contribution of unresolved subhalos to the diffuse emission (said differently, this increases the annihilation boost factor). See an illustration in Fig. 5.

• m min : The impact of the cutoff virial mass m min is only important for α > 1.9. Then, decreasing m min degrades the sensitivity to point-like subhalos because this increases the diffuse emission induced by unresolved subhalos, as explained just above.

Some other characteristics (most probable distances, masses, concentrations) are further illustrated in the appendix, see C. They significantly depend on the angular resolution considered to define the point-like character. By the way, extending the angular resolution beyond its nominal value of θ r = 0.1 • in our calculations might be a way to address the sensitivity to extended objects. min ) assuming θr = 0.1 • for a global NFW (left panels) or cored halo (right panels). Subhalo parameters are set to (α, mmin/M , t) = (1.9, 10 -10 , 0.01). The Jmin curves assume σv fixed to its 3-σ limit for 10 yr or to an already excluded value of 10 24 cm 3 /s for a 100 GeV WIMP annihilating into τ + τ -. Observation times of 10 and 20 yr are considered. Top panels: Angular distribution of subhalo J-factors (colored), J We provide final summary results in Fig. 10, in which the left (right) panels regard a subhalo population model time-σv max (10 yr) (dark blue and brownish curves), which corresponds to the 3-σ limit on σv derived from Eq. ( 80) (≈ 6×10 -26 cm 3 /s, see Fig. 7), and an unrealistically large σv = 10 -24 cm 3 /s (cyan curves); for T = 10 (dark blue and cyan curves) or 20 yr (brownish curves). Two background configurations are assumed: baryonic background only (the DM contribution to the diffuse emission is unplugged-dot-dashed curves), and the complete background comprising both the baryonic and the DM-induced diffuse emissions (solid curves). All results consider WIMPs of 100 GeV annihilating into τ + τ -. These curves are inferred from the full likelihood method introduced in Sect. V C 4, with a likelihood fixed parameter σ b = 0.1 and a mock data parameter ᾱb = 1.3. These parameters artificially introduce systematic uncertainties in the baryonic background and are tuned to match the limits obtained by the Fermi collaboration on real data [84] reasonably well. The experimental angular resolution is fixed to θ r = 0. Varying the background has almost no effect because the DM parameters are such that the baryonic background always dominate (sizable differences can only be seen in the case on the unrealistically large σv ). For reasonable values of σv , we also see that the global halo shape has no strong impact on the angular profile, with a peak found around ∼ 20 • falling sharply at larger angles, which strongly limits the angular search window. Still, the global halo shape has slightly more impact on the global distribution amplitude, making it slightly more probable to detect subhalos if they are embedded in cored Galactic halo. As seen in Fig. 11 though, increasing the angular resolution to 1 • has a more spectacular impact, since this strongly extends the angular distribution of visible point-like subhalos, and also increases the associated amplitude in both the NFW and the cored Galactic halo cases. This might tend to indicate that searches of extended objects have slightly more chance to be successful.

We further quantify our results in Tab. II, where we fully integrate over the statistical ensemble. We provide our predictions for the total number of visible subhalos and its 95% confidence-level range assuming several configurations for DM, the background, and for the observation time. DM is taken in the form of WIMPs of 100 GeV or 1 TeV, annihilating into b b or τ + τ -, with a cross section set by the corresponding 3-σ limit at 10 yr (see Fig. 7). An observation time of 10 yr is assumed, as well as 20 yr but sticking to the same cross section (assuming the 10 yr limit of the cross section, hence the discovery of the diffuse DM after that time in that case). We adopt nominal parameters for the (resilient) subhalo population model. Our main results, which are illustrated in Fig. 12 in terms of angular distributions of visible subhalos for different model configurations, can be summarized as follows:

TABLE II. Number of visible subhalos and 95% confidence interval assuming an angular resolution of θr = 0.1 • and different WIMP models. Mock data are generated with ᾱ = 1.3, and the subhalo sensitivity is evaluated using σ b = 0.1. and ᾱ = 1.3 in the 1-100 GeV energy range (5 logarithmic bins). The subhalo configuration is (α, mmin/M , t) = (1.9, 10 -10 , 0.01), i.e. it describes a population of subhalos resilient to tidal stripping. • In most cases, the number of visible subhalos is presently N vis < 1 at 95% confidence level.

• The most optimistic case is found for m χ = 100 GeV annihilating into b b, for which N vis < 4.2 (2.1) at 95% confidence level for a cored (NFW) Galactic halo. In that case N vis = 0 is still part of the 95% confidence-level range.

• Extrapolating our 10-yr results to 20 yr (same annihilation cross section) from a complete mock data generation and associated likelihood analysis, we find a minor improvement with N vis < 6 (cored halo), though still consistent with 0 at 95% confidence level.

• If to be hunted somewhere, observers should better look for subhalos in a latitude band extending from ∼ ±10 • to ∼ ±40 Based on these results, we conclude that it is unlikely that some of the unidentified sources of the Fermi catalog actually be Galactic subhalos in which DM self-annihilates; this might also hold for extended subhalo searches, if our large angular resolution example is confirmed to be a reasonable proxy for this complementary search window. The only configuration which may allow for subhalo detection is the cored halo case (detecting ≥ 1 subhalo has a p-value of ∼ 0.7 from Eq. ( 52)). We can also reasonably conclude that further including subhalos in the modeling, though necessary for self-consistency reasons, will not help significantly improve the limit on σv derived from the analysis of the diffuse Galactic emission at latitudes ∼ 10 • -15 • ; neither from the absence of any individual detection, nor from their contribution to this diffuse emission which is lower than that of the smooth halo component there. This answers to the question (i) raised above. Finally, we have also defined a quantity, J crit min [see Eq. ( 70) for the definition in the simplified statistical analysis, and Eq. ( 88) for the more rigorous one], which is simply J (l,b) min calculated with the 3-σ limit cross section, which formally allows us to answer to the question (ii). By comparing the flattish curves obtained for J crit min in Fig. 8 with the probability density function of subhalo J-factors in Fig. 3, we can readily claim that it is much more likely to detect the smooth halo before the subhalos. Indeed, if the threshold J (l,b) min curves in Fig. 8 cross the J crit min ones, that means that the smooth halo should have already been detected. We see from our results that J (l,b) min should definitely decrease below J crit min in order to get a guaranteed sizable number of detectable subhalos.

What kind of physical effects could we think of to more optimistically change these conclusions? First of all, let us recall that our subhalo population model is on the optimistic side, since it is based on assuming a strong resilience to tidal effects (subhalo masses are still depleted by tides, but inner subhalo cusps survive). A systematic increase of the subhalo concentration could make them brighter without changing the more constrained smooth halo contribution. However, increasing the luminosity by a factor of ∼ 2 would imply an aggressive change at the level of the width of the concentration distribution function (fully accounted for in our analysis), about 0.15 dex (log-normal distribution), which is not theoretically favored (e.g. [137][138][139][140]). Moreover, this change would have to mostly affect the mass range of visible subhalos, otherwise it would increase the relative contribution of unresolved subhalos to the diffuse emission, and thereby temper the decrease of J (l,b) min . Finally, one could also think about a distorted primordial spectrum that would inject additional power on the relevant subhalo mass scale, as is the case in the formation of primordial black holes or ultra-compact mini-halos (e.g. [141,142]). However, even if possible, that would drive us in the study of a more fine-tuned model, which goes beyond the scope of this paper. The best fit is then evaluated numerically by combining Eq. (B5) with one of the two expressions in Eq. (B3). This system of coupled equations is actually very hard to solve. A way out is to use the Newton-Ralphson algorithm (see below), which is well suited for this kind of problems.

The Newton-Ralphson algorithm

Here, we summarize our implementation of the Newton-Ralphson algorithm, which is a standard likelihood maximization procedure in gamma-ray astronomy [130]. Let us assume a likelihood function given by L(Θ, Ξ) where Θ is a set of parameters, from which we are seeking the one, Θ, that maximizes L-Ξ is another set of fixed parameters. Let λ(Θ, Ξ) = ln L(Θ, Ξ) be the corresponding log-likelihood function, and let us seek for the maximum of λ. To proceed, we introduce the gradient vector of λ defined as D(Θ, Ξ) = ∇ Θ λ(Θ, Ξ) such that, by definition, D( Θ, Ξ) = 0. We can now Taylorexpand D around the best-fit point of coordinates Θ as follows: By massaging this expression-and making explicit in the notation the dependence in (Θ, Ξ)-we find that Right panels: Exclusion areas for the computation of the probability and for different distances to the observer: subhalos that are not seen as points (red), halos that are tidally disrupted (turquoise), halos that have a mass and concentration that does not allow to exceed the background. Visible: those lying in the white area. 7. The energy range is 1 GeV < Eγ < 100 GeV. Note that since we treated the opening angle as a free parameter this map is independent of the DM mass (provided it is above 1 GeV) and of its annihilation channel.
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 54 FIG. 4. Left panel: Latitudinal profiles calculated from the flux given Eq. (46) and integrated in two energy ranges, [1.6-13] GeV (top plain curves) and [13-100] GeV (bottom dot-dashed curves), and averaged in the longitudinal range -30 • ≤ l ≤ 30 • . The model (blue curves) is compared with the Fermi data (red curves). Middle panel: Same as in the left panel, but averaged in the longitudinal range 90 • ≤ l ≤ 270 • . Right panel: Full skymap the the background flux integrated in the [1.6-13] GeV energy range, which also contains the isotropic component-see Eq. (48).
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 15 FIG.5. Top left panel: Skymap of the effective number of subhalos per solid angle unit in a DM-only background-assuming a WIMP mass of 100 GeV annihilating to τ + τ -with σv = 3 × 10 -26 cm 3 /s, a gamma-ray energy range 1-100 GeV, and a subhalo population configuration (α, mmin/M , t) = (1.9, 10 -10 , 0.01) embedded in an NFW Galactic halo. Top right panel: Associated angular distribution (with 95% confidence band), with two angular resolutions θr = 0.1 • and 1 • , and several configurations for the subhalo population ranging in (α, mmin/M ) ∈ (1.9 -2, 10 -10 -10 -4 ). Middle left and right panels: Same as above for subhalos embedded in a cored Galactic halo. Bottom panel: Same as upper right panels, summarizing the angular distribution behavior for both the NFW (upper half) and cored Galactic halo (lower half), and for several annihilation cross sections around the canonical baseline σv th = 3 × 10 -26 cm 3 /s.
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 10101010456 FIG.6. Skymaps of the visible subhalos assuming a WIMP mass of 100 GeV annihilating into τ + τ -, and a subhalo population embedded in an NFW halo with parameters (α, mmin/M , t) = (1.9, 10 -10 , 0.01). The annihilation cross section is fixed to the 3-σ limit associated with the diffuse DM contribution. The detector configuration assumes a resolution angle of 0.1 • , an observation time of 10 yr. The point-source sensitivity derives from a full likelihood analysis performed on mock data with parameters (α b , σ b ) = (1.3, 0.1) in RoIs of 0.2 • × 0.2 • , covering a region of 2.2 • × 2.2 • , and run over 5 logarithmic bins in the [1-100] GeV energy range. Lines on maps indicate latitudes of |b| = 30 • , 60 • . Top panels: Baryonic background only. Bottom panels: Baryonic background only. Left panels: Full sky. Middle panels: Same skymap with central region ψ < 20 • masked to increase contrast. Right panels: skymap of J (l,b) min -sensitivity to point-like subhalos-with |b| < 5 • masked.
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 7 FIG.7. Limits on σv , i.e. σv max , as a of the WIMP mass mχ for a telescope and for different observation times. Limits are set from: (i) the simplified statistical method presented in Sect. V C 3 c, with ñσ = 3, an angular resolution θr = 0.1 • (dashed lines) or θr = 1 • (dotted lines), pointing to Galactic coordinates (lc, bc) = (0 • , 10 • ); (ii) a full likelihood analysis performed on mock data, discussed in Sect. V C 4, and using background parameters ( ᾱb , σ b ) = (1.3, 0.1). The likelihood limits correspond to 3-σ exclusion curves (solid curves). Top panels: Limits for both our reference NFW halo and the halo shape used in the Fermi-LAT analysis (dubbed "diffuse+12"-the dotted-dashed curve), together with the Fermi-LAT limits obtained from the diffuse Galactic emission[84] (dark gray area), and from dwarf galaxies[132,133] (light gray area). Bottom panels: Same for our reference cored halo profile. Left/right panels: Full annihilation to b b/τ + τ -is assumed.
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 259 FIG.9. Mock photon count map of biased background photons received in bins of size 1 • × 1 • in the range 1-100 GeV. We used bias parameters ᾱb = 1.3 and η = 0. The contour areas correspond to the RoI used to set constraints on σv .
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 251052510525525510 FIG. 10. Angular profile of visible point-like subhalos (J > J (l,b)

  (l,b=ψ) min curves (l = 0 • , 180 • ), and iso-log 10 Nvis. Middle panels: Zoom in the ψ ∈ [0 • -40 • ] range. Bottom panels: 2-dimensional projection.

2 cm - 5 ] 6 0 2 cm - 5 ] 6 01 2 cm - 5 ] 6 0 2 cm - 5 ] 6 0FIG. 11 .FIG. 12 .

 2562562562561112 FIG. 11. Same as 10 for an angular resolution of θr = 1 • .
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 1 -see the corresponding plots for θ r = 1 • in Fig. 11. Middle panels are just zoomed versions of the top panels in the range ψ ∈ [0 • , 40 • ]. Bottom panels show the corresponding average angular distributions of point-like subhalos above J (l,b) min , i.e. the visible subhalos (provided the integrated number exceeds 1). These angular distributions can be read off from the upper panels by looking at the background color gradient along the J (l,b) min curves.
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  , and in a longitude band centered about 0 • . With an angular resolution of 0.1 • (1 • ), visible subhalos should have tidal masses of ∼ 10 4 -10 5 M ( ∼ 10 6 -10 7 M ) and be located at a distance of ∼ 10 kpc (∼ 10-20 kpc) from Earthsee C.
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 211 Solution to define the sensitivity to point-like subhalos In the case of point-like subhalo searches, the best-fit value of the null hypothesis (no point source) is obtained by solving ∂ ln L(0, α b ; σv ) this case, corresponds to the solution to the equation ij b ij nij σv aij + αb bij -N S N E αb -1 to find the global best-fit model denoted ( J, α b ) that is given as a solution of the two combined equations on the derivative of the log-likelihood, ln L(J,α b ; σv ) ∂J ( J, α b )= 0∂ ln L(J,α b ; σv ) ∂α b ( J, α b ) + α b bij +c 0 ij σv Jδi 0 ,i -+ α b bij +c 0 ij σv Jδi 0 ,i
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  FIG. 13. Left panels: Concentrations and physical masses of the most visible subhalos at Galactic coordinates (l, b) = (0 • , 20 • ).Right panels: Exclusion areas for the computation of the probability and for different distances to the observer: subhalos that are not seen as points (red), halos that are tidally disrupted (turquoise), halos that have a mass and concentration that does not allow to exceed the background. Visible: those lying in the white area.

  FIG.14. Distance distribution of the visible subhalos. The background is J∞ with the replacement δΩ = δΩ = 2π(1cos(δθ)) and nσ/ñσ = 2-the parameters of the subhalo model are the same than in Fig.7. The energy range is 1 GeV < Eγ < 100 GeV. Note that since we treated the opening angle as a free parameter this map is independent of the DM mass (provided it is above 1 GeV) and of its annihilation channel.

TABLE I .

 I Number of subhalos with a virial mass m/physical mass mt greater than 10 8 M inside a Galactic radius Rmax = 250 kpc, for fragile ( t = 1) and resilient ( t = 10 -2 ) subhalos.

			IV. GAMMA RAYS FROM SUBHALOS: A
			STATISTICAL DESCRIPTION
		N sub (m200/mt > 10 8 M )
	Initial mass index	t = 10 -2	t = 1
	α = 1.9	322/133	268/130
	α = 2.0	278/108	232/106

  1 •

	10 14	10 15	10 16	10 17	10 18	10 19	10 20	10 21

TABLE III .

 III Main characteristics of the subhalo population models used in this paper. Numbers are calculated using a minimal cutoff mass of mmin = 10 -10 M , and for tidally resilient subhalos with t = 0.01. Are provided: Ntot the total number of surviving subhalos, and ftot, the total DM mass fraction they contain within the virial radius of the host halo.

	Galactic model	ρ tot [M /pc 3 ]	R tot s [kpc]	α = 1.9	Ntot	α = 2	α = 1.9	ftot	α = 2
	NFW (γ = 1)	0.0101	18.6	4.58 × 10 18		2.45 × 10 20	0.16		0.52
	Cored (γ = 0)	0.0103	7.7	4.27 × 10 18		2.25 × 10 20	0.15		0.49

The use of "virial" quantities m 200 and r 200 can be misleading in the context of subhalo phenomenology. Indeed, the actual mass and radius of a subhalo embedded in the gravitational potential of the MW (assuming spherical symmetry still holds) are the tidal ones, which depend on the tidal stripping it has experienced along its orbit-roughly speaking, the local gravitational potential and the number of disk crossings and stellar encounters along the orbit. Therefore, these virial quantities are only useful to determine the subhalo inner properties, once the mass-concentration relation is fixed.

It is called fictitious mass fraction because it was calibrated in such a way that each surviving subhalo should carry its full fictitious mass m in the mass intregral, even though its real mass mt is generically smaller.
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Appendix A: Subhalo model description Here we provide the details of the global galactic halos derived from fits on stellar kinematic data in Ref. [76]. They are based on the following spherical profile:

the scale radius, ρ tot the total average DM density in the solar system (including subhalos), and R = 8.2 kpc the Sun's distance to the GC. We give additional details on the subhalo population models in Tab. III. The most probable tidal masses, concentrations, and distances of visible subhalos are shown in Fig. 13.