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Abstract 

Estimates of atmospheric inputs to the Mediterranean (MED) and some coastal areas are reviewed, and uncertainities in these 

estimates considered. Both the magnitude and the mineralogical composition of atmospheric dust inputs indicate that eolian 

deposition is an important (50%) or prevailing (>80%) contribution to sediments in the offshore waters of the entire 
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Mediterranean (MED) basin. Model data for trace metals and nutrients indicate that the atmosphere delivers more than half the 

lead and nitrogen, one-third of total phosphorus, and 10% of the zinc entering the entire basin. Measured data in sub-basins, 

such as the north-western MED and northern Adriatic indicate an even greater proportion of atmospheric versus riverine inputs. 

When dissolved fluxes are compared (the form most likely to impinge on surface water biogeochemical cycles), the atmosphere 

is found to be 5 to 50 times more important than rivers for dissolved Zn and 15 to 30 times more important for Pb fluxes. 

Neglecting co-limitation by other nutrients, new production supported by atmospheric nitrogen deposition ranges from 2-4 g C m-

2 yr-1, whereas atmospheric phosphorus deposition appears to support less than 1 g C m-2 yr-1. In spite of the apparently small 

contribution of atmospheric deposition to overall production in the basin it has been suggested that certain episodes of 

phytoplankton blooms are triggered by atmospheric deposition of N, P or Fe. Future studies are needed to clarify the extent and 

causal links between these episodic blooms and atmospheric/oceanographic forcing functions. A scientific program aimed at 

elucidating the possible biogeochemical effects of Saharan outbreaks in the MED through direct sampling of the ocean and 

atmosphere before and after such events is therefore highly recommended. 

 

Introduction 

 

Over the past two decades it has become apparent that the atmosphere is not only a significant but in 

some cases the dominant pathway by which both natural and pollutant materials are transported from 

continents to both coastal and open seas. These substances include mineral dust, plant residues, 

heavy metals, nitrogen species from combustion processes and fertilisers, pesticides, and a wide 

range of synthetic organic compounds from industrial and domestic sources. Some of these 

substances, such as lead and some chlorinated hydrocarbons, when carried into oceans by the 

atmosphere, are potentially harmful to marine biological systems. Others, such as nitrogen species, 

phosphorus and iron, are nutrients and may enhance marine productivity. For some substances (e.g. 

aluminium, cadmium, lead, and some rare earth elements), atmospheric flux has an important impact 

on their oceanic chemical cycles. Atmospheric inputs may thus exert many different effects on the 

marine environment, and it is necessary to understand the magnitude and geographical distribution of 

the atmospheric fluxes of these materials to both coastal and open seas. Indeed, there have recently 

been a number of intensive studies of atmospheric inputs to coastal waters in North America and 

Europe, with several studies also devoted to investigating these processes in open oceans. 

The most complete review of this subject, updated to the early 1990s, was a report by the Group of 

Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP, 1989), much of which 

was subsequently published as a review article in the scientific literature (DUCE et al., 1991). The 

present paper briefly reviews results from several of these studies, especially those related to the 

Mediterranean Sea. 

The biogeochemical effects of mineral dust deposition to the water surface are of interest from several 

perspectives. The observation of more than 30-fold increases in dust deposition during glacial periods 

suggests a link between climatic oscillations and carbon cycling in the surface ocean on global and 

glacial scales (MARTIN, 1990). This link is created through the roles played by eolian deposition in 

supplying Fe to remote parts of the open ocean and by iron limitation in controlling primary production. 

In these high-nutrient/low-chlorophyll (HNLC) regions, there may be a direct connection between 

atmospheric and biological processes (MARTIN, 1990; KUMAR et al., 1995). 
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Dust input to the nutrient-limited Mediterranean (MED) basin (2.3 × 106 km2) is one of the greatest in 

the contemporary ocean (20-50 x 106 tons yr-1) and it is thus a natural laboratory in which to study the 

effects of dust deposition on the surface ocean in a setting that is distinct from the HNLC regions 

(COALE et al., 1996).  There have been several hypotheses suggesting that this large dust input is 

responsible for biogeochemical effects, although no concerted scientific program aimed at elucidating 

these effects directly has yet been set up. 

The aim of the present paper is to review current understanding of the magnitude and effects of dust 

inputs to the MED and to highlight important areas of uncertainty. Section 1 considers the magnitude of 

atmospheric dust inputs and problems related to their estimates. Section 2 compares fluxes of trace 

elements from atmospheric and riverine sources and considers evidence that atmospheric inputs affect 

the chemistry of surface waters in the MED. Section 3 looks at the role played by atmospheric 

processes in delivering nutrients to the surface MED and their spatial effects. Section 4 considers 

current hypotheses of mechanisms by which atmospheric deposition is believed to affect surface water 

biogeochemical cycles, focusing particularly on the roles of phosphate and iron, and reviews what 

evidence exists to evaluate them. 

 

1. Magnitude and mineralogical composition of atmos pheric mineral dust input 

 

Budgets and residence time estimates for trace metals and nutrients in the oceans have traditionally 

been based on riverine fluxes and have neglected atmospheric and other inputs. For most major and 

minor components of seawater, the atmosphere has generally been assumed to be a secondary 

source. However, over the last 20 years systematic studies of atmospheric inputs to the MED have 

been undertaken, and sufficient data are now available to allow fairly reliable estimates to be made. 

The most comprehensive study is that prepared by GESAMP (1989), together with several recent 

reviews devoted to the Western MED within the EROS 2000 project (MILLIMAN and MARTIN, 1997). 

For rivers, there is the major problem of understanding and quantifying transport through estuarine and 

coastal regions to deep waters.  MILLIMAN et al. (1995) and GESAMP (1989) both attempted to 

address this problem by compiling run-off data for countries surrounding the MED. It is important to 

note, however, that many of these data reflect historic not present-day discharges. A good example of  

this is the decreased flow to the western MED, as illustrated in the introduction to the EROS-2000 

DSR-II special issue (MILLIMAN and MARTIN, 1997). The Rhone and many Italian rivers currently 

have discharges very similar to those of 40 years ago, whereas most Spanish and north African rivers 

have been dammed in the past 20-30 years. 

Atmospheric flux estimates suffer from an undersampling problem. The atmosphere is a very dynamic 

compartment of the earth’s system, within which concentrations of reactive gases and particulate 

matter vary considerably in space and time. This variability ranges from rapid day-to-day changes in 

pollutant concentrations (lead, cadmium, NOx, SOx) to massive temporal and spatial changes in dust 
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loading over the entire MED (Tab. 1.1), as a result of dust storms in North Africa (GUERZONI et al., 

1997; BERGAMETTI, 1989; DULAC et al., 1989, 1996; LOŸE-PILOT and MARTIN, 1996). 

 

Tab. 1.1 - Range of insoluble particulate load concentrations in air and 
rain during two years at Sardinia (39°N, 9°E: from Guerzoni et al., 1997). 
 
 air (µg m-3) rain (mg l-1) 

Background 1-3 0.1-10 

Desert-enriched 20 10-50 

Saharan outbreaks 44 50-500 

Maximum recorded 110 510 

background :Al/Si < 0.3; Ca <2 %; associated rain pH < 5.60; Ca < 200 meq l-1 
desert enriched = Al/Si > 0.3; Ca > 2 %; Saharan outbreaks = Al > 1000 ng m-3; 
Al/Si > 0.4; Ca > 4%. 

 

The high spatial and temporal variability of dust transport and deposition, coupled with the short 

duration of oceanographic research cruises, has made it difficult to obtain good estimates of dust 

deposition to those areas of the open ocean devoid of islands at which continuous sampling can be 

undertaken. 

Encouragingly, however, recent results from ship-board collections of aerosol metals over  the North 

Sea, where a steep spatial gradient in aerosol concentration is found (YAAQUB et al., 1991), are 

comparable to samples collected at the coast (CHESTER et al., 1993; KANE et al., 1994). This finding 

suggests that atmospheric fluxes estimated from coastal sites may be extrapolated to adjacent marine 

areas. A similar result was found in the Western MED (WMED) where MARTIN et al. (1989) and 

CHESTER et al. (1993) showed that background aerosols at sea have similar Pb and Cd values to 

those collected at a remote coastal station in Sardinia (GUERZONI et al., 1997). 

Despite the shortcomings of these estimates, for many trace elements (e.g., Al, Pb, Zn), it has been 

shown that the local dissolved flux from partial dissolution of eolian dust in surface waters is much 

greater than that carried by the Rhone and Po rivers into the WMED and Adriatic respectively (GUIEU 

et al., 1997; GUERZONI et al., in press). Even where river fluxes appear to be similar in magnitude to 

those of dust, estuarine and near-shore removal processes attenuate river fluxes severely, often 

resulting in little of the riverine signal penetrating into offshore regions.  An exception to this is Cd,  

which forms stable and soluble complexes with chlorides and may also be desorbed from river-borne 

particulate during estuarine mixing, so that in this case the input very often influences open basin 

waters (BOYLE et al., 1985; Elbaz-Poulichet et al., 1989). 

 

1.1.  Atmospheric mineral particle fluxes and mineralogy 
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Beside the undersampling problem, several theoretical problems also hinder our ability to derive 

atmospheric flux estimates to the ocean from atmospheric suspended loads. It is therefore useful to 

compare the measured data with the results of GESAMP flux calculations (DUCE, 1991). 

Fig. 1.1 and Tab. 1.2 list most of the coastal stations where long (2-11 yrs) time series data are 

available together with an inventory of mean annual bulk dust fluxes around the Mediterranean. Flux 

values are deduced from a combination of aerosol suspended loads, dry, wet and bulk deposition 

samples. Sampling frequency at the various sites ranged from a few days (aerosols) to a few weeks 

(bulk). 

Mean annual deposition mass fluxes of mineral dust for the WMED range from 3-12 g m-2 yr-1, whereas 

much higher values are found (20-50 g m-2 yr-1) in the Eastern MED (EMED). The measured data are 

higher than those calculated with the GESAMP model using precipitation rates and a scavenging ratio 

(SR) of 200. As the SR for the MED is probably higher (GUERZONI et al., 1996), mass fluxes were 

recalculated using an SR of 500, and are listed in Tab. 1.2. When SR=500 is used, the two estimates 

agree very well. 

With the data from table 1.2 we can calculate mean values of 8, 12 and 35 g m-2 yr-1 for WMED, CMED 

and EMED respectively, and use these values to estimate the total annual atmospheric dust flux, which 

turned out to be ∼40 x 106 tons for the whole Mediterranean basin (Tab. 1.3). This estimate may be 

compared to total riverine discharge estimates recently revised by LOICZ (MILLIMAN et al., 1995). The 

sub-areas indicated by GESAMP (Nos. 1 to 10, shown in Fig. 1.1) were used for calculations. 

 
Fig. 1.1 - Arrows indicate the location of sampling sites for which time series of atmospheric data 

are available. Squares: sediment trap locations (B=Balear; D=Dyfamed; P=Paleoflux). 
Division in sub-areas 1-10 according to UNEP (1984) for budget calculations. 
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Tab. 1.2 - Mean annual (and range) atmospheric mass fluxes (g m-2) measured at 
various coastal sites (refer to Fig.1.1 for site locations). Mean fluxes for three sub-
basins calculated by averaging Spain, SE France, Sardinia and Corsica for WMED, 
Corsica, NE Italy and Crete for CMED, and Crete and Israel for EMED. Estimates from 
GESAMP model (DUCE, 1991) calculated with scavenging ratio values of 200 and 
500 respectively. 
_____________________________________________________________________ 
site     flux  sub-basin mean    GESAMP 
      g m-2    g m-2  SR=200(500) 
_____________________________________________________________________ 
Spain a     5(1-11) 
SE France b    4 (2-11) 
Sardinia c    8 (2-12)    WMED      8      3.4 (8) 
Corsica d   12 (4-25) 
NE Italy e     3 (2-6)    CMED     12      7(18) 
Crete f   21 (6-46) 
Israel g   50 (36-72)   EMED     35    14 (35) 
_____________________________________________________________________ 
(a) CARRATALA et al. (1996); RODA et al. (1993); (b) GUEIU et al. (1997); (c) GUERZONI et 
al. (1997); LE BOLLOCH and GUERZONI (1995); (d) LOŸE-PILOT et al. (1996); BERGAMETTI 
et al. (1989); (e) GUERZONI et al. (in press); ROSSINI and GUERZONI (1996); (f) NIHLEN and 
MATTSSON (1989); PYE (1992); (g) HERUT and KROM (1996). 

 

 

Table 1.3 - Comparison of riverine discharge (R) and atmospheric (A) input 
of insoluble particles to Mediterranean Sea. Data on riverine discharge are 
from MILLIMAN et al. (1995). Atmospheric mass inputs derived from 
average fluxes in three sub-basins (west to east) of 8-12-35 g m-2 yr-1, 
respectively (see Tab. 1.2 and text for explanation). 

 
____________________________________________________________ 
       Area        mass (10 6tons) 
Sub-basin        (10 6km 2)  R A  %A 
____________________________________________________________ 
WMED   0.84   30   7 19 
CMED   0.80   35 10 22 
EMED   0.70   10 24 70 
 
Total    2.34   75* 41 35 
____________________________________________________________ 
(*) if 2/3 of riverine input remains on  the continental shelf (< 100 m) then the 
offshore riverine discharge is reduced to 25 x 106 tons, and the atmospheric 
contribution  increases to ~60%. 

 

1.1.1. Mineralogy  

LOŸE-PILOT et al. (1986) and GUERZONI et al. (1997) have shown the relationship between eolian 

deposition and deep sea sedimentation, and found that the atmosphere contributes on average from 

10 to 30% of recent sediments. Here, we highlight differences among sub-basins and the possible role 

of mineralogy in identifying the sites where the atmospheric input is most important. 

The mineralogical signature may be used as an indicator of dust origin. Mineral dust mainly consists of 

a mixture of silicates (clay minerals, feldspar, quartz) associated with carbonates. The abundance of 

each of these minerals in dust is highly variable, mainly reflecting the source composition and its 
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evolution during transport. Several studies have examined specific minerals within the clay to identify 

source regions. For example, palygorskite has been used as an indicator of dusts of north-west African 

origin in samples collected over the MED (TOMADIN and LENAZ, 1989; MOLINAROLI and IBBA, 

1995; MOLINAROLI, 1996). 

Another approach is to look for mineral associations which are characteristic of dust sources. For 

example, illite is an ubiquitous clay and is not characteristic of any particular weathering regime, 

whereas kaolinite, which may also be produced in a variety of weathering conditions, is characteristic 

of desert weathering regimes.  A comparison of the mineralogy of dusts collected throughout the MED  

shows that illite reaches its highest value in the CMED and its lowest in the EMED (Tab.1.4). In the 

CMED mixed dusts are observed. Kaolinite is more abundant in dust originating from the eastern 

compared to western Sahara, the highest concentrations being observed off the Egyptian coast. 

Smectite is very common in the EMED but not in the WMED.  A comparison between dust and 

sediment has been attempted (CAQUINEAU et al., in press) by considering the difference between 

illite and kaolinite distributions in the Mediterranean and the illite/kaolinite ratio in the African source 

dust.  The comparison between the I/K ratio in dust and sediments is shown in Tab 1.4.  WMED dust 

transported from the Sahara originating from north-west Africa shows an I/K ratio of 1.8. CAQUINEAU 

et al. (in press) observed a range of I/K values from 2.4 to 1.6 in north-west Africa. The similarity of the 

I/K ratio between dust and sediment (I/K=1.8) in the WMED indicates that the major contribution to 

sedimentation in this region is from dust deposition from the western Sahara. This conclusion 

contradicts data from Table 1.3, which indicates an overwhelming river contribution in this region.  The 

fact that the sediment I/K ratio appears to be set by atmospheric dust probably indicates that a large 

fraction of the riverborne material is deposited on shelves. 

 

Tab. 1.4 - Average of clay mineral compositions and I/K ratio in Saharan dusts 
(D) and sediments (S) in MED basin. 

 
Sample Illite Chlorite Kaolinite Smectite I/K 
WMED (D) 53 9 29 9 1.8 
WMED (S) 48 10 26 16 1.8 
CMED (D) 66 12 16 3 4.0 
CMED (S) 45 12 13 30 3.5 
EMED (D) 32 5 38 25 0.8 
EMED (S) 15 5 35 45 0.4 
This average was compiled using data from several authors: 
CHESTER et al. (1984) (3 samples); MAZZUCCOTELLI et al. (1986) (3 samples); 
MOLINAROLI (1996) (10 samples) for the WMED. 
LENAZ et al. (1988) (5 samples) for the CMED. 
CHESTER et al. (1977) (7 samples) GANOR and FONER (1996); (17 samples); 
TOMADIN and LENAZ (1989) (3 samples) for the south-EMED 
TOMADIN (1981) (3 samples) for the (S) WMED 
TOMADIN and BORGHINI (1987) (4 samples) for the (S) CMED 
VENKATARATHNAM and RYAN (1971) (20 samples) for the(S) EMED 
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The CMED has an average I/K ratio of 4.0 in dust and 3.5 in sediments. This very high ratio shows that 

the dust is a mixture of Saharan and background dusts (European), since CAQUINEAU et al. (in press) 

demonstrated that the I/K ratio is always <2.4 in African regions. 

The EMED has a low I/K ratio (0.8) in dust and 0.4 in sediments. A relatively low I/K ratio (0.7) is 

associated with north east African sources by CAQUINEAU et al. (in press). The similarity between 

dust and sediment values again indicates that the major contribution to sedimentation is from dust 

deposition, in particular from the eastern Sahara. 

 

1.2. Sediment trap estimates 

 

Many sediment trap studies have been or are being carried out in the MED, e.g. Mediterranean 

Targeted Projects 1 and 2 (MTP1 and MTP2), but very few of these are useful for studying dust 

deposition, mainly because of their location relative to river inputs. 

For instance, among the traps in the WMED, very different results have been derived from those 

deployed in the Balearic basin (39°N, 3°E; “B” in F ig. 1.1) with mass fluxes of 50-70 g m-2 yr-1, 

compared to the DYFAMED site (43°N, 8°E; “D” in Fig . 1.1) where average fluxes are 31-35 g m-2 yr-1. 

In addition, the relative contribution of the lithogenic fraction is different between the two sites (60% 

and 25%, respectively).  The high flux and lithogenic contribution to the Balearic site is probably related 

to bottom resuspension and coastal run-off. 

The trap used in Paleoflux, MARFLUX (34°N, 20°E; ZI VERI et al., 1996; “P” in Fig. 1.1) is in the best 

location for dust flux measurement in the EMED, since river discharge is negligible in this region. The 

total annual average flux recorded in this 3000m deep trap deployed between November 1991 and 

August 1994, was around 25 g m-2 yr-1, with approximately 60% of lithogenic origin (RUTTEN et al., in 

press; ZIVERI et al., submitted). 

HEUSSNER and MONACO (1996) showed that two flux gradients of total mass are evident in the 

MED, and that they are related to trophic conditions. A gradient of decreasing flux is seen on the scale 

of the entire MED basin from west to east, roughly corresponding to the degree of oligotrophy.  Within 

each sub-basin, a second gradient of trophic conditions appears, of decreasing flux from north to 

south.  The inorganic carbon flux is observed to be slightly higher in the EMED, perhaps related to 

desert-derived carbonate inputs. The above authors conclude that seasonal variations in fluxes in the 

traps are essentially due to changes in continental input rates to the MED system, i.e., direct deposition 

of dust through rain and the effect of rain-induced river run-off (HEUSSNER and MONACO, 1996). The 

sensitivity of traps to river run-off explains why few of these sites can be used for absolute and relative 

quantification of Saharan dust export flux to the MED.  In fact, as far as we are aware, it has been 

difficult (if not impossible) to distinguish between lithogenic material from dust and that from river 

discharge in trap samples. 

Despite these problems, trap data from the DYFAMED (WMED) and Paleoflux (EMED) sites appear to 

be promising. At both sites, the lithogenic flux appears to be similar to or smaller than the eolian fluxes 
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estimated for the region from coastal sites (Tab. 1.2). It is very important that, in future trap work, 

wherever possible, sites that are suitable for the task of quantifying dust deposition are chosen.  The 

EMED is a particularly important region that needs more coverage of eolian deposition from sediment 

traps. 

 

1.3. Remote sensing and modelling 

 

In a series of recent papers, DULAC et al. (1996) and MOULIN et al. (1997a), presented an analysis of 

historical Meteosat data, which monitored dust export from Africa over the Mediterranean on a quasi-

daily basis between June 1983 and December 1994. These authors showed that, despite large daily 

variability, there were clear seasonal cycles with minima during the dry season (November, December 

and January). The general pattern is that dust transport begins over the eastern basin in spring and 

spreads over the western basin in summer. 

Tentative estimates of deposition fluxes were made from Meteosat vertically integrated dust 

concentrations, using simple deposition velocity approaches, on a yearly time scale at the DYFAMED 

station, and for shorter periods in the western basin (DULAC et al., 1996).  A similar paper was 

published with results for the DYFAMED station in the Ligurian Sea (MOULIN et al., 1997b).The former 

authors compared Meteosat data with measured aerosols at the Corsica site for a six-month period 

(1/2/87-31/8/87) and found the average measured flux was 0.024 g m-2 day-1 (equivalent to 

approximately 9 g m-2 yr-1), whereas Meteosat data yielded a flux of 0.01-0.03 g m-2 day-1 ( 4-11 g m-2 

yr-1) for the same period. 

DULAC et al. (1996) also compared  Meteosat-derived atmospheric fluxes in 1987 and 1988 with 

seawater dust fluxes measured in sediment traps at 200 m water depth during the same period at the 

DYFAMED station. If  the periods with sediment trap data are examined, there are results for 364 days 

over a 2-year period. Seasonal variations are shown in Fig. 1.2. The minimum and maximum 

Meteosat-derived fluxes bracket the trap fluxes in summer and autumn 1987 and again between spring 

and autumn 1988.  In both winters (1987 and 1988) the trap flux is greater than the maximum Meteosat 

estimates. 

The Meteosat estimates show a similar range for both years (3.5-10.8 and 3.6-11.0 g m-2 yr-1) while the 

sediment trap data show distinctly different fluxes (12 and 9 g m-2 yr-1) in the two years.  Some of this 

variability may be due to various short-term hydrological and biological processes that control the 

downward transport of particulate material in the water column. The susceptibility of trap data to short-

term variations is shown in Fig 1.3, showing contemporaneous trap fluxes and Meteosat estimates. 

 
2. Magnitude and fate of atmospheric trace metal in puts 
 
2.1. Trace metal concentrations in air 
 
Aerosols transported to the MED may be considered to consist of anthropogenic-rich “background” 

materials supplied continuously from Europe, upon which sporadic pulses of Saharan crust-rich dust 
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Fig. 1.2 - Seasonal Meteosat-derived (min/max) and sediment trap terrigenous 

fluxes at Dyfamed station, 1987-1988. 
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Fig. 1.3 - Time variations (seasonal scale as above) of Meteosat-derived and trap 
terrigenous fluxes (number of days is integration time of traps). 

 

 

are superimposed. These two “end-member” aerosols have strikingly different trace metal composition, 

and this is clear in samples collected on board as well as at coastal stations (see Tab. 2.1). 
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Tab. 2.1 - Mean trace metal concentrations (conc. units: ng m-3 of air) and EFcrust 
values for European anthropogenic-dominated and Saharan crust-dominated 
particulate aerosol populations collected over Tyrrhenian Sea (n=9, CHESTER et 
al.,1984 ) and at Sardinia (n=55, GUERZONI et al., in press).  
 

 European anthropogenic-dominated 
aerosol population 

(n = 5+48) 

Saharan crust-dominated 
aerosol population 

(n = 4+7) 
 Concentration EFcrust Concentration EFcrust 
 ship-Sardinia ship-Sardinia ship-Sardinia ship-Sardinia 

Al 112-210 1.0-1.0 2000-2929 1.0-1.0 
Fe 117-84 1.7-8.3 1249-1139 0.9-1.7 
Mn 4.3-5.4 3.5-1.5 19-24 0.8-1.1 
Cr 1.0-0.5 8.6-3.3 4.9-3.3 2.9-1.1 
Ni 1.3-5.3 15-21 3.1-7.3 2.8-4.1 
Zn 12-22 120-63 8-28 6-18 
Pb 1112 767-550 7-25 46-66 
Cd 0.44-017 1219-80 0.31-0.08 96-12 

 

Many studies have documented the airborne concentrations of trace metals over the Mediterranean Sea 

(DULAC et al., 1987; GUERZONI et al., 1988; BERGAMETTI et al., 1989; CHESTER et al., 1990, 1993; 

MIGON and CACCIA, 1990; MATEU et al., 1993; MIGON et al., 1993; Sandroni and Migon, 1997). Most 

metals have a relatively short residence time in the troposphere (between a few days and a few weeks; 

BERGAMETTI, 1987; BUAT-MÉNARD, 1993). They are not well mixed in the atmosphere and thus 

aerosols and rainwater are expected to exhibit strong spatial and temporal variability (BUAT-MÉNARD, 

1993). However, while seasonal variability is observed in the NW Mediterranean (NICOLAS et al., 

1995), spatial variability is rather low for metals such as Al, Cd, Cu, Fe, Pb and Zn, and the annual 

averages from 7 coastal sampling sites are within the same order of magnitude (Tab. 2.2). (CHESTER 

et al., 1990, 1993; GUIEU et al., 1997; GUERZONI et al., 1996; SANDRONI and MIGON, 1997). 

 
Tab. 2.2 - Average trace metal concentrations and EFcrust values for particulate aerosols from a 
number of Mediterranean Sea sites (conc. units: ng m-3 of air) 
 

 
 

 
Spain1 

 
Corsica2 

 
Sardinia3 

 
Erdemli4 

 
Cap Ferrat5 

 
Vignola6 

 Conc. EFcrust Conc. EFcrust Conc. EFcrust   Conc. EFcrust Conc. EFcrust 
Al 398 1 168 1 480 1 680 1 370 1 109 1 
Fe 316 1.3 144 1.25 278 0.85 685 1.5 320 1.3 - - 
Mn 10 2.2 4.3 2.7 7.4 1.3 12.6 1.6 11 262 1.7 1.4 
Cr 1.8 3.4 - - 0.51 0.89 10.8 13 2.5 5.6 - - 
Cu 7.9 29 2.1 18 - - - - 6.2 24 1.9 26 
Zn 50 148 l9 133 21 52 19 33 41 130 12 130 
Pb 50 837 16 635 14 194 30 294 58 1045 9 550 
Cd 0.60 628 0.66 1633 0.30 260 0.19 116 0.60 676 0.11 423 
(1) CHESTER et al. (1993); (2) BERGAMETTI et al. (1989); (3) KEYSE (1995), GUERZONI et al. (1996); (4) 
KUBILAY and SAYDAM (1995); (5) CHESTER et al. (1990); (6) MIGON et al. (1993) 
 
 
2.2 Metal fluxes (total, dry, wet) 

Several authors who have attempted to estimate the atmospheric fluxes of metals to the surface 

ocean (CHESTER et al., 1989; DULAC et al., 1989; GUIEU et al., 1991; MIGON et al., 1991; 
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GUERZONI et al., 1993; NICOLAS et al., 1995; MIGON et al., 1997) have pointed out the difficulties 

encountered in quantifying the different modes of atmospheric inputs, i.e. wet/dry/total and 

dissolved/particulate. While evaluation of wet inputs, calculated from rainwater concentration and 

rainfall amount, is generally reliable, that of dry deposition is more problematic. It has been calculated 

by a number of methods: i) on the basis of experimental cascade impactor data (e.g., BERGAMETTI, 

1987; REMOUDAKI, 1990); ii) from theoretical models (e.g., DULAC et al., 1989); and iii) with 

surrogate surfaces (e.g., DOLSKE and GATZ, 1985; BAEYENS et al., 1990; GUIEU, 1991). Results 

differ greatly according to methodology.  Comparisons between estimates must be interpreted with 

caution, principally as a result of poor knowledge of elemental mass-size distributions (DULAC et al., 

1989; MIGON et al., 1991; BUAT-MÉNARD, 1993). For example, in the NW Mediterranean, DULAC et 

al. (1989) proposed a theoretical dry deposition rate of 0.04 cm s-1 for Pb, while REMOUDAKI (1990) 

gave an experimental value of 1.9 cm s-1. Dry deposition rates are not well known for submicrometer 

particles (SLINN, 1983; ARIMOTO and DUCE, 1986), and difficulties increase when particle size 

exceeds 10 µm: in this case, deposition rates are very high and their estimation becomes very 

questionable (DUCE et al., 1991). Moreover, phenomena such as fog or dew, which are common in 

coastal areas, significantly enlarge particles, thereby increasing their deposition rate (BERGAMETTI, 

1987). Despite these problems, there is a significant amount of data on trace metal atmospheric 

fluxes, mainly for the Western and Central MED. They are listed in Tab. 2.3, which shows that the 

range of fluxes is quite high for some metals (e.g., Al, Cd, Zn), and lower for others (Cu, Pb, Fe, Ni) 

(GUIEU et al., 1997; GUERZONI et al., in press). 

 

Tab. 2.3 - Range of total atmospheric fluxes (insoluble and soluble fractions), calculated 
from wet and dry deposition. 1=GUERZONI et al. (in press); 2=GUIEU et al. (1997). 

 
 CMED1 NWMED2 

µmoles m -2 yr -1 insoluble soluble insoluble soluble 
Al 11250-33000 330-890 4900-31500 370-3780 
Cd 0.1-0.3 0.5-2.8 0.9-3.6 1.8-8.0 
Cu 50-70 45-72 22-30 12-20 
Fe 2600-7300 90-180 12500-14500 570-2500 
Ni 8-32 17-24 7-9 7-9 
Pb 5-38 5-24 6-11 4-9 
Zn 46-76 210-460 15-1000 15-1150 

 

2.3 Fate of trace metals in seawater 

 

The magnitude of air-to-sea fluxes of trace metals partly depends on their concentrations in the air. 

However, the fate of an atmospherically-transported trace metal, once deposited at the sea surface, 

depends on its thermodynamic speciation in seawater, its speciation in the parent aerosol, and the 

kinetics controlling any speciation change.  Aerosol speciation may be assessed by determining the 

partitioning of trace metals between the following fractions: (i) exchangeable, the most mobile, (ii) 

oxide/carbonate, intermediate mobility, and (iii) refractory, the least mobile. The speciation of trace 
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metals in aerosols is a function of the source of the aerosol since some trace metals have very 

different speciation signatures in anthropogenic-rich and crust-rich “end-member” MED aerosols 

(CHESTER et al., 1996), and chemical changes occur during passage and transformation in the 

atmosphere prior to deposition on the sea surface. 

Al and Fe are generally refractory in both end-member aerosols, Mn is speciated between all three 

fractions in both end-member aerosols, but Cu, Zn and Pb switch speciation signatures between the 

two end-member aerosols, being essentially refractory in crustal aerosols and exchangeable (i.e., 

mobile) in anthropogenic ones. Aerosols are removed from the air by dry fall-out and wet precipitation 

scavenging deposition modes. 

In the dry mode, aerosols reach the sea surface directly and trace metal solubility is constrained by 

aerosol-sea water reactivity. There is a direct relationship between the extent to which a trace metal is 

soluble in seawater and the extent to which it is held in the exchangeable fraction of an aerosol (Fig. 

2.1). For Al and Fe in both end-member aerosols, <~10% of their total concentrations is in the form of 

exchangeable associations and both are also relatively insoluble in seawater. However, since both 

metals are present in relatively high concentrations in aerosols (3-8% by weight), even a solubility of a 

few percent can release considerable quantities of Al and Fe to seawater in a dissolved form. Mn has 

between ~20% and ~50% of its total concentration in the exchangeable fraction of each end-member 

aerosol and is relatively soluble, with ~35%-~50% of the total amount from each phase dissolving. Cu, 

Zn and Pb have significantly higher solubilities from the anthropogenic-rich than from the crust-rich 

end-member, due to their different speciation signatures in the two aerosol types. This is important, 

because it means that the aerosol seawater solubilities of Cu, Zn and Pb are reduced when crust-rich 

Saharan inputs perturb the anthropogenic-rich background aerosol over the MED. 

 

 

Fig. 2.1 - Relationship between percentages of total concentrations of trace metals soluble in seawater 
and in exchangeable associations in a) anthropogenic-dominated and b) crust-dominated 
aerosols. After CHESTER et al. (1993). 

 

In the wet deposition mode, trace metal solubility is constrained initially by aerosol-rainwater reactivity 

since some metals are already in solution prior to the deposition of the aerosols on the sea surface. 
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Solubility is still a function of trace metal speciation in the parent aerosol, as illustrated by the 

dissolved/particulate speciation of a number of trace metals in rainwater from Western Mediterranean 

sites (Tab. 2.4). Al and Fe are generally insoluble in all types of rainwater (<20% of total 

concentrations), and Cd and Mn are relatively soluble (60-90% of total aerosol). Cu, Zn and Pb 

solubilities vary considerably from one rainwater sample to another and from site to site, e.g. that of Pb 

varies from ~20% at Sardinia to ~70% at Cap Ferrat. 

 

Tab. 2.4 - Average dissolved/particulate speciation of trace metals in rainwaters from a 
number of Mediterranean Sea sites; data given as % of total trace metal concentration 
in dissolved phase. 

 

 Cap Ferrat* Tour du Valat* Sardinia# Corsica* 

Al 
Fe 
Mn 
Ni 
Co 
Cu 
Zn 
Pb 
Cd 

18 
- 

60 
54 
61 
82 
- 

65 
92 

19 
11 
63 
58 
50 
71 
68 
52 
75 

2 
3 
- 
- 
- 
- 
- 

21 
75 

8 
13 
67 
- 
- 

49 
76 
48 
- 

* GUIEU et al. (1997); # GUERZONI et al. (1997) 

 

The speciation and solubility of trace metals is strongly affected by rainwater pH. Scavenging of 

anthropogenic-rich aerosols results in rainwater having pH values of <~4-5. In contrast, the 

scavenging of Saharan dust, with relatively high carbonate content, yields rainwaters with pH values of 

>~5. Many adsorption/desorption reactions are pH-dependent, particularly those affecting 

exchangeable trace metals. This may be illustrated for Pb in a series of rainwaters collected at Cap 

Ferrat (CHESTER et al., 1990). The most striking feature in the pH vs solubility plot for Pb is the 

presence of the classical pH adsorption edge (Fig. 2.2), which is typical of adsorption/desorption 

processes at particulate-water interfaces and has been studied by various authors, in both rain and 

aerosols (CHESTER et al., 1993; LIM et al., 1994; SPOKES and JICKELLS, 1996). For Pb, this 

adsorption edge lies in the pH region ~4.8-~5.8. On the more acidic side, ~80% of total Pb is in the 

soluble form, whereas on the alkaline side only ~10% is soluble. However, some authors note that the 

low solubility region is defined by a relatively small number of points, reflecting the few cases studied 

of rain with pH >6 (LIM et al., 1994; SPOKES and JICKELLS, 1996). This observation is important, 

given that these waters normally contain variable amounts of particulate material and that particle 

concentrations, grain-size, and physical surface characteristics (scavenged clays  or silicate mineral 

aerosol) may also be important parameters in adsorption models of trace metals in rain  (LIM et al., 

1994). In fact, aerosol dissolution experiments performed at particle concentrations ranging from 3 to 

300 mg l-1 (the usual particle concentrations found in MED rainwater, see Tab.1.1) showed that Cd 

and Pb have low solubility at high particle concentrations (Fig. 2.3). The solubility of Pb was also found 
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to increase with increasing  EFcrust values and with increasing content of the finest (<1µm) grain-size of 

the aerosols (GUERZONI et al., in press). 

 

 

Fig. 2.2. - pH solubility of Pb in Western Mediterranean rainwaters (after 
CHESTER et al., 1990). 
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Fig. 2.3 - Lead solubility versus particulate load in aerosol dissolution laboratory 
experiment (from GUERZONI et al., in press). 
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2.4. Atmospheric versus riverine inputs 

 

Having identified atmospheric input as being important to the ocean, what problems remain in 

understanding the magnitude and significance of this input mode, with respect to riverine input? 

Aerosol undersampling problems may be remedied by increased sampling effort. Alternatively, 

atmospheric fluxes may be calculated from atmospheric transport and deposition models (ERDMAN et 

al., 1994), using information on emission source strength (NRIAGU and PACYNA, 1988; GESAMP, 

1989; AXENFELD et al., 1992). 

We present here two examples of comparison between riverine and atmospheric inputs using 

measurements made in the WMED and the Adriatic, Central Mediterranean (CMED).  

 

2.4.1. Measurements.  

The total atmospheric inputs of several trace elements and potential pollutants are compared with total 

riverine trace metal inputs for the Adriatic and the NW Mediterranean in Tab. 2.5. 

 

Tab. 2.5 - Comparison between total inputs of atmospheric and riverine origin for Adriatic and NW 
Mediterranean (all data in ton yr-1). * Al and Fe: ton x 1000; # Adriatic Sea area: 112,000 km2; from 
ROSSINI and GUERZONI (1996); § NW Mediterranean Sea area: 180,000 Km2, from GUIEU et al. 
(1997). 
 
 tons year-1 Al* Fe* Cd Pb Cu Ni Zn 

 
Adriatic# 

atmosphere 
 

Po river 

29 
 

86 

14 
 

74 

18 
 

7 

311 
 

151 

489 
 

281 

148 
 

514 

177 
 

935 

 
NW Med.§ 

atmosphere 
 

Rhône & Ebro rivers 

97 
 

441 

151 
 

232 

126 
 

13 

579 
 

318 

486 
 

505 

162 
 

450 

12,600 
 

1545 

 

The data indicate that the atmosphere supplies 16-90% of the total input of these elements.  When 

dissolved fluxes are compared (the form most likely to impinge on surface water biogeochemical 

cycles), the influence of atmospheric input is even more pronounced (Tab. 2.6). 

 

Tab. 2.6 - Comparison between dissolved inputs of atmospheric and riverine origin for Adriatic  (area: 
112,000 km2) and NW Mediterranean (area: 180,000 Km2). # Adriatic Sea: from ROSSINI and 
GUERZONI (1996); § NW Mediterranean Sea: from GUIEU et al. (1997). 
 
 tons year-1 Al Fe Cd Pb Cu Ni Zn PAH PCB 

 
Adriatic# 

atmosphere 
 

Po river 

1039 
 

60 

573 
 

30 

13 
 
4 

152 
 

10 

332 
 

66 

116 
 

148 

1560 
 

215 

  

 
NW Med.§ 

atmosphere 
 

Rhône & Ebro rivers 

10 
 
1 

16 
 
1 

99 
 
2 

252 
 
8 

189 
 

175 

81 
 

115 

6813 
 

105 

45 
 

15 
 

12 
 

1 
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For example the atmosphere is 5-50 times more important than rivers for dissolved Zn fluxes and 15 - 

30 times more important for Pb fluxes.  A similar pattern is seen for Cu.  The dramatic difference 

between total particulate and dissolved fluxes underscores the important role played by speciation of 

trace elements in rainwater in determining their flux to the surface ocean. 

 

2.4.2. Models.  

Only by using models can we extend the same comparison to each of the three basins of the MED 

(Tab. 2.7). This comparison is meant to show the same approach as the two tables above but is 

extended to other basins for total fluxes. 

 

Table 2.7 - Comparison of total riverine (R) and atmospheric (A) inputs to Mediterranean 

Sea (all in tons yr-1). Data on Pb and Zn riverine inputs from UNEP (1984), on atmospheric 

input from ERDMAN et al. (1994) and GESAMP (1989). 

________________________________________________________________________ 
       Area             Pb          Zn 
Sub-basin  (106km2)     R    A     R   A 
________________________________________________________________________ 
Western Med  0.84   2200 3072    9200 1125 
Central Med  0.80   1770 2757  10700   809 
Eastern Med  0.70     850 1605    4800   590 
 
Total    2.34   4820 7404  24700 2524 
% atmosphere        61     9 
________________________________________________________________________ 

 

Available estimates of riverine and atmospheric inputs were computed on the basis of average 

pollutant concentrations and mean water discharges for rivers (UNEP, 1984) and by applying a 

Eulerian-Lagrangian model for atmospheric transport and deposition (ERDMAN et al., 1994). 

Several sources of errors are associated with these estimates. An example is given in Tab. 2.8, 

showing a comparison between measured and model data for Pb and Zn in the Adriatic (equivalent to 

WMO area MT5; see ERDMAN et al., 1994) and north-western Mediterranean (equivalent to WMO 

area MT2; see ERDMAN et al., 1994). In these models, the authors state that the discrepancy 

between regional mean values for Pb does not exceed 20%, but very often individual data are less 

reliable. For Zn, the total underestimation of mean values by the models may be 10 times lower, 

mainly because of underestimation of the emission strength . 

These comparisons of modelling results with measurement data for atmospheric deposition should 

only be considered as approximate, for the following reasons (EMEP, 1994): i) models give grid 

square (e.g. 150x150 km) average values and measurements give point values, and variations 

between measurement and model data increase with increasing grid size and decreasing averaging 

time; ii) as completeness of measurement data should be 75-80% over a rather long period of time 

(e.g., at least one month) to be used for comparison with modelling results, better spatial and temporal 

data rage is needed; iii) measurement sites should be representative for the whole grid square 
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(meteorological conditions, surface characteristics, local pollution sources, etc.); iv) several monitoring 

sites are needed for a square of 150x150 km and correlation analysis between sites should be 

applied, taking into account seasonality, mixing, time scale, meteorology, emission and topography; v) 

measurement and modelling data used for comparison purposes are sometimes made at different 

times (or even in different years) and the year-to-year variability of meteorological conditions 

introduces uncertainty into single-year model (or measurement) estimates; vi) emissions used for 

modelling are rather uncertain and sometimes underestimated, and are mainly based only on annual 

estimates from major sources without the required temporal and spatial distributions. 

 
Tab. 2.8 - Comparison between atmospheric (measured and modelled) and riverine inputs (measured 
and estimated). 
 

Region Input  Pb tons y-1 Zn tons y-1 Reference 
 
 
 

Adriatic 

 
atmospheric 

 
 

 
measured 

model 

 
311 
871 

 

 
177 
246 

 

 
ROSSINI and GUERZONI (1996) 

ERDMAN et al. (1994) 

  
riverine 

Po river 
measured 
estimated 

 
151 
1300 

 
935 
7900 

 
ROSSINI and GUERZONI (1996) 

UNEP (1984) 

 
 
 

NW Med 

 
atmospheric 

 
 

 
measured 

model 

 
579 
999 

 

 
12600 

337 
 

 
GUIEU et al. (1997) 

ERDMAN et al. (1994) 

  
riverine 

Rhône & Ebro 
measured 
estimated 

 
318 
800 

 
1545 
2400 

 
GUIEU et al. (1997) 

UNEP (1984) 

 
It may be seen that atmospheric data are in agreement within a factor of 2-3, whereas huge differences 

are evident for riverine inputs. Some of these differences are due to the reduction in run-off and 

discharge over the last 10-20 years, not always accounted for in the models. Furthermore, riverine 

model data are derived from run-off estimates and contain few real measurements, therefore providing 

only an order-of-magnitude estimate of the elemental input for the MED basin. In addition, the 

differences between models and measured data may be due to the behaviour of elements in estuarine 

areas. The chemical behaviour of elements in this zone is very difficult to generalise. For some 

elements there is removal from the water column in the estuarine zone while for others there is no 

effect. In some cases (e.g. Cd), there is addition of the element to the dissolved phase as a result of the 

competitive desorption of Cd bound to the surface of suspended particulate material by seawater ions. 

While the behaviour of a particular element can be characterised in a particular estuary, different 

physico-chemical regimes (e.g. pH, ionic strength, presence of dissolved organic matter, etc.) in a 

different estuary can lead to different behaviour in the mixing zone. 

 
2.5. Case studies.  
 
2.5.1. The atmospheric “signature” in seawater. For some reactive trace elements including Al, Mn and 
most notably Pb (BRULAND et al., 1991; BUAT-MENARD, 1993; PATTERSON and SETTLE, 1987), 



Guerzoni et al.,”The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea” 

 19 

the shapes of dissolved oceanic profiles with surface water concentration maxima suggest that 

atmospheric input  is of major importance.  For other elements which are not so rapidly removed from 

seawater by scavenging processes, internal biogeochemical cycles mask such input signals. 

 

Al and Fe. It has been shown above that Al and Fe have only relatively low solubilities from aerosols 

but, since they are present in large concentrations, even low solubility can deliver significant quantities 

to the dissolved seawater pool from dust pulses. 

The effect of dust deposition of Al on MED surface waters is dramatically visible in its effect on the 

surface water concentrations. The extremely high concentration of this element in crustal materials 

(8.1%; TAYLOR, 1964), and its low concentration in seawater makes it a particularly good tracer of the 

partial dissolution of eolian dust in MED surface waters. In fact, as a result of biological and convective 

transport, the deep waters of the MED have the highest concentrations of dissolved Al of any basin in 

the world, consistent with their receiving the greatest rate of deposition of eolian material. The effect 

that this has on the Al budget has been recognised by several workers (HYDES et al., 1988; 

MEASURES and EDMOND, 1988; CHOU and WOLLAST, 1997), the latter indicating that the partial 

deposition of eolian dust in the WMED was responsible for some 20 times as much input of Al as that 

supplied by rivers. That the eolian input is basin-wide is shown by the progressive build-up of Al from 

west to east along the advective flow path of the incoming Atlantic surface water (Fig. 2.4). 
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Fig. 2.4 - Distributions of dissolved Al and Fe in surface waters of Mediterranean. 
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In this figure, all post-1980 surface water Al values in the open Mediterranean are plotted as a function 

of longitude.  Data from the region of the Gulf of Lions are excluded, to eliminate the local influence of 

the Rhone discharge.  In addition, early Corsican nearshore data are excluded, to eliminate local 

artifacts. 

The  data distribution is quite distinctive in that there is an unmistakable increase in Al concentrations 

from 9-13 nM at the Strait of Gibraltar (6 W) to ~75 nM at 26 E in the eastern basin. The anomalously 

high value at  ~5 E (100 nM) results from elevated deep water mixing into the surface waters in 

December 1988, during a convection episode in the Western Mediterranean Deep Water formation 

region.  The general trend indicates something of the order of a 60-nM Al enrichment of inflowing 

Atlantic surface waters during their eastward transit from the Strait of Gibraltar to the eastern basin. 

The magnitude of this Al enrichment may be compared with estimates of atmospheric deposition to the 

region. GUIEU et al. (1997), using atmospheric data from coastal collection sites, estimated an annual 

deposition of some 0.38 to 3.8 mmoles of dissolved Al m-2 to the surface waters of the north-west 

Mediterranean.  Such an input into a 50-m mixed layer, over the advective flow path of the Atlantic 

water, could easily raise Al concentrations in inflowing surface water to the values seen in the eastern 

basin over the time-scales of surface water renewal in the Mediterranean (1-10 years). 

While the impact of dust is readily observed and is quantified in the Al signal, its effect on Fe 

concentrations is more difficult to quantify.  The largest problem is the small data base of reliable 

measurements for Fe in the Mediterranean. Fig. 2.4 plots all the surface water dissolved Fe data of 

MORLEY et al. (1997) available in the EROS-2000 data base which appear to be oceanographically 

consistent. The data of MORLEY et al. (1997) show a wide range of concentrations from 0.11 nM in 

the Strait of Gibraltar to 2.83 nM south of the Gulf of Lions. However, unlike the Al, there is no clear 

geographic trend associated with these values. Nevertheless, it may be stated that, on the basis of this 

data set, Fe levels are generally above 1 nM within the Mediterranean. It therefore seems reasonable 

to conclude that Fe cannot be considered as limiting factor to phytoplankton. This appears to be 

probable merely on the basis of available nutrients.  Since the surface Mediterranean is low in 

nutrients, Fe demand is similarly low.  Using Fe limiting conditions and assuming a C:N ratio of 6.7, 

0.5 nM of Fe (at the low end of the observed amount of Fe in 1-L of seawater) is capable of removing 

7.5 µM of N from surface waters, an extremely large amount of N to be found in 1-L of seawater in this 

nutrient-impoverished sea. 

In summary, dust input to the Mediterranean clearly affects surface water trace element budgets, and 

this is most visible for Al for which a large data base of modern observations exists. Although surface 

water Fe concentrations in the Mediterranean also appear elevated, the small size and geographical 

extent of the existing data base precludes direct association of these values with dust deposition 

events.  It is unlikely that dust deposition to the surface Mediterranean would spur primary production 

through either the relief of Fe-limiting conditions or the provision of a bioactively reduced Fe species. 
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2.5.2. Pb in atmosphere and seawater. The EROS 2000 data base on lead concentrations over the 

period 1989-1993 gave an average of 100pM in surface waters and 80 pM in bottom waters. A mass 

balance for the WMED has been computed (MILLIMAN and MARTIN, 1997), and the output/input ratio 

for lead  in the whole basin  is 0.8, with a residence time of 5.2 years (water residence time being ~15 

years). A tentative budget of dissolved lead in the WMED (WOLLAST, pers. comm.) indicates an 

accumulation in the water of 440 tons yr-1 for the period 1970-1985, related to the constant increment 

in consumption of leaded gasoline in that period.  

In contrast,  a recent paper (MIGON and NICOLAS, 1998) shows a reduction (over the period 1987-

1995) of atmospheric fluxes of dissolved Pb from 3.5 to 1.5 mg m-2 yr-1, and of surface water 

concentrations in the WMED (central Ligurian Sea) from 300 to 120 pM. The amount of Pb in inflowing 

rivers has probably decreased in a similar way to the atmospheric input. However: i) the natural Pb 

component is probably higher in rivers than in the atmosphere, because of soil erosion; ii) a previous 

study (MIGON, 1993) showed that riverine Pb fluxes are far lower than atmospheric ones, and the loss 

of atmospheric Pb was estimated at >90%; iii) Pb dissolved in fresh water tends to precipitate and 

settle close to the river mouth (SHARP and NARDI, 1987; WINDOM et al., 1988; DORTEN et al., 

1991), which lowers the role of the riverine contribution to offshore marine Pb concentrations. These 

results confirm the importance of the atmosphere in delivering Pb to surface waters and in controlling 

its concentration. Figure 2.5 illustrates the temporal evolution of  dissolved Pb concentrations in 

surface waters (upper 100 m), together with mean atmospheric fluxes. The two curves have the same 

shape, which a posteriori indicates that the introduction of automotive Pb into the marine environment 

essentially occurs through the atmospheric pathway. 

 

 

Fig. 2.5 - Pb atmospheric flux and mean marine Pb concentrations (0-100 m) (from 
MIGON and NICOLAS, 1998).  
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3. Atmospheric input of nutrients: estimates and im pacts 

 

The importance of the atmosphere as a source of nutrients, especially nitrogen, for terrestrial 

ecosystems was recognised as a by-product of studies of the impact of acid rain in the early 1980s. At 

the end of that decade, atmospheric nitrogen deposition to marine systems began to be investigated 

and its importance for the global ocean was assessed (DUCE, 1986). For example, it has been noted 

that the atmospheric input of nitrogen may be partly responsible for the eutrophication of estuarine or 

coastal waters and the appearance of harmful algal blooms, by either direct input or through the 

watershed (FISHER et al., 1988; MALLIN et al., 1993; PAERL et al.,1993). 

Despite early observations of P limitation (FIALA et al., 1976; BERLAND et al., 1973, 1980), recent 

works suggest that MED surface waters are nitrogen-limited (ANDERSEN and NIVAL, 1988; OWENS et 

al., 1989).  In fact, there is growing evidence that the EMED is phosphorus-limited (KROM et al.,1991) 

and that the WMED is probably N-limited (RAIMBAULT and COSTE, 1990; THINGSTAD and 

RASSOULZADEGAN, 1995), or that limitation shifts from nitrogen to phosphorus and vice versa 

depending on the period of the year (FIALA et al., 1976, DOLAN et al., 1995) or the area considered 

(WOODWARD and OWENS, 1989). The unique high levels of N/P ratios in the MED (20/27) compared 

with other open ocean averages (15) may reflect this situation, and are probably evidence of P 

limitation. 

 

3.1. Atmospheric inputs of nitrogen to the Mediterranean  

 

While there are many natural sources of fixed nitrogen to the atmosphere - NO3 from soils and NH3 from 

wetlands - in the northern hemisphere the main sources are anthropogenic (NOx from industrial 

combustion and vehicle traffic, HNO3 from vehicle traffic, NH3 emissions from intensive farming). The 

most abundant data are for inorganic wet deposition. Data for the WMED and EMED are listed in Table 

3.1. 

 
Tab. 3.1 - Dissolved inorganic nitrogen (DIN) wet deposition (a: LOŸE-PILOT et al., 1990a; b: MIGON et 
al., 1989; c: LOŸE-PILOT et al., 1990b; d: GUERZONI et al., 1993; e: LE BOLLOCH and GUERZONI, 
1995; f: HERUT and KROM, 1996). 
 

 Field data Best estimates 
in sub-basins 

 

Studied site Period Range  
(annual basis) 

NWMED WMED EMED Mediterranean 

  µmol m-2 d-1 µmol m-2 d-1 µmol m-2 d-1 1010 mol yr-1 

        
French coast - Camarguea feb 88/jul 89 73      
French coast - Cap Ferratb 86/87 119/142     2,5 / 7,5  
Corsica - Bavellac 84/86 126 / 150 100 80 50 50 / 80 4,6 / 7,3  
Sardinia - C.Carbonarad 91/94 47      
Sardinia - Torregrandee 92/93 41 / 56      
Israel - Haifa+ South-EMEDf 92/95 65   59 72 6,1 
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Atmospheric input of wet inorganic nitrogen. The average wet dissolved inorganic nitrogen (DIN) flux to 

the north-west Mediterranean of ~100 µmol Nm-2 d-1 (LOŸE-PILOT et al., 1990a) is somewhat higher 

than that to the south-east Mediterranean, which is ~60 µmol Nm-2 d-1 (HERUT and KROM, 1996), the 

value for the whole Mediterranean being between 50 and 80 µmol Nm-2 d-1 (LOŸE-PILOT et al., 1990a). 

Nitrate and ammonium contribute almost equally to the DIN, while nitrite is normally less than 3%. 

 

Atmospheric input of dry inorganic nitrogen. Dry deposition of inorganic nitrogen includes gas and 

particulate deposition.  Only annual average data  are available for atmospheric particulate inorganic 

nitrogen species. Values in the NWMED are 1.71 and 0.85 µg m-3 for NO3
- and NH4

+, respectively 

(KLEIN, 1998), and in the EMED 1.51 and 0.97 µg m-3 for NO3
- and NH4

+
 (MIHALOPOULOS et al., 

1997). These coastal values are in good agreement with the mean concentrations of 1.45 and 1.22 µg 

m-3 for NO3
- and NH4

+ obtained by MEDINETS (1996) from shipboard sampling over the whole  

Mediterranean. The reported values for particulate dry deposition depend on the deposition velocities 

chosen for NO3
- and NH4

+, the best estimate for the NWMED being 25 µmol N m-2 d-1 (KLEIN, 1998). 

Gas concentration measurements are very scarce, especially for NH3 which is assumed to be negligible 

regarding N deposition to the Mediterranean. The few HNO3gas measurements are from urban sites. 

Fig. 2.6 shows the partitions of various inorganic species and forms in the atmospheric deposition of 

nitrogen for the NWMED. 

 

NH4
+ w

NH4
+
 dp

NH3  dg

HNO3 dg

NO3
-
 dp

NO3
-
 w

 

Fig. 2.6 - Relative importance of atmospheric inputs of different N species to NW 
Mediterranean; w=wet dp=dry particulate, dg=dry gaseous. 
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Total inorganic nitrogen deposition (Table 3.2). If only particulate dry species are taken into account, 

nitrogen dry deposition represents 25-33% of wet deposition in the north-west basin (LOŸE-PILOT et 

al., 1990, KLEIN, 1998); taking HNO3gas into consideration would increase the influence of dry 

deposition to equal wet deposition in coastal urbanised zones. Dry deposition equal to half that of wet 

deposition seems to be a realistic assessment for the open sea. Results are summarised in Table 3.2, 

which also lists data from the UNEP Mediterranean Pollution (MED POL) Project (computed from 

models) for 1991 (ERDMAN et al., 1994; UNEP, 1984). Total inorganic nitrogen deposition varies 

between 214 µmol N m-2 d-1 for the Adriatic to about 48 µmol N m-2 d-1 for the Central Mediterranean 

(UNEP zone VII) (ERDMAN et al., 1994), agreeing well with the previously estimated values of 105 

µmol N m-2 d-1 for the WMED and 65 µmol N m-2 d-1 for the EMED (LOŸE-PILOT et al., 1990b).  

Distance from the source and climatological conditions appear to be the major factors which control 

nitrogen inputs. If the DIN flux to the southern oceans, ~ 6 µmol N m-2 d-1, represents the natural 

background level, then 90% of the total DIN flux into the Mediterranean is of anthropogenic origin. 

 

Tab. 3.2 -Total nitrogen deposition (a: LOŸE-PILOT et al., 1993, b: KLEIN, 1998, c: LOŸE-PILOT, 
1998, d: ERDMAN et al., 1994); p = particulate, g = gaseous species. 

 
 Best estimates  

 NWMED WMED EMED Mediterranean 
 µmol m-2 d-1 µmol m-2 d-1 µmol m-2 d-1 µmol m-2 d-1 1010 mol yr-1 

Field data      

dryp= 1/3 weta,b 125 105 65 65 / 105 5,6 / 9,0 
dryp+g= 1/2 wetc 150 120 75 75 / 120 6,4 / 10,2 

Model      

(UNEP MAP 94)d 117 107 80 89 7,6 
   without Adriatic: 

69 
  

 

Organic nitrogen. The importance of organic nitrogen in total atmospheric nitrogen deposition has 

recently been re-evaluated; it may represent half of the input of inorganic forms on a regional scale and 

be equal to them for global ocean (CORNELL et al., 1995; DUCE et al., 1997). The source of organic 

nitrogen is not known, but CORNELL et al. (1995) believe that a large fraction of it is anthropogenic. 

The few measurements of organic nitrogen content in the Mediterranean atmosphere (SPITZY et al., 

1990; LOŸE-PILOT et al., 1992) indicate that total amino acid concentrations in aerosols and rainwater 

are small (<5%) relative to inorganic species. It is clear that further studies are needed to assess the 

content, speciation and bioavailability of organic nitrogen in general and in the Mediterranean 

atmosphere in particular. 

 

3.1.1. Atmospheric versus riverine inputs of nitrogen in the Mediterranean. The DIN atmospheric input to 

the NWMED is in the same range as the Rhone input, which is the major water and nutrient riverine 

output to the WMED. If the entire WMED is considered (LOŸE-PILOT et al., 1990b), then atmospheric 
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input - derived from field data - is probably higher than that of rivers. Atmospheric input of N (1084x103  

tons yr-1) is equal to the riverine input (1000 x103 tons yr-1) for the whole Mediterranean according to 

UNEP/WMO estimations (BASHKIN et al., 1997), the atmospheric input being predominant in the 

southern zones. If the fraction of riverine input which is derived from the atmosphere is taken into 

account, the atmospheric input is ∼60% of the total continental supply of nitrogen to the Mediterranean 

(BASHKIN et al., 1997). 

Due to the fact that riverine nutrients are removed by biological activity in estuarine and proximal coastal 

zones, atmospheric input is probably the main source of nitrogen for the open sea, even in the northern 

zones of the Mediterranean. 

 

3.1.2. Impact of atmospheric input of nitrogen on primary production. Atmospheric input of N contributes 

to new production (DUGDALE and GOERING, 1967; EPPLEY and PETTERSON, 1979; DUCE, 1986), 

which is the primary production fuelled by nutrients originating outside the photic zone, as opposed to 

production fuelled by recycled nutrients from within the photic zone. Assuming that the assimilation of 

nitrogen is in the Redfield ratio to carbon (16/106), then the atmospheric input of nitrogen may account 

for new production of about 3.8 g C m-2 y-1 in the NWMED, 2.5 g C m-2 y-1 in the SWMED, and 2.1 g C 

m-2 y-1 in the SEMED. 

For coastal zones such as the Gulf of Lions, where total primary production is as high as 130-180 g C 

m-2 y-1 (MOREL et al., 1990; TUSSEAU and MOUCHEL, 1995) and new production is approximately 

one-third of the total, then the atmospheric input of nitrogen represents only about 6-10% of new 

production, while the Rhône river provides ∼50%. However, in oligotrophic zones in the WMED, primary 

production is about 50 g C m-2 y-1 and new production is as low as 5 g C m-2.yr-1. In this case, the 

atmospheric N input of 2.5-3 g C m-2 y-1 represents up to 60% of new production. This contribution is 

somewhat lower in the oligotrophic zones of the EMED, where new production has recently been re-

estimated at 16.7 g C m-2 y-1 (KROM et al., 1991). In this case, the atmospheric input of nitrogen, 2.1 g 

C m-2 y-1
, represents ~12% new production. 

 
3.2. Atmospheric input of phosphorus 
 
The atmospheric input of phosphorus has received less attention than that of N, as it is assumed to be 

less important. The atmospheric input of dissolved inorganic phosphorus to Cap Ferrat is estimated at 

1.4 µmol m-2 d-1 and to be between 0.4 and 1.4 µmol m-2 d-1 for the NWMED (MIGON et al., 1989). Total 

inorganic phosphorus deposition to the WMED was determined to be 3.5 µmol m-2 d-1 from 3 years of 

samples collected  in Corsica.  Crustal material made up 40% of this flux, and the dissolved fraction was 

estimated to be between one- and two-thirds of the total (BERGAMETTI et al., 1992). 

The wet deposition of total inorganic phosphorus to the SEMED, estimated from 2 years of 

measurements on the northern coast of Israel was 0.6 µmol m-2 d-1 and dry deposition was 1.2 µmol m-2 

d-1 (HERUT and KROM, 1996), giving a total rate of 1.8 µmol m-2 d-1. 
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3.2.1. Saharan dust and phosphorus. 

Phosphorus values of Saharan dust range from  0.04% found in the SEMED to 0.07% from Libyan 

desert material (HERUT and KROM, 1996). Values as high as 0.25-0.40 % were found in Saharan dust 

collected in the NWMED (LOŸE-PILOT, unpublished results). A mean content of 0.25 % gives a mean 

phosphorus deposition from Saharan dust in this region of 2.8 µmol m-2 d-1. However, the question of 

the solubility and bioavailability of this phosphorus is still open. According to KROM et al., (1991), 

Saharan dust may act as a trap for soluble phosphorus by adsorption of PO4
3- on to Fe-rich particles, 

whereas LEPPLE, (1971) found that up to 8% of Saharan dust phosphorus is soluble in seawater. From 

a partitioning study between crustal and anthropogenic phosphorus, BERGAMETTI et al., (1992) 

estimated that between 1.2 and 2.7 µmol P m-2 d-1 is dissolved in seawater  from atmospheric input and 

is available for biota. Similar  values (1.2  µmol P m-2 d-1) were obtained from calculations for the EMED, 

assuming a dust flux of 36 g m-2 yr-1, with 0.4% P and a solubility in seawater of 10% (see section 4.1). 

Table 3.3 shows estimates of the dissolved inorganic phosphorus (DIP) inputs to the WMED (1.5 µM P 

m-2 yr-1) and EMED (0.6 µM P m-2 yr-1), and Table 3.4 compares total inorganic phosphorous (TIN) 

atmospheric inputs with riverine P discharge estimates. 

 
Tab. 3.3 - Dissolved inorganic phosphorus (DIP) and total inorganic phosphorus 
(TIP) deposition (values in µmol m-2 d-1). 
________________________________________________________________ 
    DIP    TIP 
________________________________________________________________ 
Cap Ferrat a   1.4    --  
NWMED b   0.4-1.4    --  
Corsica c   1.2-2.7    3.5  
       (2.1 anthro+1.4 Sahara) 
Corsica d   ---    2.8 Sahara 
avg. WMED   1.5    3 
       (0.035 gP m-2 yr-1) 
EMED e   0.6    1.8 
       (0.021 gP m-2 yr-1) 
________________________________________________________________ 
a, b: MIGON (1989); c: BERGAMETTI et al. (1992); d: LOŸE-PILOT, unpublished results; 
e: HERUT and KROM (1996) 

 

Table 3.4 - Comparison of riverine (R) and atmospheric (A) inputs of nitrogen and 
phosphorus (all in tons *103 yr-1). Data on N and P riverine inputs from 
VOLLENWEIDER et al. (1996); on N atmospheric input from ERDMAN et al. 
(1994); on P atmospheric input: from average TIP fluxes in three sub-basins 
(west to east) of 0.035-0.028-0.021 g P m-2 yr-1, respectively. 

______________________________________________________________ 
               Area  Nitrogen Phosphorus 
Sub-basin                         (10 6km 2)  R A  R  A 
_______________________________________________________________ 
WMED   0.84    577   459   78 29 
CMED   0.80    212   346   29 22 
EMED   0.70    223   263   30 15 

Total     2.34  1011 1068 137 66 
% atmosphere        51  33 
________________________________________________________________ 
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3.2.2. Impact of atmospheric phosphorus on primary production.  

Taking the two values from BERGAMETTI et al., (1992) and applying the Redfield ratio (C/P =106/1) 

gives potential carbon production due to atmospheric dissolved phosphorus input of 0.56 to 1.25 g C m-2 

yr-1, that is, 11-25% of the new production of the very oligotrophic zones of the WMED, and one to a few 

percent for the other more productive zones. The impact of the atmosphere therefore seems to be low  

for phosphorus; certainly lower than for nitrogen.  

The high N/P ratio of atmospheric input (∼ 70) may be responsible for the high N/P ratio (20-27) 

observed in Mediterranean seawater (HERUT and KROM, 1996). 

 
3.3. Conclusions and hypotheses 

 
The relative importance of atmospheric input of nutrients to the Mediterranean increases from the 

shoreline to the open sea with the decreasing influence of riverine inputs, and from active mixing  zones 

(margin “upwellings”, frontal zones) to oligotrophic “stable” zones. On an annual scale, the nitrogen 

atmospheric input is significant for oligotrophic zones, in which it may account for up to 60% of new 

production, whereas atmospheric phosphorus may account for a maximum of 25%. 

It is evident that the impact of the atmospheric input of nutrients to the open Mediterranean is difficult to 

detect, and would in any case be negligible during the period of intense primary production due to 

mixing with deep rich waters. But during the summer and early fall stratification of the Mediterranean, 

atmospheric inputs represent a non-negligible source of nutrients (up to 4000 µmol N m-2 d-1), which 

may trigger small but detectable phytoplankton blooms (Fig. 3.1), as reported by MARTIN et al. (1989). 

 

Fig. 3.1 - Wet atmospheric input of nitrogen and its effect on productivity (from 
MARTIN et al., 1989). 
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In this respect, annual atmospheric N budgets may have little significance, but the episodic character of 

the atmospheric supply may be significant over short time-spans.  An example of this is the wet 

atmospheric N deposition pulse which was studied at Villefranche (MIGON et al., 1989). In this case, 

prior to deposition, oligotrophic conditions persisted and the upper 18 m of the water column was 

stratified by a low salinity layer. After the deposition event, the atmospheric N signature was clearly 

observed for 21 days. Neglecting the role of phosphorus, this input of 0.23 µmol N l-1 would theoretically 

be able to induce new production of 16 mg C m-2 day-1. 

In  the same way, the sporadic input of Saharan dust may be a source of phosphorus, especially when 

originating from mixed (anthropogenic/Saharan) rains, in which case phosphorus would be partly 

desorbed and dissolved from the dust. It has been suggested that some summer algal blooms may be 

explained by such Saharan dust fallout (see section 4.1) (DULAC et al., 1996). 

The role of Saharan dust still needs careful assessment, as it may be an important source of 

phosphorus and iron (see below). The processes and magnitude of phosphorus and iron dissolution 

from desert dust and their biological impact are important topics to be investigated in the oligotrophic 

Mediterranean. Two examples of this will be described in the next section. 

 

4.  Potential effects of atmospheric input on surfa ce ocean biogeochemistry: preliminary 

speculations 

 

It appears that atmospheric inputs of metals and nutrients to the MED are of similar magnitude to fluvial 

inputs, although there are several uncertainties which currently prevent us from quantifying the 

magnitude and chemical effects of these inputs. The next question that should be addressed is whether 

they are of significance to biogeochemical cycles in the ocean. We will discuss below two examples in 

which it seems that atmospheric inputs coincide with a biological response. 

 

4.1 Meteosat and CZCS: a case of P-fertilisation? 

 

DULAC et al. (1996) presented a study combining monitoring of desert aerosol from Meteosat and of 

marine phytoplankton from CZCS (Coastal Zone Colour Scanner) in the WMED during summer 1983. 

Daily Meteosat images in the solar spectrum (visible channel) were used to quantify African dust 

transport, following the method described in MOULIN et al. (1997a). The CZCS multichannel was used 

to monitor marine biology activity in the WMED. Estimates of phytoplankton abundances were based 

on the algorithm of MOREL (1988) using ratios of seawater reflectances at 0.44 and 0.55 µm after 

correction for atmospheric effects (ANDRÉ and MOREL, 1991). 

DULAC et al. (1996) observed a particularly strong desert dust transport event at the end of July 1983 

(peak on Julian day 209), which yielded a strong dust flux to Mediterranean waters, with a cumulative 

input up to 1.5 g m-2 during the week, as shown in Fig. 4.1. They also analysed about one hundred 

CZCS images of the Ligurian Sea during the same period, and averaged chlorophyll estimates in a 
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region of 100x100 km2 near the DYFAMED station (corresponding to about 10000 CZCS pixels). Any 

images in which more than half the CZCS pixels were cloudy or in which the geometric standard 

deviation of the pixels was larger than 1.5 were rejected. Any images in which the satellite signal was 

contaminated by high desert dust loads were also eliminated, using the near-infrared channel (0.75 

µm) of the CZCS. In all, nearly 90% of the initial images were rejected; the resulting maps of 

phytoplankton concentrations are shown in Fig. 4.2. The peak of dust input (equivalent to 

approximately 9 µmol P m-2) was followed, two weeks later, by a significant increase in phytoplankton 

concentrations, with a peak value of about 0.5 mg m-3 observed on August 16 (day 228). A response 

time of one week seems reasonable for phytoplankton growth in natural conditions. It is unlikely that 

the observed increase in phytoplankton concentration was connected with a decrease in summer 

surface water stratification, since during the whole period the surface wind speed was always lower 

than 1 m sec-1. 
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Fig. 4.1 - Meteosat-derived weekly maps of dust input to Mediterranean between July 27 and August 2 
1983. Continuous input of African dust occurred during this period, peaking on July 30 1983. 
No significant rain was reported during this period. Meteosat daily images allow estimation of 
dry deposition flux (DULAC et al., 1996) and geographical distribution is also shown. 
Corresponding dissolved phosphorus input ranges from 5 to 10 µg l-1 for NW Mediterranean 
surface waters. 

 
Assuming 1.5 g m-2 of dust, 0.23% of P in the dust (GRAHAM and DUCE, 1982) and a solubility of 8% 

(LEPPLE, 1971), produces a flux of 9 µMP m-2 during this episode. This corresponds to  an addition of 

9 nM l-1 to a 1-m deep layer. This seems too small to produce a bloom (even assuming surface water P 

values as low as 20 nM). However, we do not really know how much P dissolved from the dust, so the 

flux may have been larger than the calculations suggest.  Another point is that an input into a highly 

stratified layer would be more significant . While observations show a biological response after the dust 

storm, at this stage we do not know what the causal relationship was. 

 
4.2 Wet deposition of dust: the role of Fe speciation in phytoplankton blooms 
 
The Cemiliania theory put forward by SAYDAM (1996) suggests that the wet deposition of reduced 

iron from desert dusts to surface waters of the MED, during the day, has the potential to induce 
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phytoplankton blooms. Blooms have been observed several times in the Mediterranean and even in 

enclosed basins like the Black Sea, and have been linked with prior wet dust deposition events 

(SAYDAM and YILMAZ, 1998; SAYDAM and POLAT, in press). 

 

 

Fig. 4.2 - CZCS-derived weekly maps of phytoplankton concentrations during summer 1983: a) mid-
June: spring blooms ended, and Ligurian and Adriatic Seas remained relatively productive; b) 
early August: during dust deposition event, whole basin exhibited low phytoplankton 
concentrations, except for coastal zone of Adriatic Sea; c) mid-August: 2 weeks after dust 
deposition event, unusually high concentrations were observed in Ligurian and Adriatic Seas. 

 

An example  occurred during the summer of 1997 over the Central Mediterranean and off the coast of 

Libya.  AVHRR and Meteosat scenes from the period 1-2 June 1997 (F. DULAC, pers. comm.) 

indicate the transport and possible wet deposition of dust during midday over a position where a 

subsequent Emiliania huxleii bloom was later observed (Fig 4.4). Synoptic scale meteorological charts 

also confirm the presence of atmospheric vertical migration and a cold front over the region, 

supporting the view that wet deposition occurred. 
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Fig. 4.3 - Vertical profile of particulate iron in surface waters of Ligurian Sea, before and after a major 
atmospheric input of Saharan dust on July 7 1988 (from DULAC et al., 1996). 

 

The Cemiliania theory necessitates the presence of "desert-originated dust" for the production of 

reduced Fe. Laboratory experiments of light-induced dissolution of hematite, goethite and 

lepidocrosite (SULZBERGER, 1993; SULZBERGER and LAUBSCHER, 1995) with oxalate as 

reductant ligand have shown that, at pH=3, only photochemical formation of dissolved Fe(II) occurs 

with lepidocrosite, but does not result in appreciable amounts of dissolved Fe(II) when hematite or 

goethite are used. In confirmation, the revised rainwater sampling strategy of OZSOY (1998) has 

shown that iron originating from desert sources may be photochemically reduced within cloud droplets 

to the +2 oxidation state, as suggested by FAUST (1994). 

The importance of atmospheric sources in supplying iron to the surface of the open ocean is the 

subject of some debate.  JOHNSON et al. (1997) showed that dissolved iron profiles in the Pacific and 

Atlantic Oceans have a uniform shape, with a ‘nutrient-type’ profile. They agree that the major source 

of iron to the deep sea is eolian transport, but show that integrated (surface to 500 m) concentrations 

are only poorly correlated with eolian iron deposition flux. However, BOYLE (1997) argues that the 

distribution of iron in deep waters is not well understood, and that the supply of iron to the open ocean 

is, in fact, predominantly eolian. Evidence of the impact of atmospheric inputs to particulate Fe levels 

in the MED may be seen in the distributions presented by DULAC et al. (1996).  In that work, a 

dramatic increase in surface water particulate Fe was seen in the Ligurian Sea after a major input of 

Saharan dust in July 1988 (Fig. 4.3).  

Despite the clear impact that atmospheric dust may have on particulate and even dissolved Fe loads 

in the MED (see section 2.6), it seems unlikely that Fe will limit biological production in this region, 

since dissolved Fe levels appear to be relatively high (>1 nM) and macronutrient levels are low.  The 

possibility that it is the deposition of reduced Fe which triggers such events also seems unlikely, since  
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a)   

b)   

c)   

d)   

Fig. 4.4 - Four images representing respectively (from top): (a) NOAA-AVHRR composite imagery (June 9 1997), 
illustrating the high reflection region; (b) ADEOS Hearth Observation Probe UV-absorbing aerosol optical 
thickness imagery showing the massive dust outbreak over the Sahara and small filaments extending towards the 
Gulf of Sirte (June 2 1997); (c) dust loading prediction (June 2 1997) from MEDUSE model 
(http://halo.hi.is/meduse/index.html); and (d) possible wet deposition (June 2 1997) over a vast area offshore Libya, 
as derived from NOAA-AVHRR composite imagery (VIS and IR). Dust outbreaks in satellite image and deposition 
model was delivered to sea with rain, and may have triggered Emiliania huxleii bloom observed one week later. 
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photochemical reduction of existing surface dissolved iron during daylight hours, as proposed by 

JOHNSON et al. (1994), would already ensure a sufficient supply. 

In order to evaluate this postulated relationship between atmospheric/oceanographic forcing functions 

and biological responses, it is important to establish whether the links are causal. This needs to be 

done through direct sampling of ocean and the atmosphere, during a strong Saharan dust event and 

the following weeks. 

 

5. Conclusions  

 

• Average atmospherically deposited annual mass fluxes of dust are estimated at 8-12-35 g m-2, in 

the Western Mediterranean (WMED), Central Mediterranean (CMED) and Eastern Mediterranean 

(EMED) respectively. These fluxes are one-third those of riverine sources. 

• Available satellite estimates agree well with the few offshore trap measurements. 

• Atmospheric dust deposition is the most important part of the geochemical cycles for some 

elements (e.g. Pb, Cd, PAH). 

• Saharan dust pulses not only perturb the atmospheric conditions above the Mediterranean but, 

following deposition of this material to the sea surface, they may have a significant effect on the 

concentration levels of some trace elements in the mixed layer. 

• The speciation signatures of some trace metals are different in anthropogenic-rich (European) and 

crust-rich (Saharan) aerosols; in particular, more of the total concentrations of Cu, Pb and Zn are in 

exchangeable (potentially mobile) association in the anthropogenic-rich aerosols. 

• Atmospherically-transported trace metals are transmitted to marine biogeochemical cycles 

following the deposition of aerosols at the sea surface by either ‘wet’ or ‘dry’ deposition. In both 

deposition modes, the solubility of the trace metals is constrained by the extent to which they are in 

exchangeable association in the parent aerosols; but, for the ‘wet’ deposition, solution pH and 

particulate load both impose additional controls. 

• The importance of atmospheric input of nutrients to the Mediterranean increases from the shoreline 

to the open sea with the decreasing influence of riverine inputs, and from active mixing  zones 

(margin “upwellings”, frontal zones) to oligotrophic “stable” zones. On an annual scale, the nitrogen 

atmospheric input is significant for oligotrophic zones, where it may account for up to 60% of new 

production, whereas atmospheric phosphorus may only account for a maximum of 25%. 

• Biological effects linked with wet and dry atmospheric inputs of nutrients are suggested. 

 

 

5.1 Future work 

Unique information on the geographic source and tropospheric transport of particulate plumes is 

provided by satellite observations, and the recently launched ocean and multispectral sensors (OCTS, 

POLDER; SEAWIFS) will allow more extensive and precise monitoring. 
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In order to  provide insight on the impact of dust events on the chemistry and climatology of an 

enclosed sea such as the Mediterranean, satellite observations should be: 

a) coupled to independent source tracers, including air mass trajectories and chemical tracers such as 

Sr, Nd and Pb isotopes, and 

b) associated with nutrient and trace metal measurements at the onset and during specific events. 

Certain specific actions are also recommended (CIESM, 1997): 

c) expansion of the present rain/dust collection network in the EMED and SMED regions, to provide 

more complete regional coverage of dust deposition of the basin; 

d) a well-coordinated multidisciplinary research effort should be planned aimed at sampling the 

atmosphere and the surface MED in real time during and immediately after a Saharan dust event, to 

take advantage of this natural seeding experiment. 

e) a data base should be established, to file existing atmospheric and oceanic information in the 

Mediterranean; this data base should be available to all workers in the field and could be supported 

by an international commission such as CIESM (Commission Internationale pour l’Exploration 

Scientifique de la mer Méditerranée). 
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