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Abstract: This paper deals with the analysis of a class of offline state estimators for LTI
discrete-time systems in the presence of an arbitrary measurement noise which can potentially
take any value. The considered class of estimators is defined as the solution of an optimization
problem involving a performance function which can be interpreted as a generalization of cost
functions used in the Maximum Correntropy Criterion. The conclusion of the analysis is that if
the system is observable enough, then the considered class of estimators is resilient, which means
that the obtained estimation error is independent from the highest values of the measurement
noise. In the case of systems with a bounded process noise, the considered class of estimators
provides a bounded estimation error under the appropriate conditions despite not being designed
for this scenario.
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1. INTRODUCTION

The problem considered in this paper is the estimation
of the (hidden) state of a system despite the presence
of an arbitrary measurement noise which can take any
value. This kind of problem typically occurs when design-
ing an estimator to cope with faulty sensors (Niedfeldt
and Beard, 2014). Arbitrary noises are also a suitable
way of modeling attacks of diverse natures, like replay
attacks (Mo and Sinopoli, 2009), which pose some chal-
lenges in estimation scenarios where the data are collected
via a communication network. This is case for example for
Cyber-Physical Systems (Cardenas et al., 2008).
To address the estimation problem in the face of such chal-
lenging uncertainties, many approaches have been devel-
oped in the literature among which faulty measurements
isolation (Mishra et al., 2017; Pasqualetti et al., 2013),
compressive sampling-inspired methods (Fawzi et al.,
2014; Pajic et al., 2017), or event-triggered resilient es-
timation (Shoukry and Tabuada, 2016; Liu et al., 2016).
In parallel to those methods, estimators based on the
Maximum Correntropy Criterion (MCC) were developed
to tackle the resilient state estimation problem. In order to
design new filters more robust to non-Gaussian noises, the
core idea is to use the correntropy as a similarity measure
to design the cost function. However, there are several
types of similarity measures and also several methods to
derive the estimator. For instance, (Chen et al., 2017a; Liu
et al., 2017) use Gaussian kernel functions as cost functions
and derives a fixed-point algorithm in order to update
the posterior estimation in a Kalman Filter. The scope of
estimators inspired by the MCC then grew, including for
example optimization-based estimators with cost functions
under the form of a sum of exponential absolute value
functions (Chen et al., 2017b), or online estimators which
derive an MCC-based cost function under the form of a
Kalman Filter with approximated weights based on the
prior estimation at each step (Kulikova, 2017).

The MCC framework has already given very promising
results, such as in machine learning with robust facial
recognition (He et al., 2011) or in robust channel esti-
mation for wireless communications (Ma et al., 2015).
However, the question of the resilience of such algorithms
is an open question which however gets more and more
interest: in particular, (Bako, 2018) and (Chen et al., 2019)
discussed this question under the scope of regression.
The goal of this paper is to give theoretical guarantees
of resilience for a class of state estimators inspired by
the kernel functions used in MCC-based approaches. The
studied system model is given in the form of a LTI discrete-
time state-space representation affected by an arbitrary
measurement noise. There is indeed no assumption on its
statistical properties, on its values or on the distribution
of its largest values over time and among sensors. The
main theoretical result of this paper states that under
a certain sufficient condition on the observability of the
system, the estimation error induced by those estimators
is upper bounded by a value which does not depend on
the largest values of the measurement noise. The obtained
bound is therefore valuable in order to understand how the
characteristics of the system impact the performances of
the estimator as it is directly linked to the parameters
of the system itself. It is however non-computable. We
nonetheless provide simulation results for the discussed
class of estimators which show good performances in the
presence of arbitrary noise and even when a process noise is
added in the state equation, for which it was not designed
in the first place.

Outline. The rest of the paper is organized as follows.
The system to be estimated will be introduced in Sec-
tion 2 while the class of estimators will be defined in
Section 3. Section 4 will be focused on deriving theoretical
guarantees on the boundedness of the estimation error.
Finally, Section 5 will provide simulation results to assess
the performances of the class of estimators, in the case
without process noise in subsection 5.1 and in the case



with process noise in subsection 5.2; Section 6 provides
some concluding remarks.

Notations. Throughout this paper, R≥0 (respectively
R>0) designates the set of nonnegative (respectively pos-
itive) reals. We note Ra the set of (column) vectors with
a real elements and for any vector z in Ra, zi with i in
{1, ..., a} is the i-th component of z. Moreover, Ra×b is
the set of real matrices with a rows and b columns. If
M ∈ Ra×b, then M> will designate the transposed matrix
ofM . ‖·‖2 is the Euclidean norm, defined by ‖z‖2 =

√
z>z

for all z in Ra. When applied to a matrix, ‖·‖2 will desig-
nate the matrix norm induced by the Euclidean norm. For
a finite set S, the notation |S| will refer to the cardinality
of S, Sc the complementary set of S and P(S) will be the
power set of S, i.e. the collection of all subsets of S.

2. STUDIED SYSTEM TO BE ESTIMATED

In this paper, we consider a Linear Time-Invariant
discrete-time system

Σ :
{
xt+1 = Axt
yt = Cxt + ft

(1)

with A ∈ Rn×n the state transition matrix of the system
and C ∈ Rny×n the observation matrix of the system.
xt ∈ Rn is the state of the system at time t ∈ Z+; in
particular x0 ∈ Rn is called the initial state, while yt ∈ Rny

designates the output of the system. {ft} ⊂ Rny is a
noise sequence which can take potentially any value. A
convenient way of describing it is as follows:

ft = vt + st, (2)
where {vt} is a bounded white noise sequence whereas
{st} is a sparse noise sequence, meaning that most of its
values are equal to zero but its non-zero values can be
arbitrarily large. It is however important to understand
that st is sparse with regards to both time and sensors
indexes, which implies that {st} can present several non-
zero values in a row on a specific sensor. The bounded
white noise vt usually represents measurement noise in
the output equation, while the sparse noise can represent
many different things such as sensor failures, intermittent
network outage or false data injection attacks.

Problem. In this paper, we consider the problem of
estimating the state trajectory of system (1) on a fixed
time horizon T = {0, 1, ..., T − 1}, which means estimat-
ing the matrix X , (x0 x1 · · · xT−1) ∈ Rn×T with the
measurement matrix Y , (y0 y1 · · · yT−1) containing T
measurements and the model (1) of the system. The re-
sulting estimated trajectory must be accurate even though
the estimation process is undermined by the presence of
ft whose characteristics are already described above.

3. THE CLASS OF STATE ESTIMATORS

To address the problem stated above, we propose an
optimization-based solution. To do so, we define the fol-
lowing cost function:

VΣ(Y, z0) =
∑

(t,j)∈T×J

e−γψ(yt,j−θ>t,jz0) (3)

with J = {0, 1, ..., ny}, γ ∈ R>0 a user-defined parameter
and z0 ∈ Rn. For every (t, j) ∈ T×J, θ>t,j = c>j A

t where c>j
is the j-th row of the observation matrix C: every row vec-
tor θ>t,j is a row of the observability matrix of system Σ over
the time horizon T, O =

(
C> (CA)> · · · (CAT−1)>

)>.

ψ : R → R is a real function which is assumed to verify
the following properties:
(P1) Positive definiteness: ψ(0) = 0 and ψ(a) > 0 for

all non-zero real a.
(P2) Symmetry: ψ(−a) = ψ(a) for all a ∈ R.
(P3) Non-decreasingness: for any a1, a2 in R, |a1| < |a2|

implies ψ(a1) ≤ ψ(a2).
(P4) Generalized Triangle Inequality (GTI): there

exists α ∈ R>0 such that for all a1, a2 in R,
ψ(a1 − a2) ≥ αψ(a1)− ψ(a2). (4)

Many functions verify this set of properties, such as every
absolute value power function a 7→ |a|p with p ∈ N
(see (Bako, 2018)). It aims at generalizing the kernels used
in Maximum Correntropy approaches (see (Chen et al.,
2017a) for Gaussian kernel and (Chen et al., 2017b) for
exponential absolute value kernels). The estimator can
therefore be defined as the set-valued map ΨΣ : Rny×T →
P(Rn) such that for any possible measurement matrix
Y in Rny×T ,

ΨΣ(Y ) = arg max
z0∈Rn

VΣ(Y, z0). (5)

We can note that this rather defines a class of estimators
which has as many members as there are ψ functions
verifying (P1)–(P4).
To obtain an estimate of the whole trajectory, we then
need to simulate system (1) with any estimated initial
state x̂0 ∈ ΨΣ(Y ). From now on, the expression “estimated
trajectories” will designate any matrix X̂(x̂0) such that

X̂(x̂0) =
(
x̂0 Ax̂0 · · · AT−1x̂0

)
, x̂0 ∈ ΨΣ(Y ). (6)

With this estimation framework defined, our first goal is
to provide a theoretical analysis of our estimator in order
to exhibit its resilience properties.

4. THEORETICAL RESULTS

In this section, we will conduct an analysis which will
result in an upper bound on the estimation error inde-
pendent from the largest values of the arbitrary noise se-
quence {ft}. This analysis is inspired by the one presented
in (Bako, 2018) but in the state estimation framework. A
discussion about the estimator performances on a system
with process disturbances will also be provided.

4.1 Preliminaries

Before stating our main theoretical result, we will first
introduce a few notations. For convenience, and without
any loss of generality, we can assume that there is no (t, j)
in T × J such that ‖θt,j‖2 = 0(1). We then define the
following variable:

σΣ = min
(t,j)∈T×J

‖θt,j‖2 > 0 (7)

Moreover, given λ in [0; 1] and z0 ∈ Rn, we also define the
following set of indexes (t, j):
JΣ(z0, λ) = {(t, j) ∈ T×J : |θ>t,jz0| ≥ λ‖θt,j‖2‖z0‖2} (8)
This set selects the rows in the observability matrix which
are almost in the same direction as z0: indeed, if (t, j)
is in JΣ(z0, λ), then the vector θt,j is within the cone of
direction z0 and of half-top angle arccos(λ). Thus, λ = 1 is
the case where θt,j and z0 are colinear and λ = 0 is the case
where θt,j can be in any direction. As a result, |JΣ(z0, λ)|

(1) If O contains null rows, the following analysis can be conducted
with a matrix collecting all the non-zero rows of O.



can be considered as a local observability measure with
regards to z0 given that it represents how many θt,j are
almost in the same direction as z0 with a tolerance λ.
We also define a global observability parameter:

RΣ(λ) = inf
z0∈Rn

|JΣ(z0, λ)|. (9)

For any λ in [0; 1], RΣ(λ) will be between 0 and nyT : in
particular, if λ = 0, then RΣ(λ) = nyT . The higher RΣ(λ)
will be for high values of λ, the more the system will be
considered observable.
The following lemma provides more context about the link
between RΣ(λ) and the observability of the system:
Lemma 1. Consider the system Σ defined in (1). This
system is (i) observable, i.e. rank(O) = n, if and only
if (ii) there exists λ ∈]0; 1] such that RΣ(λ) 6= 0.

Proof. (i) ⇒ (ii): if the system is observable, let’s
assume that for all λ in ]0; 1], RΣ(λ) = 0. As the
set {|JΣ(z0, λ)|}z0∈Rn is a subset of N, its infimum is
necessarily attained, which entails that there exists aλ ∈
Rn such that JΣ(aλ, λ) = ∅ for any λ ∈]0; 1]. For a
fixed λ, JΣ(aλ, λ) = ∅ implies that for all (t, j) in T × J,
|θ>t,jaλ| < λ‖θt,j‖2‖aλ‖2. By squaring the two sides of the
inequalities and adding them for every (t, j), we obtain

a>λO>Oaλ < λ‖aλ‖22
∑

(t,j)∈T×J

‖θt,j‖22 (10)

From (Bernstein, 2009, Corollary 8.4.2), a>λO>Oaλ ≥
σmina

>
λ aλ where σmin designates the smallest eigenvalue

of O>O. Since the system is observable, O>O is positive
definite which yields σmin > 0. As a result, (10) implies
λ > λe where λe =

√
σmin/

∑
(t,j)∈T×J‖θt,j‖22 > 0. This

is a clear contradiction for any λ in ]0;λe]∩]0; 1], which
proves the implication.
(ii) ⇒ (i): by contraposition, if the system is not observ-
able, then there exists a ∈ Rn 6= 0 such that Oa = 0.
Given that Oa =

(
θ>0,1a · · · θ>0,ny

a θ>1,1a · · · θ>T−1,ny
a
)>,

we have for every (t, j) in T × J, θ>t,ja = 0. As a result,
for any λ ∈]0; 1], JΣ(a, λ) = ∅ since |θ>t,ja| = 0 cannot be
greater than λ‖θt,j‖2‖a‖2: this leads to RΣ(λ) = 0 for any
λ ∈]0; 1], which proves the implication.
This lemma shows that the observability is an equivalent
condition to the existence of a λ ∈]0; 1] such that RΣ(λ) 6=
0: Σ will thus be supposed to be observable from now on.
Finally, we need to define a last notation. Given ε a
positive real number, for any noise sequence {ft,j}, it is
possible to split the set T× J into two disjoint subsets,

Iε = {(t, j) ∈ T× J : |ft,j | ≤ ε}, (11)
which gathers the indexes of ft,j such that their absolute
value is smaller than ε, and Icε = {(t, j) ∈ T×J : |ft,j | > ε}
which consists of the indexes of outliers in {ft,j} with
regards to ε. ε therefore acts like a threshold we can choose
and tune in order to conduct our analysis.
4.2 Main result
In the following theorem, we are going to express under
which circumstances the norm of the estimation error on
the initial state, i.e. e0 = x̂0 − x0, and consequently the
estimation error over the whole trajectory E = X̂ − X,
can be bounded by a value which does not depend on the
largest values of the noise sequence {ft}:

Theorem 2. Consider the state estimator (5) for sys-
tem (1) under the assumption that its loss function ψ
defined in (3) verifies properties (P1)–(P4). Let ε > 0.
For any noise sequence {ft} and initial state x0 in (1),
generating a measurement matrix Y , such that

1
1 + e−γψ(ε)RΣ(λ) + e−γψ(ε)|Iε| > nyT, (12)

is verified for some λ in ]0; 1], the following holds true :

∀x̂0 ∈ ΨΣ(Y ), ψ(λσΣ‖e0‖2) ≤ 1
γα

ln (1/µ) (13)

with e0 = x̂0 − x0 and

µ = 1 + e−γψ(ε)

|Iε|+RΣ(λ)− nyT

[
1

1 + e−γψ(ε)RΣ(λ)

+e−γψ(ε)|Iε| − nyT
]

(14)

Moreover, if ψ is (strictly) increasing on R≥0, then it
admits an invert function ψ(−1) and

N(X̂ −X) ≤ MΣ
λσΣ

ψ(−1)
(

1
γα

ln(1/µ)
)

(15)

with X̂ as defined in (6), N(X̂ −X) = maxt∈T‖x̂t − xt‖2
and MΣ a constant depending on the system dynamics.

Proof. By definition (5) of the estimator ΨΣ, for any
measurement matrix Y in Rny×T , we have

VΣ(Y, x0) ≤ VΣ(Y, x̂0) (16)
for every x̂0 in ΨΣ(Y ). This yields∑

(t,j)∈T×J

e−γψ(ft,j) ≤
∑

(t,j)∈T×J

e−γψ(yt,j−θ>t,j x̂0) (17)

Left side sum in (17) will now be decomposed as T ×
J = Iε ∪ Icε by definition (11) of Iε. If (t, j) is in Iε, then
|ft,j | < ε, which implies ψ(ft,j) ≤ ψ(ε) because of (P3),
and subsequently e−γψ(ft,j) ≥ e−γψ(ε). For any (t, j) in Icε ,
we also have e−γψ(ft,j) > 0, which yields

|Iε|e−ψ(ε) ≤
∑

(t,j)∈T×J

e−γψ(yt,j−θ>t,j x̂0) (18)

Moreover, for all (t, j) in T × J, we always have ψ(yt,j −
θ>t,j x̂0) = ψ(θ>t,jx0 + ft,j − θ>t,j x̂0) = ψ(ft,j − θ>t,je0) with
e0 = x̂0 − x0. For (t, j) in Iε, we apply the GTI (4) to ψ,
leading to ψ(ft,j − θ>t,je0) ≥ αψ(θ>t,je0)−ψ(ft,j). For (t, j)
in Icε , as ψ verifies (P1), we have ψ(ft,j − θ>t,je0) ≥ 0, so
for any (t, j) in Icε , e−γψ(ft,j−θ>t,je0) ≤ 1. As a result, we
obtain
|Iε|e−ψ(ε) ≤ eγψ(ft,j)

∑
(t,j)∈Iε

e−γαψ(θ>t,je0) + |Icε |

⇔ e−γψ(ε)
[
|Iε|(1 + e−ψ(ε))− nyT

]
≤

∑
(t,j)∈Iε

e−γαψ(θ>t,je0)

as |Icε | = nyT − |Iε| and eγψ(ft,j) < eγψ(ε) for (t, j) ∈ Iε.
Given λ between 0 and 1, we will now decompose Iε
depending on whether (t, j) belongs to JΣ(e0, λ) or not. If
(t, j) is in Iε∩JΣ(e0, λ), then ψ(θ>t,je0) ≥ ψ(λ‖σΣ‖2‖e0‖2).
As a 7→ e−a is decreasing, it yields

e−γψ(ε)
[
|Iε|(1 + e−ψ(ε))− nyT

]
≤ |Iε ∩ JΣ(e0, λ)|

[
e−γαψ(λσΣ‖e0‖2) − 1

]
+ |Iε|



Moreover, we have
|Iε ∩ JΣ(e0, λ)| = |Iε|+ |JΣ(e0, λ)| − |Iε ∪ JΣ(e0, λ)|

≥ |Iε|+RΣ(λ)− nyT
By choosing λ so that condition (12) is met, we obtain
|Iε|+RΣ(λ)− nyT > 0 given that

|Iε|+RΣ(λ) ≥ 1
1 + e−γψ(ε)RΣ(λ) + e−γψ(ε)|Iε| > nyT.

(19)
Since e−γψ(λσΣ‖e0‖2) − 1 ≤ 0, we obtain

e−γψ(ε)
[
|Iε|(1 + e−ψ(ε))− nyT

]
− |Iε|

≤ (|Iε|+RΣ(λ)− nyT )
[
e−γαψ(λσΣ‖e0‖2) − 1

]
(20)

Dividing both sides by |Iε|+RΣ(λ)−nyT and simplifying
the left hand side of the inequality then gives us

µ ≤ e−γαψ(λσΣ‖e0‖2) (21)
with µ as defined in (14). When condition (12) is met, µ
is positive, so we can apply ln to both sides, yielding

ψ(λσΣ‖e0‖2) ≤ 1
γα

ln(1/µ) (22)

If ψ is increasing on R≥0, then it is obviously invertible on
that interval, which entails

‖e0‖2 ≤
1
λσΣ

ψ(−1)
(

1
γα

ln(1/µ)
)

(23)

Finally, with X̂ as defined in (6), x̂t = Atx̂0 and xt = Atx0,
so we have x̂t − xt = Ate0 for all t ∈ T. Consequently,
N(X̂ − X) = maxt∈T‖Ate0‖2 ≤ (maxt∈T‖At‖2) ‖e0‖2.
This eventually yields

N(X̂ −X) ≤ maxt∈T‖At‖2
λσΣ

ψ(−1)
(

1
γα

ln(1/µ)
)

(24)

which is the desired result with MΣ = maxt∈T‖At‖2.
What this theorem states is that the estimator ΨΣ yields
estimates which are bounded despite the presence of an ar-
bitrary noise potentially taking any value. Unfortunately,
condition (12) cannot be computed due to the fact that
obtaining RΣ(λ) is a combinatorial problem and that
having access to |Iε| requires knowing the proportion of
outliers in {ft,j} with regards to ε.
Nevertheless, it gives relevant information about what
is important to ensure the resilience of the estimator.
Indeed, the inequality is composed of three terms: on the
left-hand side, there are two terms, one which depends
on a quantitative observability of the system through
RΣ(λ), one which depends on the number of reasonable
measurements with regards to ε. The right-hand side there
is composed of a constant term equal to the total number
of measurements on the time horizon. To promote this
condition, there are two important things:
• We need the observability criterion RΣ(λ) to be as
large as possible
• The number of outliers must be somehow limited

The interpretation of condition (12) is that the estimation
error is bounded if the system is observable enough, and
the more it is observable, the more outliers the estimator
is able to handle.
In addition, the bound itself in (15) gives information on
what impacts the quality of the estimation: besides the
conclusions obtained through the study of condition (12),
we can see that the actual values of λ and ε play a role

in the tightness of the bound. Given that it exists for any
(λ, ε) which verify condition (12), the best bound obtained
through Theorem 1 would be

N(E) ≤MΣ min
(λ,ε)
µ>0

[
1
λσΣ

ψ(−1)
(

1
γα

ln(1/µ)
)]

(25)

4.3 Case of systems with dynamic bounded noise

We now consider a system Σw of the form

Σw :
{
xt+1 = Axt + wt
yt = Cxt + ft

(26)

where {wt} is a bounded noise sequence. Adding a noise
component wt in the state equation is a common way of
modeling process disturbances which shifts the state from
the dynamic induced by A. Even though our estimator is
not designed for such systems, it can still be applied to
Σw. Indeed, for any system Σw, there exists a system Σ̃
such that

Σ̃ :
{
x̃t+1 = Ax̃t
yt = Cx̃t + f̃t

(27)

with x̃0 = x0, f̃t = Cw̃t + ft and w̃t =
∑t−1
k=0A

kwk. This
new system verifies the structure defined in (1) and gives
the exact same output as Σw. In addition, the gap between
xt and x̃t is equal to xt − x̃t = Atx0 + w̃t − Atx0 = w̃t.
As a result, we can draw the following corollary from
Theorem 2:
Corollary 3. Consider the state estimator (5) for sys-
tem (1) under the assumption that its loss function ψ
defined in (3) is invertible and verifies properties (P1)–
(P4). Let ε > 0. For any noise sequence {ft} and initial
state x0 in (1), generating a measurement matrix Y , such
that condition (12) is verified for some λ in ]0; 1], the
following holds true :
∀x̂0 ∈ ΨΣ(Y ),

N(X̂(x̂0)−X) ≤ MΣ
λσΣ

ψ(−1)
(

1
γα

ln(1/µ)
)

+ max
t∈T
‖w̃t‖2

(28)
with X̂(x̂0) as defined in (6), w̃ as defined in (27) and µ,
N and MΣ as defined in Theorem 2.

Proof. By applying Theorem 2 to system Σ̃ defined
in (27), we obtain

‖e0‖2 ≤
1
λσΣ

ψ(−1)
(

1
γα

ln(1/µ)
)

(29)

In the case of the systems Σw, we have for all t ∈ T,
et = x̂t − xt = Ate0 − w̃t, so by considering the norm N ,
we have

N(E) ≤MΣ‖X̂ −X‖2 + max
t∈T
‖w̃t‖2 (30)

which yields the desired result.

5. DISCUSSIONS ON THE IMPLEMENTATION OF
THE ESTIMATOR

For our numerical tests, we considered a system (1) with
the following parameters

A =
( 0.7 0.45
−0.5 1

)
, C = (1 2) , x0 =

(1
2
)
. (31)

In this system, ft was decomposed as in (2): vt is a
uniformly distributed white noise, while st is a sparse
vector. It is generated in two steps: (1) the indexes (t, j)



for which st,j 6= 0 are uniformly selected over T × J, and
then (2) for each (t, j) such that st,j 6= 0, the value of st,j
is set as the realization of a Gaussian process of variance
100 and mean 0.
The optimization problem which defines the estimator is
differentiable, but non-convex, which makes its numerical
implementation difficult. To assess its resilience proper-
ties, we designed an Iterative Reweighted Least Squares
(IRLS) algorithm (see Appendix A) to try to solve the
optimization problem when ψ is the square function, i.e.
∀a ∈ R, ψ(a) = a2. We also chose γ = 1. Note however
that there is no theoretical evidence as to the convergence
of this iterative process towards the true solution of the
(nonconvex) optimization problem in (5).
To perform the following tests, each setting was realized
100 times and the obtained relative estimation errors ‖X̂−
X‖2/‖X‖2 were averaged. The IRLS estimator, imple-
menting the estimator ΨΣ discussed in this paper, and an
Oracle Least Squares (OLS) estimator were implemented.
The mention “Oracle” means it works on a version of yt
unaffected by sparse noise st, namely ywt = yt − st. The
OLS was chosen as a reference for comparison given that
it is the best estimator with regards to the covariance of
the estimation error in presence of Gaussian noises (Geer,
2005, p. 1041) and should therefore provide good results
with bounded noises. Additionally, to give a reference
when the IRLS is presented in the case with process noise,
we also implemented a `1-norm based estimator designed
for the presence of disturbance noise and for which the
resilience was discussed in our previous work (Kircher
et al., 2020).

5.1 Sparsity test

First, we conduct a test in absence of wt to assess how
the proportion of outliers were affecting the performances
of the estimator with a fixed signal-to-noise ratio (SNR)
of 30dB for vt. The obtained results are presented on
Figure 1. As expected, the IRLS estimator maintains
acceptable performances as the ratio of outliers in the
sparse noise increases: its average relative estimation error
is almost identical to the one of the OLS estimator until
70% of non-zero values in st.
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Fig. 1. Relative Estimation Error with different ratios of
corrupted values for st and a SNR of 30dB for vt

5.2 Performances of the estimator in presence of process
noise

For the tests presented in this subsection we add a uni-
formly distributed white noise wt in the state equation of
the system. We then conduct two tests, one to see how
the presence of a process noise wt of 30dB degrades the
performances of ΨΣ with increasing ratio of outliers in
ft (First test), and a second one to assess the impact of
increasing SNR on the estimator (Second Test).

First test. The results obtained for the IRLS, `1-norm
based and OLS estimators are gathered in Figure 2. The
performance of the IRLS estimator are logically worse than
in the previous subsection as a process noise wt with a
SNR of 40dB was introduced, and we see that the `1-norm
based estimator is better on ]0; 60] given that its relative
estimation error is closer to the one of the OLS estimator.
However, as the analysis suggested, the performances of
the IRLS estimator are still acceptable, and its estimation
error seems bounded until 80% of outliers. It is even better
than the `1-norm based estimator on the interval [60; 90].
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Fig. 2. Relative Estimation Error with different ratios of
corrupted values for st and a SNR of 30dB for both
wt and vt

Second Test. In this test, the ratio of outliers is fixed
at 10%, while the SNR of both wt and vt simultaneously
vary from 10dB to 100dB. Figure 3 displays the relative
estimation error obtained with those different SNR for the
three estimators. Despite the presence of 10% of outliers in
st, the estimation error of both resilient estimators follow
the same trend as the estimation error of the OLS one:
it decreases as the SNR increases, which is logical given
that noises are smaller compared to other quantities in the
system equations. Nonetheless, once again, we observe that
the IRLS estimator gives overall worse results than the `1-
norm based one, which was to be expected considering
it is outside of the scope of its design. Its performances
are however still in the same range as the `1-norm based
estimator.

20 40 60 80 100

0
−1
−2
−3
−4
−5

Signal-to-noise ratio of bounded noises (dB)

R
el

at
iv

e
es

tim
at

io
n

er
ro

r
(lo

g)

OLS estimator
IRLS estimator
`1-norm based estimator

Fig. 3. Relative Estimation Error with varying SNR and
10% of corrupted values

6. CONCLUSION

In this paper, we have considered the problem of esti-
mating the state of Linear Time-Invariant discrete-time
systems in the face of uncertainties modeled as measure-
ment noise in the system output equation. This noise
sequence assumes values of possibly arbitrarily large am-
plitude which occur intermittently in time and across the
available sensors. For this problem we have considered a



class of state estimators through a cost function which
generalizes the ones used in MCC-based approaches.
In particular, we have proven a resilience property for this
class of state estimators so that the resulting estimation
error is bounded by a value which is independent of the
extreme values of the measurement noise provided that a
certain condition linked to the observability of the system
is met. Moreover, we proposed simulation results to assess
the performance of this class, observing that it has good
performances with and without the presence of a process
noise. In future works, we would like to investigate the
resilience property for an estimator defined by a cost
function which would take into account the presence of
process noise. Derivating theoretical guarantees for the
designed IRLS algorithm would also be an interesting
development.

Appendix A. ITERATIVE REWEIGHTED LEAST
SQUARES (IRLS) ALGORITHM

This algorithm consists in solving a weigthed least mean
square optimization problem

min
z0∈Rn

V
(i)
Σ,c(Y, z0) =

∑
(t,j)∈T×J

k
(i)
t,j (yt,j − θ>t,jz0)2 (A.1)

with the weights {k(i)
t,j} being redefined after each step as

k
(i+1)
t,j = e−γ(yt,j−θ>t,jx

(i)
0 )2

(A.2)

where x(i)
0 refers to the solution of (A.1) obtain at step

i. At each step, Problem (A.1) is solved through the
CVX Solver in MATLAB (Grant and Boyd, 2018). When
the relative difference between two consecutive estimated
initial states is smaller than the user-defined threshold ε,
the algorithm returns the state trajectory obtained from
the last estimated state. The whole algorithm can be
stated as follows:

Algorithm 1 Iterative Reweighted Least Squares (IRLS)
Algorithm

1: Inputs: γ, Y , Σ, ε
2: Initialization:
3: ∀(j, t) ∈ J× T, k(1)

t,j ← e−γy
2
t,j

4: x̂(1)
0 ← arg minz0∈Rn V

(1)
Σ,c (Y, z0)

5: ∀(t, j) ∈ T× J, k(2)
t,j ← e−γ(yt,j−θ>t,j x̂

(1)
0 )2

6: η ← 108

7: i← 1
8: End of Initialization.
9: while η > ε do

10: i← i+ 1
11: x̂

(i)
0 ← arg minz0∈Rn V

(i)
Σ,c(Y, z0)

12: ∀(t, j) ∈ T× J, k(i+1)
t,j ← e−γ(yt,j−θ>t,j x̂

(i)
0 )2

13: η ← ‖x̂(i)
0 −x̂

(i−1)
0 ‖

‖x̂(i−1)
0 ‖

14: end while
15: return X̂(x̂(i)

0 )
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