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Abstract

In this paper, we employ both molecular dynamics (MD) and micromechanics

approach to analyze the influence of void defects on the overall 2-dimensional

(2D) elastic behavior of graphene. In the micromechanics model (MM), the

edge boundary is assumed to have distinct longitudinal elastic stiffness prop-

erty (Gurtin-Murdoch model) which can be identified by MD simulations of

pristine graphene sheet. Both the Finite Element Method (FEM) and MD

are used to study the Eshelby problem involving polygonal nanovoids peri-

odically embedded in a graphene sheet. To characterize the heterogeneity

effect due to a single nanovoid, we propose to use MD to compute the tensor

C̃ which is the first order expansion of the effective tensor C with respect to

volume fraction f , related to the dilute scheme estimate. It is shown that the

MM performs well for voids with large edges and predicts results consistent

with the properties of edge structures. However, MM fails for small voids

with short edges where the discrepancies are due to the corner effect which

can not be accounted for in MM.
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nanovoids, edge effect.

1. Introduction

Since the Nobel prize discovery of graphene (Novoselov et al., 2004), the

material has been found to possess many extraordinary properties and gained

significant scientific attention over the years. With electrical resistivity of or-

der 10−6Ωcm and thermal conductivity of 5000 Wm−1K−1 (Balandin et al.,

2008), it is the best conductive material at room temperature. Being me-

chanically 200 times stronger and 5 times harder than steel, it is also the

strongest and lightest 2D material.

There have been theoretical and experimental studies on the mechanical

properties of graphene. Among a few experimental methods currently avail-

able are atomic force microscope (AFM), instrumented nano-intender (INI),

and Raman spectroscopy (RS), etc. The capacity of these methods is limited

to the indirect estimation of the elastic modulus of a tiny graphene flake.

Properties of larger scale graphene membrane and other mechanical prop-

erties, e.g. Poisson’s ratio, edge elastic constants, residual stresses, are not

accessible. In this case, numerical methods e.g. Ab-initio, Molecular Dynam-

ics (MD), Density function theory (DFT), Molecular Mechanics (MM), Tight

Binding (TB), etc. are useful and can provide more direct estimates. How-

ever, like experiments, the results reported in the literature are scattering, for

example the Young modulus can vary from 0.4 to 4.2TPa (Shen et al., 2010;

Cao, 2014; Memarian et al., 2015). It is known that the numerical results

depend considerably on the computation methods, the techniques used and

simulation conditions which are not the same in the previous works. Another

distinct feature of graphene is that there are two main directions Armchair

(AC) and Zigzag (ZZ) (see Figure 1) and the elastic properties along those

two directions can be different (Scarpa et al., 2009; Pei et al., 2010; Gao and

Hao, 2009).
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In general, atoms near the free boundary behave differently from the bulk

Figure 1: Zigzag and Armchair directions

due to the difference in mobility, coordination number, and potential energy,

etc. At large scales, this surface effect is dominated by bulk behavior and

is not observable. However, at the nano-scale, it has been proved by experi-

ments and atomistic simulations that this effect is considerable (Cammarata,

1997; Gibbs, 1906; Shuttleworth, 1950; Nix and Gao, 1998) and resulting in

the size-dependent behavior. In the case of graphene, edge effects have been

studied in several researches. Using MD simulations, Reddy et al. (2009)

reported the edge elastic constants are 147.1556 eV/nm for ZZ direction and

112.6304 eV/nm for AC direction. It is also stated in their paper that the

edge elastic modulus Ee can vary from −294 eV/nm to 353 eV/nm depend-

ing on the edge structures. By similar approach, Lu et al. (2011) found the

results are 52 eV/nm for ZZ edge and 23 eV/nm for AC edge. For AC

direction only, Li et al. (2015) reported negative values of edge elastic mod-

ulus from −64N/m to −47N/m. Despite the wide range of existing results,

currently there is no experiment method to directly measure this constant of

graphene membranes to confirm those values.

Like all materials, defects are unavoidable in the synthesis process of graphene.

There are several kinds of structural defects can happen and they can be
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classified into three main groups: vacancy defects, adatoms, and atom recon-

struct defects (Banhart et al., 2010). Wang et al. (2015) studied the effects

of 5-8-5 defects on graphene and stated that, comparing with the elastic

modulus of pristine graphene, the stiffness of defected graphene in the AC

direction is smaller, where that of graphene in ZZ direction becomes larger.

By using the TB method, Dettori et al. (2012) studied the elastic moduli of

graphene with vacancy and various reconstructed defects and concluded that

the important factor that affects the elasticity of defected graphene is the

changing in the absolute mass density, not the types of the reconstruction of

the atoms. This conclusion is also supported by (Ansari et al., 2012). In this

work, we are interested in vacancy defects which is one of important factors

that affect the mechanical properties of graphene.

At continuum scale, micromechanics method is known as an analytically

accurate and efficient approach to predict the effective properties of hetero-

geneous materials in general and porous materials in particular. The theo-

retical framework of the approach is well founded in literature (see e.g Mura,

1987; Milton, 2002; Torquato, 2001, and the references therein). One of the

standard techniques in micromechanics, is to study the Eshelby inclusion

problem (Eshelby, 1957) in which a single inclusion (or void) is embedded

in an infinite matrix and subjected to an uniform loading at infinity. From

this elementary solution, estimates for mixtures of inclusions at finite volume

fraction f can be derived using relevant schemes, e.g dilute, Mori-Tanaka,

self-consistent schemes, etc.. Since the original Eshelby’s inclusion problem

is devoted to an ellipsoidal inclusion, for nanovoids, it is necessary to in-

troduce the edge effect in the micromechanics model. In many cases, using

the elastic Gurtin-Murdoch (GM) edge model (Gurtin and Murdoch, 1975)

can produce satisfactorily these edge effects. The Eshelby inclusion prob-

lem involving 2D polygonal nanovoids like graphene and using GM model

have been studied recently in (Doan et al., 2020). While all those works are
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based on the continuum mechanics, it can not capture all the behavior at the

atomic scale, especially when there is variation of atomic structure along the

void edges or interaction of atoms across the edges etc... The heterogeneity

effect due to those factors are complex and can affect the accuracy of stiffness

estimates. Most literature works based on MD methods (see e.g Rafiee and

Eskandariyun, 2017; Savvas and Stefanou, 2018) are more concerned about

the effective properties of the graphene with voids without relating to the

local behavior of voids. This motivates us to investigate the Eshelby prob-

lems under the micromechanics framework and characterize the void defects

of graphene using both MD and continuum based methods in the present

paper.

The paper will be organized as follows. First, we describe the general frame-

work and procedure to find the elastic properties of graphene, including the

edge elastic constants (Sec. 2) and graphene sheet with voids using MD sim-

ulations. Next, in Sec. 3, we carry out coupled MD-MM studies on graphene

with nanovoids. The MD results are compared with the MM results based on

FEM analysis using the bulk and the edge elastic properties obtained from

previous steps. The objective of the comparisons is to investigate the impact

of edge effects on the overall properties. Finally, some concluding remarks

are given in the last section.

2. Determination of bulk and edge stiffness of graphene

At atomic scale, MD is an efficient computation method for studying the

motion of atoms and determining the macroscopic properties of materials

by statistical averages. We use an open source code LAMMPS (Plimpton,

1995) to run our MD simulation due to its computational efficiency and par-

allel capacity. The Adaptive Inter-molecular Reactive Empirical Bond Order

(AIREBO) potential by Schall et al. (2012) which is relevant to simulate Car-

bon system like graphene, was used in the study. As mentioned previously,

5



due to various reasons, the values of the bulk and edge stiffness reported in

literature are scattering. To keep the consistency, we use the same compu-

tation method and simulation conditions throughout the present paper and

devote this section to determine those constants with the method. In ad-

dition to the simulation conditions, the definition of geometric boundary of

graphene sheet can also affect the computed values and will be discussed.

Temperature is known to have effects on the elastic modulus of graphene.

The Young modulus of graphene drops approximately 10% when the tem-

perature increases from 1 to 1200K (Zhang et al., 2014). Under finite temper-

ature, multiple complex phenomena associated to the out-of-plane behaviors

like rippling, bending, buckling, vibration etc.. can appear and interact with

the in-plane behavior. Consequently, the computation results obtained under

such conditions have very high uncertainty and vary significantly. Due to the

ripples, the tension and compression stiffness can be different (Sgouros et al.,

2018) and depend on the sample size (Los et al., 2016). It is suggested that

those issues can be addressed based on out-of-plane flexible plate and mem-

brane models (see e.g Fasolino et al., 2007; Wang et al., 2009). In the present

study of planar elastic stiffness, we do not consider the rippling phenomenon

and maintain the system in the plane (see e.g Arroyo and Belytschko, 2004;

Saavedra Flores et al., 2015; Marenić et al., 2013; Lu and Huang, 2009; Jiang

et al., 2010; Wei et al., 2009; Javvaji et al., 2016) at temperature as low as

10K. The thickness of the system in z direction is taken as 3.4 Å. In the

strain control simulation, the system is stretched (direct strain ε1 or ε2 im-

posed) or tilted (shear strain ε3 imposed) on its periodic boundaries. After

applying a small strain level (order 0.1%), the system was relaxed for the

next 8e5 timesteps of 0.001ps to achieve the equilibrium NVT state where

time and sample average of system properties can be computed. For exam-

ple, in this case, we are interested in the average potential energy of the

system at each strain value. At small strain and temperature, the graphene
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can be considered as linear elastic material and the potential energy density

U is quadratic function of strain. Here, we assume that at temperature as

low as 10K, the strain energy can be assimilated to the potential energy and

the variation of the latter govern the elastic behavior of the nanosystem. By

fitting the potential energy with quadratic functions of strain components,

stiffness constants can be derived. The method can be applied to compute

the properties for any systems with periodic boundaries along x- and/or y-

directions of pristine graphene or graphene with defects, as described in the

following.

To compute the bulk stiffness constant of graphene, we use a sufficiently large

graphene sheet with periodic boundary conditions along x- and y-directions

and impose strain on the plane xy as described previously. We can write

using the Voigt’s notation:

U = U0 + U1 + U2, (1)

U0 = cste, U1 = σ0
i εi, U2 =

1

2
Cijεiεj (2)

where σ0
i is the residual stress, Cij the elastic constants and U0 the potential

energy at the reference strain free state. Specifically, the quadratic form of

U2 can be written explicitly as follows

U2 =
1

2
(C11ε

2
1 + 2C12ε1ε2 + 2C13ε1ε3 + C22ε

2
2 + 2C23ε2ε3 + C33ε

2
3) (3)

For example, to find the elastic constant C11 (or C22 and C33), it is sufficient

to vary the strain ε1 = ε and maintain the other strain components at zero

value ε2 = ε3 = 0. In this case, U becomes

U =
1

2
C11ε

2 + σ0
1ε+ U0 (4)
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Figure 2: Potential energy U as function of strain ε1 = ε. The parabola fitting of MD
results is used to determine Cb

11.

As a result, if we have sufficient number of potential energy - strain (ε, U)

points from MD simulations, it is possible to identify the elastic constants

C11 by parabola fit (see Fig. 2). To determine C12, we apply simultaneously

the same amount of direct strain ε1 = ε2 = ε along both 1 and 2 direction.

In this case, Equation 3 becomes

U =
1

2
(C11 + 2C12 + C22)ε

2 + (σ0
1 + σ0

2)ε+ U0 (5)

The procedure of computing the hybrid coefficients C11 + 2C12 +C22 associ-

ated to ε2 is the same as before. With C11 and C22 already known from the

previous step, we can solve for C12.

When applying the above method to pristine graphene, we obtain the bulk

elastic stiffness of graphene Cb
ij. The elastic modulus Eb and the Poisson’s

ratio ν for isotropic materials are computed from:

Eb = Cb
11(1− ν2b ), νb =

Cb
12

Cb
11

. (6)
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Results from MD simulations of system 96.7 Å x 96.3 Å containing 3680

atoms, give the values of Cb
11 = Cb

22 = 953 GPa and Cb
12 = 323 GPa re-

spectively. Consequently, the matrix elastic modulus Eb and the Poisson’s

ratio calculated from Eq. 6 take the values 843.8 GPa and 0.338 respectively.

These values are very close to literature results (Pei et al., 2010; Terdalkar

et al., 2010; Tu and Ou-Yang, 2002).

To determine the edge stiffness Ee of graphene, we need to consider a system

with free surfaces. This is the case of graphene nanoribbon (GNR) where

we apply strain along its length l, the periodic direction, and the width w

direction is free of stress. It is necessary to account for both bulk energy

density Ub uniform for the whole volume wl and edge energy Ue, i.e energy

localized along the two edges of length l, as follows

wlU = wlUb + 2lUe (7)

The dependency of those two quantities on prescribed strain ε is given by

Ub =
1

2
Ebε

2 + σ0
1ε+ Ub0, Ue =

1

2
Eeε

2 + τ 01 ε+ Ue0, (8)

where σ0
1, τ 01 respectively are the residual stresses in the bulk and in the

edges, and Ub0, Ue0 are the potential energies at the reference zero strain

state in the bulk and in the edges respectively.

One can find that the effective Young modulus of the GNR can be deter-

mined as

E = Eb +
2

w
Ee.

Since E for a given GNR can be determined from U using the same procedure

as before (replacing E for Cii), doing tests with different width values w will
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Figure 3: Continuum boundary and width w of GNR. Top: GNR with AC edges, Bottom:
GNR with ZZ edges.

generate data to find Ee and Eb. We note that the width w determined from

the volume of the GNR is different from the geometric distance of extreme

atoms belonging to the two opposite edges (see Fig. 3). While the latter

definition can be used to analyze the behavior of pristine graphene, it is not

relevant for the study of nanovoids where the void volume fraction f must be

defined as well. To guarantee the consistent volume definition throughout the

paper and the conservation of volume, we consider that each atom occupies

the same volume and the volume of graphene objects is proportional to the

number of atoms contained inside. For example, if the number density of

graphene is denoted as n, the area (or volume) of a graphene sheet composed

of N carbon atom is equal to V = nN and the width w = V/L where L is

the length of the graphene sheet. This definition will affect the width of the

graphene sheets and consequently the value of edge stiffness when fitting MD

results with continuum models. In the GNR simulations, the length of the

ZZ ribbons are 67.7 Å while the width is changing from 16.7 Å to 100.5 Å. For
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Figure 4: Effective Young modulus of GNR as function of inverse width w−1. The linear
fitting is used to find Eb and Ee (a) AC direction (b) ZZ direction.

AC ribbons, the length is 83.76 Å and the width is from 14.5 Å to 53.19 Å.

From Fig. 4, we find that E varies linearly with the inverse width w−1 but

differently for AC and ZZ directions. The slopes can be used to compute

the edge elastic constants Ee in each direction and the intersections with the

vertical axis give Eb. The GNR simulations yield the values Eb = 842GPa for

both directions, close to the value 843.8 GPa determined from the previous

periodic systems. The edge elastic modulus Ee is found 11.9 GPa.nm for ZZ

direction and −17.9 GPa.nm for AC direction, or 25.62 eV/nm and −38.54

eV/nm respectively. Since the stiffness of graphene can be considered as the

contribution of the bulk and the edge, the ZZ edges with positive stiffness

tend to stiffen and AC edges with negative stiffness soften the graphene. For

the same void shape and size, graphene with ZZ edges is stiffer than graphene

with AC edges. From the ratio Ee/Eb, it is suggested that for objects of size

1-2 nm, the difference due to the free edge is of order 1-2%. The difference

can be more pronounced for objects of sub nanometric size. We note that

due to the lattice structure of graphene, the characteristic size of objects cut

from a pristine graphene sheet is limited by the lower bound value 1.42 Å.

Furthermore, the above determination of Ee is done on infinitely long GNR,
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which may be not valid for systems containing short edges. In this case, the

local interaction of atoms at corners may also be important and affect the

global behavior of the system.

3. Characterization of void effect in graphene

To investigate the void size and shape effects on the stiffness of the

graphene, we run MD simulations of graphene sheets with different types of

voids and use the same method described in Section 2 to calculate the effec-

tive properties of the system. Results are then compared with the continuum

models (with and without edge effect), solved by the FEM. Comparisons are

performed on the problem of periodic cell with single void. Like the volume

of graphene, the void volume Vvoid is computed from the number density n

of graphene and the number of missing carbon atoms Nvoid via the relation

Vvoid = nNvoid. We also denote f = Vvoid/V , as the volume fraction of the

void (or porosity), an important quantity to evaluate the effective properties

of porous material. In the case where f → 0, we shall recover the Eshelby

problem with a void in an infinite matrix. In the FEM models (Fig. 5),

the cell dimensions are the same as those in the MD model. The bulk is

isotropic with Eb = 842 GPa and νb = 0.338 and the edge effect is modeled

by a thin material layer with thickness t and elastic constant Elayer = Eet

(Shenoy et al., 2008). In the ideal case where t → 0, it can be shown theo-

retically that the Gurtin-Murdoch model can be recovered (Benveniste and

Miloh, 2001; Hashin, 2002; Benveniste, 2006). In practical FEM applications,

t should not be too small to avoid mesh issues and chosen as t = 0.005 Å

(Doan et al., 2020). Different void shapes including diamond, hexagon, nar-

row rectangle (crack like) constituted by different edge structures like pure

AC edges, pure ZZ edges (Figures 6, 8) and mixed AC and ZZ edges (Fig-

ure 7) are considered in this work. The effective stiffness C of the graphene

sheet with voids under periodic boundary conditions is determined using the

method in Section 2.

12



(a) (b)

Figure 5: Finite element meshes of graphene sheet containing different types of voids (a)
Hexagon (b) Diamond.

In addition to the effective stiffness C of graphene, we are also interested

in the quantity C̃

C = Cb + fC̃ +O(f 2), or C̃ = lim
f→0

f−1(C− Cb) (9)

This tensor C̃, equivalent to the first order expansion of C with respect to f ,

is both useful for MD and continuum models for the evaluation of nanovoid

contribution in the effective stiffness. For the latter case, it corresponds to

the limit of dilute and Mori-Tanaka (MT) scheme at a small f , related to the

localization tensor and the equivalent stiffness of the nanovoid (see Appendix

Appendix A for more details). It is noted that the MT estimate is based

on solutions of heterogeneity problems involving single nanovoid in infinite

matrix. The solutions can be obtained using the Conformal Mapping tech-

niques proposed by previous works (Doan et al., 2020). Due to a large number

of simulated systems in the present paper, we shall focus on the comparison
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(a) (b)

(c) (d)

Figure 6: Typical void shapes and edge structures (a) Hexagon AC edge (b) Hexagon ZZ
edge (c) Diamond AC edge (d) Diamond ZZ edge.
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Figure 7: Circular void shape with mixed edge structures.

Figure 8: Cracked graphene with ZZ edge structures.
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of the representative stiffness components C11 and C22 of the elastic tensor C.

First, we take the pristine graphene system of 3680 atoms and remove the

atoms at the center to obtain the desired void size and shape. The results

for each kind of voids with different sizes are shown in Tables 1 and 2. In

these tables, FEM1 and FEM2 are the results from FEM models with and

without edge effects respectively. We can see the edge effects on the elastic

stiffness of the voids and the graphene sheet. As expected, for the case of ZZ

edge voids with positive edge elastic modulus, the graphene cell is stiffened,

and for AC voids, due to the negative stiffness, the effective elastic modulus

decreased. For mixed edges void, the edge elastic constant in AC and ZZ

are in opposite signs and the overall edge effect can be considered cancel-

ing out each other. For the pure AC or ZZ edge structure, the continuum

models with edge behavior are in excellent agreement with MD results and

perform slightly better than models without edge behavior. The difference

due to the edge effect is relatively small for large edge due to the small ratio

of Ee/Eb as mentioned previously. Since the size of the cell is fixed, it can

be seen that the effect of edge structures decreases when the graphene area

decreases. This fact agrees with the statement concluded by Dettori et al.

(2012) previously mentioned.

However, from the micromechanics viewpoint, the effective behavior can be

dominated by the bulk which has significant volume fraction and masks the

local behavior of the nanovoid. We note that due to the void shape and

the atomic structure, in most of the simulated cases, the maximal achievable

volume fraction f of voids is relatively small, order 0.2. This motivates us

to investigate the contribution of the nanovoid only via the tensor C̃, which

is independent of volume fraction f and only depends on the void size and

shape. We are also looking into the cases of small nanovoids (short edge)

and higher volume fraction (small cell) where strong edge and corner effects
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can be observable.

We carried out MD simulations where the void size is fixed while the cell

size increases. Shown in the Tables 3 and 4 are the results in comparison

with FEM models. Like the previous test, we found good agreement between

MD simulations and FEM models and MT estimates for most of the consid-

ered cases. However, we can see the larger errors between the MD and the

continuum models, especially for the case of small void and high volume frac-

tion (order 0.2) including diamond void 8/112 ZZ and hexagon void 24/112

AC. A careful inspection of the f − C11 and f − C22 slope near the origin

f = 0 shows that the nanovoid coefficients C̃11 and C̃22 are considerably

different between the MD and the continuum models. It implies that the mi-

cromechanics approach already fails to solve the heterogeneity problem with

acceptable error. The C̃11 and C̃22 errors for the two mentioned cases are of

order 20%. It confirms the previous suggestion that due to the small volume

fraction, the discrepancies due to the nanovoid effect are masked by the bulk

behavior. We note that all the coefficients C̃11 and C̃22 are negative show-

ing that the voids have weakened the graphene, even when ZZ edges with

stiffening effect are used. Theoretically, using the ZZ edge hole to stiffen the

graphene only works for very tiny hole, for example one atom vacancy defect.

This is the case of López-Poĺın et al. (2015) who found experimentally that

it is possible to increase the stiffness of graphene by removing a very small

number of carbon atoms.

There is another interesting feature we can observe at small nanovoids. While

the use of edge elastic model improves the prediction of micromechanics ap-

proach in most cases, the case 24/112 with AC edges shows a reverse trend.

There can be a strong corner effect can affect the global behavior. As men-

tioned previously, the edge model is based on the parameter Ee obtained for

infinite long edge. For small nanovoids, the edge is short, with few atoms,
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and the number of corner atoms is comparable with edge atoms. Further-

more, atoms belonging to different edges near the common corner can interact

within the interaction range (see Fig. 9) and it is difficult to distinguish edge

and corner atoms. This corner effect seems to stiffen the hole and cancel

out the softening effect of AC. As a result, the overall behavior of graphene

shows that the model without edge model performs better. To capture the

corner effect with micromechanics approach, we need a special model de-

voted to the corner. We note that similar ideas based on cohesive crack or

adhesive contact models accounting for van der Waals interaction forces at

the interface can be useful in this case and will be investigated in the future.

Figure 9: Interaction between atoms around corner

Another issue of nanovoid that limits the application of micromechanics

model is when the vacancy defects are reduced to several atoms. It is difficult

to detect the clear edge structure and construct the geometry of microme-

chanics model. In this case, the present MD based approach can also address

the problem. Especially, the determination of the nanovoid tensor C̃ is al-

ways feasible. This tensor, which is independent of the volume fraction, can

provide insight into the local behavior of the nanovoid by including both

corner and edge effects.
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Void/Cell(atoms) f MD FEM1 FEM2

Diamond void - AC edges
16/3680 0.004 936.6 940.1 940.9
112/3680 0.03 829.7 834.7 837.0
294/3680 0.08 779.6 782.7 784.0
560/3680 0.152 655.3 661.9 667.7
726/3680 0.197 600.1 602.1 606.5

Diamond void - ZZ edges
72/3680 0.020 908.0 906.8 905.0
128/3680 0.035 874.6 874.2 871.8
200/3680 0.08 834.7 834.7 831.8
288/3680 0.078 789.2 798.8 786.5
392/3680 0.107 740.3 741.0 737.5
512/3680 0.139 688.8 689.7 686.0

Hexagon void - AC edges
180/3680 0.049 822.1 818.5 819.9
264/3680 0.072 758.7 768.8 768.4
366/3680 0.099 707.7 705.0 713.0
762/3680 0.207 534.9 533.0 539.0

Hexagon void - ZZ edges
24/3680 0.007 945.6 932.2 931.3
54/3680 0.015 913.4 909.5 908.2
96/3680 0.026 882.3 879.0 877.3
150/3680 0.041 845.0 842.0 840.0
384/3680 0.104 707.2 706.0 703.3
486/3680 0.132 656.9 656.3 653.6

Circular void - Mixed edges
258/3680 0.070 776.4 - 777.8
348/3680 0.095 729.6 - 727.0
450/3680 0.122 678.8 - 674.0
576/3680 0.157 615.0 - 620.0
708/3680 0.192 562.4 - 565.9

Table 1: Effective elastic constant C11 in MPa - MD results and solutions from FEM (with
and without elastic model)
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Void/Cell(atoms) f MD FEM1 FEM2

Diamond void - AC edges
16/3680 0.004 932 927 926
112/3680 0.03 720 705 705
294/3680 0.08 626 614 611
560/3680 0.152 437 422 423
726/3680 0.197 345 331 331

Diamond void - ZZ edges
72/3680 0.020 845 843 843
128/3680 0.035 774 773 773
200/3680 0.08 695 696 695
288/3680 0.078 613 614 614
392/3680 0.107 530 532 532
512/3680 0.139 449 451 451

Hexagon void - AC edges
180/3680 0.049 819 822 822
264/3680 0.072 755 768 770
366/3680 0.099 704 714 715
762/3680 0.207 530 533 540

Hexagon void - ZZ edges
24/3680 0.007 935 934 933
54/3680 0.015 913 912 910
96/3680 0.026 882 881 879
150/3680 0.041 846 844 842
384/3680 0.104 708 707 705
486/3680 0.132 659 658 655

Table 2: Effective elastic constant C22 in MPa - MD results and solutions from FEM (with
and without elastic model)
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Void/Cell(atoms) f MD FEM1 FEM2 MT

Diamond void - ZZ edges
C11 8/1232 0.0065 940 939 937 939

8/448 0.0179 919 915 910 915
8/240 0.0333 890 884 876 885
8/112 0.0714 823 815 800 814

C̃11 - - -3376 -3671 -4087 -3650

Diamond void - AC edges
C11 54/3680 0.015 915 914 915 915

54/2800 0.019 905 905 906 905
54/1232 0.044 849 849 853 846
54/240 0.225 561 559 570 528

C̃11 - - -2590 -2658 -2590 -2616

Hexagon void - ZZ edges
C11 24/3680 0.0065 936 934 933 935

24/2800 0.0086 931 929 927 929
24/1232 0.0195 903 899 897 899
24/240 0.100 728 722 713 716

C̃11 - - -2662 -2870 -3005 -2826

Hexagon void - AC edges
C11 24/1232 0.019 901 892 896 893

24/448 0.054 825 798 808 794
24/240 0.100 729 696 711 685
24/112 0.214 553 506 529 482

C̃11 - - -2656 -3129 -2914 -3102

Crack void - ZZ edges
C11 46/3680 0.0125 926 925 924 926

C̃11 - - -2137 -2210 -2308 -2189

Table 3: Effective elastic constants C11 and C̃11 in MPa- Comparisons between FEM (with
and without edge effect), MD and Mori Tanaka (MT) estimates.
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Void/Cell(atoms) f MD FEM1 FEM2 MT

Diamond void - ZZ edges
C22 8/1232 0.0065 911 912 11 917

8/448 0.0179 852 825 851 859
8/240 0.0333 781 780 778 789
8/112 0.0714 637 637 634 651

C̃22 - - -3322 -3361 -3399 -3255

Diamond void - AC edges
C22 54/3680 0.015 860 869 868 865

54/2160 0.025 841 819 819 812
54/1232 0.044 784 738 737 727
54/240 0.225 380 273 275 321

C̃22 - - -6359 -5725 -5816 -5973

Hexagon void - ZZ edges
C22 24/3680 0.0065 935 934 933 935

24/2800 0.0086 930 929 927 929
24/1232 0.0195 903 899 897 899
24/240 0.100 732 722 713 716

C̃22 - - -2760 -2870 -3067 -2760

Hexagon void - AC edges
C22 42/1232 0.0341 857 848 857 848

42/448 0.0938 725 706 724 698
42/240 0.1750 580 557 585 542
42/112 0.3750 343 321 353 295

C̃22 - - -2824 -3068 -2829 -3085

Crack void - ZZ edges
C22 46/3680 0.0125 811 814 812 813

C̃22 - - -11374 -11152 -11309 -11187

Table 4: Effective elastic constants C22 and C̃22 in MPa- Comparisons between FEM (with
and without edge effect), MD and Mori Tanaka (MT) estimates.

22



4. Conclusions and perspectives

In this work, we study the effective stiffness of pristine graphene and

graphene containing nanovoids. The elastic constants of the bulk and the

free edges according to the Gurtin-Murdoch model are determined by MD

simulation. It is found that the free edge stiffness depends on the edge struc-

ture, negative for armchair or positive for zigzag. The continuum-based mi-

cromechanics models constituted of graphene and vacancy defects are then

constructed using the elastic parameters obtained by MD methods. The

effective properties of the defected graphene are computed by different ap-

proaches FEM and compared with full MD simulations. In addition to the

effective properties of graphene with voids C, the heterogeneity effects due to

a single nanovoid are characterized via the tensor C̃, the first-order expansion

of C with respect to f .

The results issued from the comparisons show that the effective elastic stiff-

ness obtained by micromechanics models and estimates is in good agreement

with the MD results and consistent with the softening and stiffening effect

of the edge structures. For small nanovoids, we observe larger discrepancies

between MD and MM and further inspection of nanovoid coefficients C̃ show

that MM fails to capture the behavior of nanovoids including both edge and

corner effects. In some cases, those considerable errors may be masked in

the overall behavior due to the small volume fraction of the nanovoid. We

conclude that it is necessary to develop models devoted to the sharp corners,

not only for graphene but also for nanoporous materials in general, to fully

capture the behavior of the nanopores.

Another interesting problem that merits future consideration is to investigate

the out-of-plane behavior of graphene. While plate and membrane models

can successfully reproduce the behavior of pristine graphene, the influence of

the defect heterogeneity combined with the intrinsic ripples on the effective
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bending and stretching behaviors needs to be explored and understood.

Appendix A. Relation between the void coefficient C̃ and the het-

erogeneity problem with edge effects

Let us consider the heterogeneity problem where a single nanovoid (index

v) of edge stiffness Ee is embedded in an infinite matrix of bulk stiffness Cb

subject to remote strain E. Solving the problem will yield the localization

tensor Lv and equivalent elastic stiffness tensor Cv of the nanovoid as follows

〈ε〉v = Lv : E, 〈σ〉v = Cv : 〈ε〉v, (A.1)

where 〈σ〉v and 〈ε〉v stand for the average stress and strain of the nanovoid

and : for double contracted product.

From the results of the above heterogeneity problem, we can estimate the

effective elastic stiffness tensor C of materials containing nanovoids of volume

fraction f by Mori-Tanaka scheme

C ' CMT =
{

(1− f)Cb + fCv : Lv
}

: {(1− f)I + fLv}−1

= Cb + f(Cv − Cb) : Lv : {(1− f)I + fLv}−1 (A.2)

In the case where f → 0, we obtain the asymptotic behavior of dilute scheme

C ' Cdilute = Cb + f(Cv − Cb) : Lv (A.3)

Using the definition of C̃ in (9), we have

C̃ = (Cv − Cb) : Lv (A.4)
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