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Abstract

Background: The local field potential (LFP) is usually calculated from current
sources arising from transmembrane currents, in particular in asymmetric cellular
morphologies such as pyramidal neurons. New method: Here, we adopt a
different point of view and relate the spiking of neurons to the LFP through
efferent synaptic connections and provide a method to calculate LFPs. Results:
We show that the so-called unitary LFPs (uLFP) provide the key to such a
calculation. We show experimental measurements and simulations of uLFPs in
neocortex and hippocampus, for both excitatory and inhibitory neurons. We fit
a “kernel” function to measurements of uLFPs, and we estimate its spatial and
temporal spread by using simulations of morphologically detailed reconstructions
of hippocampal pyramidal neurons. Assuming that LFPs are the sum of uLFPs
generated by every neuron in the network, the LFP generated by excitatory and
inhibitory neurons can be calculated by convolving the trains of action potentials
with the kernels estimated from uLFPs. This provides a method to calculate
the LFP from networks of spiking neurons, even for point neurons for which the
LFP is not easily defined. We show examples of LFPs calculated from networks
of point neurons and compare to the LFP calculated from synaptic currents.
Conclusions: The kernel-based method provides a practical way to calculate
LFPs from networks of point neurons.

Keywords

Neural simulation; computational models; biophysics; electric potential; excita-
tory synapse; inhibitory synapse; unitary fields
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Highlights

• We provide a method to estimate the LFP from spiking neurons

• This method is based on kernels, estimated from experimental data

• We show applications of this method to calculate the LFP from networks
of spiking neurons

• We show that the kernel-based method is a low-pass filtered version of the
LFP calculated from synaptic currents

1 Introduction 1

The local field potential (LFP) is the extracellular electric potential recorded using 2

electrodes inserted in brain tissue. The LFP is thought to reflect mostly synaptic 3

activity forming electric dipoles (Niedermeyer & Lopes da Silva, 1998; Nunez 4

& Srinivasan, 2006), and can be well simulated using detailed morphologies 5

(Bedard & Destexhe, 2012; Destexhe & Bedard, 2013; Lindén et al., 2014). 6

However, it is not clear how to simulate LFPs from point neurons. In the 7

present paper, we propose a method to calculate LFPs from point neurons, using 8

experimentally-recorded LFP waveforms. 9

We focus on the unitary LFP (uLFP) which is the LFP generated by a single 10

axon. The first investigations of uLFPs were done in hippocampal slices (Bazelot, 11

Dinocourt, Cohen, & Miles, 2010; Glickfeld, Roberts, Somogyi, & Scanziani, 12

2009) and later in neocortex in vivo (B. Teleńczuk et al., 2017). In hippocampus, 13

unitary LFPs were characterized in particular for inhibitory basket cells (Bazelot 14

et al., 2010), which was convenient because the axon of a basket cell does not 15

extend very far from the cell body (soma) and targets mostly the bodies and 16

proximal dendrites of nearby pyramidal cells, and thus evokes postsynaptic 17

currents clustered in space. In pyramidal neurons, however, efferent synapses 18

target both basal and apical dendrites, and can extend far away from the cell, 19

so in this case, the postsynaptic currents are rather scattered in space. This 20

may be one of the reasons why the uLFP of pyramidal cells is much smaller in 21

amplitude compared to that of inhibitory cells, as first suggested by Bazelot et 22

al. (Bazelot et al., 2010). 23

This was taken one step further by Telenczuk et al. (B. Teleńczuk et al., 24

2017), who showed that uLFP can also be isolated from the neocortex in vivo, 25

in human and monkey, where uLFPs could be extracted for both excitatory 26

and inhibitory cells. Surprisingly, the two signals were of the same polarity 27

despite being generated in principle by currents of opposite sign. Moreover, the 28

excitatory uLFP was lagging behind the inhibitory uLFP. These properties let the 29

authors to suggest that excitatory uLFPs may in fact be di-synaptic inhibitory 30

uLFPs, which explains their polarity and timing relations. These properties were 31

modeled by morphologically-detailed reconstructions of hippocampal neurons 32

(M. Teleńczuk, Teleńczuk, & Destexhe, 2020), where it was shown that the weak 33
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uLFP of pyramidal cells is due to the scattering of their afferent synapses. Apical 34

and basal excitatory synaptic currents produce LFPs of opposite sign, and there 35

is therefore a significant amount of cancelling. However, inhibitory synapses in 36

the somatic region always produce the same extracellular field, which explains 37

why inhibitory uLFPs are of higher amplitude compared to excitatory uLFPs. 38

Computational models fully support this explanation (M. Teleńczuk et al., 2020). 39

In the present paper, we take this another step further by showing that one 40

can use the uLFPs as a powerful method to calculate LFPs. It was suggested 41

previously (B. Teleńczuk et al., 2014, 2017; M. Teleńczuk et al., 2020) that 42

one could use the measured uLFP as a basis to calculate LFP, but this was 43

never attempted. We show here that this can be done by using templates 44

from experimentally-recorded uLFPs, or from uLFPs calculated theoretically to 45

estimate their spatial spread. The method consists of calculating the LFP of 46

the network as a convolution of spiking activity with these uLFPs waveforms. 47

The uLFPs thus constitute the “kernels” of such a convolution, hence the 48

name “kernel-based method”. We illustrate this phenomenological method by 49

calculating LFPs from networks of spiking neurons. 50

2 Materials and Methods 51

In the numerical test of the kernel-based method, we used network simulations of 52

spiking neurons as described in previous papers (Brunel & Wang, 2003; Destexhe, 53

2009; Zerlaut, Chemla, Chavane, & Destexhe, 2018). 54

A first network (Brunel & Wang, 2003) consisted of 5,000 neurons, divided 55

into 4,000 excitatory and 1,000 inhibitory cells, all described with the leaky 56

integrate-and-fire model. The membrane time constant was of 20 ms and 10 ms 57

for excitatory and inhibitory neurons, respectively, and the leak reversal potential 58

was of -70 mV, the spike threshold was of -52 mV with a reset potential of -59 mV 59

and an absolute refractory period of 2 ms for excitatory cells (1 ms for inhibitory 60

cells). All cells were randomly connected with a connection probability p = 20%. 61

Synaptic currents were described as Isyn(t) = Gsyn(V − Esyn)s(t), where
Gsyn is the synaptic conductance, Esyn its reversal potential, and s(t) is a
function describing the time course of synaptic currents and is described by the
bi-exponential function

s(t) = exp [−(t− tk)/τd]− exp [−(t− tk)/τr],

where τr is the rise time and τd the decay time of the postsynaptic conductance, 62

and tk is the time of the presynaptic spike. The reversal potential of excitatory 63

(inhibitory) synaptic currents was 0 mV (-70 mV). The peak conductances were 64

of 1 nS for excitatory synapses and 6 nS for inhibitory synapses. This network 65

displays gamma-frequency (∼ 40 Hz) oscillations with sparse firing of all cell 66

types (see (Brunel & Wang, 2003) for details). 67

In a second example, based on two previous papers (Destexhe, 2009; Zerlaut 68

et al., 2018), we used networks of more complex integrate-and-fire models 69

displaying spike-frequency adaptation, modeled by the Adaptive Exponential 70
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(AdEx) integrate-and-fire model (Brette & Gerstner, 2005). We considered a 71

population of N = 104 neurons randomly connected with a connection probability 72

of p = 5%. We considered excitatory and inhibitory neurons, with 20% inhibitory 73

neurons. The AdEx model permits to define two cell types, “regular-spiking” 74

(RS) excitatory cells, displaying spike-frequency adaptation, and “fast spiking” 75

(FS) inhibitory cells, with no adaptation. The dynamics of these neurons is given 76

by the following equations: 77

cm
dvk
dt

= gL(EL − vk) + ∆e
vk−vthr

∆ − wk + Isyn (1)

dwk
dt

= −wk
τw

+ b
∑
tsp(k)

δ(t− tsp(k)) + a(vk − EL), (2)

where cm = 200 pF is the membrane capacitance, vk is the voltage of neuron k 78

and, whenever vk > vthr = −50 mV at time tsp(k) , vk is reset to the resting 79

voltage vrest = −65 mV and fixed to that value for a refractory time Trefr = 5 ms. 80

The leak term gL had a fixed conductance of gL = 10 nS and the leakage reversal 81

EL was of -65 mV. The exponential term had a different strength for RS and 82

FS cells, i.e. ∆ = 2mV (∆ = 0.5mV) for excitatory (inhibitory) cells. Inhibitory 83

neurons were modeled as fast spiking FS neurons with no adaptation (a = b = 0 84

for all inhibitory neurons) while excitatory regular spiking RS neurons had a 85

lower level of excitability due to the presence of adaptation (while b varied in 86

our simulations we fixed a = 4 nS and τw = 500 ms if not stated otherwise). 87

The synaptic current Isyn received by neuron i is the result of the spiking
activity of all neurons j ∈ pre(i) pre-synaptic to neuron i. This current can be
decomposed in the synaptic conductances evoked by excitatory E and inhibitory
I pre-synaptic spikes

Isyn = Gesyn(Ee − vk) +Gisyn(Ei − vk) ,

where Ee = 0mV (Ei = −80mV) is the excitatory (inhibitory) reversal potential.
Excitatory synaptic conductances were modeled by a decaying exponential
function that sharply increases by a fixed amount QE at each pre-synaptic spike,
i.e.:

Gesyn(t) = Qe
∑

exc.pre

Θ(t− tesp(k)) e−(t−tesp(k))/τe ,

where Θ is the Heaviside function, τe = τi = 5ms is the characteristic decay 88

time of excitatory and inhibitory synaptic conductances, and Qe = 1 nS (Qi = 89

5 nS) the excitatory (inhibitory) quantal conductance. Inhibitory synaptic 90

conductances are modeled using the same equation with e→ i. This network 91

displays two different states according to the level of adaptation, b = 0.005 nA 92

for asynchronous-irregular states, and b = 0.02 nA for Up/Down states (see 93

(Zerlaut et al., 2018) for details). 94

In some simulations, we compared the kernel method to a classic method 95

to compute local field potentials from the synaptic currents. In this case, the 96
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extracellular potential Ve at a position ~x was computed as: 97

Ve(~x, t) =
Re
4π

∑
j

Ijsyn(t)

d(~x, ~xj)
, (3)

where Re = 230cm is the extracellular resistivity, Ijsyn(t) is the synaptic current 98

of neuron j as defined above, and d(~x, ~xj) is the distance between ~x and the 99

position of neuron j, ~xj . 100

All simulations were done using the NEURON Simulation environment (Hines 101

& Carnevale, 1997) or the BRIAN simulator (Goodman & Brette, 2009). Program 102

codes for the network models are available from the original papers (Brunel & 103

Wang, 2003; Destexhe, 2009; Zerlaut et al., 2018). The program code of the 104

kernel method is available open-access (B. Teleńczuk, Teleńczuk, & Destexhe, 105

2020) (using the hoc language of NEURON, as well as in python 3). 106

3 Results 107

We start by showing the essential properties of uLFPs as recorded experimentally, 108

and then consider a method to generate LFPs based on those measurements. 109

We also show the results from a detailed biophysical model of uLFPs, which we 110

use to infer the depth-dependence of the model of uLFPs. Finally, we illustrate 111

the method by calculating LFPs from networks of spiking point neurons. 112

3.1 Unitary local field potentials 113

Figure 1 illustrates the properties of uLFPs. The uLFP is generated by a single 114

axon, where all efferent synapses of the axon collateral (schematized in Fig. 1A) 115

will generate a small field due to the postsynaptic current, and the ensemble 116

of these small fields constitutes the uLFP. One property of the uLFP is that 117

recordings made at different distances from the soma will peak at different 118

times, because of the speed of action potential propagation along the axon 119

(Fig. 1B). Thus, the peak time of the uLFP as a function of distance is expected 120

to show a linear increase, as schematized in Fig. 1C, where the slope is the axon 121

propagation speed. In addition, the uLFP should also display a peak decreasing 122

with distance, as expected for electrodes located at increasing distances from 123

the soma (Fig. 1D). 124

These properties were found in human recordings by a previous study (B. Teleńczuk125
et al., 2017), as summarized in Fig. 2. Recordings were made using Utah arrays 126

inserted in temporal cortex, leading to LFP and unit recordings (Fig. 1A). Te- 127

lenczuk et al. (B. Teleńczuk et al., 2017) used a whitening method to extract the 128

relation between unit spikes and the LFP. The properties of this relation reminds 129

those of the uLFP. First, the presumed uLFP peak amplitude decreases with 130

distance, with an exponentially decaying function with a space constant around 131

200 µm, consistent with other estimates (Katzner et al., 2009). Second, the 132

uLFP peak scaled linearly with distance, with an estimated speed of 200 mm/sec 133
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(Fig. 2C), which is consistent with the action potential speed along axon un- 134

myelinated fibers. These properties were also found for a second human subject 135

recorded similarly (Fig. 2D). Very similar uLFP waveforms were obtained from 136

monkey motor cortex, which was recorded with similar Utah arrays. The details 137

of this analysis can be found in ref. (B. Teleńczuk et al., 2017). 138

Another important information is the respective excitatory and inhibitory 139

contributions to LFPs. It can be seen from Fig. 2 that the uLFP from excitatory 140

or inhibitory cells are of the same polarity (negative in this case). However, the 141

synaptic currents generating these uLFPs are of opposite sign, so they should lead 142

to opposite polarities. It was proposed (B. Teleńczuk et al., 2017) that this is due 143

to the fact that excitatory uLFPs are of low amplitude compared to inhibitory 144

uLFPs, and the field evoked by excitatory cells is actually dominated by inhibitory 145

currents, occurring di-synaptically through the recruitment of interneurons. This 146

explanation was consistent with hippocampal recordings, where the excitatory 147

uLFPs were of very small amplitude and blocked by GABAA antagonists (Bazelot 148

et al., 2010). This issue was tested in a recent biophysical model (M. Teleńczuk 149

et al., 2020), which reconstructed uLFPs in the hippocampus for excitatory and 150

inhibitory synapses. By using 1000 morphologically-reconstructed hippocampal 151

pyramidal neurons (Fig. 3A), and locating synapses in different regions of the 152

cells (Fig. 3B-C), the model generated uLFPs that were recorded at different 153

positions around the cell (Fig. 3D-E). As suggested before, the model confirmed 154

that inhibitory uLFPs (Fig. 3D) were of larger amplitude compared to excitatory 155

uLFPs (Fig. 3E; see Overlay). 156

For this reason, in the following, we will fit kernel templates only to inhibitory 157

uLFPs measured experimentally, and use the model to estimate kernels for 158

excitatory uLFPs. Note that the procedure and examples shown here concern 159

cerebral cortex, where the uLFP kernels were measured from experimental 160

data (B. Teleńczuk et al., 2017), but the exact same approach can be followed 161

for any brain structure where the uLFP kernels are measured experimentally. 162

3.2 Fitting kernels to inhibitory uLFPs 163

In this section, we fit a template kernel function to inhibitory uLFPs extracted 164

from experimental data in cerebral cortex. To do this, we note that the uLFPs 165

always have an approximately symmetric shape with similar rise and decay 166

phases, which we can fit by the following Gaussian kernel at position x and time 167

t: 168

uLFP (x, t) = A(x) exp[−(t− tp)2/(2σ2)], (4)

where A is an amplitude constant (which can be negative), σ is the standard 169

deviation in time, and tp is the peak time of the uLFP. The latter is given by 170

tp = t0 + d+ |x− x0|/va, (5)

where t0 is the time of the spike of the cell, |x− x0| is the distance between cell 171

and electrode, d is a constant delay, and va is the axonal speed. We use the 172
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value of va = 200 mm/s, estimated from human uLFP recordings (B. Teleńczuk 173

et al., 2017). 174

To model the observed near-exponential amplitude decay with distance 175

(Fig. 2B,D, rightmost graphs), the following expression can be used for A(x): 176

A(x) = A0 exp[−|x− x0|/λ], (6)

where A0 is the maximal amplitude, and |x − x0| is the distance between the 177

electrode (x) and the position of the cell (x0), and λ is the space constant of the 178

decay. From human uLFP data, λ was consistently found around 200-250 µm 179

(B. Teleńczuk et al., 2017). 180

The template function given by Eq. 4 can be fit simultaneously to sets of 181

recorded LFPs, such as that of Fig. 2B. Figure 4 shows the result of such a fitting, 182

for inhibitory uLFPs. The Gaussian kernel function with a negative amplitude, 183

and constant standard deviation, could simultaneously fit all measured uLFPs 184

(Fig. 3A). Note that we did not attempt to capture the slow positive component 185

which is present in some of the uLFPs. Better fits can be obtained by letting 186

the amplitudes and standard deviation as free parameters (Fig. 3B), but this 187

type of parameterization is unconstrained, and will not be used in the following. 188

3.3 Calculating excitatory uLFPs 189

The fitting of the kernels provided in the previous section is enough to calculate 190

the uLFP contribution of a given inhibitory cell at any point in space and time 191

in the vicinity of the cell. However, as mentioned above, it is difficult to directly 192

observe the uLFP of excitatory cells because of its low amplitude (Bazelot et 193

al., 2010). In this section, we provide an estimate of the excitatory uLFP, 194

based on numerical simulations. We use a biophysical model proposed previ- 195

ously (M. Teleńczuk et al., 2020), summarized in Fig. 3. This biophysical model 196

confirmed that the simulated excitatory uLFP is indeed smaller compared to 197

the inhibitory uLFP (compare Fig. 3D-E), although the number of synapses 198

involved in calculating excitatory uLFPs was much larger compared to inhibitory 199

synapses. The low amplitude of excitatory uLFP resulted from a partial cancel- 200

lation of apical and basal synaptic currents, which produce dipoles of opposite 201

sign (M. Teleńczuk et al., 2020). In the Overlay of Fig. 3 (from stratum radiatum), 202

it can be seen that the excitatory uLFP is not only of smaller amplitude, but 203

also generally has slower kinetics, presumably because of the distal dendritic 204

contributions and associated dendritic filtering (Pettersen & Einevoll, 2008). 205

Thus, for the kernel, we assumed a slower decay time for excitatory uLFP, which 206

we estimated as about 1.5 times the decay of inhibitory uLFPs. More precise 207

measurements, when available, should be used to adjust this number. 208

To estimate the relative amplitudes of excitatory and inhibitory uLFPs, we 209

use the depth profile of uLFP, as shown in Fig. 5. It is apparent that the major 210

contribution of inhibitory uLFPs will be around the soma (stratum pyramidale), 211

with the two main poles reversing around 200 µm depth (stratum radiatum), 212

reversing again around 600 µm. Excitatory uLFPs are also maximal around 213
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Depth i-uLFP amplitude e-uLFP amplitude Relative amplitude
(µV) (µV) (i/e)

Deep layers -0.2 -0.16 1.25
Soma 3 0.48 6.25

Superficial layers -1.2 0.24 5
Surface 0.3 -0.08 3.75

Table 1: Absolute and relative model uLFP amplitudes at different depth in
hippocampus. The uLFP amplitudes are indicated for a position near the soma
in X,Y, and for different depths in Z direction. The different depths indicated
correspond to -400 µm (Deep layers), 0 (Soma), 400 µm (Superficial layers) and
800 µm (Surface).

the soma, reverse around -100 µm, but stay of low amplitude all through the 214

layers. To simplify, we have reported the absolute and relative uLFP amplitudes 215

at different depth in Table 1. 216

With respect to the fitting of inhibitory uLFPs in the previous section, we 217

obtained an amplitude of about -3.4 µV and a width of 2.1 ms (Fig. 4A). Given 218

that the corresponding recordings (B. Teleńczuk et al., 2017) were obtained 219

in superficial layers, we can assume that it corresponds to superficial layers 220

in Table 1. Accordingly, we estimate that excitatory uLFPs would have an 221

amplitude of about 0.7 µV and a width of 3.15 ms. We consider a practical 222

application of these kernel templates to calculate LFPs in the next section. 223

3.4 Examples of LFPs calculated from network simula- 224

tions 225

To calculate LFPs from network simulations, we will convolve the spikes of the 226

network with the uLFP kernels, according to the formula: 227

Ve(~x, t) =

∫
Ke(~x, t−τ)

∑
j

δ(τ − te,j)

 dτ+

∫
Ki(~x, t−τ)

∑
j

δ(τ − ti,j)

 dτ ,

(7)
where Ke(~x, t − τ) and Ki(~x, t − τ) are the excitatory and inhibitory uLFP 228

kernels derived above, respectively, while {te,j} and {ti,j} are the spike times of 229

excitatory and inhibitory neurons. This can also be expressed as a direct sum of 230

the kernels: 231

Ve(~x, t) =
∑
k

Ke(~x, t− te,k) +
∑
l

Ki(~x, t− ti,l) . (8)

For convenience, we will use the LFP kernels estimated from human recordings 232

using the Gaussian template (Eq. 4), as in Fig. 4. 233

Figure 6 shows an example of LFP generated using this kernel method applied 234

to a network of spiking point neurons. The network was taken from a previous 235
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study, modeling gamma oscillations in networks of excitatory and inhibitory 236

integrate-and-fire neurons (Brunel & Wang, 2003). As seen from the raters of 237

spiking activity (Fig. 6A, top), the network displayed mostly irregular behavior, 238

but at closer scrutiny (Fig. 6B, top), signs of loosely synchronized oscillatory 239

activity can be seen. When calculating the LFP from this network (Fig. 6, 240

bottom traces) clearly reveals the gamma oscillation in the LFP. The LFP was 241

calculated using the templates estimated above, and using amplitudes as in 242

Table 1 to simulate the LFP in different layers. One can see that the LFP is 243

largest at the level of the soma, while surface and deep layers display lower 244

amplitudes. The gamma oscillation also reverses in polarity above and below 245

the soma layer. Figure 7 shows the LFP calculated at the level of the soma, but 246

at different lateral distances from the center of the network plane. Note that 247

these different traces are not scaled versions of the same trace, because each 248

neuron contributes individually according to its distance to the electrode (see 249

Eqs. 4-6). This shows that the kernel method reproduces the typical attenuation 250

with distance as expected. 251

In a second example, we used network models capable of generating asynchro- 252

nous-irregular (AI) or Up/Down state dynamics, which required neurons with 253

spike-frequency adaptation. Fig. 8 illustrates such dynamics as modeled by 254

networks of Adaptive Exponential (AdEx) point neurons (Destexhe, 2009; Zerlaut 255

et al., 2018) (see Methods), as shown in with the associated LFP calculated with 256

the kernel method. A first regime is the asynchronous-irregular state (Fig. 8A), 257

which displays typical LFPs of low-amplitude and noisy aspect, typical of the 258

so-called “desynchronized” dynamics. A second regime is the alternating Up 259

and Down states (Fig. 8B), in which the network produces slow-wave oscillations 260

with higher amplitude LFPs, which was obtained here with strong level of 261

adaptation and additive noise (see Methods). In both cases, the kernel method 262

could simulate the LFP in different cortical depths. 263

To compare the LFP generated by the kernel method to other more classic 264

ways of calculating LFPs, we have considered the method to generate LFPs from 265

synaptic currents (see Methods). As shown in Fig. 9, the LFP was calculated 266

from networks displaying Up and Down states, using the two methods. The 267

LFPs were calculated for surface and depth locations, using the same setting as 268

in Fig. 6. The classic method of LFP generated from synaptic currents (Fig. 9B, 269

gray traces) gave LFPs that were identical from surface and depth, because this 270

method only considers the distance, and the two locations were symmetrical with 271

respect to the network. In contrast, the LFP generated by the kernel method 272

(black traces in Fig. 9B) were different from surface to depth, as described 273

above. Comparing the two methods, the classic method has evidently more high- 274

frequency components, while the kernel method was more smooth. The power 275

spectral density (PSD) calculated from the two models shows this difference 276

explicitly (Fig, 9C). One can also see that the low frequency components were 277

more similar, so the kernel method appears grossly (with some error) as a 278

low-pass filtered version of the classic method based on synaptic currents. 279

Finally, we illustrate that the kernel method can be used to calculate the LFPs 280

from multi-layer networks (Fig. 10). As illustrated by the scheme of Fig. 10A, the 281

9



same network as in Fig. 8B was distributed in three different layers, representing 282

the Supragranular, Granular and Infragranular cortical layers. Taking the same 283

four vertical layers as in Fig. 6, combined for the three networks, leads to six 284

different layers (Surface, Superficial, Supragranular, Granular, Infragranular and 285

Depth). The corresponding LFP calculated in each layer is shown in Fig. 10B. 286

The LFP inverted in superficial and deep layers, as typically found for slow 287

waves between superficial and infragranular layers (Fiáth et al., 2016). It is also 288

consistent with the inversion of the slow wave induced by sensory stimulation (Di, 289

Baumgartner, & Barth, 1990), which also shows this superficial inversion, but in 290

addition a further inversion below infragranular layers, which was also present 291

here (Fig. 8B, Deep). 292

Note that all the examples shown here concerned the cerebral cortex, where 293

the uLFP kernels were measured from experimental data (B. Teleńczuk et al., 294

2017), but the exact same approach can be followed for any other brain structure. 295

4 Discussion 296

In this paper, we have proposed a simple method to calculate LFPs from networks 297

of point neurons. We discuss below different aspects of this method, its drawbacks 298

and advantages, and perspectives for future work. 299

The kernel-based method illustrated here is based on experimentally-measured 300

uLFPs, and is thus dependent on the availability of such measurements. We 301

have used here uLFPs measured in human cerebral cortex, which were obtained 302

in superficial layers (Layer 2-3) (B. Teleńczuk et al., 2017). To complete this 303

dataset, we have used the results from uLFPs calculated from detailed biophysi- 304

cal models (M. Teleńczuk et al., 2020), resulting in the estimated amplitudes 305

displayed in Table 1. As we have illustrated in Fig. 6, this procedure can be 306

used to calculate the LFP in different layers, from network simulations of point 307

neurons. 308

A first drawback of such a procedure is that we had to use a mix of experi- 309

mental and computational model data to capture the kernel in different layers. 310

This was done because there is presently no measurement of uLFP in different 311

cortical (or hippocampal) layers, but we anticipate that such data should become 312

available soon given the progress in multielectrode recording techniques, which 313

should release us from using the computational model. When the full data set 314

of uLFPs from all layers, and all cell types will be available, the exact same 315

approach of fitting templates can be followed, and applied to network simula- 316

tions. Similarly, it may be that the uLFP differs in different cortical regions, 317

due to differences of local connectivity, differences of conductivity, or axonal 318

propagation speed, among other factors. Here again, when the experimental 319

recordings will become available, the method will be refined accordingly. 320

Another drawback is that the kernel method best applies to (on-going) re- 321

current activity, because the LFP is exclusively calculated from superthreshold 322

spiking activity. The method does not include contributions such as subthreshold 323

synaptic events (which could be recurrent or evoked), nor the possible contribu- 324
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tion of dendritic voltage-dependent ion channels. These different contributions 325

should be estimated by network models of detailed morphologically-reconstructed 326

neurons, where both recurrent and evoked synaptic activity are present. 327

An important advantage of the present method is the fact that it only relies 328

on the knowledge of cell positions and spike times, which represents a relatively 329

small dataset compared to the knowledge of all membrane currents required 330

by methods to calculate LFPs from biophysical models (Lindén et al., 2014; 331

B. Teleńczuk & Teleńczuk, 2016). As a consequence, the kernel-based method 332

could be applied a posteriori to datasets of spike times from network simulations, 333

or even to experimental data, if a sufficiently large number of neurons can be 334

recorded. When the spiking activity will be available from large ensembles of 335

simultaneously-recorded neurons, the kernel-based method could be used to 336

calculate the LFP from spikes, and compare to the recorded LFP, which would 337

constitute a possible test of the consistency of the method. 338

Another advantage of the kernel-based method is that it does not make any a 339

priori assumption about the conductive or capacitive nature of extracellular me- 340

dia, which is a subject highly discussed in the literature (see (Bedard & Destexhe, 341

2012; Destexhe & Bedard, 2013) for reviews). Most of today’s procedures to 342

calculate LFPs assume that the extracellular medium is resistive (see for example 343

(Lindén et al., 2014; B. Teleńczuk & Teleńczuk, 2016)), which may result in 344

large errors if it appears that the medium has diffusive or capacitive properties. 345

For example, non-resistive media can exert strong frequency filtering properties 346

which may affect the shape and propagation of LFPs (Bedard & Destexhe, 2012). 347

Another source of frequency filtering is due to the cable properties of the neurons 348

(Pettersen & Einevoll, 2008). In the present method, there is no need to integrate 349

such complex effects, as the method is based on direct recordings of the LFP, so 350

the frequency-filtering, if present, is already taken into account. 351

The kernel-based method of course does not replace biophysical simulations, 352

which still represent the most accurate way of modeling LFPs. However, such 353

calculations require to have access to the details of the morphology of dendrites, 354

details about the conductivity and other properties of media (as discussed above), 355

and details of all the ionic currents that could influence the LFP. None of such 356

details are needed in the kernel-based method, which calculates LFPs solely 357

from the spiking activity of the neurons. Thus, the kernel method could also be 358

applied to biophysical models, and compared to the LFP generated by standard 359

biophysical methods (Lindén et al., 2014). Such a comparison should be done in 360

future work. 361

Such as comparison was done previously for the classic method to calculate 362

LFPs from synaptic currents (Mazzoni et al., 2015). It was found that the LFP 363

calculated from a weighted sum of excitatory and inhibitory synaptic currents 364

provides a good approximation of the LFP calculated using morphologically- 365

accurate models. We find here that computing the LFP from synaptic currents 366

of point neurons, which was done in many previous studies (Koch & Segev, 367

1998; Destexhe, 1998; Mazzoni et al., 2015) is different from the kernel method. 368

This is expected because the kernel method uses a different respective weight of 369

excitation and inhibition, as a function of depth. The method based on synaptic 370
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currents only depends on distance, so for instance, it predicts the same LFP 371

for surface and depth if they are at equal distance from the network, as in the 372

example of Fig. 9. The two methods also differ in the high-frequency components 373

of the LFP, but had more similar low-frequency components (Fig. 9C). Thus, the 374

kernel method appears close to a low-pass filtered version of the LFP calculated 375

from synaptic currents. A more in-depth comparison should be done using 376

morphologically-detailed models. 377

Another method to calculate LFPs from point neurons consists of replaying 378

the membrane currents of the point neurons inside morphologically-accurate 379

models (Hagen et al., 2016). This so-called “hybrid” method can also be used to 380

estimate LFP kernels and use a similar convolution as we used here. However, 381

this approach focuses mostly on the pre-synaptic contributions to the LFP, 382

whereas in the present method, we estimate the LFP from the post-synaptic 383

consequences of axon-propagating action potentials. 384

Finally, another promising application of the kernel-based method is that it 385

could be applied to population or mean-field models. Since the LFP is obtained 386

by a convolution of the kernel with spiking activity (see Eq. 7), the same approach 387

can be used to convolve the kernel with the density of spiking activity, which 388

is given by mean-field models. This would yield an estimated LFP from mean- 389

field models, which is presently lacking. This also constitutes a very promising 390

direction for future work. 391
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Figure 1: Scheme of the genesis of unitary LFPs. A. Scheme of the axonal
arborization of a pyramidal cell, where the axon collaterals extend laterally and
contact other neurons in the vicinity of the cell. Black dots indicate excitatory
synapses made my the axon on different neurons. B. Scheme of 3 LFP electrodes
(violet) located at different distances from the soma. The uLFP recorded by
each electrode is progressively delayed (red arrows), due to the limited speed
propagation along the axon (blue arrow). The amplitude is also progressively
lower due to increasing distances from the sources. C. Scheme of the peak time
of the uLFP as a function of distance, which reflects axonal propagation. D.
Scheme of the decrease of uLFP amplitude as a function of distance.
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Figure 2: Experimental measurements of unitary LFPs in human. A. Utah-
array (top left) recording in human temporal cortex (bottom left), of LFPs and
units (right traces). 10 example LFP traces are shown, along with spike-sorted
units, which are represented from top to bottom as a decreasing function of
their mean firing rate. Presumed excitatory (RS, blue) and inhibitory (FS, red)
cells are indicated. B. Unitary LFPs for RS (blue) and FS (red) neurons at
different electrode distances. The rightmost graph shows the uLFP amplitude
as a function of distance. C. Traveling of uLFPs (left graphs). The uLFP
peak travels at a speed close to 200 mm/sec (right), consistent with axonal
propagation. D. Results obtained from a second subject, in agreement with B.
Modified from (B. Teleńczuk et al., 2017).
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Figure 3: Detailed biophysical model of uLFPs in the hippocampus. A. Relative
position of 1000 morphologically-reconstructed hippocampal CA3 pyramidal
cells. B. Distribution of inhibitory synapses from basket cells, mainly targeting
the somatic region of pyramidal cells. C. Distribution of excitatory synapses,
mainly targeting apical and basal dendrites. D. Simulated uLFP from inhibitory
neurons at different distances from the cell (resp. 0, 100, 200, 300 µm, from
left to right). E. Simulated uLFPs from excitatory neurons. There was a lot of
cancelling for excitatory uLFPs, resulting in lower uLFP amplitudes compared to
inhibitory uLFPs (Overlay, uLFPs indicated for stratum radiatum; 10x amplitude
magnification). Modified from (M. Teleńczuk et al., 2020).
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Figure 4: Fitting of Gaussian kernels to inhibitory uLFPs. A. Simultaneous fit of
the same Gaussian template to inhibitory uLFPs measured experimentally (dots)
at three different distances x. The template had constant standard deviation σ,
and the amplitude was given by an exponentially-decaying function of distance
(continuous curves; parameters: va=166 mm/s, d=10.4 ms, A0=-3.4 µV, λ= 0.34
mm, σ=2.1 ms). B. Similar fit using Gaussian templates with unconstrained
parameters (amplitudes of -11, -2.5 and -1.4 µV, and standard deviations of 1.99,
3.95 and 2.7 ms, respectively from top to bottom).
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Figure 5: Depth profile of model uLFP peak amplitude in hippocampus. A.
Peak uLFP amplitude as a function of depth (with zero in stratum pyramidale,
as in Fig. 3B). B. Depth profile of peak amplitudes for inhibitory uLFPs. Open
and filled circles indicate the position of 0 and 200 µm (same scale in Fig. 3B).
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Figure 6: Example of LFP calculated from networks of point neurons exhibiting
gamma oscillations. A. Scheme of the placement of cells and electrodes. Neurons
were distributed randomly in a plane of 200 µm size, and the electrodes were
placed perpendicular to the plane, as indicated. B. Simulations of gamma
oscillations in randomly-connected networks of excitatory and inhibitory neurons.
The top graphs display the raster of spiking activity in the network. The network
had 5,000 neurons, 4,000 excitatory (blue) and 1,000 inhibitory (red). The
network models the genesis of gamma oscillations by recurrent excitatory and
inhibitory interactions among integrate-and-fire neurons (Brunel & Wang, 2003).
The bottom curves show the LFP calculated using the kernel method. From top
to bottom: surface LFP, LFP from superficial layers, LFP at the level of the
soma, and LFP in deep layers as schematized in A. The corresponding uLFP
amplitudes were taken from Table 1, and the kernel were estimated as in Fig. 4.
C. Same simulation at higher temporal resolution.
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Figure 7: Horizontal distance-dependence of LFP calculated using the kernel
method. A. Scheme of the network and the placement of recording sites at
different distances from the center of the network. B. LFP calculated (same
simulation as in Fig.6) at different distances, as indicated.
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Figure 8: Example of LFP calculated from networks of point neurons in asyn-
chronous or Up/Down states. A. Model of asynchronous-irregular activity in
a network of adaptive exponential (AdEx) neurons. The corresponding LFP
is calculated and shown identically as in Fig. 6A. The network had 10,000
neurons, 8,000 excitatory (blue) and 2,000 inhibitory (red). B. Same network
but for increased adaptation, displaying alternating Up and Down states. The
corresponding LFP showed slow wave activity.
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Figure 9: Comparison of the LFP generated by the kernel method to the LFP
generated by synaptic currents. A. Raster of spiking activity in a N=5000
network displaying Up and Down states, similar to Fig. 8. B. LFP calculated in
surface and depth, using the same scheme as in Fig. 6. The Kernel method (black
curves) is compared to the synaptic current method (gray; arbitrary units for
amplitude). Note that the gray traces are identical because the LFP generated by
the synaptic current method only depends on distance and does not distinguish
surface from depth. C. Power spectral density (PSD) calculated from the two
models (arbitray units for amplitude).
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Figure 10: LFP calculated from multilayer networks. A. Three networks similar
to Fig. 8B, exhibiting Up/Down state dynamics. The networks are arranged
according to three neuronal layers, Supragranular, Granular and Infragranular,
as indicated. B. Slow-wave LFPs generated from these networks using the Kernel
method. The LFP in 4 layers are generated as in Fig. 8B for each network, and
combined, to yield 6 layers, as indicated.
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