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Abstract

We consider the observation problem for a particular class of bidimensional systems with scalar output
which requires the construction of an embedding in higher dimension. We propose a new approach that
does not require any coordinates transformation. This approach is based on the design of parallel
estimators in the same dimension than the original system. Each estimator uses the knowledge of the
first two derivatives of the output, and the further derivatives are used to discriminate at any time
among the different estimators. We give three examples showing the applicability of this approach with
measurement noise. Biological systems used in batch bioprocess models are of particular motivation for
this work.

Keywords Nonlinear systems, Observability, State observer, Singularity, Biological systems.

1 Introduction

The problem of observability and design of observers for finite dimensional dynamical systems has been
attracted many attention in the literature of nonlinear control theory. The importance of this problem
arises from many practical applications where the design of state estimators is needed [16]. One of the
main and classical approach to obtain an observer in the original coordinates consists in transforming the
original system into the so called observability form [8], determine an observer in this canonical form, and
then expressing the estimation back in the original coordinates. Knowing that, in general, this change of
coordinates is defined through an immersion in higher dimension space, and not simply a diffeomorphism, this
approach has been widely investigated in the literature (see, e.g., [1, 3, 4, 5, 6, 12, 13, 17, 19]). The principal
difficulty lies in the construction of an embedding and a Lipschitzian extension of the dynamics outside the
set of its forward orbits. Another approach allowing the construction of local asymptotic observers without
passing by the canonical form has been recently developed in [2].

In this paper, we propose another approach to deal with the problem of immersion in higher dimension
space. We focus on the particular class of systems defined on a subset S of R2

ẋ1 = f1(x1, x2), (1)

ẋ2 = f2(x1, x2), (2)

where f1 is a rational function and f2 is a sufficiently smooth function, along with the observation

y(t) = x1(t), ∀ t ≥ 0.

∗This work is supported by a public grant overseen by the Research and Valorization Service (SRV) of ENSEA.
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Instead of a single observer in higher dimension, we propose a set of observers in the original coordinates
and a test function, based on higher derivatives of the observation, which can discriminate between the
observers the one that will give the right estimate. More precisely, starting from equation (1), we build a
set of estimators, each of them follows dynamically one and only one root of equation (1) and then use the
further derivatives of the output together with equation (2) to select at any time the right estimator. This
approach does not require any coordinates transformation, and by consequence no problem of transformation
inversion of the observability map nor its Jacobian is posed. The technical task with this approach lies in
the roots tracking method which, as described in the preliminary result of this work (see [10]), needs to be
robust near singularities (multiple roots); robust in the sense that it always distinguishes between different
neighboring roots. Indeed, knowing that each estimator should have a subset of (dynamical) roots as a
global attractor and knowing that such attractors intersect at multiple roots, then, close to singularities, two
distinct estimators may exchange roles and even fuse together. In addition, a relevant roots tracking method
should take into account the initialization problem. In fact, an a priori knowledge of the different roots at
initial time is needed. This can be possible if we deal with complex roots of equation (1). Here, we propose
a robust roots tracking method based on a singular perturbation of equation (1) allowing the construction
of its complex roots.

Knowing that the perfect knowledge of the output and its successive derivatives is hardly accessible in
practice, the performance of this multi-observers approach in the case of measurement noise is shown through
numerical simulations. Even in the case where the inverse of the observability map is available, which is not
an easy task in general, we show by simulation the advantage of our approach.

For general class of systems of dimension n > 2 with scalar measurement y, observability singularities may
occurs as functions of (ẏ, ÿ, · · · , y(n−1)). Here, for sake of clearness, we restrict our study to bidimensional
systems, so the singularity appears only as a function of ẏ. Nevertheless, several biological systems which are
subject to the evoked singularity observability problem may encompassed by system (1)-(2) (see, e.g., [9, 17]).
The paper is organized as follows. In Section 2 we describe the new approach. In section 3 we describe our
roots tracking methods and give the main results. Three examples showing the applicability of the proposed
method are given in Section 4.

2 A multi-observers approach

Let D be a relatively compact subset of S not containing the poles of f1 and positively invariant by the
dynamics (1)-(2). A sufficient condition for the construction of observers for system (1)-(2) on D is that the
map (x1, x2) 7→ (y, ẏ) is injective on D (see, e.g. [20]). When this condition loses to be satisfied somewhere
on the validity domain, the usual constructions of observers in the system’s dimension is not possible.
Nevertheless, one can check the possibility of overcoming this singularity problem by considering further
derivatives of the output. Indeed, if

z = Φ(x) =
[
h(x), Lfh(x), · · · , Lm−1

f h(x)
]T
, (3)

where f = (f1, f2)T and h(x) = x1, defines an injective immersion on D, for some m ≥ 2, the extension of
system (1)-(2) to Rm is possible (see, e.g., [7]). In this case, a constructive method allowing the construction
of an exponential observer for (1)-(2) on D in its original coordinates is proposed in [17].

Here, a different approach based on the design of several estimators in parallel is proposed. This approach
is outlined in the sequel. Let N and D be the numerator and denominator of f1, respectively. Observe that,
since we suppose that D does not contain the poles of f1 and that is positively invariant by the dynamics (1)-
(2), a solution s(t) of equation (1) must satisfy the following equation

N(y(t), s(t))− ẏ(t)D(y(t), s(t)) = 0, ∀ t ≥ 0. (4)

The solution s of (4) is, in general, not uniquely determined. But, since N and D are polynomial functions,
then, for each fixed z in R2, there exist at most p solutions s1, · · · , sp such that

F (z, si) := N(z1, si)− z2D(z1, si) = 0, ∀ i = 1, · · · , p, (5)
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where p = max{deg(N),deg(D)}. Observe that the number of real solutions of (5) could depend on z. At
any time t ≥ 0, there exists at least one root si such that s(t) = si. The multi-observers approach that
we propose consists in computing dynamically p-parallel estimators ŝ1, · · · , ŝp of these roots. If there are
less than p solutions of F (z(t), s) = 0 at some time t ≥ 0, then some estimators would be ”temporarily”
irrelevant. The way to determine these estimators will be addressed in the next section. The final task is
to provide, at each t ≥ 0, an estimation of x2(t) among ŝ1(t), · · · , ŝp(t). For this purpose, using the further
derivatives of y and the injectivity of the map Φ, we consider the test T (z, s) = 0, where the function T is
defined as follows

T (z, s) := ‖ (z2 − Φ2(z1, s), · · · , zm − Φm(z1, s)) ‖M , (6)

where ‖ · ‖M denotes the norm associated to a real symmetric positive definite (m− 1)× (m− 1) matrix M ,
and from which we know that there exists only one solution among the (exact) solutions si(t) at any time
t ≥ 0. In practice, we shall choose ŝ(t) = ŝi?(t)(t) for which ŝi?(t)(t) minimizes the function T (z(t), ŝi(t))
among the estimators {ŝi(t)}i=1,··· ,p, for t ≥ 0. The choice of the norm plays a role when noisy output is
considered; this will be discussed in Section 4.

3 A roots tracking method

Equation (5) is identically equal to zero over the solution of the dynamics (1)-(2). Then, starting from this
equation, we define the following implicit dynamical system{

d
dtF (z(t), ŝ(t)) = −KF (z(t), ŝ(t)), ∀ t ≥ 0,

ŝ(0) ∈ R,
(7)

having the set
S := {s ∈ R : F (z(t), s) = 0, t ≥ 0},

as a global attractor, for K > 0. Indeed, starting from an initial condition ŝ0 ∈ R, we have

F (z(t), ŝ(t)) = F (z0, ŝ0)e−Kt, ∀ t ≥ 0.

By consequence, a solution of (7) converges asymptotically to the set S. Moreover, the set S is invariant by
system (7). Observe that system (7) can be equivalently written as{

∂sF (z, ŝ) ˙̂s = −∂zF (z, ŝ)ż −KF (z, ŝ),

ŝ(0) ∈ R.
(8)

Three main problems prevent the construction of estimators of the roots of (4) from system (8):

a) The dynamics of ŝ cannot be explicitly obtained from (8), especially when multiple solutions of (4)
appear. In order to define the dynamics of ŝ explicitly from (8), a preliminary solution has been
proposed in [10] consists in saturating the norm of (∂sF (z(t), ŝ(t)))−1 near the singularities.

b) Another problem is related to the initialization of the modified (saturated) dynamics related to sys-
tem (8). In fact, seeing that the equation F (z(0), ŝ(0)) = 0 may have complex conjugate roots, an a
priori information about the initialization of the corresponding solutions is needed.

c) An additional problem concerns the behavior of system (8) near the singularities. In fact, when
multiple roots appear, i.e., when two neighboring solutions of (4) converge towards each other, the
modified (saturated) dynamics related to system (8) cannot guaranty that the solutions, corresponding
to p-different initial conditions, leave the cone {(s1, · · · , sp) ∈ Rp, s1 > s2 > · · · > sp} invariant. By
consequence, approaching a singularity two different estimators may merge into each other leading to
loose a part of the solution. A preliminary solution based on an approximation dynamics coupling the
relative vector fields corresponding to different initial conditions is proposed in [10].
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In order to overcome the problems evoked previously, we consider the following perturbed implicit dy-
namics with complex variable{

∂sFε(z, ŝε) ˙̂sε = −∂zFε(z, ŝε)ż(t)−KFε(z, ŝε),

ŝε(0) ∈ C,
(9)

where the function Fε : R2 × C→ C is defined, for ε ≥ 0, by

Fε(z, s) := F (z, s)− εi, (10)

and i denotes the imaginary unit number. Observe that for ε arbitrarily small the roots of Fε(z, s) and
F (z, s) are arbitrarily close to each other (this will be clarified in the sequel). The dynamics (9) has the set

Sε = {s ∈ C : Fε(z(t), s) = 0, t ≥ 0}, (11)

as a global attractor, for K > 0. Indeed, from (9), we have

Fε(z(t), ŝε(t)) = Fε(z(0), ŝε(0))e−Kt, ∀ t ≥ 0.

By consequence, a solution of (9) converges asymptotically to the set Sε. Moreover, the set Sε is invariant
by the dynamics (9). Indeed, starting from a (simple) root of Fε(z(0), s), an associated solution sε will follow
a root of Fε(z(t), s), for t ≥ 0. The advantage of considering the perturbed dynamics (9) in C, comparing
to (8) in R, is summarized by the following three points:

a’) The possible singularities of (9) are always complex. By consequence, seeing that ∂sF = ∂sFε, if we
suppose that the solutions in s of ∂sF (z, s) = 0 are always reals, the dynamics of ŝε can be explicitly
and carefully defined from (9).

b’) Knowing that the roots of Fε(z, s) are always complex, then, comparing to the point b), no problem
of initialization of the dynamics (9) is present in this case.

c’) The set Sε is composed of p-disjoints (simple) complex root subsets, each of them is associated to the
set of simple complex roots of Fε(z(t), s), for t ≥ 0. These p-disjoints subsets consist the p-different
attractors of the dynamics (9). In addition, we can prove that the distance between two different
neighboring attractors is lower bounded by a constant which is proportional to ε. By consequence,
comparing to the point c), no problem of separation between two different neighboring solutions is
present in this case.

Before proving the previously evoked points, let us first make the following assumption.

Assumption 1. For all z ∈ R2, the solutions of ∂sF (z, s) = 0 are always reals.

Observe that Assumption 1 can be relaxed by supposing that it holds only on the domain of validity of
z, i.e., over Φ(D).

The following lemma discusses the well definition of dynamics (9) as an explicit dynamics of ŝε.

Lemma 1. Suppose that Assumption 1 holds. Let ε > 0 and ŝε be a solution of (9) starting from ŝ0 ∈ C\R.
We have that ∂sFε(z(t), ŝε(t)) 6= 0 for every t ≥ 0.

Proof. Suppose by contradiction that ∂sFε(z(t), ŝε(t)) = 0, for some t ≥ 0. Then, under Assumption 1, we
have certainly that ŝε(t) is a real number. By consequence, we have

∂zF (z(t), ŝε(t))ż(t) +KF (z(t), ŝε(t)) = Kεi, (12)

which is not possible because the left and right hand sides of equation (12) are real and complex, respectively.
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Observe that, under Assumption 1, the polynomial Fε(z, s) given by equation (10) does not have multiple
complex roots (this is a property of holomorphic functions). By consequence, for each z ∈ R2, there exist
p-distinct complex roots of the polynomial Fε(z, s). In order to simplify the analysis of the point c’), we
consider the following root numbering: for each ε ≥ 0 and each t ≥ 0, let sε,1(t), · · · , sε,p(t) be the complex
solutions of Fε(z(t), s) = 0, lexicographically ordered from greater to less, i.e.,

sε,1(t) � sε,2(t) � · · · � sε,p(t).

Knowing that, for each fixed t ≥ 0, the roots of the polynomial Fε(z(t), s) depend continuously on its
coefficients (see, e.g, [14]), we have that sε,i(t)→ s0,i(t) when ε→ 0, for i = 1, · · · , p. Let us denote by Sε,i

the subset of Sε collecting the complex numbers sε,i, for i = 1, · · · , p. We have

Sε =

p⋃
i=1

Sε,i and Sε,i

⋂
Sε,i+1 = ∅, ∀ i = 1, · · · , p,

with Sε,p+1 = ∅. The fact that Sε,i

⋂
Sε,i+1 = ∅, for all 1 ≤ i ≤ p, derives straightforwardly from Assump-

tion 1.
The following proposition clarifies the point c’) concerning the separation between two neighboring solu-

tions of (9). Let us first, for each ε, T > 0, introduce the following set

ST
ε = {s ∈ C : Fε(z(t), s) = 0, t ∈ [0, T ]}, (13)

which is a compact subset of Sε.

Proposition 1. Suppose that Assumption 1 holds. Let ε̄, T > 0 and L = L(F, ε̄, T ) be a Lipschitz constant

associated to F in the compact set
⋃

0≤ε≤ε̄

ST
ε . We have

dist(ST
ε,i, S

T
ε,i+1) ≥ 2ε/L, ∀ i = 1, · · · , p. (14)

Proof. Let 0 ≤ ε ≤ ε̄. Firstly, we prove that

dist(ST
ε,i, S

T
0,i) ≥ ε/L, ∀ i = 1, · · · , p.

For this, let sε,i ∈ ST
ε,i and s0,i ∈ ST

0,i. Using the Lipschitzianity of F over the set
⋃

0≤ε≤ε̄

ST
ε , we have

‖F (z, sε,i)− F (z, s0,i)‖ ≤ L‖sε,i − s0,i‖. (15)

Observe that
‖F (z, sε,i)− F (z, s0,i)‖ = ‖Fε(z, sε,i) + εi− F (z, s0,i)‖ = ε.

Thus, equation (15) leads to the following estimation

‖sε,i − s0,i‖ ≥ ε/L.

By consequence, we have

dist(ST
ε,i, S

T
0,i) = min

sε,i∈ST
ε,i,s0,i∈ST

0,i

‖sε,i − s0,i‖ ≥ ε/L.

Similarly, we have
dist(ST

ε,i+1, S
T
0,i+1) ≥ ε/L, ∀ i = 1, · · · , p. (16)

Observe that ST
0,i and ST

0,i+1 are two conjugate solution sets, and that ST
ε,i

⋂
ST

0,j = ∅ for all i, j = 1, · · · , p,
estimation (14) follows from inequalities (15)-(16).
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Remark 1. The set ST
ε is compact from the simple fact that it is closed ([0, T ]×ST

ε = F−1
ε ({0})∩([0, T ]×C)

with continuous function Fε) and bounded (we use the fact that the roots of F (z(t), s), t ∈ [0, T ], are bounded
together with the continuity dependency, with respect to ε, of the roots of Fε(z(t), s)). The compacity of the
set
⋃

0≤ε≤ε̄ S
T
ε follows equally from the continuity dependency on ε of the roots of Fε(z(t), s).

Now, we introduce the map Fε : R+ × C→ C, given, for each (t, s) ∈ R+ × C, by

Fε(t, s) := −(∂sFε(z, s))
−1 (∂zFε(z, s)ż(t) +KFε(z, s)) ,

which, thanks to Lemma 1, is well defined. The dynamics (9) can be then equivalently written as{
˙̂sε(t) = Fε(t, ŝε(t)), ∀ t ≥ 0,
ŝε(0) ∈ C. (17)

The existence and uniqueness of solutions is clarified by the following lemma.

Lemma 2. Suppose that Assumption 1 holds. Then, for each ε > 0, system (17) with initial condition
s0 ∈ Sε, has a unique solution over R+.

Proof. Let ε > 0 and s0 ∈ Sε. Knowing that the function Fε is smooth, then there exists t0 > 0 such that
system (17) has a unique solution over [0, t0) starting from s0. Knowing that the set St0

ε , introduced by (13),
is compact and that the solution lies entirely in St0

ε , one can prove using a contradiction reasoning that
t0 = +∞ (see, e.g., [11]).

The following theorem shows the uniform convergence of the solutions of (17) to the roots of (5).

Theorem 1. Suppose that Assumption 1 holds. Then, for each T, δ > 0 there exists ε̄ > 0 such that the
solution of {

˙̂sε,i(t) = Fε(t, ŝε,i(t)), t ≥ 0,

ŝε,i(0) ∈ Sε,i, i ∈ {1, · · · , p},
(18)

satisfies the following inequality

sup
t∈[0,T ]

|sε,i(t)− s0,i(t)| < δ, ∀ε ∈ [0, ε̄). (19)

Proof. Let T, δ > 0. Knowing that the roots of a polynomial depends continuously on its coefficients (see,
e.g, [14]), then for each t ∈ [0, T ], there exists an ε̄(δ, z(t)) > 0 such that the p-distinct roots of Fε(z(t), sε(t))
satisfy the following estimates

|sε,i(t)− s0,i(t)| < δ, ∀ε ∈ [0, ε̄), i ∈ {1, · · · , p}.

Knowing that, for t ∈ [0, T ], z(t) lies in a compact subset of R2, then, by compacity reasoning, there exists
ε̄ = ε̄(δ, T ) such that inequality (19) holds. Hence, the proof of the theorem.

We have the following theorem.

Theorem 2. Consider system (1)-(2). Let D be a positively invariant compact subset of R2 not containing
the poles of f1. Suppose that the map Φ, given by (3), is injective over D, for some m ≥ 2. Suppose that
Assumption 1 holds. Then, system (1)-(2) is observable over D.

Proof. The proof is a straightforward consequence of Theorem 1. We have to underline that even if the
solutions of the proposed estimators (18) crosses the poles of f1, this will be for a null set of time.

4 Examples

In this section we give three examples showing the applicability of our method to deal with non-uniformly
observable bidimensional systems.

6



0 0.5 1 1.5 2 2.5

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
x
a
c
t 
ro

o
ts

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

Figure 1: Left: the function r given by (22). Right: the exact roots of (5).

4.1 Example 1

Let us consider the following dynamics in R2
+

ẋ1 = x1r(x2), (20)

ẋ2 = −x1r(x2), (21)

where r : R+ → R+ is given by

r(s) =
6s(s2 − 2.5s+ 2)

s2 − s+ 3
, (22)

along with the observation
y(t) = x1(t), ∀ t ≥ 0.

It is easy to check that the positive orthant is invariant by (20)–(21) and that the poles of r does not belong
there. In addition, we have

x1(t) + x2(t) = x1(0) + x2(0), ∀ t ≥ 0,

which implies that, starting from the positive orthant, the trajectories of system (20)–(21) stay bounded
when t tends to +∞. The construction of x2 from (20) requires to solve the equation r(s) = ẏ(t)/y(t)
over R+, whose real solution numbers varies in times, as one can observe from Figure 1-right. In order to
construct the solutions of the latest equation, we consider its corresponding perturbed dynamics (9) with

F (z, s) = 6z1s(s
2 − 2.5s+ 2)− (s2 − s+ 3)z2. (23)

The roots tracking method proposed in Section 3 consists in simulating the corresponding perturbed dynamics
starting from the roots of Fε(z(0), s), for some ε > 0. The three different solutions ŝε,1(t), ŝε,2(t) and
ŝε,3(t) (which are always complex) will follow the roots of Fε(z(t), s), for t ≥ 0. In order to construct an
estimation of sε(t), we have to determine among the 3 constructed solutions which one is the right one, at
any t ≥ 0. For this, we choose the solution ŝε(t) = ŝε,i?(t)(t) for which <(ŝε,i?(t)(t)) minimizes the function
T (z(t),<(ŝε,i(t))) among the set {ŝε,i(t)}i=1,2,3, where <(ŝε,i(t)) denotes the real part of ŝε,i(t). The choice
of the norm in (6) plays an important role when dealing with numerical differentiators, especially when
measurement noise is considered. In fact, when some a priori knowledge on the nature of the noise is known,
one could determine numerically a covariance matrix of the estimation error (cf., e.g., [18]) of the time
derivatives of the observation, whose inverse can be chosen for the norm in (6). Typically, one expects to
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Figure 2: Illustration of Proposition 1. We represent the three solution sets relative to (23). We plot sr with
respect to sc for ε ∈ {0.001, 0.01, 0.1, 1}.

have lower weight for high order derivatives whose estimation is more prone to be affected by measurement
noise. In the absence of noise, the identity matrix can be simply used to define the norm.

One can check, using the expression of the function r, the injectivity of the map Φ, given by (3), with
m = 3. Observe also that Assumption 1 holds in this case. Indeed, we have

∂sF (z, s) = 18z1s
2 − 2(15z1 + z2)s+ 12z1 + z2,

for which one can easily verify that, for each z1, z2 ≥ 0 the solutions of ∂sF (z, s) = 0 are always reals. We
simulate system (18) starting from the initial conditions of Fε(z(0), s) = 0, for i = 1, 2, 3 and for different
values of ε. The initial conditions of the original system (20)–(21) are fixed at (0.5, 2). The parameter K,
relative to the estimators (18) has been fixed to K = 150. An explicit Euler scheme with a discretization
step equal to h = 10−3 has been chosen for the simulation.

Assuming the perfect knowledge of z, that is the perfect knowledge of the derivative of the output y, we
firstly illustrate the result given by Proposition (1) concerning the separation between neighboring solutions
around the singularities. We show by Figure 2 the solution sets given by (11) corresponding to (23) for
different value of the perturbation parameter ε. We clearly observe the role of ε on separating neighboring
solutions near the singularities. More precisely, as proved by Proposition 1, the distance between the solution
sets is somehow proportional to the magnitude of ε. By Figure 3 we show the different real and complex
parts of the three roots together with the constructed solution, where the perturbation parameter ε is taken
equal to 0.01 (left) and 0.1 (right).

Here, we have assumed the perfect knowledge of the vector z(t) at any time t ≥ 0, which is hardly
accessible in practice. For this, we simulate our estimators where the derivatives of the output are given by
a high-gain differentiator. In addition, we consider that the output measurements are randomly disturbed
by a white noise proportional up to 5% of x1. In order to check the robustness of the proposed approach
to estimate the exact roots of (23), we simulate system (18) in the same condition as before. The output
as well as its numerical derivatives are filtered offline using moving average filters. We also consider a short
delay before computing the estimators ŝε,i, the time for the differentiator to converge. As it is already
mentioned, the perturbation parameter ε plays a crucial role in separating neighboring solutions. This is
particularly interesting in the case of measurement noise, where a sufficiently large ε allows the separation of
the disturbed estimators ŝε,i around the singularities. Of course, a large value for ε acts against the precision
of the estimator (18), and this should be fixed depending on the amplitude of the noise. Concerning the
test function, knowing that z3 is more affected by the noise measurement than z2, we have simply chosen
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Figure 3: Illustration of the estimated roots of (23) with perfect knowledge of z together with the exact and
the constructed solution with ε = 0.01 (left) and ε = 0.1 (right).
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Figure 4: Illustration of the estimated roots of (23) together with the exact and the constructed solution
(with ε = 0.01), in the case of estimated output’s derivatives without noise (left) and with white noise
proportional up to 5% of x1 (right).

M = diag(1, 0.1) to define the norm in (6). By Figure 4 we show the different real and complex parts of the
estimated roots of (23) together with the estimation of x2 where ε is fixed at 0.01.

4.2 Example 2

An important class of bioprocesses, which is mainly used in food and pharmaceutical industry, is the batch
bioreactor [15]. This bioprocesses is characterized by the fact that after the initial charge of the substrate in
the bioreactor, there is no inflow or outflow of the medium. The typical model characterizing the substrate
biodegradation in a batch culture is given by the same system (20)-(21), where in this case the variables
x1 and x2 represent the biomass and substrate concentration, respectively. The function r, representing the
microbial growth rate function, is given in this case by

r(x2) =
k1s

k2 + s+ k3s2
, (24)
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Figure 5: Left: the function r given by (24). Right: the exact roots of (5).

where k1, k2 and k3 are positive constants. Without loss of generality, we assume here that the yield
coefficient of the transformation of the substrate into biomass is equal to 1. Several works in the literature
aim to reconstruct the substrate concentration when only the biomass concentration is measured (see, e.
g., [7, 17]). In the case when the function r is non-monotonic, usually related to some inhibition effect of
the reaction, this observability problem becomes particularly difficult. In fact, in this case, a singularity
observability problem appears in the state space, more precisely over the set {(x1, x2) ∈ R2

+ : x2 =
√
k2k3}.

However, the system is observable but with an injectivity index equal to 3. This problem is treated in (see,
e.g., [17]) with the usual immersion approach described in the introduction. In order to show the applicability
of our method in this case, we repeat the same analysis as in Example 1 with the function r given by (24),
with k1 = k2 = k3 = 1. By Figure 6 we show the different real and complex parts of the estimated roots
together with the estimation of the solution of x2 where ε is fixed at 0.01, in the case of estimated z without
noise (left) and with noise measurement proportional up to 5% of x1 (right). The identity matrix M = I2
is simply chosen to define the test function in this case. It is worth noting that the estimators become quite
sensitive to noise near the equilibrium point. This is explained by the fact that the exact derivatives become
practically null close to the equilibrium point (this difficulty was already present with the approach proposed
in [17]).

We end this section by underlying the advantage of the proposed approach to deal with singularities.
For this, we compare the constructed solution together with the one obtained directly by inverting the
observability map Φ. A straightforward computation gives

Φ−1(z) =

(
z1,

2h3
1(z) + h1(z)h2(z)

(1− h1(z))(h2
1(z) + h2(z))

)T

,

where

h1(z) =
z2

z1
, h2(z) =

z2
2 − z1z3

z2z2
1

.

By Figure 7 we compare the solution constructed by our method, with ε = 0.01, together with that obtained
by Φ−1, in the case of estimated z, with white noise proportional up to 0.001% of x1 and without any filtering
strategy. We see clearly the performance of our approach in this case.
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Figure 6: Illustration of the estimated roots corresponding to Example 2 together with the exact and the
constructed solution (with ε = 0.01). Case of estimated z without noise (left) and with noise measurement
proportional up to 5% of x1 (right).
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Figure 7: The exact solution together with the constructed one (with ε = 0.01) and that obtained with
Φ−1. Case of estimated z with noise measurement proportional up to 0.001% of x1 and without any filtering
strategy.

4.3 Example 3

Let us consider the following dynamics in R2

ẋ1 = ax2 − (x2
1 + x2

2 − a2), (25)

ẋ2 = −ax1, (26)

along with the on-line observation
y(t) = x1(t),

where a is a positive real number. It is easy to see that the ball B(0, a) is invariant by the dynamics (25)–
(26). In the case of this example, the construction of x2 from (25) presents a singularity at x2 = a/2. The
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Figure 8: Illustration of the estimated roots corresponding to Example 3 with perfect knowledge of z together
with the exact and the constructed solution with ε = 0.001 (left) and ε = 0.1 (right).
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Figure 9: Illustration of the estimated roots corresponding to Example 3 together with the exact and the
constructed solution (with ε = 0.1). Case of estimated z without noise (left) and with noise measurement
proportional up to 50% of x1 (right).

problem here is that this singularity problem may recurs periodically over the time. For the construction of
x2, we repeat the same analysis as in Example 1. For this, we define firstly the function

F (z, s) = −s2 + as− z2
1 − z2 + 1.

We can easily verify that Assumption 1 is satisfied. In order to show the applicability of our approach in this
case of periodic singularity, we simulate system (18) starting from the initial conditions of Fε(z(0), sε,i0) = 0,
for i = 1, 2 and different values of ε. The value of a is fixed to a = 2 and the initial condition of the original
system (25)–(26) is fixed at (0, 2). Assuming the perfect knowledge of z, by Figure 8 we show the different
real and complex parts of the estimated roots together with the constructed solution, where the perturbation
parameter ε is taken equal to 0.001 (left) and 0.1 (right). Now, without assuming the perfect knowledge of z,
and using the same procedure as in Example 1 to give an estimation of it, we simulate system (18), where ε
is fixed at 0.1. By Figure 9 we show the different real and complex parts of the estimated roots together with
the estimation of x2 in two cases: without noise measurement (left) and with noise measurement proportional
up to 50% of x1 (right). The identity matrix M = I2 is simply chosen to define the test function.
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Figure 10: The exact solution together with the constructed one (with ε = 0.1) and that obtained with
Φ−1. Case of estimated z with noise measurement proportional up to 0.2% of x1 and without any filtering
strategy.

As in Example 2, we compare the constructed solution together with the one obtained directly by inverting
the observability map Φ. A straightforward computation gives

Φ−1(z) =

(
z1,

a2 + 2z2 + z3/z1

2a

)T

.

By Figure 10 we show the solution constructed by our method, with ε = 0.1, together with the one obtained
by Φ−1, in the case of estimated z, with white noise proportional up to 0.2% of x1. This comparison is
done without using any filtering strategy. The performance of our approach is once again shown by this
comparison.

5 Conclusion

In this work we propose a new approach to deal with a family of observability problems which, in general,
requires the construction of embedding in higher dimensional space. This approach does not require any
change of coordinates, and consequently there is no need to inverse the observability map nor its Jacobian.
This relies on the following idea: instead of single observer in higher dimension, a set of estimators can be
constructed in the original space together with a test function, based on higher derivative of the observation,
to discriminate between the different estimators at any time; the right one is the one minimizing the test
function. The choice of the norm for the test function gives flexibility to suit to the nature of the noise in the
case of noisy measurements. Although this study is reduced to a particular class of bidimensional systems,
non-uniform observability encountered in biological systems can be overcome by our approach. Future works
will attempt to extend this work to more general class of higher dimensional autonomous systems.
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