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Abstract. In this paper, we study entropy maximisation problems
in order to reconstruct functions or measures subject to very general
integral constraints. Our work has a twofold purpose. We first make
a global synthesis of entropy maximisation problems in the case of a
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point of view, as well as in the framework of the embedding into the
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1. Introduction

In some problems coming from applied phyiscs, a multidimensional function
f taking values in Rp ought to be reconstructed given a set of observations. In
thermodynamics, information on the function of interest, that is the p components
of the function f we wish to reconstruct, are indirectly available. In general the
available information consists in the value of integrals that involves the unknown
function f and known weights (λi)i=1,...,p. For example, one can consider an
interpolation problem when the integration measure consists in Dirac masses. In
this case we give at known locations the value of a scalar product between f
and λ, see expression (2) below. In our paper, we need to consider more general
constraints. Therefore we study a reconstruction problem in which constraints are
defined as integrals involving the unknown function f and the weight function λ
against suitable measures Φ, see expressions (1) and (3) below.

In the sequel we provide a general method for the reconstruction of a p-real
valued function from partial knowledge submitted to the general constraints pre-
viously discussed. We refer the interested reader to [21, Chap. 2] for the basic
rules of thermodynamics and [21, Chap. 5] for the description of functions that
are ordinary considered for the reconstruction of thermodynamic quantities.

To be more precise, we consider a Rp valued function f(x) = (f1(x), . . . , fp(x))
defined for all x in the compact set U ⊂ Rd (we assume the interior of U to be
non-empty). We set our work in a probability space (U,B(U), PU ) where B(U) is
the Borel σ-algebra and PU is the given reference measure. In such framework,
we wish to reconstruct f over U and such that the reconstruction satisfies the N
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following integral constraints∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) = zl 1 6 l 6 N, (1)

where Φl are N positive (known) finite measures on (U,B(U)) and λi are known
continuous weight functions.

The expression of integral constraints as in (1) allows to express a wide range of
problems. For example, one can consider, for l = 1, . . . , N , the data set (xl, zl) ∈
U × R and wish to solve the interpolation equations

p∑
i=1

λi(xl)f i(xl) = zl 1 6 l 6 N. (2)

Expression (2) can be obtained from (1) by choosing dΦl(x) = δxl(dx) the Dirac
measure located at xl for all l = 1, . . . , N . Therefore, the integral constraints (1)
become interpolation constraints.

When U is a subset of R, one can also involves the l first moments of f i by
taking dPU (x) = dx and dΦl(x) = xldPU (x), that is that one consider the integral
constraints ∫

U

p∑
i=1

λi(x)f i(x)xldPU (x) = zl 1 6 l 6 N.

In our work, the zl represent N ideal real-valued measurements. In the case of
noisy observations, a relaxed version of problem (1) can be considered. The aim
is then to reconstruct p real-valued functions on U such that∫

U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N, (3)

where for l = 1, . . . , N , Kl is an interval in R. In the sequel K will denote the
product of the N intervals Kl.

In the general case, problem (3) is ill-posed and has many solutions. In our
work, we propose to choose among the solutions the function f that maximises Iγ
the γ-entropy of the function f defined by

Iγ(f) = −
∫
U

γ
(
f1(x), . . . , fp(x)

)
dPU (x) (4)

where γ is a strictly convex function from Rp to R. In this framework, the recon-
struction problem we consider in the sequel can be rephrased as

max Iγ(f)

s.t.

∫
U

p∑
i=1

λi(x)f i(x)dΦ(x) ∈ K.
(FpΦ,γ)
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The resolution of problem (FpΦ,γ) is conducted in two steps. We consider a dual
problem on (signed) measures as a first step. The second step consists in solving
a discrete approximation of the dual problem. This approach is summed up in
Figure 1 and Figure 2. The Figure 1 features the approach in the case p = 1 and
λ(x) = 1, ∀x ∈ U , which has already been treated in [8]. Figure 2 presents the
case p 6= 1 which is an extension of [8] and which is treated in the sequel. The
resolution we propose involves the embedding into a more complicated framework.
Let us sketch the description of this framework. Let V be a Polish space and
PV be the reference measure on V . Unless it is specified, V is a compact space.
The resolution we propose involves a transfer between U and V . A more precise
description of such transfer will be given in section 2 (unidimensional case) and
section 3 (multidimensional case).

Case p = 1.
• Problem on function.

max Iγ(f)

f :
∫
U

f(x)dΦ(x) ∈ K.
(F1

Φ,γ)

~w� Transfer principle [8].

• Problem on signed measure [9], [6], [3].
min Dγ(F, PV )a

F :
∫
V

ϕ(t)dF (t) ∈ K.
(M1

ϕ,γ)

xy Point-measure
approximation of F∑n

i=1
1
nYiδti .

• Maximum Entropy on the Mean (MEM) [12].

min DKL(Q,Π⊗n)b

Q : EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K.

(M1,n
ϕ,Π)

aIntegral criterion Dγ is defined by (7).
bCriterion DKL is defined by (6). Problem is explained in (8-11) and section 2.

Figure 1. Problems raised in the sequel, case p = 1. Such prob-
lems have already been studied, see section 2 for more details.
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Case p 6= 1.
• Problem on functions.

max Iγ(f)

f :
∫
U

p∑
i=1

λi(x)f i(x)dΦ(x) ∈ K.
(FpΦ,γ)

~w� Transfer principle.

• Problem on signed measures.
min Dγ(F, PV )

F :
p∑
i=1

∫
V

ϕi(t)dF i(t) ∈ K.
(Mp

ϕ,γ)

x y Point-measure
approximations

of the F i.

• Maximum Entropy on the Mean.
min DKL(Q,Π⊗n)

Q : EQ

 1
n

p∑
i=1

n∑
j=1

ϕi(tj)Y ij

 ∈ K. (Mp,n
ϕ,Π)

Figure 2. Problems raised in the sequel, p 6= 1. See section 3
for the extension of the method provided by [8] to solve inverse
problems.

We first recall how the Maximum Entropy (ME) method is put in action. Origi-
nally, the ME method aims at the reconstruction of a probability measure P when
dealing with information on the expectation under P of some random variables.
We give below a first example.
Example 1.1. When V = R, one may want to reconstruct a probability measure
P such that the quantity

∫
tkdP (t) for some k ∈ N? is equal to given values mk.

More precisely, define the entropy of a probability measure P with respect to
the measure PV as

S(P ) =

 −
∫
V

log
(
dP

dPV

)
dP if P � PV and log

(
dP

dPV

)
∈ L1(P )

−∞ otherwise,
(5)

where P � PV means that P is absolutely continuous with respect to PV . ME
method derives as solution the probability PME which maximises the entropy
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provide the information for the reconstructed probability measure meets the in-
formation asked.

In information theory and statistics, one usually considers the opposite of the
entropy, that is the so-called Kullback-Leibler divergence of P with respect to PV
which is defined by

DKL(P, PV ) =



∫
V

log
(
dP

dPV

)
dP if P � PV

and log
(
dP

dPV

)
∈ L1(P )

+∞ otherwise.

(6)

Equivalently ME method derives as solution the probability measure PME which
minimises the Kullback-Leibler divergence from the reference measure PV under
the constraints. Reference measure PV can be interpreted as a prior measure.

The Kullback-Leibler divergence defined in (6) is called the I-divergence in [9]
and [6]. The author also calls I-projection the probability measure that max-
imises the entropy (5) on a convex set of probability measures. Further in [10] an
axiomatic justification for the use of the ME method is provided.

In a more general case, the entropy problem can target a reconstruction of
a signed measure. The authors in [3] and [4] have studied the minimisation of
the γ-divergence under linear constraints where the γ-divergence (7) is defined on
signed measures. The divergence Dγ , defined below, is considered instead of the
Kullback-Leibler divergence DKL (6). Let F be a signed measure defined on V .
The classical Lebesgue decomposition of F with respect to PV is

F = F a + F s

with F a � PV the absolutely continuous part and F s the singular part. F s is
singular with respect to PV means that it is concentrated on a set Ṽ such that
PV (Ṽ ) = 0. We recall as well the Jordan decomposition of measure F s

F s = F s,+ − F s,−

with F s,+ and F s,− two positive measures mutually singular. The γ-divergence
Dγ is then defined as follows

Dγ(F, PV ) =
∫
V

γ

(
dF a

dPV

)
dPV + bψF

s,+(V )− aψF s,−(V ) (7)

where the integrand γ is a convex function and F a, F s,+ and F s,− are as defined
previously. The scalar quantities bψ and aψ, with aψ < bψ, are the endpoints of ψ
domain with ψ the convex conjugate of γ defined by

ψ(t) = sup
y
{ty − γ(y)} .
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Taking back the Example 1.1, the reconstruction problem can be put in the
frame of an optimisation problem as (M1

ϕ,γ) defined in Figure 1. In that example,
the criterion is DKL, that is criterion Dγ with γ being the convex function defined
on R?+ by y → y log(y) − y − 1. The scalar quantities aψ and bψ are respectively
equal to −∞ and +∞ which leads to a reconstruction with no singular parts. The
moment constraint can be written as

∫
V
ϕ(t)dF (t) ∈ K by taking K = {mk} and

ϕ : t → tk. Finally, one has to add the constraint
∫
V
dF (t) = 1 to ensure that

the reconstructed measure is a probability measure.
Notice that the expression in (7) contains terms depending on the singular part

F s of measure F . Those terms may not be considered in the γ-divergence (7)
depending on the convex function γ used, see [5] and Example 0.

More generally the author in [17] and [18] studies the characterization of the
optimal signed measure which minimises (7) under linear constraints. Integral
functionals with normal convex integrand, that is integrals for which the integrated
function is strictly convex with respect to one of its variable, are studied. See
more comments on normal convex integrand in [24, Chapter 14]. See also [19] for
a systematic treatment of convex distance minimisation.

We now recall that many usual optimisation problems (M1
ϕ,γ) can be set in an

entropy maximisation problem frame, as proposed in the early paper [22]. This
general embedding in ME is called the Maximum Entropy on the Mean (MEM)
method and has been developed in [12] and [11]. The method is based on a suitable
discretisation of the working set V . The reference measure PV is approximated by
a point-measure supported by n pixels, t1, . . . , tn which are deterministic points in
V such that Pn = 1

n

∑n
i=1 δti → PV . By associated to each pixel ti a real random

amplitude Yi, we defined the random point-measure Fn by

Fn = 1
n

n∑
i=1

Yiδti . (8)

By construction Fn � Pn. Notice that we choose to present the simple case of real
random amplitudes Yi for this introduction, but one can consider more complicated
constructions. We will do so in the subsection 3.3 where the amplitudes Yi will be
vectors in Rp.

In the MEM problem, one wants to determine the "optimal" distribution Q to
generate vectors of n real random amplitudes (Y1, . . . , Yn). Optimal distribution
Q must be such that the constraints considered in problem (M1

ϕ,γ) applied to the
random point-measure Fn is met on average, that is that

EQ
[∫

V

ϕ(t)dFn(t)
]

= EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K. (9)
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Taking back Example 1.1, the constraints applied to the point-measure approxi-
mation become

EQ

[
1
n

n∑
i=1

Yi

]
= 1 and

EQ

[
1
n

n∑
i=1

(ti)kYi

]
= mk.

(10)

We assume that the random amplitudes are independent. Let Π denote their prior
distribution so that the reference distribution for (Y1, . . . , Yn) is the tensor measure
Π⊗n. In order to build the optimal distribution, we minimise the Kullback-Leibler
divergence (6) with respect to the prior Π⊗n under the constraints (9). When
such "optimal" distribution exists, we will denote the solution by QMEM

n . Then
let FMEM

n be defined as follows

FMEM
n = EQMEMn

[
1
n

n∑
i=1

Yiδti

]
. (11)

Notice that unlike Fn, the quantity FMEM
n is no longer random. Let the log

Laplace transform of probability measure Π be denoted by ψΠ

ψΠ(τ) = log
(∫

R
exp (τy) dΠ(y)

)
for all τ ∈ DψΠ , (12)

with DψΠ the domain of ψΠ. We denote by γΠ the convex conjugate of the log-
Laplace transform ψΠ

1. We hope that the reconstruction FMEM
n is a good approxi-

mation (in a sense we will specify in the sequel) of the solution of the corresponding
continuous problem (M1

ϕ,γ), for which convex function γ is the function γΠ. The
properties of the minimising sequence (FMEM

n )n have been studied in [12]. The
authors in [13] deal with a multidimensional case, that is estimating a vector of
reconstructions when dealing with information on generalised moments of each
components. In [14], Bayesian and MEM methods are proposed to solve inverse
problems on measures. More details about the MEM method will be provided in
section 2 for the case p = 1 and subsection 3.3 for the case p 6= 1. In particu-
lar we explain how to choose reference probability measure Π so that the crite-
rion DKL(.,Π⊗n) for discrete problem (M1,n

ϕ,Π) is a good alternative to criterion
Dγ(., PV ) of continuous problem (M1

ϕ,γ).

Back with the function reconstruction problem, an extension of the MEM
method to solve generalised moment problems for function reconstruction as in
(F1

Φ,γ) is proposed by [8] in the case p = 1 and λ(x) = 1, ∀x ∈ U . The method
uses a transfer principle which links the function to reconstruct to a correspond-
ing measure. The transfer relies on the use of suitable kernels. Such transfer is
particularly of use when considering measures Φ in the constraints equations (3)

1Notice that as ψΠ is a convex function, ψΠ is also the convex conjugate of γΠ.
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that might not all be absolutely continuous with respect to the reference measure
PU .

Our work has a twofold purpose. We first make a summary of entropy maximi-
sation problems in order to reconstruct a single measure and, by extension with
the linear transfer, entropy maximisation problems in order to reconstruct a single
function. We propose a global synthesis of the entropy maximisation methods for
such reconstruction problems from the convex analysis point of view, as well as
in the framework of the embedding into the MEM setting. We then propose an
extension of the entropy methods for a multidimensional case. Such extension is
the main contribution of this work. We study the MEM embedding for the func-
tion reconstruction problem that is proposed in [8] to the case of inverse problems,
that is when p 6= 1 and the λi are any known bounded continuous functions. We
provide a general method of reconstruction based on the γ-entropy maximisation
for functions submitted to generalised moment and interpolation constraints as in
(3).

This paper is organized as follows.
In section 2, we recall in a global synthesis of entropy maximisation methods

some results for the specific case of a single function reconstruction problem (F1
Φ,γ)

or a single measure reconstruction problem (M1
ϕ,γ). First we describe how the

transfer principle works, that is how a function problem (F1
Φ,γ) can be linked to the

measure problem (M1
ϕ,γ) in subsection 2.1. Then we recall some results about the

resolution of the γ-divergence minimisation problem (M1
ϕ,γ) in subsection 2.2. In

subsection 2.3, we take a specific look at problem (M1
ϕ,γ) when the convex function

γ is the function y → y log(y)− y − 1. This specific problem is the ME problem
which will be denoted by (M1

ϕ,ME). We then extend the class of optimisation
problems studied by giving the construction of the MEM problem setting and we
provide some properties of the MEM reconstruction in subsection 2.4. Finally in
subsection 2.5, the setting of some usual optimisation problems into the entropy
maximisation frame is reminded.

The main contributions of this paper are the results presented in section 3.
It consists in the study of the entropy methods for the reconstruction of a mul-
tidimensional function submitted to very general constraints such as an integral
inverse problem as in (3). We extend the approach of [8] for the case p 6= 1 and
λi any known bounded continuous functions. We study the embedding of the
functions reconstruction problem (FpΦ,γ) into the MEM problem (Mp,n

ϕ,Π) frame-
work. Such study is stepped in three independent parts. First in subsection 3.1,
we study the problem (FpΦ,γ) in a convex analysis framework. We express the
optimal solution thanks to Fenchel duality theorem. This first approach lacks to
give a suitable reconstruction when constraint measures Φ are not absolutely con-
tinuous with respect to PU . To remedy this issue, we propose in subsection 3.2 to
transfer the functions reconstruction problem (FpΦ,γ) to a corresponding measure
reconstruction problem (Mp

ϕ,γ). The transfer is made by the means of suitable
continuous kernels. Finally in subsection 3.3, we set problem (Mp

ϕ,γ) obtained by
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the transfer into a MEM problem framework and we study the reconstructions
given by problem (Mp,n

ϕ,Π).
Applications will be made in section 4. We consider first some simple examples

of single function reconstructions and then a two-functions case study inspired by
computational thermodynamics.

2. The specific γ-entropy maximisation problem for a
single reconstruction

We give in this Section some details about the γ-entropy maximisation prob-
lem in the case of a single reconstruction, that is that we are interested in the
reconstruction of either a single function or a single measure. Those problems
have already been studied, see for example [8] for problem (F1

Φ,γ), [4] for problem
(M1

ϕ,γ) and [12] for problem (M1,n
ϕ,Π). Let us recall some results of these authors.

In subsection 2.1 we are interested in the link between a function reconstruction
problem (F1

Φ,γ) and a measure reconstruction problem (M1
ϕ,γ). The function

reconstruction problem is set as

max Iγ(f)

f :
∫
U

f(x)dΦ(x) ∈ K
(F1

Φ,γ)

and the measure reconstruction problem as

min Dγ(F, PV )

F :
∫
V

ϕ(t)dF (t) ∈ K.
(M1

ϕ,γ)

The idea is to set a transformation from measures on V to functions on U . Such
transformation is the linear transfer we will further describe in 2.1.

We remind to the reader that in the sequel we consider a number N of con-
straints. Therefore Φ and ϕ take values in RN . In addition we will consider that
functions ϕ are continuous.

In subsection 2.2 we study the γ-divergence minimisation problem under con-
straints, that is problem (M1

ϕ,γ). We recall the results of [4] for the existence of
an optimal solution to problem (M1

ϕ,γ).

We take a closer look in subsection 2.3 at the Maximum Entropy (ME) prob-
lem, that is problem (M1

ϕ,γ) in the special setting when γ is the function y →
y log(y) − y − 1 and the γ-divergence coincides with the Kullback-Leibler diver-
gence. We recall results on the existence of the optimum and its expression when
such minimiser exists.
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In subsection 2.4, we recall the setting of the n-th MEM problem (M1,n
ϕ,Π)

min DKL(Q,Π⊗n)

Q : EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K.

(M1,n
ϕ,Π)

We give, when it exists, an expression for the minimiser QME
n of the n-th problem.

We can define a function gME
n , related to the expectation of the random amplitudes

under QME
n . We will see that under some assumptions the sequence (gME

n )n
converges gME

∞ (t) = ψ′Π (〈v, ϕ(t)〉) for one particular v ∈ RN . We will recall the
expression of this limit.

Finally in subsection 2.5, we give examples of some classical optimisation prob-
lems embedding into the MEM framework.

2.1. Transfer principle

We briefly recall the idea of the transfer principle used in [8] to use the γ-entropy
methods in the case of a function reconstruction problem. Denote by (U,B(U), PU )
the probability space where U ⊂ Rd is compact (non empty), B(U) is the associated
Borel set and PU is the reference measure. Recall the reconstruction problem for
a single function. One wants to reconstruct over U a function f taking values in
R such that function f satisfies the integral constraints∫

U

f(x)dΦ(x) ∈ K. (13)

Let γ be a given convex function taking values in R and let denote its domain by
Dγ ⊂ R. Let the γ-entropy be defined by

Iγ(f) = −
∫
U

γ (f(x)) dPU (x),

for a function f defined on U and taking values in Dγ . In order to chose among
the functions that satisfies (13), we propose as a selection criterion to maximise
the γ-entropy. That means that we consider the optimisation problem (F1

Φ,γ)

max Iγ(f)

f :
∫
U

f(x)dΦ(x) ∈ K.
(F1

Φ,γ)

The method proposed by [8] is to transfer the function reconstruction problem
to a measure reconstruction problem thanks to some continuous kernel K. Such
kernel links the function to reconstruct to a corresponding probability measure.
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Recall that V is a Polish space and PV the reference probability measure on V .
The idea is that if one can reconstruct over V a signed measure F such that∫

V

ϕ(t)dF (t) ∈ K, (14)

then a regularized function fK can be reconstructed linked to the measure F . To
do so, we proceed as follows.

We denote by K a continuous kernel defined over U × V taking values in R.
The kernel K is such that measure Φ of the integral constraint (13) is linked to a
regularized function ϕK involved in an integral constraint as in (14). The relation
linking Φ to ϕK is given by

ϕK(t) =
∫
U

K(x, t)dΦ(x), t ∈ V.

Therefore, for any continuous kernel K, one can reconstruct the regularized func-
tion fK associated to F by defining

fK(x) =
∫
V

K(x, t)dF (t), x ∈ U.

Hence as a consequence of Fubini theorem, if the measure F satifies (14), the
regularized function fK defined above satisfies (13).

2.2. γ-divergence minimisation problem

In this section, we recall the results provided by [4] for the γ-divergence min-
imisation problem for signed measure reconstruction. We set our work on V . Let
F be a signed measure defined on V . The classical Lebesgue decomposition of F
with respect to PV is

F = F a + F s

with F a � PV the absolutely continuous part and F s the singular part. Notice
that F a and F s are still signed measures. F s is singular with respect to PV
means that it is concentrated on a set Ṽ such that PV (Ṽ ) = 0. Recall the Jordan
decomposition of measure F s

F s = F s,+ − F s,−

with F s,+ and F s,− mutually singular. Let γ be essentially strictly convex. We
denote by ψ its convex conjugate, that is

ψ(t) = sup
y∈Dγ

{ty − γ(y)} .
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Denote by aψ and bψ with aψ < bψ the endpoints of ψ domain, we define the
γ-divergence Dγ by

Dγ(F, PV ) =
∫
V

γ

(
dF a

dPV

)
dPV + bψF

s,+(V )− aψF s,−(V ).

The problem we consider is the following

min Dγ(F, PV )

F :
∫
V

ϕ(t)dF (t) ∈ K.
(M1

ϕ,γ)

The authors in [4] study the existence conditions of an optimal solution using
convex analysis tools. Their first result is to consider the following dual problem
of (M1

ϕ,γ) which relies on a Lagrange multiplier v ∈ RN

sup
v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}
. (M1,?

ϕ,γ)

In addition, they give conditions for problems (M1
ϕ,γ) and (M1,?

ϕ,γ) to have
solutions. These results are recalled in 2.1 below.

Theorem 2.1. [4, Theorem 3.4]
(1) If there exists v′ ∈ RN such that 〈v′, ϕ(t)〉 ∈ Dψ then

inf
F :
∫
V

ϕ(t)dF (t)∈K
Dγ(F, PV ) = sup

v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}
.

(2) If, in addition,
∫
V
ψ (〈v′, ϕ(t)〉) dPV (t) is finite and if it exists a signed

measure F ′ such that
∫
V
ϕ(t)dF ′(t) ∈ K, dF ′

dPV
is in the relative interior

of Dγ and Dγ(F ′, PV ) is finite, then

inf
F :
∫
V

ϕ(t)dF (t)∈K
Dγ(F, PV ) = min

F :
∫
V

ϕ(t)dF (t)∈K
Dγ(F, PV )

and
sup
v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}

= max
v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}
.

The next theorem proposes a more precise characterisation of the solution for
problem (M1

ϕ,γ) under the same conditions specified in 2.1.

Theorem 2.2. [4, Theorem 4.1] Under the assumptions of 2.1.
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(1) The absolutely continuous part with respect to PV of solution F o of (M1
ϕ,γ)

is given by
dF o

dPV
(t) = ψ′ (〈v?, ϕ(t)〉)

where v? is the solution of

max
v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}
.

(2) If, in addition, for all v ∈ RN and for all t ∈ V , 〈v, ϕ(t)〉 is in the interior
of Dψ, the singular part vanishes.

Notice that when Dψ = R, 2.2 always gives solution that are absolutely contin-
uous with respect to PV . The condition to have Dψ = R, is to consider function γ
that is such that the ratio |γ(y)

y | is equal to ∞ on the edges of Dγ , see [4, Lemma
2.1].

We will see in subsection 2.4 that the approach proposed by the embedding in
the MEM framework boils down to the same results provided by 2.2.

2.3. Maximum entropy problem

In this section we take a better look at the problem of maximising the entropy
of a probability measure under generalised moments constraints, that is the ME
problem

min DKL(P, PV )

P :
∫
V

ϕ(t)dP (t) ∈ K
(M1

ϕ,ME)

with ϕ defined on V and taking values in RN . We remind the reader that is this
section, the first component of function ϕ is the constant 1 and that K is the
product {1}×K1× · · · ×KN−1. Notice that for the results recalled in this section
only, V does not need to be compact and ϕ does not need to be continuous. The
definition of the Kullback-Leibler divergence DKL is recalled below

DKL(P, PV ) =


∫
V

log
(
dP

dPV

)
dP if P � PV and log

(
dP

dPV

)
∈ L1(P )

+∞ otherwise.

The problem proposed in subsection 2.2 is a more general setting of the original
ME problem. The reconstruction provided by the ME method satisfy the following
properties. Those are showed by Shore and Johnson in [25] and are recalled below.
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Proposition 2.3.
(1) Uniqueness: If the solution of ME problem exists, it is unique.
(2) Invariance: The reconstruction is independent of coordinate system choice.
(3) System independence: If probability space (V,B(V ), PV ) consists in the

product space of m probability spaces, the reconstruction over the whole
probability space is the tensor product of the reconstructions on each prob-
ability space.
In other words, if PV = ⊗mi=1PVi where PVi is a reference probability mea-
sure on (Vi,B(Vi)) and (V,B(V ), PV ) is the product space of all (Vi,B(Vi), PVi),
then the reconstruction P on (V,B(V )) is given by ⊗mi=1Pi with Pi the re-
construction on (Vi,B(Vi)).

(4) Subset independence: If probability space (V,B(V ), PV ) consists in the
union of m probability spaces, the reconstruction over the global space leads
to the same measure than the reconstruction problem conditioning on each
probability space.
In other words, it does not matter whether one treats the information as a
subset Vj of whole set V in a conditional constraint or in the full system.

We recall in this section some results of [7] and [12] in order to solve problem
(M1

ϕ,ME). Results are stated without proof for the setting of our example.

We give first a definition of the generalised solution for problem (M1
ϕ,ME).

This definition requires the use of a minimising sequence of DKL(., PV ), defined
as follows. Let (Pn) be a sequence of probability measures. (Pn) is a minimising
sequence of DKL(., PV ) if we have

lim
n→∞

DKL(Pn, PV ) = inf
P
DKL(P, PV ). (15)

Definition 2.4. [7] Consider a sequence of probability measures (Pn)n∈N defined
on (V,B(V )) such that (Pn) converges and is a minimising sequence of DKL(., PV )
and such that for all n, probability measure Pn satisfies∫

V

ϕ(t)dPn(t) ∈ K.

Then we call generalised maximal entropy solution the measure PMEG that is such
that

PMEG = lim
n→∞

Pn, in total variation.

If PMEG also meets the constraint, then it is called the maximal entropy solu-
tion of problem (M1

ϕ,ME) denoted by PME .

We will now recall results on the existence of a generalised solution for problem
(M1

ϕ,ME) and the shape of the solution when it exists.
Let first define PK the subset of probability measures that satisfy the constraints

of ME problem (M1
ϕ,ME), that is
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PK =
{
P probability measure on V, such that

∫
V

ϕ(t)dP (t) ∈ K
}
.

With the previous definition of PMEG, we recall a result of [7] for the existence
in our framework of the generalised solution of problem (M1

ϕ,ME).

Lemma 2.5. [7] If inf
P∈PK

DKL(P, PV ) <∞, then PMEG exists.

We now introduce several definitions involved in the characterisation of problem
(M1

ϕ,ME) solution. For all v ∈ RN , we define the quantity

ZPV ,ϕ(v) =
∫
V

exp (〈v, ϕ(t)〉) dPV (t) (16)

where 〈., .〉 is the usual scalar product in RN . We denote the domain of ZPV ,ϕ by
DPV ,ϕ, that is the subset of vectors in RN that are such that ZPV ,ϕ(.) is finite

DPV ,ϕ =
{
v ∈ RN , ZPV ,ϕ(v) <∞

}
. (17)

The following definition describes the so-called exponential familly with respect
to probability measure PV . The interested reader may be referred to [2] for more
details about exponential models.

Definition 2.6. The ϕ-Hellinger arc of PV is a family of measures Pv that are
defined by

dPv(t) = (ZPV ,ϕ(v))−1 exp (〈v, ϕ(t)〉) dPV (t) (18)
for all v ∈ DPV ,ϕ.

The family of measures Pv defined as in (18) for all v ∈ DPV ,ϕ may also be
called the exponential model with respect to PV .

We recall below [6, Theorem 4] that characterises the generalised reconstruc-
tion PMEG. This theorem gives the reconstruction PMEG in the ϕ-Hellinger arc
of PV . More important, the reconstruction problem (M1

ϕ,ME), which is infinite
dimensional, is transformed into the finite dimension problem (19) that considers
the vectors v in DPV ,ϕ, see expression (17).

Theorem 2.7. [6, Theorem 4] The reconstruction PMEG belongs to the ϕ-
Hellinger arc of PV if and only if it exists one measure P in PK such that P � PV .

Then, defines

HPV ,ϕ(v,K) = inf
c∈K
〈v, c〉 − log (ZPV ,ϕ(v)) , ∀v ∈ DPV ,ϕ
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the reconstruction PMEG is obtained by determining v? ∈ DPV ,ϕ such that

HPV ,ϕ(v?,K) = sup
v∈DPV ,ϕ

HPV ,ϕ(v,K). (19)

The previous theorem does not ensure that the reconstruction PMEG will satisfy
the constraints of problem (M1

ϕ,ME). Of course, the reconstruction PMEG is more
interesting when PMEG belongs to PK. We then have the following corollary for a
reconstruction that satisfies the constraints. Such reconstruction is then denoted
by PME .

Corollary 2.8. [12] If there exist a measure P ∈ PK such that P � PV and
if DPV ,ϕ is an open set, then PMEG is the reconstruction PME in PK and PME

belongs to the ϕ-Hellinger arc of PV .

As an illustration, we propose the following simple example of a probability
measure reconstruction which maximises the entropy with respect to the standard
Gaussian distribution N (0, 1). The added constraints are fixed valued for the first
and second order moments. By giving first order moment equal to m and second
order moment equal to m2 + 1, the reconstruction we obtain is with no surprise
the Gaussian distribution centred in m and with unit variance.
Example 2.9. The working probability space is (R,B(R),N ) where N is the
standard Gaussian distribution N (0, 1). We wish to reconstruct the probability
measure with given first and second order moments that minimises the Kullback-
Leibler divergence. Our problem is rewritten

min DKL(P,N )

s.t.

∫
R
dP (t) = 1∫

R
tdP (t) = m∫

R
t2dP (t) = m2 + 1.

Using the 2.7 recalled previously the problem becomes

max
v1∈R,v2<

1
2

v1m+ v2(m2 + 1)− log
(∫

R
exp(v1t+ v2t

2)dN (t)
)
. (20)

Classical optimality criterion applied to the maximisation problem (20) gives
v1 = m and v2 = 0. The Radom-Nicodym derivative with respect to N for the
reconstructed probability measure PME in that case is equal to

dPME

dN
(t) = exp

(
−m

2

2 +mt

)
.
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PME is therefore the Gaussian distribution N (m, 1).

2.4. Maximum Entropy on the Mean

We recall in this section how the MEM method works. Let us first recall the
problem studied. We assume here that V is compact. V is discretised with a
suitable deterministic sequence t1, . . . , tn such that point probability measure Pn =
1
n

∑n
i=1 δti approximates well the probability measure PV . We denote by Q a

distribution that generates a vector (Y1, . . . , Yn) of n real random amplitudes and
by Fn the random point measure defined by

Fn = 1
n

n∑
i=1

Yiδti . (8)

Ones wants to determine the "optimal" distribution Q to generate Y1, . . . , Yn such
that point-measure Fn meets on average the constraints defined as follows

EQ
[∫

V

ϕ(t)dFn(t)
]

= EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K,

with ϕ a continuous function taking values in RN .
We set Π a given reference distribution on R and we study the Kullback-Leibler

divergence between the joint distribution Q and the tensor distribution Π⊗n under
some constraints. This is summed up in a more concise way by the following
problem

min DKL(Q,Π⊗n)

Q : EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K.

(M1,n
ϕ,Π)

We assume the support of Π to be ]a; b[ with −∞ 6 a < b 6 ∞. The domain
of the moment generating function of Π is denoted DΠ

DΠ =
{
τ ∈ R :

∫ b

a

exp(τy)dΠ(y) <∞
}
.

We denote by ψΠ the logarithm of the moment generating function of Π

ψΠ(τ) = log
∫ b

a

exp(τy)dΠ(y), ∀τ ∈ DΠ.

We recall below some results of [12] for the resolution of the n-th MEM problem
and the convergence of the obtained solution. First [12, III.3, Lemma 3.1] recalled
below gives sufficient conditions for the existence of a solution to the MEM problem
(M1,n

ϕ,Π).
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Lemma 2.10. [12, III.3, Lemma 3.1] Let us assume the following
(H1): It exists at least one c ∈ K that is ϕ-feasible. c is ϕ-feasible means that for
such c, there exists one vector (y1, . . . , yn) with yi ∈ ]a; b[, i = 1, . . . , n such that
1
n

∑n
i=1 ϕ(ti)yi = c.

Then, for n sufficiently large, it always exists a solution to the MEM problem
(M1,n

ϕ,Π).

[12, III.3, Corollary 3.1] describes the solution of the MEM problem (M1,n
ϕ,Π)

when it exists. As for problem (M1
ϕ,ME), solving the reconstruction problem

(M1,n
ϕ,Π) consists in solving a finite dimension problem that considers the vectors

v in DΠ,ϕ, with DΠ,ϕ the subset of RN defined in (H3).

Corollary 2.11. [12, III.3, Corollary 3.1] Let us assume that assumption (H1)
is satisfied and the following
(H2): The closed convex hull of Π support is [a; b].
(H3): Let the set DΠ,ϕ be a non empty open set where DΠ,ϕ is defined by

DΠ,ϕ =
{
v ∈ RN , ZΠ,ϕ(v) =

∫
[a;b]n

n∏
i=1

exp (〈v, ϕ(ti)〉yi) dΠ⊗n(y1, . . . , yn) <∞
}

Then, for n sufficiently large, the solution QME
n to the MEM problem (M1,n

ϕ,Π)
is

QME
n (y1, . . . , yn) = (ZΠ,ϕ(v?))−1 exp

(
n∑
i=1
〈v?, ϕ(ti)〉yi

)
Π⊗n(y1, . . . , yn)

where v? ∈ DΠ,ϕ ⊂ RN is the unique maximiser of

Hn
Π,ϕ(v,K) = inf

c∈K
〈v, c〉 − log (ZΠ,ϕ(v)) .

For the convergence result of the MEM reconstruction, we define the function
gME
n by

gME
n (t) = 1

]Mn(t)
∑

i∈Mn(t)

EQMEn [Yi]

with Mn(t) the subset of indices in [|1;n|] defined by

Mn(t) =
{
j ∈ [|1;n|] : ||t− tj || = min

i∈[|1;n|]
||t− ti||

}
and ]Mn(t) is the number of elements in Mn(t).

The next theorem requires the strong assumption denoted by (H6). The nota-
tion ∂ of assumption (H6) refers to the edge of the set.
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Theorem 2.12. [12, III.4, Theorem 3.1] Under assumptions (H1), (H2) and
(H4): DΠ is a non empty open set and it exists v ∈ Rk such that for all t ∈ V ,
〈v, ϕ(t)〉 ∈ DΠ.
(H5): D(Π, ϕ) =

{
v ∈ RN ,∀t ∈ V , 〈v, ϕ(t)〉 ∈ DΠ

}
is non empty.

(H6): ∀v ∈ ∂D(Π, ϕ), we have lim
u∈D(Π,ϕ), u→v

|
∫
V
ϕ(t)ψ′Π (〈v, ϕ(t)〉) dPV (t)| =

+∞.
Then gME

n converges to gME
∞

gME
∞ (t) = ψ′Π (〈v?, ϕ(t)〉)

where v? maximises

H∞Π,ϕ(v,K) = inf
c∈K
〈v, c〉 −

∫
V

ψΠ (〈v, ϕ(t)〉) dPV (t).

Remark 2.13. Let the real random sequence (Xn) be defined byXn = 1
n

∑n
i=1 Yiϕ(ti)

and denote by Qn the law of Xn. Under the assumptions (H1) and (H2) and pro-
vided that ψΠ is sufficiently regular, one can characterise the asymptotic behaviour
of Qn. As n tends to infinity, Qn tends to concentrate on the events that belongs
to the compact set K. That is, let x ∈ K, we have that

Qn(Xn,l > xl, l = 1, . . . , N) ≈ exp (−nI(x)) (21)

where the rate function is I(x) = sup
v∈RN

{
〈v, x〉 −

∫
V
ψΠ (〈v, ϕ(t)〉) dPV (t)

}
.

This remark is more formally given in [12, III.4, Corollary 3.5] as the large
deviation property of the sequence (Qn).

Thereafter in the section 3, we aim to reconstruct the p components of a vectorial
measure F subject to the following integral constraints

p∑
i=1

∫
V

ϕil(t)dF i(t) ∈ Kl, 1 6 l 6 N.

We will follow the MEM construction given in the present Section. For the multi-
dimensional case, the random measure Fn will then be vectorial and the sequence
(Yi)i=1,...,n will be a sequence of vectorial amplitudes in Rp.

2.5. Connection with classical minimisation problems

One can remark that the link between the γ-entropy maximisation problem
(M1

ϕ,γ) and MEM problem (M1,n
ϕ,Π) can be made by using as convex minimisation

function γ the convex conjugate of the log Laplace function ψΠ. Indeed we have
that

max
v∈DΠ,ϕ,ψΠ

H∞Π,ϕ(v,K) = inf
F∈FK

DγΠ (F, PV )
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where H∞Π,ϕ the function defined in the 2.12.
In this section we detail some classical minimisation problems set in the MEM

embedding. We set our work under the assumptions of 2.12.

Poisson distribution and Kullback-Leibler divergence minimisation
Let the reference distribution Π be a Poisson distribution P(θ) with parameter

θ ∈]0; +∞[. The support of Π is N. The log-Laplace transform ψ of a Poisson
distribution P(θ) is

ψP(θ)(τ) = θ(eτ − 1)
with domain DΠ = R.

Its convex conjugate is the following function

γP(θ)(y) = y log (y)− y(1 + log(θ)) + θ, for y ∈ R+.

The associated convex criterion to minimise for problem (M1
ϕ,γ) becomes

DγP(θ)(F, PV ) =


∫
V

log
(
dF

dPV

)
dF − (1 + log(θ))F (V ) + θ, if F � PV

and dF
dPV
> 0

+∞ otherwise.

Such criterion gives the Kullback-Leibler divergence when θ = 1

DKL(F, PV ) =


∫
V

log
(
dF

dPV

)
dF − F (V ) + 1, if F � PV and dF

dPV
> 0

+∞ otherwise.

Gaussian distribution and least square minimisation
Let the reference distribution Π be a Gaussian distribution N (m,σ2), σ2 > 0.

The support of Π is ]a; b[ = ]−∞; +∞[. The log-Laplace transform ψ of a Gaussian
distribution N (m,σ2) is

ψN (m,σ2)(τ) = τ2σ2

2 + τm

with domain DΠ = R.
Its convex conjugate is the function

γN (m,σ2)(y) = (y −m)2

2σ2 , for y ∈ R.

The associated convex criterion to minimise for problem (M1
ϕ,γ) becomes

DγP(θ)(F, PV ) =


∫
V

1
2σ2

(
dF

dPV
−m

)2
dPV , if F � PV

+∞ otherwise
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which gives the minimisation problem consisting in finding the least square devi-
ation of Radon-Nikodym derivative dF

dPV
from constant m.

Exponential distribution and Burg entropy minimisation

Let the reference distribution Π be an exponential distribution E(θ) with mean
θ, θ > 0. The support of Π is [0; +∞[. The log-Laplace transform ψ of the
exponential distribution E(θ) is

ψE(θ)(τ) = − log(1− τθ)

with domain DΠ =
{
τ < 1

θ

}
.

Its convex conjugate is the function

γE(θ)(y) = log
(
θ

y

)
+ y

θ
− 1, for y ∈ R?+.

The associated convex criterion to minimise for problem (M1
ϕ,γ) becomes

DγP(θ)(F, PV ) =


log(θ)−

∫
V

log
(
dF

dPV

)
dPV + F (V )

θ
− 1, if F � PV

and F s > 0
+∞ otherwise.

Such criterion gives the Burg-entropy of F when θ = 1, that is the reverse
Kullback-Leibler divergence of PV with respect to F

DKL(PV , F ) =

 −
∫
V

log
(
dF

dPV

)
dPV + F (V )− 1, if F � PV and F s > 0

+∞ otherwise.

3. The γ-entropy maximisation problem for the
reconstruction of a multidimensional function

In this section we propose to study the γ-entropy optimisation method in the
case of the reconstruction of a p real-valued functions with domain U (with U
compact and non-empty) subject to very general constraints such as

∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N. (22)

Such study is stepped in three independent parts.
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First in subsection 3.1, we study in the convex analysis framework the problem
(FpΦ,γ) recalled below

max −
∫
U

γ
(
f1, . . . , fp

)
dPU

f :
∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl, l = 1, . . . , N.
(FpΦ,γ)

We detail the construction of a dual problem of finite dimension. We are able to
express an optimal solution thanks to Fenchel duality theorem when constraint
measures Φ are absolutely continuous with respect to PU . However, we show that
this first approach lacks to give a suitable reconstruction when constraint measures
Φ are not absolutely continuous with respect to PU .

To remedy this issue, we propose in subsection 3.2 to transfer the functions
reconstruction problem (FpΦ,γ) to a corresponding reconstruction problem (Mp

ϕ,γ)
on signed measures. Such problem is recalled below

min Dγ(F, PV )

F :
p∑
i=1

∫
V

ϕi(t)dF i(t) ∈ K.
(Mp

ϕ,γ)

The transfer is made by the means of suitable continuous kernels.

Finally in subsection 3.3, we set problem (Mp
ϕ,γ) obtained by the transfer into

a MEM problem framework. We detail the construction of a sequence of random
point-measures for the multidimensional framework. We study the reconstructions
given by problem (Mp,n

ϕ,Π).

3.1. The γ-entropy maximisation problem for the multidimensional case
in the convex analysis framework

In this section we study the way to reconstruct a multidimensional function
subject to an inverse problems by a γ-entropy maximisation approach. We pro-
pose to study such approach within the framework of convex analysis. We recall
some general definitions and properties used in the sequel in subsection A.1 of the
Appendix.

We frame our work in a probability space (U,B(U), PU ) where U is compact
(non empty) and PU is the reference probability measure. We aim at the recon-
struction of p real-valued functions such that

∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N. (23)
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As there exists many solutions fitting the previous constraints, we decide to choose
among them the solution to a convex problem under constraints. Given a closed
convex function γ : Rp → [0; +∞], we decide to characterize the optimal solution
fo = (f1,o, . . . , fp,o) that maximises the γ-entropy defined by

−
∫
U

γ
(
f1(x), . . . , fp(x)

)
dPU (x)

provide fo satisfies the constraint stated in (23). We denote by Iγ(.) the opposite
of the γ-entropy that is

Iγ(f) =
∫
U

γ
(
f1(x), . . . , fp(x)

)
dPU (x).

To put it in a more concise way, we study problem (FpΦ,γ)

max −Iγ(f)

f :
∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl, l = 1, . . . , N
(FpΦ,γ)

or equivalently

min Iγ(f)

f :
∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl, l = 1, . . . , N.
(FpΦ,γ)

We denote by ψ the convex conjugate of γ, which is defined by

ψ(t) = sup
y
{ty − γ(y)} .

The domain of γ (respectively of ψ) is denoted by Dγ (respectively Dψ). In the
sequel we will make the following assumption denoted by H1.
H1 γ (respectively its convex conjugate ψ) is a differentiable, closed, essen-

tially strictly convex function for all interior points on its domain y ∈
int Dγ (respectively in Dγ).
The minimum of γ(y) is 0 and is attained at some y0 = (y1

0 , . . . , y
p
0) such

that y0 ∈ int Dγ .

The convex function γ is such that the ratio γ(y)
||y||

tends to infinity on the

edges of Dγ .
As similar as in the case of the single function reconstruction recalled in the

section 2, we will need to define the analogue of the γ-divergence of signed mea-
sures. Such γ-divergence features terms that depend on singular parts. As in the
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case in one dimension, the singular part vanishes when γ(y)
||y||

tends to infinity on

the edges of Dγ . The assumption on the ratio γ(y)
||y|| is then taken for the sake of

simplicity.
Let E be a convex set of measurable Rp-valued functions, the minimum of Iγ(.)

on the convex E will be denoted as

Iγ(E) := min
f∈E

Iγ(f).

The first result we have is a characterisation of the minimum of Iγ(.) over E with
respect to a specific convex functional. Define f1 and f2 two functions. Provide
γ(f1) and γ(f2) are finite PU a.s., we define γ-Bregman distance of function f1
and f2 on U as:

Bγ(f1, f2) :=
∫
U

[
γ(f1)− γ(f2)− (∇γ(f2))T (f1 − f2)

]
dPU . (24)

One can remark that Bγ(f1, f2) > 0, ∀f1, f2 with finite Iγ values by the convexity
of γ. The next theorem characterises the minimum of Iγ(.) over a convex set E of
functions with respect to the Bregman distance.

Theorem 3.1. Given any convex set E of measurable functions on U , such that
Iγ(E) is finite, there exists a differentiable function fo not necessarily in E such
that for all f ∈ E with Iγ(f) <∞:

Iγ(f) > Iγ(E) +Bγ(f, fo). (25)

In addition, fo is unique PU -a.s. and any sequence of functions fn ∈ E, for
which Iγ(fn)→ Iγ(E), converges to fo in PU .

Proof. We adapt the proof of [7] in the multidimensional case proposed in this
section. The proof relies on an identity that exists for all function f ∈ E with
finite Iγ(.) value and that a Iγ-minimising sequence of function is in some weak
sense a Cauchy sequence. In the following, ||.|| will denote the Euclidean norm of
Rp-valued vector.

First notice that for all α ∈]0; 1[ and all f , f1 ∈ E such that Iγ(f) and Iγ(f1)
are finite, the following equality holds

αIγ(f) + (1− α)Iγ(f1) = Iγ (αf + (1− α)f1) + αBγ (f, αf + (1− α)f1)
+ (1− α)Bγ (f1, αf + (1− α)f1) .

(26)

Let denote by f2 the function f2 = αf + (1 − α)f1. One can first notice that by
developing and rearranging those terms, we have that

α (∇γ(f2))T (f − f2) + (1− α) (∇γ(f2))T (f1 − f2) = 0.
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Therefore, only the Iγ(.) parts remain in the sum of αBγ (f, f2) and (1−α)Bγ (f1, f2),
that is

αBγ (f, f2) + (1− α)Bγ (f1, f2) = αIγ(f) + (1− α)Iγ(f1) + Iγ (f2)

and we have identity (26).

Let (fn) ⊂ E be a minimising sequence of Iγ and such that for all n, Iγ(fn) <∞.
Then (fn) is a Cauchy sequence in probability, that is

lim
n,m→∞

PU ({x : ||fn(x)− fm(x)|| > ε}) = 0 ∀ε > 0.

See Lemma A.6 in Appendix A for the proof.
Then, there exists a subsequence (fnk) of (fn) in Rp such that fnk converges

a.s. to a function fo in PU measure and such fo satisfies the inequality in (25).
Indeed by replacing f1 by fnk in (26), it becomes

Iγ(f) = 1
α
Iγ(αf + (1− α)fnk)− 1− α

α
Iγ(fnk) +Bγ(f, αf + (1− α)fnk)

+ 1− α
α

Bγ(fnk , αf + (1− α)fnk)

> Iγ(E) +Bγ(f, αf + (1− α)fnk) + 1− α
α

(Iγ(E)− Iγ(fnk)) ,

(27)

the last inegality coming from the positivity of Bregman distance and from the fact
that αf+(1−α)fnk ∈ E by the convexity of E and therefore Iγ(αf+(1−α)fnk) >
Iγ(E).

As fnk is a Iγ-minimising sequence, the last term in (27) tends to 0 when k
goes to infinity.

Finally, taking a sequence (αk) converging slower than fnk to 0, by Fatou’s
lemma

lim inf
k→∞

Bγ(f, αkf + (1− αk)fnk) > Bγ(f, fo).

This proves the existence of fo in inequality (25). �

Given a N real-valued positive measures Φ1, . . . ,ΦN , their Lebesgue decompo-
sitions are given by Φl = φlPU + Σl, for l = 1, . . . , N where their Radon-Nikodym
derivatives with respects to PU are denoted by φl. Measures Σl are singular
with respect to PU which means that they are concentrated on a set Ũ such that
PU (Ũ) = 0. We denote Eφ,K the subset of functions as follows

Eφ,K :=
{
f = (f1, . . . , fp),∫
U

p∑
i=1

λi(x)f i(x)φl(x)dPU (x) ∈ Kl, l = 1, . . . , N
}
.

(28)
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The next theorem leads to a description of optimum function (f1,o, . . . , fp,o)
that is solution on Eφ,K of Iγ(.) minimisation problem. The result is obtained
thanks to Fenchel’s duality theorem for convex functions and is a generalisation
in higher dimension of [8, Th. II.2].
Theorem 3.2. Suppose there exists a Rp-valued function f ∈ Eφ,K and such that
it satisfies

f(x) = (f1, . . . , fp) ∈ int Dγ , PU − a.s.
Let L be the subspace of RN such that for given (φ1, . . . , φN )

L =
{
v ∈ RN : vl =

∫
U

p∑
i=1

λi(x)f i(x)φl(x)dPU (x), l = 1, . . . , N,

for some f : U → Rp
}

and m be the following application

m(v) :=
∫
U

ψ
(
τ1(x, v), . . . , τp(x, v)

)
dPU (x), (29)

with τ i(x, v) =
∑N
l=1 λ

i(x)vlφl(x). The minimum of Iγ(.) over the set Eφ,K can
be expressed by

Iγ(Eφ,K) = max
v∈RN

{
inf

c∈K∩L
〈v, c〉 −m(v)

}
. (30)

Then, for vo ∈ RN which maximises (30), the minimiser of Iγ(.) over Eφ,K is

f i,o(x) = ∂ψ

∂τi

(
τ1(x, vo), . . . , τp(x, vo)

)
, ∀i = 1, . . . , p (31)

and such fo = (fo,1, . . . , fo,p) satisfies (25).

Proof. Outline of the proof is as in [8] with a multidimensional approach:
(1) Expression of the minimum in (30) is given thanks to Fenchel’s duality

theorem.
(2) Letting τ i(x, v) =

∑N
l=1 λ

i(x)vlφl(x) and vo the vector of RN which max-
imises (30), one must verify that

(
τ1(x, vo) . . . τp(x, vo)

)T belongs to
the interior of Dψ.

(3) Candidate function fo must be such that it satisfies the Bregman inequal-
ity (25) of 3.1.

Let k(z) := inf{Iγ(f) :
∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x) = z}. Function k is a

convex function with dom k ⊂ L. Let h be such that :

h(z) =
{ 0 if z ∈ K ∩ L

+∞ else.
(32)



28 TITLE WILL BE SET BY THE PUBLISHER

Then Iγ(Eφ,K) = inf
z∈K

k(z) = inf
z∈RN

{k(z) + h(z)}.
In order to apply Fenchel duality theorem, we need that dom k ∩ dom h 6= ∅.

Equivalently, that means that there exists z0 ∈ dom k such that z0 ∈ K∩L. From
3.2 assumptions, there exists f ∈ Dγ ∩Eφ,K. By applying Lemma 3.3 there exists
a closed convex set D̃ included in Dγ and a function f̃ such that it belongs to
D̃ ∩Eφ,K. As f̃ ∈ D̃, γ(f̃) is well-defined and Iγ(f̃) <∞. Let z0 ∈ RN be defined
by

z0,l =
∫
U

p∑
i=1

λi(x)f̃ i(x)φl(x)dPU (x), l = 1, . . . , N. (33)

By definition z0 ∈ L, as Iγ(f̃) < ∞, z0 ∈ dom k and as f̃ ∈ Eφ,K, z0 ∈ K.
Therefore dom k ∩ dom h 6= ∅ and Fenchel-Moreau duality theorem can then be
applied, see [23] and [24].

With the superscript ? denoting the convex conjugate, using Fenchel-Moreau
duality theorem, we have the following equality holds

inf
z∈RN

{k(z) + h(z)} = max
v∈RN

{−k?(v)− h?(−v)} (34)

and then Iγ(Eφ,K) = max
v∈RN

{−k?(v)− h?(−v)}.
The convex conjugate of k can be expressed as follow :

k?(v) = sup
z∈RN

{〈v, z〉 − k(z)}

= sup
z∈RN

sup
f∈Eφ,K

{
〈v, z〉 −

∫
U

γ(f)dPU
}

= sup
{
〈v,
∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x)〉 −
∫
U

γ(f)dPU

}

= sup
{∫

U

p∑
i=1

f i(x)
{

N∑
l=1

vlλ
i(x)φl(x)

}
− γ(f(x))dPU (x)

}

=
∫
U

ψ

(
N∑
l=1

vlλ
1(x)φl(x), . . . ,

N∑
l=1

vlλ
p(x)φl(x)

)
dPU (x)

=
∫
U

ψ
(
τ1(x, v), . . . , τp(x, v)

)
dPU (x),

with τ i(x, v) =
∑N
l=1 λ

i(x)vlφl(x).

By definition of h, its convex conjugate is :

h?(−v) = sup
c∈K∩L

〈−v, c〉 = − inf
c∈K∩L

〈v, c〉.
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Therefore we have equality (30)

Iγ(Eφ,K) = min
f∈Eφ,K

∫
U

γ(f)dPU

= max
v∈RN

{−k?(v)− h?(−v)}

= max
v∈RN

{ inf
c∈K∩L

〈v, c〉 −m(v)}.

(35)

Let us denote by vo, the vector in RN which realises the maximum of { inf
c∈K∩L

〈v, c〉−
m(v)}.

We remind that

m(v) =
∫
U

ψ
(
τ1(x, v), . . . , τp(x, v)

)
dPU (x)

with τ i(x, v) =
N∑
l=1

λi(x)vlφl(x).

By the assumptions on ψ, τ i(x, vo) belongs to the interior of Dψ and therefore one
can differentiate ψ at τ i(x, vo).

Let us now demonstrate that fo = (f1,o, . . . , fp,o) with

f i,o(x) = ∂ψ

∂τi

(
τ1(x, vo), . . . , τp(x, vo)

)
, ∀i = 1, . . . , p,

satisfies the Bregman inequality in (25) for E = Eφ,K and for any f such that
Iγ(f) <∞. This results in equivalently showing that for any f with Iγ(f) <∞∫

U

p∑
i=1

(
τ i(x, v)− ∂γ

∂yi
(fo(x))

)(
fo,i(x)− f i(x)

)
dPU (x) > 0. (36)

Inequality (36) comes by using (35) remarking that for any τ ∈ Dψ

γ (∇ψ(τ)) = τT∇ψ(τ)− ψ(τ) (37)

and that for any f with Iγ(f) <∞∫
U

p∑
i=1

τ i(x, vo)f i(x)dPU (x) > inf
z∈K∩L

〈vo, z〉.

Let us denote by D∇ the set of γ gradient

D∇ = {∇γ(y), y ∈ int Dγ} .

For τo = (τ1(x, vo), . . . , τp(x, vo)) ∈ int D∇, using (37) we have ∇γ (∇ψ(τo)) = τo

and then (36) stands with equality. When τo ∈ Rp \ (int D∇), let u ∈ ∂(Dγ) such
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that ∇γ(u) defined below is the projection of τo on ∂D∇

∇γ(u) := lim
y→u

y∈intDγ

∇γ(y).

At such τo, we have ψ(τo) = uT τo − γ(u) and so ∇ψ(τo) = u. Therefore

∇γ(fo) = ∇γ(∇ψ(τo))
= ∇γ(u)

and
fo,i = (∇ψ(τo))i

= ui.

If, for i ∈ {1, . . . , p}, we have τ i(x, vo) 6 (∇γ(u))i, then ui 6 f i for any f such
that Iγ(f) < +∞. Therefore both terms of the product in (36) are negative.
Conversely, if we have τ i(x, vo) > (∇γ(u))i, then ui > f i for any f such that
Iγ(f) < +∞. Then optimal solution fo satisfies Bregman inegality. �

To apply Fenchel duality Theorem in the previous 3.2, one needs to prove that
the domains of the two convex conjugates functions k and h defined in the proof
do not have an empty intersection. In order to prove so, the following lemma is
required. Lemma 3.3 features a function f̃ which belongs to a closed convex set
D̃ in the interior of γ domain. Given a function f in the interior of Dγ , we prove

the existence of f̃ for which the constraint values
∫
U

p∑
i=1

λi(x)f̃ i(x)φl(x)dPU (x)

are equal to the constraints values obtained with function f .

Lemma 3.3. Let φ1, . . . , φN be given integrable functions. Assume there exists a
measurable function f : U → Rp such that

f ∈ int Dγ
p∑
i=1

λi(x)f i(x)φl(x) ∈ L1(PU ), l = 1, . . . , N.

Then, there exist f̃ and D̃ such that f̃ is a function defined on U , f̃ ∈ D̃ and∫
U

p∑
i=1

λi(x)f i(x)φl(x)dPU (x)

=
∫
U

p∑
i=1

λi(x)f̃ i(x)φl(x)dPU (x), l = 1, . . . , N
(38)

with D̃ a closed convex set of Rp such that D̃  int Dγ .



TITLE WILL BE SET BY THE PUBLISHER 31

Proof. Let L be the subset of vectors of RN defined by

L =
{
v : vl =

∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x), l = 1, . . . , N, h : U → Rp
}
.

Let (Dn) be a sequence of closed convex set such that for all n, Dn  int Dn+1,
meaning thatDn is strictly growing to its limitDγ . Let Tn = {x ∈ U : f(x) ∈ Dn}.

Let Ln be the subset of vector in RN such that

Ln =
{
v : vl =

∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x), l = 1, . . . , N,

h bounded on Tn, h = 0 on T cn
}
.

then there exists n0 such that for all n > n0, Ln = L. Indeed, if Ln is a proper
subset of L, there exists vn with ||vn|| 6= 0 such that

N∑
l=1

vn,l

(∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x)
)

= 0

∫
U

p∑
i=1

λi(x)hi(x)
(

N∑
l=1

vn,lφl(x)
)
dPU (x) = 0.

That implies that
∑N
l=1 vn,lφl(x) = 0 PU -a.s. on Tn. Taking a convergent subse-

quence vnk with limits v such that ||v|| 6= 0, we have
∑N
l=1 vlφl(x) = 0 PU -a.s. on

U which goes against ||v|| 6= 0.
For δ > 0, defines Cδ by

Cδ =
{
v : vl =

∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x), l = 1, . . . , N,

||h|| 6 δ on Tn0 , h = 0 on T cn0

}
.

The affine hull of Cδ equals L and 0 ∈ int Cδ in the relative topology of L.

We denote by fn the projection ontoDn of f at x. Therefore
∫
U

p∑
i=1

λi(x)(f in(x)−

f i(x))φl(x)dPU (x) approaches 0 as n tends to infinity. For δ > 0 there exists then

n1(δ) such that for all n > n1(δ),
∫
U

p∑
i=1

λi(x)(f in(x)− f i(x))φl(x)dPU (x) belongs

to Cδ. Therefore, it exists h defined on U such that ||h|| 6 δ on Tn0 and h = 0 on
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T cn0
and such that

∫
U

p∑
i=1

λi(x)(f in(x)− f i(x))φl(x)dPU (x) =
∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x).

For such h, we set f̃ = fn + h. f̃ belongs to D̃ with D̃ = Dn ∩Dδ
n0

and

Dδ
n0

= {f(x) : ||f(x)− fn0(x)|| 6 δ} .

�

Next proposition describes under which conditions the infimum of 3.2 is reached
for an optimal function in Eφ,K.

Proposition 3.4. For a function m defined as in (29) and for vo which maximises
(30). If vo is an interior point of m domain, then optimal solution fo, with
components f i,o as in (31), belongs to Eφ,K.

Proof. Recall that

Iγ(Eφ,K) = max
v∈RN

(−k?(v)− h?(−v))

with k?(v) =
∫
U
ψ(τ)dPU and h?(−v) = − inf

z∈K∩L
〈v, z〉.

vo belongs to the interior of dom m implies that k? is differentiable in vo with
its gradient d with components dl defined for all l = 1, . . . , N by

dl =
∫
U

p∑
i=1

λi(x) ∂ψ
∂τi

(
τ1(x, vo), . . . , τp(x, vo)

)
φl(x)dPU (x).

By [23, Cor. 23.5.3], the subgradient of h?(−v) at v = vo, denoted by ∂h? is
included in (−K). As relative interiors of h? and k? have a non-empty intersection
set, [23, Th. 23.8] implies on the sum of convex function subgradients that ∂g =
{d}+∂h?. As g reaches its maximum at vo, ∂g is a subset which contains 0, which
implies that d ∈ K.

Then, with f i,o(x) = dψ
dτi

(
τ1(x, vo), . . . , τp(x, vo)

)
for all l = 1, . . . , N ,

∫
U

p∑
i=1

λi(x)f i,o(x)φl(x)dPU (x) ∈ Kl.

Therefore, fo ∈ Eφ,K. �

The following corollary is deduced from 3.2 when dealing with measures Φ that
are not absolutely continuous with respect to PU .
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Let us define the analogue of Eφ,K for measures Φ that are not absolutely
continuous with respect to PU . EΦ,K is the set of function

EΦ,K :=
{
f = (f1, . . . , fp) :

∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl, l = 1, . . . , N
}
.

As a result, we see that when considering measures Φ with a singular part,
the optimum function defined in 3.2 does not meet in fact the constraints (23).
The corollary stresses on the fact that the problem is ill-posed when dealing with
measures Φ which are not absolutely continuous with respect to the reference
measure PU .

Corollary 3.5. Suppose there exists a function f ∈ EΦ,K and such that it satisfies

f(x) = (f1(x), . . . , fp(x)) ∈ int Dγ , PU − a.s.

Let L, m be as defined in 3.2 and Φ = φPU + Σ. The minimum of Iγ(.) over EΦ,K
can be expressed by

Iγ(EΦ,K) = max
v∈RN

{
inf

c∈K̃∩L
〈v, c〉 −m(v)

}
(39)

for some K̃ different of K.
Therefore the optimal solution fo defined in (31) no longer meets the constraints

in (23).

Proof. Let kΦ(c) = inf
{
Iγ(f) :

∫
U

p∑
i=1

λi(x)f i(x)dΦ(x) = c

}
and Φ = φPU + Σ.

Then,

Iγ(EΦ,K) = inf
f∈EΦ,K

{Iγ(f)} = inf
c∈K

kΦ(c)

= inf
{
Iγ(f) :

∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x)

+
∫
U

p∑
i=1

λi(x)f i(x)dΣ(x) = c, c ∈ K
}

= inf
{
Iγ(f) :

∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x)

= c−
∫
U

p∑
i=1

λi(x)f i(x)dΣ(x), c ∈ K
}

= inf
{
Iγ(f) :

∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x)c̃, c̃ ∈ K̃
}

= Iγ(Eφ,K̃),
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where K̃ = K +
{
cΣ ∈ RN : cΣ =

∫
U

p∑
i=1

λi(x)f i(x)dΣ(x)
}

We apply 3.2 to get expression (39). �

Corollary 3.5 points out the necessity of a different approach for solving problem
described in (23), particularly when dealing with Φ not absolutely continuous with
respect to the reference measure on U , as it is the case for solving interpolation
problems.

3.2. Linear transfer principle for the multidimensional case

Following equivalence of problem solutions introduced in [8], the inverse problem
on functions described in (23) can be treated as an inverse problem on measures.
Sets and generic elements will be notationally distinguished by V and t to describe
problem for measure reconstruction. Measures considered in the sequel are always
finite real-valued measures. The set of all finite measures on a set V will be denoted
byM(V ). The aim is then to reconstruct p real-valued measures F i ∈M(V ) such
that

p∑
i=1

∫
V

ϕil(t)dF i(t) ∈ Kl, l = 1, . . . , N (40)

with ϕil being given real-valued functions on V , Kl ⊂ R, for all i = 1, . . . , p and
l = 1, . . . , N .

Let us first denote the following assumption
H2: V is a compact metric space, PV is a probability measure having full

support, all ϕil are continuous and for each i = 1, . . . , p, (ϕil)l=1,...,N are
linearly independent.

Given the assumption H1, a solution to problem (40) can then be chosen by
taking as optimal solution (F 1,o, . . . , F p,o) the p-real valued measure which min-
imises the γ-divergence with respect to the reference measure PV providing F o
meets the constraints (40). The opposite of the γ-entropy Iγ and the γ-divergence
are linked by the following relation [4, theorem 2.7]

Dγ(F, PV ) =
∫
V

γ

(
dF 1

a

dPV
, . . . ,

dF pa
dPV

)
dPV

where F ia are measures absolutely continuous with respect to PV .

Let us denote the set of p-real valued measure with F 1, . . . , F p ∈M(V ) meeting
the constraints described in (40) by the set

Sϕ,K =
{

(F 1, . . . , F p) :
p∑
i=1

∫
V

ϕil(t)dF i(t) ∈ Kl, l = 1, . . . , N
}
. (41)
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The 3.6 below describes the γ-divergence minimiser (F o,1, . . . , F o,p) such that
(F o,1, . . . , F o,p) belongs to Sϕ,K. 3.6 is the analogue of 3.2 when dealing with
measure reconstruction.

Theorem 3.6. Under assumption H2, suppose we have p measures absolutely
continuous with respect to PV such that (F 1, . . . , F p)T ∈ Sϕ,K and such that they
satisfy (

dF 1

dPV
(t), . . . , dF

p

dPV
(t)
)
∈ int Dψ, PV − a.s.

Then there exist p real-valued measures F 1,o, . . . , F p,o, absolutely continuous
with respect to PV and such that (F 1,o, . . . , F p,o) minimises Dγ(., PV ) over Sϕ,K.
Their Radon-Nikodym derivatives f i,o with respect to PV are defined by

f i,o(t) = ∂ψ

∂τ i
(
τ1(t, vo), . . . , τp(t, vo)

)
, ∀i = 1, . . . , p

with τ i(t, v) =
∑N
l=1 vlϕ

i
l(t) and with vo such that it maximises

Dγ(Sϕ,K, PV ) := max
v∈RN

{
inf
z∈K
〈v, z〉 −

∫
V

ψ
(
τ1(t, v), . . . , τp(t, v)

)
dPV (t)

}
.

Proof. Direct from 3.2. �

Having recovered the p measures F i,o described in 3.6, a regularized recon-
struction fo is possible via the linear transfer principle. As a matter of fact, one
can linearly transfer the constraints (23) to the constraints (40) by using suitable
kernel K. Let Ki(., .) be measurable bounded real-valued functions on U × V for
i = 1, . . . , p such that

f iK(x) =
∫
V

Ki(x, t)dF i(t) ∀i = 1, . . . , p

ϕil(t) =
∫
U

λi(x)Ki(x, t)dΦl(x) ∀i = 1, . . . , p , ∀l = 1, . . . , N.
(42)

Then the Fubini theorem links the two sets of constraints as it follows∫
U

p∑
i=1

λi(x)f iK(x)dΦl(x) =
p∑
i=1

∫
U

λi(x)
(∫

V

Ki(x, t)dF i(t)
)
dΦl(x)

=
p∑
i=1

∫
V

(∫
U

λi(x)Ki(x, t)dΦl(x)
)
dF i(t)

=
p∑
i=1

∫
V

ϕil(t)dF i(t).
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It is then clear that if (F 1,o, . . . , F p,o) is a solution for problem (Mp
ϕ,γ), then

foK = (f1,o
K , . . . , fp,oK ) is a regularized solution to problem (FpΦ,γ). The components

of foK are defined by

f i,oK (x) =
∫
V

Ki(x, t)dF i,o(t) ∀i = 1, . . . , p

with (F 1,o, . . . , F p,o) defined as in 3.6.

The advantage of the kernel transfer methods is that if it occurs that some
measures Φ are not absolutely continuous with respect to the reference measure,
as it is the case when considering Dirac measures for example, the linear transfer
principle provides continuous function ϕ for problem (40) by choosing kernel K to
be continuous.

Choice of K is influenced by the prior knowledge on expected properties for the
regularized solution fK , see the applications in section 4 for some examples.

3.3. The embedding into the MEM framework for the multidimen-
sional case

In this section we study the MEMmethod in the multidimensional case. We first
detail the construction of the random point-measure involved in the reconstruction
problem.

As before in section 2, define a sequence of discrete probability measures (Pn)n
as follows

Pn = 1
n

n∑
j=1

δtj (43)

with (tj)j=1,...,n a deterministic sequence of points in V such that the limit of
probability measures Pn is the reference probability measure PV . For each i =
1, . . . , p, a real valued random variable Y ij is associated to tj . The random variable
Y ij can be seen as a random amplitude for a signed measure F i at location tj . Then
let F in, for i = 1, . . . , p be p random measures such that F in � Pn and such that
they are defined for all t ∈ V by

F in(t) = 1
n

n∑
j=1

Y ij δtj (t).

For all j = 1, . . . , n the p real-valued vector of random variables Yj = (Y 1
j , . . . , Y

p
j )T

is sampled from a reference distribution Π and we denote by Π⊗n the joint dis-
tribution of the n independent, identically sampled vectors Yn of dimension p.
Replacing F i by the discretised measure F in, the measure constraint (40) can be
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rewritten in the following way

1
n

n∑
j=1

p∑
i=1

ϕil(tj)Y ij ∈ Kl 1 6 l 6 N. (44)

MEM method consists then in finding the optimal joint distribution QMEM
n

such as it minimises the divergence from the reference distribution Π⊗n and such
that the discrete constraints (44) is met on average. That is the MEM problem
can be rewritten as

min
Q∈Qn

ϕ,K

DKL(Q,Π⊗n). (45)

where Qnϕ,K defines the set of distributions Q which generates n× p random am-
plitudes Y ij such that the expectation under Q of the constraints is satisfied, that
is

Qnϕ,K =

(Y1, . . . ,Yn)T ∼ Q : EQ

 1
n

n∑
j=1

p∑
i=1

ϕil(tj)Y ij

 ∈ Kl, l = 1, . . . , N

 ,

where Yj is the j-th sample (Y 1
j , . . . , Y

p
j ) of amplitudes for the p random measures

F 1
n , . . . , F

p
n .

Let us denote the following assumption
H3: function γ considered in the γ-divergence problem (FpΦ,γ) is the function

γΠ that is such that its conjugate function ψΠ has its domain equals to R̄p
and corresponds to the logarithm of the moment generating function of Π

ψΠ(τ1, . . . , τp) = log
∫
Rp

exp(τT y)dΠ(y). (46)

We have that the components of ∇ψΠ are

∂ψΠ

∂τi
(τ1, . . . , τp) =

∫
yi exp

(
τT y − ψΠ(τ1, . . . , τp)

)
dΠ(y). (47)

Provides it exists yj =
(
y1
j . . . ypj

)T in the interior of Π domain for j =
1, . . . , n such that

1
n

n∑
j=1

p∑
i=1

ϕil(tj)yij ∈ Kl, l = 1, . . . , N, (48)

by standard theory of the ME method the minimiser QMEM
n of K(Q,Π⊗n) exists

and it belongs to the exponential family through Π⊗n spanned by the statistics
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1
n

∑n
j=1

∑p
i=1 ϕ

i
l(tj)yij for l = 1, . . . , N . Its expression is given by

QMEM
n (y1, . . . , yn) = exp

 n∑
j=1

τTj yj − ψΠ (τj)

Π⊗n(y1, . . . , yn) (49)

where τj =
(
τ1(tj , von), . . . , τp(tj , von)

)
and τ i(t, v) =

∑N
l=1 vlϕ

i
l(t) and von is the

maximiser of the discrete dual problem

Hn(v) = inf
c∈K
〈v, c〉 − 1

n

n∑
j=1

ψΠ
(
τ1(tj , v), . . . , τp(tj , v)

)
. (50)

We define the vector of measures FMEM
n = (F 1,MEM

n , . . . , F p,MEM
n )T with each

components defined by
F i,MEM
n = EQMEMn

[
F in
]
. (51)

The next theorem describes the convergence of (FMEM
n )n sequence to the solution

of the γ-divergence minimisation problem on signed measures (Mp
ϕ,γ).

Theorem 3.7. Under assumptions H2 and H3, suppose there exists p measures
(F 1, . . . , F p)T ∈ Sϕ,K such that they satisfy(

dF 1

dPV
(t), . . . , dF

p

dPV
(t)
)
∈ int DΠ PV − a.s.

Then the sequence (FMEM
n ) converges to (F 1,o, . . . , F p,o) the minimiser of Dγ(Sϕ,K, PV )

which Radon-Nikodym derivatives f i,o with respect to PV are defined by

f i,o(t) = ∂ψ

∂τ i
(
τ1(t, vo), . . . , τp(t, vo)

)
, ∀i = 1, . . . , p

with τ i(t, v) =
∑N
l=1 vlϕ

i
l(t) and with vo such that it maximises

Dγ(Sϕ,K, PV ) := max
v∈RN

{
inf
z∈K
〈v, z〉 −

∫
V

ψ
(
τ1(t, v), . . . , τp(t, v)

)
dPV (t)

}
.

To link the problem studied previously with the constraint of function recon-
struction problem (FpΦ,γ) recalled below

∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N,

one can consider the analogue of constraint (44) for the function to reconstruct.
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As problem (FpΦ,γ) and problem (Mp
ϕ,γ) can be linked by the linear transfer

studied in the subsection 3.2, there exists a regularized function f iK associated to
the reconstructed measure F i and chosen kernel Ki that is defined by

f iK(x) =
∫
V

Ki(x, t)dF i(t) ∀i = 1, . . . , p. (52)

Then the function of interest f iK can be approximated by a random function f in
defined for all x ∈ U by

f in(x) =
∫
V

Ki(x, t)F in(dt)

= 1
n

n∑
j=1

Y ijK
i(x, tj).

(53)

For QMEM
n the solution of problem (45), the regularized function fMEM

n,K has its
components f i,MEM

n,K defined by

f i,MEM
n,K (x) = EQMEMn

[
f in(x)

]
= EQMEMn

 1
n

n∑
j=1

Y ijK
i(x, tj)

 . (54)

Then if distribution QMEM
n is a solution of problem (Mp,n

ϕ,Π), the regularized solu-
tion fMEM

n,K defined above meets an approximation of the constraints of problem
(3). Such approximation is given by

EQ

 1
n

n∑
j=1

p∑
i=1

ϕil(tj)Y ij

 ∈ Kl, l = 1, . . . , N (55)

From previous expression, it is easy to see that properties of the solution f i,MEM
n,K

directly depends of the random amplitudes (Y ij )j∈N properties and of the kernel
Ki properties.

4. Applications

4.1. Application in the case p = 1

We consider in this section simple examples of functions reconstruction of one
or two variables. The first example considered is the reconstruction of a real-
valued convex function of one variable, f : [−1; 1] → R which is solution of an
interpolation problem. The second example considered is the reconstruction of a
polynomial function of two variables, f : [0; 1]× [0; 1]→ R which is solution of an
interpolation problem.
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4.1.1. Reconstruction of an univariate convex function

The first example considered is the reconstruction of a real-valued convex func-
tion of one variable, f : U → R which is solution of an interpolation problem with
U = [−1; 1]. We give N = 3 interpolation constraints. The function has a minimal
value y0 which is reached for a value x0 ∈]− 1; 1[. The pair (x0, y0) consists in the
first interpolation constraint. The two other points will be denoted by (x1, y1) and
(x2, y2) where x1 and x2 belong respectively to the interval ] − 1;x0[ and ]x0; 1[,
where the reconstructed function will be respectively decreasing and increasing.
The set of interpolation values will be denoted by z = (y1 − y0, y2 − y0). For a
reason explained in the following, the interpolation constraints are expressed as
the increment from the minimum value.

In this example, we consider the log Laplace transform associated with the
Poisson distribution

ψP(1)(τ) = (eτ − 1)
for the convex criterion to minimise. The objective function (50) associated with
the MEM problem becomes

Hn(v) = 〈v, z〉 − 1
n

n∑
j=1

ψP(1) (〈v,ϕ(tj)〉)

= 〈v, z〉 − 1
n

n∑
j=1

(exp (〈v,ϕ(tj)〉)− 1) .
(56)

The objective function (56) has an analytic minimum when the number of dis-
cretisation points n equals 1. The analytic solution is

vo,l = 1
ϕl(t)

log
(

zl
ϕl(t)

)
, l ∈ {1; 2}.

Otherwise, one can use the polynomial approximation of the exponential function.
Solving the MEM problem is then reduced to finding the root of a polynomial.

In [16] the authors proved that

K+
m(x, t) = (x− t)m−1

(m− 1)! 1[x0;x](t), t ∈ [−1; 1]

is a kernel which leads by the linear transfer to an increasing convex function with
m− 1 derivatives and which is equal to 0 in x0. In our frame, the kernel used for
the linear transfer is

K(x, t) = K+
m(x, t)1x>x0(x) +K−m(x, t)1x<x0(x), t ∈ V = [−1; 1]

where
K−m(x, t) = (t− x)m−1

(m− 1)! 1[x;x0](t).
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This will lead to a reconstructed function which reaches its minimum value 0 in x0,
which is decreasing on the interval [−1;x0] and increasing on the interval [x0; 1].

In the end, the reconstructed function is given by

fn,K(x) = y0 + 1
n

n∑
j=1

K(x, tj) exp
(

N∑
l=1

vo,lϕl(tj)
)
.

The reconstructed function we obtain is displayed in Figure 3.

Figure 3. Poisson Log Laplace. Reconstruction of a convex func-
tion f : [−1; 1] → R twice differentiable everywhere with 3 inter-
polation constraints. The minimum of the function is assumed to
be known.

4.1.2. Reconstruction of a bivariate polynomial function

The second example considered is the reconstruction of a polynomial function
of two variables, f : U → R which is solution of an interpolation problem with
U = [0; 1]× [0; 1]. We will choose an increasing number N of interpolation points
thanks to a Latin Hypercube Sampler in [0; 1]× [0; 1], the domain of f . We denote
by z the values of function f to interpolate at the design points.

In this example, we consider the log Laplace transform associated with the
standard Gaussian distribution N (0, 1)

ψN (0,1)(τ) = τ2

2
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(a) N = 4. Location of points used for
training.

(b) N = 4. Reconstructed function.

(c) N = 10. Location of points used for
training.

(d) N = 10. Reconstructed function.

(e) N = 20. Location of points used for
training.

(f) N = 20. Reconstructed function.

Figure 4. Gaussian Log Laplace. Reconstructed functions f :
[0; 1]× [0; 1]→ R with the gaussian kernel for an increasing num-
ber of interpolation constraints. Figures (4a), (4c) and (4e) dis-
play the design points used for the interpolation problem. Figures
(4b), (4d) and (4f) display the evolution of the reconstructed func-
tion with respect to its first component x1 for several values of the
second component x2. x2 varies from 0 to 1 with a 0.1 step.
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for the convex criterion to minimise. The objective function (50) associated with
the MEM problem becomes

Hn(v) = 〈v, z〉 − 1
n

n∑
j=1

ψN (0,1) (〈v,ϕ(tj)〉)

= 〈v, z〉 − 1
2n

n∑
j=1

(〈v,ϕ(tj)〉)2
.

(57)

We choose n = 100 and the n discretising points are sampled from a Latin Hy-
percube Sampler in V = [0; 1]× [0; 1]. The objective function (57) has an analytic
minimum provides the number of discretising points n is way larger than the
number of constraints N and that the N components of moment function ϕ are
linearly independent, which is already an assumption in H2 used for 3.6. Optimal
v is solution of the linear problem

Av = z

where matrix A is

A = 1
n

n∑
j=1

ϕ(tj) ·ϕ(tj)T .

We consider the symmetric gaussian kernel

KG,θ(u,w) = exp
(
− (u− w)2

2θ

)
, (u,w) ∈ [0; 1]× [0; 1]

which is largely used as a covariance kernel in krieging problems which leads to
solutions infinitely differentiable. The kernel we use for a pair of points x and t
where (x, t) ∈ U2×V 2 = [0; 1]2× [0; 1]2 is the following product of gaussian kernels

Kθ(x, t) = KG,θ1(x1, t1) KG,θ2(x2, t2)

= exp
(
− (x1 − t1)2

2θ1

)
exp

(
− (x2 − t2)2

2θ2

)
The best parameter θ is chosen using cross-validation, that is the value of θ which
minimises

N∑
k=1

(
f

(k)
Kθ

(xk)− zk
)2

with zk the k-th value in the interpolation problem located at point xk and f (k)
Kθ

is
the reconstructed function obtained in removing (xk, zk) from the data set. This
leads to a two step optimisation problem as matrix A depends on the value of θ
and so does the optimal multiplier v. Therefore in the following matrix A will be
denoted with a subscript Aθ.
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In order to determine the optimal parameter θ, we solve iteratively the following
two stage problem

Step 1: v
(k)
m+1

solve A(k)
θm

v = z(k) for all k = 1, . . . , N.
Step 2: θm+1

minimise
N∑
k=1

(
f

(k)
m+1,Kθ (xk)− zk

)2
.

The superscript (k) is used to note that the k-th experiment has been removed, that
is the k-th line has been removed from Aθm for the matrix A(k)

θm
and the k-th value

from z for the vector of observation z(k). The notation f (k)
m+1,Kθ corresponds to the

reconstructed function at the m-th iteration which is solution of the interpolation
problem in which the k-th experiment has been removed.

The reconstructed function we obtain is displayed in Figure 4.

4.2. Applications in the case p 6= 1

We consider in the sequel some toy models inspired from computational ther-
modynamics. At first we explain how to compute the so-called phase diagram.
Then two toy models are solved using the method described in section 3.

4.2.1. Phase diagram description in Computational Thermodynamics

The application considered here derived from the assessment problem in Ther-
modynamics and the CALPHAD (CALculation of PHAse Diagram) method [21],
[15], [20], [26].

The CALPHAD method consists in the parametric reconstruction from par-
tial information of thermodynamic quantities, that is Gibbs energy functions and
their derivatives. Data at hand for the reconstruction are thermodynamic quan-
tities and phase diagram data. The thermodynamic quantities consist in linear
transformations (e.g. first or second derivative) of the function which is ought to
be reconstruct.

The phase diagram is a map of overriding phases of chemical species, that is
the spatial arrangements of chemical species which are the most stable. A stable
phase is the phase with the lowest energy. The inner energy of such arrangements
varies with state variables, that is chemical composition, temperature and pressure.
Establishing the phase diagram of a chemical system means to partition the domain
of permissible state variables in several areas, each area featuring one or several
stable phases.

Figure 5 displays an example of a phase diagram. In order to determine the
different divided areas of the diagram, one must compute the minimising convex
hull of the list of the p functions involved in the system. Problem is conduct for
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Figure 5. Connections between the phase diagram (f) of a sys-
tem A-B with two phases (the phase α for low temperature and
the phase L for high temperature) and the inner energy (a)-(e)
for each phase for different temperature values.
Figures (a)-(e) display the Gibbs energy for phases α and L at a
given temperature with respect to the relative composition of chem-
ical element B over the sum of chemical elements A and B. For
temperature T1 and T2, phase L has the lowest energy whereas
for temperature T4 and T5 phase α has the lowest energy. At
temperature T3, there exists a common tangent to the two energy
functions. Therefore between composition C1 and C2, a combina-
tion of phases α and L is the most stable.
Figure reference [1].

all temperature range. For composition range where the minimising convex hull
is confounded with a single energy function f i, it corresponds to an area where
phase i is the overriding phase and the corresponding area in the phase diagram
is labelled by i.

The phase diagram in Figure 5 is for a binary system A-B. Such phase diagram
is called binary phase diagram as it features two chemical elements: A and B.
In this example, the state variables which can vary are the temperature and the
relative composition of B with respect to the total composition (that is of A and
B), from solely element A at the left edge to solely element B at the right edge.
Pressure is fixed.
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Phase diagram data consists in locations in the map of overriding phases, that
is either temperatures or compositions where a change in the set of stable phases
occurs or information on the stable phases for a given composition and a given
temperature.

The novelty of the work presented here is that the reconstruction occurs in a
non-parametric frame, contrarily as the usual reconstruction frame in thermody-
namics.

In the sequel, reconstruction of thermodynamic quantities is expressed as the
inverse problem (FpΦ,γ). The constraints the solution (f1, . . . , fp) must satisfy is
recalled below ∫

U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N.

The functions to recover f i, i = 1, . . . , p are the Gibbs energy functions of the
p stable phases that occur in the phase diagram. The functions λi represent the
phase diagram data for each phase i = 1, . . . , p and are supposed to be known all
over the domain of permissible state variables. In the example considered in the
sequel, there are bounded, continuous functions but not necessary differentiable.

In this frame, x is a (d + 1)-tuple of positive bounded quantities. First com-
ponent is the temperature in Kelvin with values in [T0;Tmax], transposed to [0; 1]
without loss of generality. The d following components are composition data with
values in [0; 1]d. Kernels Ki, for all i = 1, . . . , p, considered for the linear trans-
fer, will be chosen as products of d + 1 component-wise kernels. In the examples
considered in the following d = 1 or 2.

4.2.2. Phase diagram with an ideal solution

In this section is studied the case of a phase diagram with an ideal solution. It
consists in the reconstruction of two functions, viz. the Gibbs energy functions
associated with the two phases, outside of the domain where they are known.

The inverse problem associated to the functions to reconstruct is built in ac-
cordance with the phase diagram. The phase diagram with an ideal solution is
usually displayed as in Figure 6. It features two phases and three divided area.
The first area at the bottom of the diagram is the area associated with phase 1
which is the overriding phase for low temperature. The second area at the top
of the diagram is the area associated with phase 2 which is the overriding phase
for high temperature. The last area between the two first areas features a mix of
phase 1 and phase 2.

Such problem can be not well-posed as there exists a infinity of pairs of functions
that leads to the same phase diagram. In the following is treated the univariate
case, that is at a given temperature value and when the function solely depends
on the relative composition of element B with respect to the total composition.
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Figure 6. Phase diagram corresponding to an ideal solution.
There are two phases: the phase 1 is the overriding phase for low
temperature and the phase 2 for the high temperature. Behaviour
with respect to the temperature of phases 1 and 2 are known when
the composition is 0 or 1 for the temperature range they are re-
spectively the overriding phase.

First is treated the univariate case. The pair of functions
(
f1(x), f2(x)

)
is

ought to be reconstructed for all x ∈ [0; 1]. In this case, the phase diagram
constraints reduce to the following definition. Given x1, x2 ∈ [0; 1] with x1 < x2.
The interval [x1;x2] consist in the compositions for which phase 1 and phase 2
coexist. Therefore functions λ1 and λ2 are defined as follows

λ1(x) =


1 if x < x1

x2 − x
x2 − x1

if x ∈ [x1;x2]
0 else

and

λ2(x) =

 0 if x < x1
1− λ1(x) if x ∈ [x1;x2]

1 else.
Observations for x < x1 gives values of solely f1 and for x > x2 gives values of

solely f2. In the interval [x1;x2], one can observe

λ1(x)f1(x1) + λ2(x)f2(x2) (58)

which does not provide direct information about the behaviour of f1 nor f2 on
this interval.

The two functions to be reconstructed ought to be convex twice differentiable.
Therefore the same assumptions are taken than in the case treated in subsubsec-
tion 4.1.1 and the same method is applied. Figure 7 displays the results obtained
for the reconstruction of the target functions.

Function f1 is well reconstructed in this example but the exist a set of possible
reconstruction for function f2. An extra constraint is required to have a unique
solution for f2.
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Figure 7. Bivariate Poisson Log Laplace. Reconstruction of two
convex functions f1 : [−1; 1] → R and f2 : [−1; 1] → R, twice
differentiable everywhere. The minimum is assumed to be known
for both functions.
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Appendix A. Appendix

A.1. Some general definitions and properties

Definition A.1. General definitions.
(1) We call domain of a function γ, the subset on which γ is finite, i.e.

dom γ = {x : γ(x) <∞}.

(2) A function γ is said to be closed (lower semicontinuous) if for each α ∈ R,
the sublevel set {x ∈ dom γ : γ(x) ≤ α} is a closed set.

Definition A.2. Convex analysis definitions. See for example [23] for more de-
tails.

(1) A convex function γ from Rp to R satisfies

∀x, y ∈ Rp, η ∈ [0, 1], γ(ηx+ (1− η)y) 6 ηγ(x) + (1− η)γ(y). (59)

γ is called stricly convex when equality in (59) occurs only when x = y.
(2) We call subgradient of a convex function γ at x ∈ Rp and write ∂γx all

vector s in Rp which satisfies

∀y ∈ Rp, γ(y) > γ(x) + 〈s, y − x〉.

(3) A function γ is essentially strictly convex if γ is strictly convex on all
convex subset of its subgradient domain.

(4) A function γ is essentially smooth if the interior of γ domain Dγ is not
empty, γ is differentiable on the interior of Dγ and its gradient ||∇γ|| tends
to infinity when approaching to the edge of Dγ .

(5) The convex conjugate ψ of a function γ is defined by

ψ(τ) := sup
y∈Rp

{〈y, τ〉 − γ(y)} .

Proposition A.3. Convex analysis property.
(1) If γ is closed convex, then its biconjugate, that is the conjugate of convex

conjugate ψ, is γ itself.
(2) A function γ being essentially strictly convex is equivalent to its convex

conjugate being essentially smooth.
(3) Let γ be a convex function and let its domain be not empty. If γ : Rp → R

is such that
γ(y)
||y||

−→
y∈∂Dγ

+∞

then its convex conjugate has full domain, that is Dψ = Rp.
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A.2. Bregman distance bounds

This section generalises some results of [7] on the bounds of Bregman distance
between two functions f and f1 in the case of Rp-valued functions.

Lemma A.4. Let (U,B(U), PU ) be a probability space and E be a convex set of
functions with values in Rp. Recall the expression of Iγ(f) =

∫
U
γ(f)dPU and one

of the Bregman distance for f1, f2 having finite Iγ values

Bγ(f, f1) :=
∫
U

[
γ(f)− γ(f1)− (∇γ(f1))T (f − f1)

]
dPU .

∀ε > 0, K > 0, it exists ι > 0 such that for all f, f1 ∈ E and C ∈ B(U) for which
min
x∈C

(||f(x)||, ||f1(x)||) 6 K, then

PU (C ∩ {x : ||f(x)− f1(x)|| > ε}) 6 ι Bγ(f, f1). (60)

Proof. Let f and f1 be two functions in E with finite Iγ values. Let denote by bγ
the integrand of Bγ that is

bγ(f(x), f1(x)) = γ(f(x))− γ(f1(x))−
(
∇γ(f1(x))

)T (f(x)− f1(x).

Let C ∈ B(U) be such that min
x∈C

(||f(x)||, ||f1(x)||) 6 K. For x ∈ C, if ||f(x) −
f1(x)|| > ε, then

bγ(f(x), f1(x) > min
x∈C

(
min

if ||f(x)||6K
bγ(f(x), f(x) + ε), min

if ||f1(x)||6K
bγ(f1(x) + ε, f1(x))

)
=: 1

ι

with ι > 0. Therefore, for C ∈ B(U) for which min
x∈C

(||f(x)||, ||f1(x)||) 6 K

Bγ(f, f1) =
∫
U

bγ(f(z), f1(z)dPU (z)

>
∫
C∩{x:||f(x)−f1(x)||>ε}

bγ(f(z), f1(z)dPU (z)

>
∫
C∩{x:||f(x)−f1(x)||>ε}

1
ι
dPU (z)

>
1
ι
PU (C ∩ {x : ||f(x)− f1(x)|| > ε})

which gives the result. �
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Lemma A.5. Let (U,B(U), PU ) be a probability space and E be a convex set of
functions with values in Rp. γ is an essentially strictly convex twice differentiable
function on Rp and its Hessian matrix is strictly definite positive on Rp. Recall
the Bregman distance for f1, f2 having finite Iγ values

Bγ(f, f1) :=
∫
U

[
γ(f)− γ(f1)− (∇γ(f1))T (f − f1)

]
dPU .

∀K > 0, it exists β > 0 such that for all f, f1 ∈ Rp and C ∈ B(U) with
C ⊂ {x : ||f1(x)|| 6 K}, then

PU (C ∩ {x : ||f(x)|| > L}) 6 β

L2Bγ(f, f1), if L > 2K. (61)

Proof. Let denote by bγ the integrand of Bγ , that is bγ(f, f1) = γ(f) − γ(f1) −
(∇γ(f1))T (f − f1). Let C ∈ B(U) be C ⊂ {x : ||f1(x)|| 6 K}.

Let uK and v, two vector from Rp such that ||uK || = K and v belongs to the
p-ball of center uK and of radius K, denoted by B(uK ,K). Then, using Taylor’s
theorem for the decomposition of γ(v) centered in uK , we have

γ(v) = γ(uK) + (∇γ(uK))T (v − uK) +Rγ(v, uK)

where Rγ(v, uK) is the remainder term of order o(K).

Then for all x ∈ C

bγ(f(x), f1(x)) > bγ(2uK , uK)
> Rγ(2uK , uK)

>
1
2 ||uK ||

2εγ,K

>
1
8L

2εγ,K

where εγ,K is the smallest eigen value of γ Hessian matrix located at any point of
B(uK ,K). Given the assumptions on γ, εγ,K is strictly positive.
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Therefore, for all x ∈ C for which ||f1(x)|| 6 K

Bγ(f, f1) =
∫
U

bγ(f(z), f1(z))dPU (z)

>
∫
C∩{x:||f(x)||>L}

bγ(f(z), f1(z))dPU (z)

>
∫
C∩{x:||f(x)||>L}

8L2

εγ,K
dPU (z)

>
8L2

εγ,K
PU (C ∩ {x : ||f(x)|| > L})

>
L2

β
PU (C ∩ {x : ||f(x)|| > L})

which gives the result. �

A.3. Cauchy result for Bregman distance minimising sequence

Lemma A.6. Let (U,B(U), PU ) be a probability space and E be a convex set of
functions with values in Rp. Recall the expression of Iγ(f) =

∫
U
γ(f)dPU and the

Bregman distance for f1, f2 two functions having finite Iγ values

Bγ(f1, f2) :=
∫
U

[
γ(f1)− γ(f2)− (∇γ(f2))T (f1 − f2)

]
dPU .

Let (fn) ⊂ E be a Iγ-minimising sequence, then (fn) is a Cauchy sequence in
probability PU , meaning that

lim
n,m→∞

PU ({x : ||fn(x)− fm(x)|| > ε}) = 0 ∀ε > 0. (62)

Proof. Let η > 0 and K such that for f ∈ Rp

PU ({x : ||f(x)|| > K}) < η.

By applying Lemma A.5 for f = fn+fm
2 and C = {x : ||f(x)|| 6 K}, we have

PU

(
{x : ||f(x)|| 6 K} ∩

{
x :
∣∣∣∣∣∣fn(x) + fm(x)

2

∣∣∣∣∣∣ > L}) 6 β

L2Bγ

(
fn + fm

2 , f

)
,

if L > 2K. Choosing β and L such that

β

L2Bγ

(
fn + fm

2 , f

)
6 η,
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it follows that
PU

({
x :
∣∣∣∣∣∣fn(x) + fm(x)

2

∣∣∣∣∣∣ > L}) 6 2η.

Now applying Lemma A.4 for f1 = fn+fm
2 , f = fm and C =

{
x :
∣∣∣∣∣∣ fn(x)+fm(x)

2

∣∣∣∣∣∣ < L
}
,

there exists ι such that

PU

({
x :
∣∣∣∣∣∣fn(x) + fm(x)

2

∣∣∣∣∣∣ < L

}
∩
{
x :
∣∣∣∣∣∣fm(x)− fn(x) + fm(x)

2

∣∣∣∣∣∣ > ε})
6 ι Bγ

(
fm,

fn + fm
2

)
meaning that

PU

({
x :
∣∣∣∣∣∣fm(x)− fn(x) + fm(x)

2

∣∣∣∣∣∣ > ε}) 6 2η + ι Bγ

(
fm,

fn + fm
2

)
PU ({x : ||fm(x)− fn(x)|| > 2ε}) 6 2η + ι Bγ

(
fm,

fn + fm
2

)
By taking η as small as possible, when n and m go to infinity, it ends up that

lim
n,m→∞

PU ({x : ||fm(x)− fn(x)|| > 2ε}) = lim
n,m→∞

ι Bγ

(
fm,

fn + fm
2

)
.

Let (fn) ⊂ E be a Iγ-minimising sequence with fn having finite Iγ values. By
the positivity of Bγ , we have

Iγ

(
fn + fm

2

)
6

1
2 (Iγ(fn) + Iγ(fm))

6 max
k

Iγ(fk).

By the convexity of E, fn+fm
2 belongs to E and therefore Iγ

(
fn+fm

2

)
> Iγ(E).

Using the following identity when n,m tend to infinity

Iγ(fn) + Iγ(fm) = 2Iγ
(
fn + fm

2

)
+Bγ

(
fn,

fn + fm
2

)
+Bγ

(
fm,

fn + fm
2

)
,

(63)
it implies that

lim
n,m→∞

Bγ

(
fm,

fn + fm
2

)
= 0

lim
n,m→∞

Bγ

(
fn,

fn + fm
2

)
= 0.

which proves that (fn) is a Cauchy sequence in probability PU . �
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