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Abstract. Proving correctness of distributed or concurrent algorithms
is a mind-challenging and complex process. Slight errors in the reason-
ing are difficult to find, calling for computer-checked proof systems. In
order to build computer-checked proofs with usual tools, such as Coq or
TLA+, having sequential specifications of all base objects that are used
as building blocks in a given algorithm is a requisite to provide a modular
proof built by composition. Alas, many concurrent objects do not have
a sequential specification.

This article describes a systematic method to transform any task, a
specification method that captures concurrent one-shot distributed prob-
lems, into a sequential specification involving two calls, set and get.
This transformation allows system designers to compose proofs, thus
providing a framework for modular computer-checked proofs of algo-
rithms designed using tasks and sequential objects as building blocks.
The Moir&Anderson implementation of renaming using splitters is an
iconic example of such algorithms designed by composition.

Keywords: Formal methods · Verification · Concurrent algorithms ·
Renaming

1 Introduction

Fault-tolerant distributed and concurrent algorithms are extensively used in crit-
ical systems that require strict guarantees of correctness [23]; consequently, ver-
ifying such algorithms is becoming more important nowadays. Yet, proving dis-
tributed and concurrent algorithms is a difficult and error-prone task, due to the 
complex interleavings that may occur in an execution. Therefore, it is crucial to 
develop frameworks that help assessing the correctness of such systems.

A major breakthrough in the direction of systematic proofs of concurrent 
algorithms is the notion of atomic or linearizable objects [20]: a linearizable
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object behaves as if it is accessed sequentially, even in presence of concurrent
invocations, the canonical example being the atomic register. Atomicity lets us
model a concurrent algorithm as a transition system in which each transition
corresponds to an atomic step performed by a process on a base object. Human
beings naturally reason on sequences of events happening one after the other;
concurrency and interleavings seem to be more difficult to deal with.

However, it is well understood now that several natural one-shot base objects
used in concurrent algorithms cannot be expressed as sequential objects [9,16,33]
providing a single operation.

An iconic example is the splitter abstraction [31], which is the basis of the
classical Moir&Anderson renaming algorithm [31]. Intuitively, a splitter is a con-
current one-shot problem that splits calling processes as follows: whenever p pro-
cesses access a splitter, at most one process obtains stop, at most p − 1 obtain
right and at most p − 1 obtain down. Moir&Anderson renaming algorithm uses
splitters arranged in a half grid to scatter processes and provide new names to
processes. It is worth to mention that, since its introduction almost thirty years
ago, the renaming problem [4] has become a paradigm for studying symmetry-
breaking in concurrent systems (see, for example, [1,8]).

A second example is the exchanger object provided in Java, which has
been used for implementing efficient linearizable elimination stacks [16,24,36].
Roughly speaking, an exchanger is a meeting point where pairs of processes can
exchange values, with the constraint that an exchange can happen only if the
two processes run concurrently.

Splitters and exchangers are instances of one-shot concurrent objects known
in the literature as tasks. Tasks have played a fundamental role in understand-
ing the computability power of several models, providing a topological view of
concurrent and distributed computing [18]. Intuitively, a task is an object pro-
viding a single one-shot operation, formally specified through an input domain,
an output domain and an input/output relation describing the valid output con-
figurations when a set of processes run concurrently, starting from a given input
configuration. Tasks can be equivalently specified by mappings between topo-
logical objects: an input simplicial complex (i.e., a discretization of a continuous
topological space) modeling all possible input assignments, an output simplicial
complex modeling all possible output assignments, and a carrier map relating
inputs and outputs.

Contributions. Our main contribution is a generic transformation of any task T
(with a single operation) into a sequential object S providing two operations, set
and get. The behavior of S “mimics” the one of T by splitting each invocation
of a process to T into two invocations to S, first set and then get. Intuitively, the
set operation records the processes that are participating to the execution of the
task. A process actually calls the task and obtains a return value by invoking
get. Each of the operations is atomic; however, set and get invocations of a given
process may be interleaved with similar invocations from other processes.

We show that these two operations are sufficient for any task, no matter how
complicated it may be; since a task is a mapping between simplicial complexes,



it can specify very complex concurrent behaviors, sometimes with obscure asso-
ciated operational semantics.

A main benefit of our transformation is that one can replace an object solving
a task T by its associated sequential object S, and reason as if all steps happen
sequentially. This allows us to obtain simpler models of concurrent algorithms
using solutions to tasks and sequential objects as building blocks, leading to
modular correctness proofs. Concretely, we can obtain a simple transition system
of Moir&Anderson renaming algorithm, which helps to reason about it. In a
companion paper [22], our model is used to derive a full and modular TLA+

proof of the algorithm, the first available TLA+ proof of it.
In Sect. 2, we explain the ideas in Moir&Anderson renaming algorithm that

motivated our general transformation, which is presented in Sect. 3. Due to lack
of space, some basic definitions, proofs and detailed constructions are omitted.
They can be found in the extended version [7].

2 Verifying Moir&Anderson Renaming

We consider a concurrent system with n asynchronous processes, meaning that
each process can experience arbitrarily long delays during an execution. More-
over, processes may crash at any time, i.e., permanently stopping taking steps.
Each process is associated with a unique ID ∈ N. The processes can access base
objects like simple atomic read/write registers or more complex objects.

The original Moir&Anderson renaming algorithm [31] is designed and
explained with splitters. Their seminal work first introduces the splitter algo-
rithm based on atomic read/write registers and discusses its properties. Then,
they describe a renaming algorithm that uses a grid of splitters. The actual
implementation inlines splitters into the code of the renaming algorithm, and
their proof is performed on the resulting program that uses solely read/write
registers as base objects.

The Splitter Abstraction. A splitter [31] is a one-shot concurrent task in which
each process starts with its unique ID ∈ N and has to return a value satisfying
the following properties: (1) Validity. The returned value is right, downor stop.
(2) Splitting. If p ≥ 1 processes participate in an execution of the splitter, then
at most p−1 processes obtain the value right, at most p−1 processes obtain the
value down, at most one process obtains the value stop. (3) Termination. Every
correct process (which doesn’t crash) returns a value.

Notice that if a process runs solo, i.e., p = 1, it must obtain stop, since the
splitting property holds for any p ≥ 1.

Figure 1 contains the simple and elegant splitter implementation based on
atomic read/write registers from [31] (register names have been changed for
clarity). After carefully analyzing the code, the reader can convince herself that
the algorithm described in Fig. 1 implements the splitter specification. The fact
that the implementation is based on atomic registers allows us to obtain a tran-
sition system of it in which each transition corresponds to an atomic operation



initially CLOSED = false
operation splitter():
(01) LAST ← my ID;
(02) if (CLOSED)
(03) then return(right)
(04) else CLOSED ← true;
(05) if (LAST = my ID)
(06) then return(stop)
(07) else return(down)
(08) end if
(09) end if.

Fig. 1. Implementation of a Splitter [31]. Fig. 2. Renaming using Splitters.

on an object. The benefit of this modelization is that every execution of the
implementation is simply described as a sequence of steps, as concurrent and
distributed systems are usually modeled (see, for example, [19,35])). Although
the splitter implementation is very short and simple, its TLA+ proof is long and
rather complex —particularly when considering that it uses a boolean register
and a plain register only—(see [22] for details).

The Renaming Problem. In the M -renaming task [4], each process starts with its
unique ID ∈ N, and processes are required to return an output name satisfying
the following properties: (1) Validity. The output name of a process belongs to
[1, . . . , M ]. (2) Uniqueness. No two processes obtain the same output name. (3)
Termination. Every correct process returns an output name.

Let p be the number of processes that participate in a given renaming
instance. A renaming implementation is adaptive if the size M of the new name
space depends only on p, the number of participating processes. We have then
M = f(p) where f(p) is a function on p such that f(1) = 1 and, for 2 ≤ p ≤ n,
p − 1 ≤ f(p − 1) ≤ f(p).

Moir&Anderson Splitter-Based Renaming Algorithm. Moir and Anderson pro-
pose in [31] a read/write renaming algorithm designed using the splitter abstrac-
tion. The algorithm is conceptually simple: for up to n processes, a set of
n(n+1)/2 splitters are placed in a half-grid, each with a unique name, as shown
in Fig. 2 for n = 5. Each process starts invoking the splitter at the top-left
corner, following the directions obtained at each splitter. When a splitter invo-
cation returns stop, the process returns the name associated with the splitter.
We use here an adaptive version of their algorithm that allows p participating
processes to rename in at most p(p + 1)/2 names; the original solution in [31] is
non-adaptive and the only difference is the labelling of the splitters in the grid.

Splitters as Sequential Objects? Although Moir&Anderson renaming algorithm
is easily described in a modular way, the actual program is not modular as each
splitter in the conceptual grid is replaced by an independent copy of the split-
ter implementation of Fig. 1. Thus, the correctness proof in [31] deals with the



State: Sets Participants, Stop, Down, Right
all sets are initialized to ∅

Function set(id)
Pre-condition: id /∈ Participants
Post-condition: Participants′ ← Participants ∪ {id}
Output: void

endFunction

Function get(id)
Pre-condition: id ∈ Participants ∧ id /∈ Stop, Down, Right
Post-condition:

D ← ∅
if |Stop| = 0 then D ← D ∪ {stop}
if |Down| < |Participants| − 1 then D ← D ∪ {down}
if |Right| < |Participants| − 1 then D ← D ∪ {right}
Let dec be any value in D
if dec = stop then Stop ← Stop ∪ {id}
if dec = down then Down ← Down ∪ {id}
if dec = right then Right ← Right ∪ {id}

Output: dec
endFunction

Fig. 3. An ad hoc specification of the Splitter.

possible interleavings that can occur, considering all read/write splitter imple-
mentations in the grid.

In the light of the simple splitter based conceptual description, we would
like to have a transition system describing the algorithm based on splitters as
building blocks, in which each step corresponds to a splitter invocation. Such a
description would be very beneficial as it would allow us to obtain a modular
correctness proof showing that the algorithm is correct as long as the building
blocks are splitters, hence the correctness is independent of any particular splitter
implementation.

As it is formally proved in Sect. 3, it is impossible to obtain such a transi-
tion system. The obstacle is that a splitter is inherently concurrent and cannot
be specified as a sequential object with a single operation. The intuition of the
impossibility is the following. By contradiction, suppose that there is a sequen-
tial object corresponding to a splitter. Since the object is sequential, in every
execution, the object behaves as if it is accessed sequentially (even in presence of
concurrent invocation). Then, there is always a process that invokes the splitter
object first, which, as noted above, must obtain stop. The rest of the processes
can obtain either down or right, without any restriction (the value obtained by
the first process precludes that all obtain right or all down). However, such an
object is allowing strictly fewer behaviors: in the original splitter definition it



is perfectly possible that all processes run concurrently and half of them obtain
right and the other half obtain down, while none obtains stop.

The Splitter Task as a Sequential Object. One can circumvent the impossibil-
ity described above by splitting the single method provided by a splitter into
two (atomic) operations of a sequential object. Figure 3 presents a sequential
specification of a splitter with two operations, set and get, using a standard
pre/post-condition specification style. Each process invoking the splitter, first
invokes set and then get (always in that order). The idea is that the set opera-
tion first records in the state of the object the processes that are participating in
the splitter, so far, and then the get operation nondeterministically produces an
output to a process, considering the rules of the splitter. In Sect. 3, we formally
prove that this sequential object indeed models the splitter defined above.

Proving Moir&Anderson Renaming with Splitters as Base Sequential Objects.
Using the sequential specification of a splitter in Fig. 3, we can easily obtain
a generic description of the original Moir&Anderson splitter-based algorithm:
each renaming object is replaced with an equivalent sequential version of it, and
every process accessing a renaming object asynchronously invokes first set and
then get, which returns a direction to the process. The resulting algorithm does
not rely on any particular splitter implementation, and uses only atomic objects,
which allows us to obtain a transition system of it. This is the algorithm that
is verified in TLA+ in [22]. The equivalence between the concurrent renaming
specification and the sequential set/get specification imply that the proof in [22]
also proves for the original Moir&Anderson splitter-based algorithm.

3 Dealing with Tasks Without Sequential Specification

In this section, we show that the transformation in Sect. 2 of the splitter task
into a sequential object with two operations, get and set, is not a trick but rather
a general methodology to deal with tasks without a sequential specification. Our
get/set solution proposed here is reminiscent to the request-follow-up transfor-
mation in [25] that allows to transform a partial method of a sequential object
(e.g. a queue with a blocking dequeue method when the queue is empty) into two
total methods: a total request method registering that a process wants to obtain
an output, and a total follow-up method obtaining the output value, or false if
the conditions for obtaining a value are not yet satisfied (the process invokes the
follow-up method until it gets an output). We stress that the request-follow-up
transformation [25] considers only objects with a sequential specification and is
not shown to be general as it is only used for queues and stacks.

Model of Computation in Detail. We consider a standard concurrent system
with n asynchronous processes, p1, . . . , pn, which may crash at any time dur-
ing an execution of the system, i.e., stopping taking steps (for more detail
see for example [19,35]). Processes communicate with each other by invok-
ing operations on shared, concurrent base objects. A base object can provide



Read/Write operations (also called register), more powerful operations, such as
Test&Set,Fetch&Add,Swap or Compare&Swap, or solve a concurrent distributed
problem, for example, Splitter, Renaming or Set Agreement.

Each process follows a local state machines A1, . . . , An, where Ai specifies
which operations on base objects pi executes in order to return a response when
it invokes a high-level operation (e.g. push or pop operations). Each of these
base-objects operation invocations is a step. An execution is a possibly infinite
sequence of steps and invocations and responses of high-level operations, with
the following properties:

1. Each process first invokes a high-level operation, and only when it has a corre-
sponding response, it can invoke another high-level operation, i.e., executions
are well-formed.

2. For any invocation inv(〈opType, pi, input〉) of a process pi, the steps of pi
between that invocation and its corresponding response (if there is one),
are steps that are specified by Ai when pi invokes the high-level operation
〈opType, pi, input〉.
A high-level operation in an execution is complete if both its invocation and

response appear in the execution. An operation is pending if only its invocation
appears in the execution. A process is correct in an execution if it takes infinitely
many steps.

Sequential Specifications. A central paradigm for specifying distributed prob-
lems is that of a shared object X that processes may access concurrently [19,35],
but the object is defined in terms of a sequential specification, i.e., an automaton
describing the outputs the object produces when it is accessed sequentially. Alter-
natively, the specification can be described as (possibly infinite) prefix-closed set,
SSpec(X), with all sequential executions allowed by X.

Once we have a sequential specification, there are various ways of defining
what it means for an execution to satisfy an object, namely, that it respects
the sequential specification. Linearizability [20] is the standard notion used to
identify correct executions of implementations of sequential objects. Intuitively,
an execution is linearizable if its operations can be ordered sequentially, without
reordering non-overlapping operations, so that their responses satisfy the speci-
fication of the implemented object. To formalize this notion we define a partial
order on the completed operations of an execution E: op <E op′ if and only
if the response of op precedes the invocation of op′ in E. Two operations are
concurrent if they are incomparable by <E . The execution is sequential if <E is
a total order.

An execution E is linearizable with respect to X if there is a sequential
execution S of X (i.e., S ∈ SSpec(X)) such that: (1) S contains every completed
operation of E and might contain some pending operations. Inputs and outputs
of invocations and responses in S agree with inputs and outputs in E, and (2) for
every two completed operations op and op′ in E, if op <E op′, then op appears
before op′ in S.



Using the linearizability correctness criteria for sequential objects, we can
define the set of valid executions for X, denoted V E(X), as the set containing
every execution E that consists of invocations and responses and is linearizable
w.r.t. X. V E(X) contains the behavior one might expect from any building-block
implementation of X, e.g., any algorithm that implements X.

Tasks. A task is the basic distributed equivalent of a function in sequential
computing, defined by a set of inputs to the processes and for each (distributed)
input to the processes, a set of legal (distributed) outputs of the processes,
e.g., [18].

In an algorithm designed to solve a task, each process starts with a private
input value and has to eventually decide irrevocably on an output value. A
process pi is initially not aware of the inputs of other processes. Consider an
execution where only a subset of k ≤ n processes participate; the others crash
without taking any steps. A set of pairs σ = {(id1, x1), . . . , (idk, xk)} is used to
denote the input values, or output values, in the execution, where xi denotes the
value of the process with identity idi, either an input value or an output value. A
set σ as above is called a simplex, and if the values are input values, it is an input
simplex, if they are output values, it is an output simplex. The elements of σ are
called vertices, and any subset of σ is a face of it. An input vertex v = (idi, xi)
represents the initial state of process idi, while an output vertex represents its
decision. The dimension of a simplex σ, denoted dim(σ), is |σ| − 1, and it is full
if it contains n vertices, one for each process. A complex K is a set of simplexes
(i.e. a set of sets) closed under containment. The dimension of K is the largest
dimension of its simplexes, and K is pure of dimension k if each of its simplexes
is a face of a k-dimensional simplex. In distributed computing, the simplexes
(and complexes) are often chromatic: vertices of a simplex are labeled with a
distinct process identities. The set of processes identities in an input or output
simplex σ is denoted ID(σ).

A task T for n processes is a triple (I,O,Δ) where I and O are pure chro-
matic (n − 1)-dimensional complexes, and Δ maps each simplex σ from I to a
subcomplex Δ(σ) of O, satisfying: (1) Δ(σ) is pure of dimension dim(σ), (2) for
every τ in Δ(σ) of dimension dim(σ), ID(τ) = ID(σ), and (3) if σ, σ′ are two
simplexes in I with σ′ ⊂ σ then Δ(σ′) ⊂ Δ(σ). A task is a very compact way of
specifying a distributed problem, and indeed typically it is hard to understand
what exactly is the problem being specified. Intuitively, Δ specifies, for every
simplex σ ∈ I, the valid outputs Δ(σ) for the processes in ID(σ) assuming they
run to completion, and the other processes crash initially, and do not take any
steps.

As an example consider the splitter task [31]. Figure 4 shows a graphic
description of the splitter task for three processes with IDs 1, 2 and 3. The
input complex, shown at the left, consists of a triangle and all its faces. The
output complex, at the right, contains all possible valid output simplexes (the
triangle with all right outputs is not in the complex). The Δ function maps the
input vertex with ID 1 to the output vertex (1, stop), the input edge with IDs
1 and 2 to the complex with the bold edges in the output complex, and the
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Fig. 4. The Splitter Task for Three Processes.

input triangle is mapped to the whole output complex. The rest of Δ is defined
symmetrically.

Let E be an execution where each process invokes a task 〈I,O,Δ〉 once.
Then, σE is the input simplex defined as follows: (idi, xi) is in σE iff in E there
is an invocation of task(xi) by process idi. The output simplex τE is defined
similarly: (idi, yi) is in τE iff there is a response yi to a process idi in E. We say
that E satisfies (I,O,Δ) if for every prefix E′ of E, it holds that τE′ ∈ Δ(σE′).

Using the satisfiability notion of tasks we can now consider the set of valid
executions, V E(T ), for a given task T = (I,O,Δ): the set containing every
execution E that has only invocations and responses and satisfies T . Arguably,
the set V E(T ) contains the behavior one might expect from a building-block (e.g.
an algorithm) that implements T .

Modeling Tasks as Sequential Objects. Intuitively, tasks and sequential specifi-
cations are inherently different paradigms for specifying distributed problems:
while a task specifies what a set of processes might output when running con-
currently, a sequential specification specifies the behavior of a concurrent object
when accessed sequentially (and linearizability tells when a concurrent execution
“behaves” like a sequential execution of the object). A natural question is if any
task can be modeled as a sequential object with a single operation, namely, the
object defines the same set of valid executions. A well-known example for which
this is possible is the consensus distributed coordination problem that can be
equivalently defined as a task or as a sequential object (see for example [19]
where it is defined as an object1 and [18] where it is defined as a task).
1 Sometimes, for clarity or efficiency, the object is defined with two operations (in the

style of the Theorem 1); however, consensus can be equivalently defined with one
operation.



State: a pair (σ, τ) of input/output simplexes, initialized to (∅, ∅)

Function set(idi, xi)
Pre-condition: idi ∈ ID ∧ idi /∈ ID(σ)
Post-condition: σ′ ← σ ∪ {(idi, xi)}
Output: void

endFunction

Function get(idi)
Pre-condition: idi ∈ ID ∧ idi /∈ ID(τ)
Post-condition: Let yi be any output value such that τ ∪ {(idi, yi)} ∈ Δ(σ).

Then, τ ′ ← τ ∪ {(idi, yi)}
Output: yi

endFunction

Fig. 5. A Generic Sequential Specification of a Task T = (I,O, Δ).

Lemma 1. Consider the splitter task Tspl = (Ispl,Ospl,Δspl). There is no sequen-
tial object Xspl with a single operation satisfying V E(Tspl) = V E(Xspl).

In a very similar way, one can prove that the following known tasks cannot
be specified as sequential objects with a single operation: exchanger [17,36],
adaptive renaming [4], set agreement [10], immediate snapshot [5], adopt-
commit [6,13] and conflict detection [3].2

To circumvent the impossibility result in Lemma 1, we model any given task
T through a sequential object S with two operations, set and get, that each
process access in a specific way: it first invokes set with its input to the task T
(receiving no output) and later invokes get in order to get an output value from
T . Intuitively, decoupling the single operation of T into two (atomic) operations
allows us to model concurrent behaviors that a single (atomic) operation cannot
specify. In what follows, let SSpec(S) be the set with all sequential executions
of S in which each process invokes at most two operations, first set and then get,
in that order.

Theorem 1. For every task T = (I,O,Δ) there is a sequential object S with
two operations, set(idi, xi) and get(idi) : yi, such that there is a bijection α
between V E(T ) and SSpec(S) satisfying that: (1) each invocation or response
of process idi is mapped to an operation of process idi, and (2) each invocation
inv (response resp) with input (output) x is mapped to a completed set (get)
operation with input (output) x.

An implication of Theorem 1 is that if one is analyzing an algorithm that
uses a building-block (subroutine, algorithm, etc.) B that solves a task T , one

2 There are non-deterministic sequential specifications of these tasks with unavoidable
and pathological executions in which some operations guess the inputs of future
operations. See [9, Section 2] for a detailed discussion.



can safely replace B with the sequential object S related to T described in the
theorem (each invocation to the operation of B is replaced with an (atomic)
invocation to set and then an (atomic) invocation to get), and then analyze
the algorithm considering the atomic operations of S. The advantage of this
transformation is that (1) if all operations in an algorithm are atomic, we can
think that each process takes a step at a time in an execution, hence obtaining a
a transition system with atomic events, (2) at all times we have a concrete state
of S in an execution (which is not clear in a task specification) and (3) given
a state of S, an output for a get operation can be easily computed using the
sequential object S (something that is typically complicated for B as it might
be accessed concurrently).

The construction used (for simplicity) in the proof of Theorem 1 (in the full
version of the paper) might be too coarse to be helpful for analyzing an algo-
rithm. We would like to have a construction producing an equivalent sequential
automaton modeling the task in a simpler way. Consider the simple sequential
object in Fig. 5 obtained from any given task T = (I,O,Δ), which is described
in a classic pre/post-condition form. Intuitively, the meaning of a state (σ, τ)
is the following: σ contains the processes that have invoked the task so far
(this represents the participating set of the current execution) while τ contains
the outputs that have been produced so far. The main invariant of the spec-
ification is that τ ∈ Δ(σ). It directly follows from the properties of the task:
when a process invokes set(idi, xi), we have that τ ∈ Δ(σ ∪ {(idi, xi)}) because
Δ(σ) ⊂ Δ(σ ∪ {(idi, xi)}), and when a process invokes get(idi), it holds that
τ ∪ {(idi, yi)} ∈ Δ(σ) because Δ(σ) is a pure complex of dimension dim(σ) and
thus there must exist a simplex in Δ(σ) (properly) containing τ and with an
output for idi. One can formally prove that this sequential object and the one
in the proof Theorem 1 define the same set of sequential executions.

Finally, one can obtain ad-hoc and equivalent specifications for specific tasks,
like the one for splitters in Fig. 3 in Sect. 2.

4 Related Work

Linearizability Criteria. Neiger observed for the first time that some fundamen-
tal tasks, like set agreement [10] and immediate snapshot [5], cannot be modeled
as sequential objects [33] (with a single operation). Motivated by the need of
a unified framework for tasks and objects, he proposed set-linearizability [33].
Roughly speaking, a set sequential object is generalization of a sequential object
in which transitions between states involve more than one operation (formally,
a set of operations), meaning that these operations are allowed to occur concur-
rently, and their results can be concurrency-dependent. Set linearizability is the
consistency condition for set-sequential objects, where one needs to find lineariz-
ability points (same as in linearizability) and several operations can be linearized
at the same point (different from linearizability).

Later on, it was again observed that for some concurrent objects it is impos-
sible to provide a sequential specification, and concurrency-aware linearizability



was defined [16]. Set linearizability and concurrency-aware linearizability are
very closely related, both based on the same principle: sets of operations can
occur concurrently. Also, a non-automatic verification technique for reasoning
about concurrency-aware objects is presented in [16].

Recently it was observed in [9] that some natural tasks specify concurrency
dependencies that are beyond the set-linearizability and concurrency-aware
formalisms, hence that paper proposed interval linearizability. In an interval-
sequential object not only sets of operations can occur concurrently but some
of these operations might be pending and then overlap operations in the next
transition; thus each operation corresponds to an interval instead of a single
point. Interval linearizability is the related consistency condition in which, for
each operation, one needs to find an interval in which the operation happens. It
is shown in [9] that interval-linearizability is complete for tasks in the sense that
it is possible to specify any task as an interval-sequential object (with a single
operation).

Although interval-sequential specifications can model any task, this approach
does not seem to be useful when one is searching for machine-checked proofs of
concurrent algorithms. The main reason is that by replacing a task with its
equivalent interval-sequential object, we obtain a transition system in which one
still needs to think in concurrent behaviors, which is usually hard to deal with. In
contrast, our proposed get-set transformation allows to “decouple” the inherent
concurrency in tasks in a way that in the resulting transition system all events
are atomic, namely, they happen one after the other.

Mechanized Verification of Distributed Algorithms. Mechanized (or machine-
assisted) verification of distributed and concurrent algorithms is usually done
with model checking or theorem proving or a combination of both. Enumerative
model-checking is the oldest fully automatic method with tools like Spin [21] or
TLC, the TLA+ model checker [27]. To avoid the well-known problem of state
explosion, various optimisations such as symmetry or reduction have been intro-
duced, and recent work is on going on parameterized model checking, for instance
with MCMT (Model Checking Modulo Theory) [14], Cubicle [11] or ByMC [26].
Nevertheless, automatic verification of a distributed/concurrent algorithm is still
restricted to small finite instances of the algorithm or imposes significant con-
straints on its description, due to the limited expressiveness of the specification
language.

Fully automatic theorem proving is based on a proof decision procedure. For
useful logics, it is often semi-decidable at best and heavily depends on heuristics
to achieve good performance. Recent work on SMT has made a substantial leap
forward checking complex formulae combining first-order reasoning with deci-
sion procedures for theory such as arithmetic, equality, arrays. Nonetheless, the
overall proof of a distributed algorithm is still largely manual and, when seeking
confidence in this proof, an interactive proof assistant is the current approach.
Several examples of verification of complex distributed algorithms exist: Chord



with Alloy [38], Pastry with TLA+ [29,30], Paxos also with TLA+ [28], snapshot
algorithms in Event-B [2], just to cite a few.

Several wait-free implementations of tasks have been mechanically proven
(e.g. [12,34,37]). However, to the best of our knowledge, no non-trivial algorithm
built upon concurrent tasks have been mechanically proved. Our intuition for
this situation is that proofs cannot be made modular and compositional when
using bricks which are inherently concurrent if their internal structure must
be visible to take into account this concurrency. Several complex and original
algorithms can be found in the literature such as Moir and Anderson renaming
algorithm [31] that we have considered in this paper, stacks implemented with
elimination trees [36], lock-free queues with elimination [32]. In these papers,
the correctness proofs are intricate as they must consider the algorithm as a
whole, including the tricky part involving wait-free objects, and they have not
been mechanically checked. Our approach which exposes a more simple and
sequential specification (instead of a complex concurrent implementation) seeks
to alleviate this limitation.

5 Final Remarks and Future Work

In this paper, we showed a technique to circumvent the known impossibility of
specifying a task as a sequential object. Our technique consists in modeling the
single operation of the task with two atomic operations, set and get. This trans-
formation leads to a framework for developing transitional models of concurrent
algorithms using tasks and sequential objects as building blocks. As a proof of
concept, we developed in a companion paper [22] a full and modular TLA+ proof
of the Moir&Anderson renaming algorithm [31].

A natural extension of our work is to apply the framework to other concur-
rent algorithms. Another direction is to extend our techniques to the case of
refined tasks and interval-sequential objects, recently defined in [9]. These two
formalisms are generalization of the task and sequential object formalism with
strictly more expressiveness; particularly, contrary to the task formalism, refined
task are multi-shot, namely, each process may perform several invocations, pos-
sibly infinitely many.

A third direction is to study if the duality between the epistemic logic app-
roach and the topological approach shown in [15] might be useful in verifying
concurrent algorithms. Generally speaking, it is shown in [15] that a task can be
represented as a Kripke model with an action model, specifying the knowledge
obtained by processes when solving the task. It could be interesting to explore
how this knowledge could be reflected in our set/get construction and if it could
be useful in proving correctness.
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