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In this paper, we apply morphogenetic processes, namely self-assembly
processes, to compute automatically various abstract spaces that can be
used to represent and analyze several well-known musical objects (se-
quence of chords, interval series, etc.). These constructions have been
implemented in MGS, an unconventional programming language be-
longing to the family of spatial computing languages.
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1 INTRODUCTION

The algebraic nature of many musical formalizations has been very early as-
sessed: from the equal temperament to canon, algebraic objects have been
used to study combinatorial properties and classify musical structures. Re-
cently, a fresh look on these structures has emerged focusing on topological
or geometrical representations. For example, one can characterize harmonic
paths in orbifolds [5, 25] or build topological spaces embedding musical re-
lationships in their neighborhood relationships [14].
Following this line of research, we are interested to harness natural mor-

phogenetic processes for building spatial representations of musical objects.
To this aim, our work rely on the use of MGS , a domain specific program-
ming language dedicated to the modeling and the simulation of dynamical
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2 LOUIS BIGO AND ANTOINE SPICHER

systems with a dynamical structure [12]. Numerous applications in system
and synthetic biology have been developed in MGS and proved that it is a
fruitful unconventional tool for (re-)designing algorithms tackling problems
embedded in space or having a spatial extension.
In this paper we propose the use of a self-assembly process for study-

ing two paradigmatic problems in theoretical music. This paper is organized
as follows. Section 2 provides a brief introduction to the MGS spatial pro-
gramming language. Section 2.3 exemplifies the use of the MGS concepts
by specifying a self-assembly of polymers. This self-assembly process is
then hijacked for musical purpose. In Section 3 a combinatorial space is
built up enabling the enumeration and the topological classification of All-
Interval Series (AIS). Section 4 describes a spatial representation of collec-
tions of chords. The paper ends with a conclusion and a discussion about
future works.

2 THE MGS PROGRAMMING LANGUAGE

MGS is a spatial computing programming language developed to enlighten
the importance of space in computations [2, 7, 21]. MGS concepts are based
on well established notions in algebraic topology [17] and relies on the use
of rule based functions, called transformations, to compute declaratively with
spatial data structures, called topological collections.

2.1 Topological Collections
In MGS , all data structures are unified under the notion of topological collec-
tion: an abstract combinatorial complex (ACC) labeled with arbitrary values.
The ACC acts as a container and the labels as the elements of the data struc-
ture.
More precisely, an ACC K = (C,≺, [·]) is a set C of abstract elements,

called cells [24], provided with a partial order≺ called the boundary relation,
and with a dimension function [·] : C → N such that for each c and c′ in C,
c ≺ c′ ⇒ [c] < [c′]. We write c ∈ K when a cell c is a cell of C.
A cell of dimension p is called a p-cell: 0-cells are points, 1-cells are

edges, 2-cells are polygons (e.g., facets in a mesh), etc. For example, a graph
is an ACC composed of 0- and 1-cells. Another example is pictured in Fig-
ure 1.
The (p − 1)-cells c′ lower than a p-cell c for the boundary relation ≺ are

called the faces of c and we write c′ < c or c > c′; c is called a coface of cells
c′. We call closure of c in K the sub-complexes c̄ = (C′,≺ ∩ C′ × C′, [·])
where C′ = {c′ ∈ C | c′ ≼ c}.
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FIGURE 1
On the left, the Hasse diagram of boundary relationship of the ACC given in the middle: it is
composed of three 0-cells (c1, c2, c3), of three 1-cells (e1, e2, e3) and of a single 2-cells ( f ).
The three edges are the faces of f , and therefore f is a common coface of e1, e2 and e3. On the
right, a topological collection associates data with the cells: positions with vertexes, lengths with
edges and area with f .

Two n-cells are (n, p)-neighbor if they have a common border of dimen-
sion p when p ≤ n or if they are in the boundary of a p-cell of higher di-
mension. A (n, p)-path is a sequence of cells such that two consecutive cells
are (n, p)-neighbor. For example, the notion of (0, 1)-path coincides with the
usual notion of path in a graph (a sequence of nodes following a route along
some edges of the graph.) We call a (n, p)-Hamiltonian path a (n, p)-path
visiting each n-cell of an ACC exactly once. Similarly a (n, p)-Eulerian path
is a (n, p)-path visiting each p-cell of an ACC exactly once.
Finally, a topological collection C is a function that associates a value with

a cell in an ACC, see Figure 1. Thus the notation C(c) refers to the value of
C on cell c. We write |C | for the set of cells for which C is defined. The
collection C can be written as a formal sum

∑
c∈|C | vc · c where vc

df= C(c).
With this notation, the underlying ACC is left implicit but can usually be
recovered from the context. By convention, when we write a collection C
as a sum C = v1 · c1 + · · · + vp · cp, we insist that all ci are distinct. Notice
that this addition is associative and commutative. This notation is directly
used in MGS to build new topological collections on arbitrary ACC of any
dimension.

2.2 Transformations
Topological collections are transformed using sets of rules called transforma-
tions [22]. A rule is a pair pattern => expression . When a rule is applied
on a topological collection, a sub-collection matching with the pattern is
replaced by the topological collection computed from expression . There
exist several ways to control the application of a set of rules on a collection
called rule application strategies. The present work uses solely the maximal-
parallel strategy: rules are applied as many times as possible without inter-
section between matched sub-collections.

IJUC˙EM˙05˙Bigo˙V1 3



4 LOUIS BIGO AND ANTOINE SPICHER

A formal specification of topological rewriting is given in [22]. We only
sketch here the part of the patterns language necessary for the comprehension.
A pattern variable specifies a cell to be matched in the topological collection
together with some optional guard: the expression x / x = 3 matches a
cell labeled with the value 3. The guard is the predicate after the symbol /
. The variable x can be used in the guard (and elsewhere in the rule) to
denote the value of the matched cell or the cell itself, following the context
(in case of ambiguity, the variable always denotes the associated value). A
pattern is a composition of pattern variables. The composition denoted by
a simple juxtaposition (e.g., “x y ”) does not constraint the arguments of
the composition. Variables can be composed using the (co)face operator: a
pattern “x < y ” (resp. “x > y ”) matches two cells cx and cy such that cx <

cy (resp. cx > cy). Patterns are linear: two distinct pattern variables refer to
two distinct cells.

2.3 Illustration: Self-Assembly of Cellular Complexes
MGS is a vehicle used to investigate the notions of topological collections
and transformations and to study their adequacy to the simulation of vari-
ous physical, chemical and biological processes [9–11, 15]. As an example,
(local) rewriting rules are particularly adequate to specify self-assembling
processes since they mimic closely the incremental and distributed building
mechanism of the real phenomenon.
Let illustrate this idea by considering a generic self-assembling process on

cellular complexes allowing the building of elaborated spatial structures from
a population of basic elements. This process consists in identifying topolog-
ically equivalent elements (i.e., cells with the same boundary) in some ACC.
This operation is not elementary because the identification must occur at ev-
ery dimension. A simple way to achieve such computation is to iteratively
apply the merge of topological cells that exactly share the same faces until
a fixed point is reached. The corresponding topological surgery can be ex-
pressed in the MGS syntax as follows:

trans Self-Assembly[Pred, Label] = {
x y / (Pred x y) and (faces x = faces y)

=> let c = new cell (dim x) (faces x)
(union (cofaces x) (cofaces y))

in (Label x y) * c

}

where the primitive new cell p f c f returns a fresh p-cell with faces f
and cofaces c f . The rule specifies that two elements x and y whose labels
check some arbitrary predicate Pred (given as a parameter) and having the

IJUC˙EM˙05˙Bigo˙V1 4
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FIGURE 2
Self-assembly of cellular complexes using transformation Self-Assembly: at first iteration,
two matching pair of nodes are merged; then the resulting edges are identified; finally the
fixed point is reached.

same faces in their boundaries, merge into a new cell c (that has the union
of the cofaces of x and y as cofaces) labeled by a value computed from
some arbitrary function Label (given as a parameter). Figure 2 illustrates
the process.
Figure 3 illustrates the use of transformation Self-Assembly to model a

polymerization process. Polymers are long-chained molecules with repeating
units called monomers. Monomers react with each other to form polymers
in a process called polymerization. Addition polymerization is a particular
class of polymerization where monomers combine with polymers in an ac-
cretive growth process. Here we consider monomers with two binding sites.
A monomer is represented by a rectangular shaped ACC, that is a 2-cell with
four edges and four vertices in its boundary. The binding sites correspond to
two opposite edges labeled as active. Considering that two active cells can be
merged (predicate Pred ) and that they become inactive after merging (func-
tion Label ), transformation Self-Assembly builds up polymers as shown
in Figure 3. This toy model does not refer to any natural phenomenon but it
could be easily extended to manage with real biological data (e.g., modeling
the 3-dimensional structure of some DNA strand.)

FIGURE 3
Self-assembly of polymers: on the left, the initial population of monomers; on the right, the final
polymer seen from two different points of view.
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6 LOUIS BIGO AND ANTOINE SPICHER

3 SPATIAL INTERPRETATION OF ALL-INTERVAL SERIES

In this section we are interested in the very basics musical notions of pitch
and interval. Some 2D ACC is then elaborated by the self-assembly of spatial
representation of the twelve interval classes. The combinatorial structure of
this space is finally used to enumerate and classify All-Interval Series (AIS).

3.1 Backgrounds in Music Theory
In the present work, we are interested in symbolic representation of music.
In standard Western music, the usual notation is based on the concept of staff
where notes are represented in two dimensions∗ : vertical height is associated
with the pitch of the notes (i.e., how high is the associated sound) and hori-
zontal ordering corresponds to time flow (i.e., when notes have to be played.)
In musical analyses, pitches are often considered up to an octave letting

us work with only twelve classes called pitch classes. For example, the pitch
class C = {C0,C1,C2, . . . } gathers all the possible Cs. From now on, the
term “note” will refer to pitch classes. It is then usual to identify pitch classes
to elements of Z12 (C = 0, C♯ = 1, etc.) such that the difference modulo 12
between two pitch classes exactly corresponds to the number of semitones
between the corresponding two notes. All the possible differences constitute
the intervals. For example between G = 7 and D = 2, the interval is a perfect
fifth corresponding to 2− 7 = −5 ≡ (7 mod 12) semitones. In the follow-
ing, intervals are refered using the usual notation: P1 = 0 (perfect union),
m2 = 1 (minor second or semitone), M2 = 2 (major second), m3 = 3 (mi-
nor third), M3 = 4 (major third), P4 = 5 (perfect forth), T T = 6 (tritone),
P5 = 7 (perfect fifth),m6 = 8 (minor sixth), M6 = 9 (major sixth),m7 = 10
(minor seventh), M7 = 11 (major seventh).
The identification with intergers ofZ12 provides the set of intervals with an

additive group structure, and the natural action of (Z12,+) on itself coincides
with the transposition operation in music. As an example, the action of the
perfect forth transpose A into A + P4 = 9+ 5 ≡ (2 mod 12) = D. The ac-
tion of each interval on the notes is composed of a variable number of orbits.
For an interval i it is well known that the number of orbits is di = gcd(i, 12).
For instance, there are dm3 = gcd(3, 12) = 3 orbits for the minor third:

(C − D♯ − F♯ − A) (C♯ − E − G − A♯) (D − F − G♯ − B)

These cycles can be uniquely identified by an integer between 0 and di − 1
corresponding to the least note of the cycle (e.g., C , C♯ and D for the three
cycles above).

∗ We drop here the consideration of duration.
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SELF-ASSEMBLY OF MUSICAL REPRESENTATIONS IN MGS 7

3.2 Spatial Representation of Interval Classes
In this section, we propose to give a combinatorial construction of the previ-
ous formal elements. A usual representation consists of the all-interval circle
which is a complete graph with twelve nodes, one for each pitch class. Each
edge represents the possible transposition from a note to another under the
action of an interval. This structure is represented on left of Figure 4. The all-
interval circle has two main drawbacks: (1) it does not distinguish intervals
and their inverses (e.g., the edge between C and F represents at the same time
a perfect fourth a perfect fifth); (2) each interval is represented many times
(one for each note).
We propose to elaborate a more complex structure which exhibits these

properties by assembling a population of pieces of space called interval
classes. The interval class Ii is a topological collection representing inter-
val i . The underlying ACC is composed of a unique 2-cell labeled by i . The
faces of this cell include twelve 1-cells also labeled by i . Finally twelve 0-
cells labeled by the pitch classes constitute the faces of the 1-cells in such a
way that two vertices are connected by an edge if their labels are related by
the action of i . Top right of Figure 4 illustrates the interval classes associated
to perfect fourth and minor third. Note that the boundary of an interval class
exibits topologically the orbits of the interval: the number of orbits equals the
number of holes +1.
The eleven interval classes – perfect unison is not considered – are then

glued together by transformation Self-Assembly which will identify the
note (only 0-cells are concerned) with

Pred x y = (x = y)
Label x y = x
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FIGURE 4
Spatial representation of AIS. On the left, complete graph topology with A. Berg’s AIS in bold.
On the top right, spatial representation of the perfect fourth and minor third interval classes (2-
cells are filled in light gray). On the bottom right, spatial representation using interval classes of
the five first elements of A. Berg’s AIS.
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8 LOUIS BIGO AND ANTOINE SPICHER

The resulting space is not easily visualizable. Nevertheless, its 1-skeleton
(that is the the sub-ACC composed of the n-cells with n ≤ 1) coincides with
the all-interval circle.

3.3 Application to All-Interval Series
The interval class space has interesting properties which allow the study of
musical objects from the point of view of combinatorial topology. It is illus-
trated in next paragraphs with a study of All-Interval Series (AIS).

All-Interval Series. An AIS is a twelve-tone series including the eleven
different intervals. Such series exhibit many notable properties [16]. One of
them is that the first and the last notes are always separated by a tritone inter-
val. One of the most famous use of this particular kind of series is probably
on the Lyric Suite of Alban Berg:

& n n n n n n n# n# n# n# n# n
����

���������������������������������������������������������������������������������������
����	���

������������������������������������������������������������������������������

Other composers like Luigi Nono (e.g., Il canto sospeso) or Karlheinz Stock-
hausen (e.g., Grüppen, Klavierstück IX) used this material in their composi-
tions.
Beyond the simple enumeration of the 46 272 AIS, composers and music

analysts have been interested in finding relevant criterions to classify them.
André Riotte proposed a classification considering the harmonic content of
the AIS. It consists for example in grouping together AIS containing a sub-
sequence corresponding to the notes of particular scales or chords [19]. El-
liot Carter investigated a classification enumerating all AIS containing in se-
quence the complete set of notes included in the All-Triad Hexachord (this
6-chord is the only one containing the twelve possible triads) [20]. We can
also mention an original classification from Franck Jedrzejewski based on
knot theory [13].
The enumeration and the classification of AIS is a widely known problem

in the computing music community. Several computing approaches, more
and more optimized, have been used to enumerate all the AIS. One of the first
enumeration was done by André Riotte [19] with the help of a FORTRAN
program. This enumeration problem has quickly become a classical problem
in Constraint Programming [23] and is now part of the 50 problems of the
CSPLib [8]. Some previous works have been based on the enumeration of
the All-Interval Chords, which is a similar problem [18].

IJUC˙EM˙05˙Bigo˙V1 8



SELF-ASSEMBLY OF MUSICAL REPRESENTATIONS IN MGS 9

Spatial Structure of AIS. A naive procedure to collect all the AIS consists
in enumerating all the possible permutations of the twelve notes and keep-
ing those exibiting the eleven different intervals. A spatial interpretation of
permutation is to look for an Hamiltonian path in the all-interval circle as
illustrated in Figure 4 with A. Berg’s AIS.
With such a search the 46 272 AIS are lost in the set of 12! candidates.

(0, 1)-Hamiltonicity is not a sufficient condition for specifying AIS. An in-
teresting feature of AIS is they are at the same time a permutation of notes
and a permutation of intervals. Translated in structural terms, an AIS is a path
of the interval class space which is at the same time (0, 1)-Hamiltonian and
(0, 2)-Eulerian. It is characterized in a MGS pattern as follows:
n0 < i1 < I1 > i1 > n1

< i2 < I2 > i2 > n2
...
< i11 < I11 > i11 > n11

Two consecutive notes np′ and np with p′ = (p − 1) have to be (0, 1)-
neighbors by some interval ip and (0, 2)-neighbors by some interval class
Ip such that the interval ip belongs to (i.e., is in the boundary of) interval
class Ip . Linearity of patterns ensures Hamiltonicity. Figure. 4 on bottom
right illustrates the instantiation of this pattern.

Topological Classification of AIS. Each AIS visits only one 1-cell in the
boundary of each 2-cell and this 1-cell belongs to one of the different orbits
associated with the interval class. Let then consider the cyclic vector V =
(vm2, . . . , vi , . . . , vM7) of an AIS which associates the visited cycle vi with
each interval i . For example, the cyclic vector VB of the A. Berg’s AIS is

interval class i m2 M2 m3 M3 P5 T T P5 m6 M6 m7 M7
di 1 2 3 4 1 6 1 4 3 2 1
VB C D♯ C D C D C C C C♯ C

AIS can then be classified by gathering in the same class all the AIS shar-
ing the same cyclic vector. This classification has proved to be of great mu-
sical interest [4]. For instance, it allows to find AIS including some specific
sub-sequence of notes [19,20]. As an example, the interval content of the har-
monicC minor scaleC D E♭ F G A♭ B invites us to search for some interest-
ing AIS related to that scale with cyclic vector (C,C♯, D, E,C, F,C,C,C♯,

C,C). For example, this class contains the AIS

E D♭ G♭ F B D C A♭ E♭ G A B♭

which exhibits consecutively the seven notes of the scale.

IJUC˙EM˙05˙Bigo˙V1 9



10 LOUIS BIGO AND ANTOINE SPICHER

Finally, the proposed classification also allows an easy study of AIS up to
the standard algebraic operations [16]: transposition, homothety, retrograde
and circular shift. The geometry of the

∏
i di = 3 456 possible classes can be

folded into a smaller space of only 72 well identified classes.

4 SPATIAL REPRESENTATION OF CHORD COLLECTIONS

Chords play an important role in music theory. In this section, we propose to
use the self-assembly process of Section 2.3 to build a combinatorial space
representing some collections of chords. We first describe this construction,
then we show how various spaces investigated in music theory are recovered.

4.1 Self-Assembly of Chords
A chord is a collection of pitches played simultaneously. Depending on the
context the collection may have different structures: a set of pitches (e.g., an
event of a staff), a sequence of pitches (e.g., in a choral), an ordered set of
pitch classes (e.g., chord progressions in Jazz), etc. In the following we will
consider chords as set of pitch classes and we call p-chord a chord composed
of p notes (p > 0).

Chords as Simplicial Complexes. Since a p-chord includes 2p − 2 sub-
chords, a p-chord can be represented by a topological collection relying on
a (p − 1)-simplex. A n-simplex is an ACC of dimension n composed of a
unique n-cell c which has exactly n + 1 faces such that for each face c′ the
closure of c′ is a (n − 1)-simplex. The 0-cells are labeled by a single note
and other p-cells by the corresponding (p + 1)-chords. Simplices are often
represented geometrically as the convex hull of their vertices as shown in
Figure 5 for p-simplices with p ∈ {0, 1, 2, 3}.

3-cell1-cell

{C,E}

{E,G}

C

{C,G}

{C,E,G}

G E

3-note
chord2-cell0-cell note

2-note
chord

4-note
chord

FIGURE 5
A chord represented as a simplex. The complex on the right corresponds to first degree IC of the
C major tonality and all 2-chords and notes included in it.
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SELF-ASSEMBLY OF MUSICAL REPRESENTATIONS IN MGS 11

Self-Assembly of Chords. Transformation Self-Assembly may act on a
given set of chords by identifying n-cells with common labels:
Pred x y = (x = y)
Label x y = x

Although these parameters are similar to the previous example, the identifi-
cation occurs here at any dimension and will result in a simplicial complex
(i.e., an ACC made of simplices only).
The following sections give three applications of self-assembly of chords.

4.2 Analysis of a Musical Piece
The self-assembly process is generic enough to represent any set of chords.
We propose here to elaborate some space for the study of a piece from its
harmonic progression.
Figure 6 shows the simplicial complex resulting from the assembly of

chords from the eight first measures of Chopin’s Prelude 4 Op.28. The com-
plex exhibits neighborhoods between chords but does not give any informa-
tion about how these chords are ordered in the prelude. A remarkable fact of
this ordering is that only one note differs between two consecutive chords.
This property holds on the fourteen chords starting from the second one.
Being composed of three-note chords, such a progression corresponds to a
(2, 1)-Hamiltonian path in the associated simplicial complex: 1-cells neigh-
borhood between two 2-cells represents the two common notes between the
chords. This path is partially presented by black arrows for the five first
chords, starting from the second one, in Figure 6. The enumeration of all

FIGURE 6
Chords of height first measures of Chopin’s Prelude 4 Op.28. On the left its simplicial represen-
tation. On the right, a path represents the order of chords in a region of the complex.

IJUC˙EM˙05˙Bigo˙V1 11



12 LOUIS BIGO AND ANTOINE SPICHER

the possible (2, 1)-Hamiltonian paths in the complex, shows that there ex-
ist exactly 120 possible ordering of the chords. But among all these possi-
bilities, the original order used in the Prelude is the one with the smallest
distance between chords. Indeed, the interval characterizing the moving note
in two consecutive chords is a semitone for all transitions. This example il-
lustrates the topological translation of a well-known compositional strategy
called parsimonious voice leading. Chord sequences corresponding to other
(2, 1)-Hamiltonian in the complex have been generated with MGS and are
available in MIDI format at http://www.lacl.fr/ lbigo/aisb13#analysis.

4.3 Tonality Representation
In tonal music, a piece is frequently characterized by the use of successive
tonalities. A tonality is defined by a set of notes, each having a particular role.
Triadic chords (stacked thirds 3-chords) composed by notes of the tonality are
called the degrees of the tonality. As an example, the seven degrees of the C
major tonality are:

IC = {C, E,G} I IC = {D, F, A} I I IC = {E,G, B} I VC = {F, A,C}

VC = {G, B, D} V IC = {A,C, E} V I IC = {B, D, F}

The self-assembly provides a combinatorial space associated with the tonal-
ity. Guérino Mazzola presents in [14] this topological representation of the
diatonic tonality which appears to be a Möbius strip (see Figure 7.)
Such a self-assembly process may seem trivial but the elaboration of a

space based on chords of higher dimension is difficult by hand. For example
tonality may be defined through 4-chords instead of triads (e.g. for C ma-
jor IC = {C, E,G, B}, I IC = {D, F, A,C}, etc.) After computing the Euler
characteristic and the orientability coefficient of the obtained complex for C
major characterized by 4-chords, its topology appears to be a toroid (the vol-
ume bounded by a torus) which is definitively different from a Möbius strip
(e.g., the torus is orientable and the Möbius strip is not.)

C G D A E

E B F C

IC VC IIC V IC

IVCV IICIIIC

FIGURE 7
Simplicial representation of C major tonality resulting in a Möbius strip.
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SELF-ASSEMBLY OF MUSICAL REPRESENTATIONS IN MGS 13

4.4 Computer Aided Analysis and Composition using
Self-Assembled Spaces

In the context ofMusic Set Theory chords are studied from an algebraic point
of view [1]. They are then classified as orbits under the action of some group
of transformations. We are here interested in the classification induced by the
action of the dihedral group.

Chord Classes and Generalized Tonnetze. The dihedral group D12 al-
lows to gather chords up to transposition and inversion. While transposi-
tion Ti consists of the action of some interval on the notes of a chord
as mentioned above, inversion S considers the inverse of the notes. As
an example, (TM3 ◦ S) {C, E,G} = {−C + M3,−E + M3,−G + M3} =
{C, E, A}. This action defines 224 equivalent classes of chords.
Using the self-assembly process, we propose to represent each chord class

by a simplicial complex. The topology of these classes differ widely from
one to another depending on the size of the considered chords and their
interval contents. A complete mathematical study of the topologies for 3-
chords can be found in [6]. Figure 8 illustrates unfolded representations of
the self-assembled structures 1-skeleton for the classes of {C, E,G} and
{C, E,G, B♭}.
A remarkable fact is that the 1-skeletons of chord class spaces are partic-

ular graphs known in music theory as Generalized Tonnetze. Tonnetz stands

E 

C 

G 

Bb 

E 

G 

C 

FIGURE 8
Assembly of chords equivalent up to transposition and inversion to C Major (C, E,G) (top) and
to C7 (C, E,G, B♭) (bottom).

IJUC˙EM˙05˙Bigo˙V1 13
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FIGURE 9
A discrete π rotation is applied on a trajectory representing the first measures of J.-S.Bach’s
choral BWV 256. The underlying space is the chord class complex built from the assembly of
minor and major chords.

for tone network and consists in a regular graph labeled by pitch classes and
generated by the action of a subset of intervals. Nevertheless higher dimen-
sional cells of chord class spaces provide additional informations not present
in original tonnetze and open new analysis and composition possibilities.

Transformations onmusical trajectories. Amusical sequence can be rep-
resented as a moving object evolving in a space, as the ones illustrated on
Figure 8. The static representation of this evolution is a trajectory inside the
complex, which consists of sub-complexes representing successive played
notes. Figure 9 illustrates two trajectories in a chord class space. Discrete
counterparts of some euclidean transformations can be applied on such tra-
jectories. Figure 9 illustrates a discrete π rotation applied on a trajectory
representing the first measures of J.-S. Bach’s choral BWV 256. The under-
lying space is the chord class complex built from the assembly of minor and
major chords. Moreover a spatial transformation can be applied on the un-
derlying space, rather than on the path. These transformations occur on the
labels of the elements only, which means that the topological structure of the
underlying space stays unchanged. This property ensures that the aspect of
the trajectory is conserved.
Some of these spatial transformations have a musical interpretation. For

example, a translation leads to a transposition or a modal transposition, de-
pending on the underlying space. A π rotation leads to an musical inversion.
Other available transformations lead to alternative musical operations.

IJUC˙EM˙05˙Bigo˙V1 14
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Audio results of rotations, translations and transformations of the under-
lying space, applied to some pieces from various composers (J.-S. Bach,
W.A. Mozart, M. Babbit, The Beatles,. . . ) are available in MIDI format at
http://www.lacl.fr/ lbigo/aisb13#transformations. Example 5 of the online
page corresponds to the transformation illustrated on Figure 9.

HexaChord and PaperTonnetz Software. The previous theoretical consid-
erations have been implemented in two original software based on the notions
of generalized Tonnetz and chord class: HexaChord † and PaperTonnetz ‡ .

HexaChord is a computer-aided music analysis environment based on the
previous spatial representation of chord classes. Beyond the simple visualiza-
tion of the different 12 2-dimensional simplicial complexes, HexaChord pro-
vides musicologists with three main functionalities on imported midi files:

1. HexaChord computes automatically the best Tonnetze for representing
some piece; it is based on the computation of a compliance measure
defined at general level on cellular complexes.

2. Giving a particular Tonnetze, HexaChord is able to produce a trajectory
from a piece to show interesting geometric properties.

3. Harmonization by spatial criteria is available by adding an extra voice
to a set of voices (e.g., a choral) to maximize compliance measurement.

PaperTonnetz [3] is a tool that lets musicians explore and compose music
with Tonnetz representations by making gestures on interactive paper. It al-
lows composers to discover, improvise and assemble musical sequences in a
Tonnetz by creating replayable patterns that represent pitch sequences and/or
chords. Figure 10 shows GUI of PaperTonnetz and HexaChord.

5 CONCLUSION

A notable contribution of this paper is to show that the same generic self-
assembly process can be used to build abstract spaces representing various
well-known musical objects: the all-interval series, the simplicial representa-
tions of chord sets and the associated Tonnetze.
The generic self-assembly process has been implemented in MGS ¶ pro-

viding a formal and very concise specification. The corresponding MGS
transformation has been effectively used to compute and enumerate these
† http://vimeo.com/38102171
‡ http://vimeo.com/40072179
¶ http://mgs.spatial-computing.org
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FIGURE 10
Graphical User Interface of PaperTonnetz (top) and HexaChord (bottom).

spaces. Then, topological invariants can be computed to investigate and clas-
sify them, especially when they have a high dimension.
Works presented here are related to the unconventional computing field

in many aspects. First of all, the different computations presented here are
specified using topological rewriting, an extension of term rewriting to ab-
stract cellular complexes. Such extension subsumes chemical computing à
la Gamma (as commutative-associative rewriting), Lindenmayer systems (as
string rewriting) and cellular automata (as a kind of constrained array rewrit-
ing). Secondly, the algorithms used are directly inspired by mechanisms in-
vestigated in the field of unconventional computing. These mechanisms are
used as a very effective heuristic to devise new representations of well known
musical objects and processes. For instance, we use self-assembly to build a
space associated with a set of chords and we use computations in space to rep-
resent and extend musical transformations. Last but not least, from a musical
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perspective the transformations presented here are highly non conventional.
As a matter of fact, the topological framework has been used only very re-
cently to formalize musical notions, while the standard approach relies solely
on algebraic structure, e.g., for pitch classes in Set Theory. The topological
framework renews our point of view on musical problems and suggests some
alternative musical transformations. It also suggests new generative processes
to produce music, an area not covered in this paper.
We believe that this preliminary work shows the interest of an expressive

and generic framework making possible the systematic building and process-
ing of abstract spaces that appear in musical analysis and theory. Our frame-
work is based on spatial notions developed and studied in algebraic topology,
and then amenable to a computer implementation due to their algebraic na-
ture. Initially developed for the modeling and the simulation of dynamical
systems, it appears well suited for the musicologist.
Designing original interesting spaces is a first step work. We are currently

working on unconventional approaches (e.g., cellular automata, random walk
algorithms, etc.) for taking advantage of these spaces for compositional pur-
poses.
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