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ARTICLE

Ocean and land forcing of the record-breaking Dust
Bowl heatwaves across central United States
Tim Cowan 1,2,3✉, Gabriele C. Hegerl 3, Andrew Schurer 3, Simon F. B. Tett 3, Robert Vautard 4,

Pascal Yiou 4, Aglaé Jézéquel 5,6, Friederike E. L. Otto 7, Luke J. Harrington 7 & Benjamin Ng 8

The severe drought of the 1930s Dust Bowl decade coincided with record-breaking summer

heatwaves that contributed to the socio-economic and ecological disaster over North

America’s Great Plains. It remains unresolved to what extent these exceptional heatwaves,

hotter than in historically forced coupled climate model simulations, were forced by sea

surface temperatures (SSTs) and exacerbated through human-induced deterioration of land

cover. Here we show, using an atmospheric-only model, that anomalously warm North

Atlantic SSTs enhance heatwave activity through an association with drier spring conditions

resulting from weaker moisture transport. Model devegetation simulations, that represent the

wide-spread exposure of bare soil in the 1930s, suggest human activity fueled stronger and

more frequent heatwaves through greater evaporative drying in the warmer months. This

study highlights the potential for the amplification of naturally occurring extreme events like

droughts by vegetation feedbacks to create more extreme heatwaves in a warmer world.
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Many daily maximum and minimum temperature
(Tmax, Tmin) records from the 1930s over the con-
tinental US still stand as of 20191. These records, like

maximum daily Tmax over the central US (Fig. 1a), are unlikely
to have resulted from instrumental biases2,3. Instead a strong
upper-level atmospheric ridge and land–atmosphere interactions
may have allowed for extreme heat to build during the Dust Bowl
drought3–6. The drought, defined through precipitation and
evapotranspiration-based indices3, emerged during a period of
cooler-than-average North Pacific sea surface temperatures
(SSTs) and a warmer North Atlantic4,6–10. Yet when forced with
observed SST anomalies, atmospheric-only general circulation
models (AGCMs) tend to underestimate the drought’s spatial
extent and magnitude4,11,12. Improved representations of pre-
cipitation and temperatures during the Dust Bowl period are
simulated when AGCMs4,11 and regional models13 implement
realistic historical land-cover changes and dust aerosol forcing.
Following new insights on the observed extreme heat during the
Dust Bowl3,6, and with future increases in global heatwave
activity likely14, a comprehensive understanding of what con-
tributed to the Dust Bowl heatwaves is crucial.

This study investigates the ocean–atmosphere forcing of the
Dust Bowl heatwaves over the central US (105°–85°W, 30°–50°N)
in observations, coupled climate models, and AGCMs. Heatwaves
are identified when a location’s daily Tmax and Tmin is above its
respective daily 90th percentile for at least three consecutive days
and two consecutive nights, similar to other definitions15. Using
idealised AGCM simulations, we find that warm Atlantic SST
anomalies lead to more frequent Dust Bowl heatwaves over

southern–central US than in simulations forced with historical
Pacific SST anomalies. This results from a stronger drying in the
spring months, stemming from weaker moisture transport from
the Gulf of Mexico, leading to a preconditioning of the land
surface for extreme summer heatwaves. We then use a set of bare-
soil simulations to analyse the extent to which 1930s land-use
changes amplified the heat. This reveals the strong sensitivity of
heatwaves to increasing bare soil, and supports the hypothesis
that the Dust Bowl heatwaves (and partly the drought) were
amplified by rapid devegetation and exposed soil from human
activities.

Results
Role of sea surface temperatures. The 1930s were the most active
summer (June–August) heatwave decade of the twentieth century
for the central US with some locations experiencing an average of
22 heatwave days per summer (Fig. 1b; Supplementary Fig. 1),
with the longest heatwaves3 surpassing 10 days in 1934 and 1936,
and Tmax anomalies exceeding 6 °C (Supplementary Fig. 1). The
record-breaking temperatures and anomalies exceed the spread of
responses (in maximum daily Tmax anomalies) from historical
experiments from Coupled Model Intercomparison Project Phase
5 (CMIP5) climate models over the 1930s (Fig. 1a).

The underlying decadal SST anomalies in the 1930s resembled the
warm phases of the Atlantic Multidecadal Oscillation (AMO)16,17

and the Pacific Decadal Oscillation (PDO)18,19 (Fig. 1b). To
investigate if similar decadal SST patterns also coincide with
heatwave conditions over the central US in unforced model
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Fig. 1 Observed and simulated central US summer heatwave activity and associated sea surface temperatures. a Observed summer (June–August)
maximum daily maximum temperature (TXx) anomalies (relative to 1901–2010) averaged over the central US (box in b), from gridded observations
(HadEX2; colour), and 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical model simulations (grey line with shading indicating the
10–90th percentile range; relative to 1901–2005). b, c Summer sea surface temperature anomaly and heatwave frequency (HWF) patterns averaged across
the most active heatwave summer decade (11 years) per century over the central US for station observations (b; pink shade in a), and a selected CMIP5
model (Geophysical Fluid Dynamics Laboratory Earth System Model with Generalised Ocean Layer Dynamics component, GFDL-ESM2G) decade with
heatwave activity commensurate with observations (c). d Composite anomalies of central US summer HWF as a function of the normalised annual Pacific
Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) indices, from 22 CMIP5 pre-industrial (pi) Control experiments totalling 10,900
years (1930s decadal observations shown as the intersect of dotted lines). The PDO and AMO definition are described in the ‘Methods'.
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simulations, we use one pre-industrial (pi) Control experiment
each from 22 CMIP5 models (~500 years per model, see
‘Methods' and Supplementary Table 2). When averaged over
almost 11,000 model years, a multi-model ensemble (MME)
mean of summer heatwave frequency (HWF; total number of
heatwave days) shows that simulated central US heatwaves are
more frequent during a warm AMO phase and a cool PDO phase
(Fig. 1d). While the simulated PDO phases for higher HWFs do
not match with 1930s observed state, heat extremes20 and
drought periods18 over central and eastern US in the late 1990s to
early 2000s were associated with a similar decadal pattern to the
CMIP5 piControl MME. From the nearly 11,000 CMIP5
piControl years, we identify one decade per century per model
where record-breaking heatwave activity is commensurate with
the 1930s observations. In terms of geographic extent, record-
breaking heatwave activity is rare in the piControl simulations, as
is the clustering of events in a decade (see ‘Methods’). Only one
CMIP5 piControl decade, in GFDL-ESM2G (model years
286–296), breaks HWF records over more than 50% of northern
and southern–central US, similar to observations (Fig. 1c;
Supplementary Table 2). This simulated decade also features a
warm north Atlantic and anomalously cooler eastern Pacific (i.e.,
warm PDO and AMO phases), indicating that rare Dust Bowl-
like heatwaves can be simulated in the absence of external
forcings like land-cover change and dust. This model is also one
of a minority of CMIP5 models that is able to represent AMO-
like behaviour in its piControl simulation21.

AGCM studies have emphasised the importance of Pacific SST
anomalies to central US droughts22,23, even for the 1930s4,12.
We separate the influence of Atlantic and Pacific SST anomalies
on the summer heatwaves across the 1930s using AGCM

experiments conducted in HadGEM3-GA624 for the early
twentieth century warming period (1916–1955; see ‘Methods'
for the experiment design). This period yields ~15 years of the
data on either side of the 1930s in order to create an extended
climatology to compare the Dust Bowl years against. We define
the Dust Bowl period as 1930–1937 to encompass the summers
with the most extreme heatwave conditions observed in the
1930s3, and the HadGEM3 ensembles that capture atmospheric
variability are expected to sample it. We first look at a HadGEM3
ensemble forced with historical SSTs (HIST). The HIST
ensemble underestimates heatwave activity (comparing Fig. 2a,
d), and generates well-documented biases in temperature4,7 and
heatwave magnitude (average temperature of heatwaves) over the
southern–central US (105°–85°W, 30°–40°N; Supplementary
Fig. 2). Such mean-state temperature biases and anomalous
responses to 1930s SSTs exist in other AGCMs, particularly
over central and southern North America (contours, Supplemen-
tary Fig. 3). Warm model biases over central and southern
North America25 are thought to be due to overly strong
land–atmosphere coupling which can amplify heat even in wet
regions26 and lead to persistent drought over the Great Plains23.
Focusing on HWF, a metric defined relative to a model’s own
climatology is a partial solution to this issue; however, biases in
HadGEM3’s physics could still infiltrate and artificially accelerate
heatwave development. This is why improvements in the
parameterisation of land-surface models is critical, particularly
for reducing uncertainty in future climate model projections27.

To separate the influence of the Atlantic (ATLHIST) and Pacific
(PACHIST) SSTs, we carry out simulations in which SSTs outside
their respective domain cycle through climatological values.
The resulting patterns from the ATLHIST ensemble show a
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Fig. 2 Observed and simulated summer heatwave frequency during the Dust Bowl. Average heatwave frequency (HWF) over the central US for
1930–1937, for observations from Global Historical Climatology Network-Daily (GHCN-D; a), and Hadley Centre Global Environment Model version 3
(HadGEM3) simulations, including a five-member Atlantic sea surface temperature (SST) ensemble (ATLHIST; b), five-member Pacific SST ensemble
(PACHIST; c), ten-member historical SST ensemble (HIST; d), and single-model experiments where the amount of bare soil in 1930, averaged over the
central US, was increased from 15 to 30% (e) and 50% (f). Stippling indicates significantly larger HWF values between (b, c) ATLHIST and PACHIST

ensembles (N= 40) at the 95% confidence level (see ‘Methods')28, and in (e, f) HWF values outside the HIST simulation range. Contours in (d) indicate
the percentage of bare soil in each grid cell over the most active heatwave region in the HIST, ATLHIST and PACHIST members. The climatology period is
defined as 1916–1955 (a–d) and 1916–1940 (e, f).
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significantly stronger response in heatwave activity and intensity
across the southern–central US than the PACHIST ensemble (95%
level based on a Mann–Whitney U test28, Fig. 2b, c; Supplemen-
tary Figs. 1c and 2), consistent with the CMIP5 piControl
analysis highlighting the importance of Atlantic SSTs (Fig. 1).
How continental US surface temperatures respond to remote
SSTs varies across AGCMs22 and coupled models23, and often
depends on a models’ middle to upper-level circulation response
to SST forcing, particularly over the southern US5,29.

Role of summer circulation. The spatial extent and amplitude of
the hottest heatwaves varied considerably during the 1930s3, yet
events often coincided with a persistent high mean sea-level
pressure (MSLP) anomaly over the western US (Fig. 3a), coupled
with a mid-tropospheric ridge5,6. One possibility is that the
summer atmospheric circulation response to SST anomalies was
the main contributor to the heatwave activity. To test if this
explains the stronger ATLHIST heatwave response, we examine
the daily atmospheric circulation at the surface (i.e., MSLP) and
in the mid-troposphere (i.e., 500 hPa geopotential heights; Z500)
during the hottest heatwave weeks for each summer across the
simulations (see ‘Methods'). For the HIST ensemble, it captures
the observed mid-tropospheric ridge across the eastern US
associated with the hot conditions over the central US, which is
coupled to a surface low anomaly at 100°W, 45°N (Fig. 3b). The
heat low and upper-level ridge anomalies are also prominent
features in the ATLHIST ensemble (Fig. 3c); however, the surface
high anomaly in the western US is absent. In the PACHIST

ensemble, the upper-level ridge is placed further northwards
(50°–60°N), while the surface low anomaly is considerably weaker

and displaced southwards over the southeast US coast (Fig. 3d),
consistent with a more muted heatwave response. This suggests
that for HadGEM3, the main circulation features associated
with the hottest Dust Bowl heatwaves across the eastern US
are best reproduced with an Atlantic SST forcing. Yet the
summer heatwave circulation differences (Δ[ATLHIST, PACHIST])
over the central US are not significantly different (based on
Kolmogorov–Smirnov two-sample test; also see Supplementary
Fig. 4e, f) and cannot fully explain the summer heatwave intensity
differences between the ATLHIST and PACHIST ensembles. We
turn to the role of dry springs in the lead up to the Dust Bowl
summers.

Dry spring preconditioning summer heatwaves. A key factor in
observed summer heat extremes over the Great Plains is spring-
time preconditioning6. Observational studies suggest that
dry springs pre-conditioned the Dust Bowl summer heat
extremes3,6,10, driven, in part, by mid-tropospheric ridging10 and
reduced moisture advection from the Gulf of Mexico9. Prior to
summer, significant April–May precipitation deficits emerge
throughout the southern–central US in the ATLHIST ensemble
compared to PACHIST (Fig. 4a). The largest precipitation deficit
for ATLHIST occurs mid-May (Supplementary Fig. 4a) and cor-
responds to comparatively lower evaporative fractions, higher
daily Tmax (although no difference in Tmin30) and a deeper
surface low throughout the summer months (Supplementary
Fig. 4b, c, e). The drier and hotter ATLHIST ensemble conditions
also partially reflect the weaker meridional moisture fluxes from
the Gulf of Mexico in April–May (Fig. 4a; Supplementary
Fig. 4d), reminiscent of the observed 850 hPa wind anomalies in
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Fig. 3 Atmospheric conditions during the hottest Dust Bowl heatwaves. The spatial patterns of mean sea-level pressure (MSLP; colours) and
geopotential height at 500 hPa (Z500; contours), averaged over a 7-day period from the start of the hottest summer heatwave over the central US, and
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spring during the mid-1930s6. While it appears difficult to dis-
tinguish the absolute mid-tropospheric circulation (e.g., Z500)
over the eastern US between the idealised SST HadGEM3
ensembles (Supplementary Fig. 4f), the ATLHIST ensemble Z500 is
consistently higher than the PACHIST ensemble by 5–15 m over
March–May. Hence, warm Atlantic SST anomalies are more
conducive to forcing stronger mid-tropospheric ridging in spring
during the 1930s. This weakens the northward moisture fluxes,
driving a precipitation deficit and a drying which extends to
summer, forcing more active and intense heatwave conditions3,6.

It is well established that systematic regional precipitation
biases exist in AGCMs simulating the Dust Bowl drought4,7,8,12.
This is true of HadGEM3 and three other AGCMs that have
conducted 1930s historical SST-forced experiments and simulate
wet spring biases (Supplementary Fig. 5). Even with HadGEM3’s
wet bias, ATLHIST exhibits comparatively stronger precipitation
deficits in mid-spring to summer (than PACHIST), and lower
evaporative fractions, consistent with an overly responsive
land–atmosphere coupling, in line with other models26,31. The
majority of forecast systems also overestimate the relationship
between dry late springs and summer heat biases due to an
excessive reduction in soil moisture30. The warm bias in
HadGEM3 further causes overly deep surface low anomalies
from July (Supplementary Fig. 4e), which exacerbate the average
Dust Bowl heatwave temperatures (Supplementary Fig. 2).
In overestimating the land–atmosphere coupling strength,
HadGEM3 dries out too rapidly in late spring, yet processes
controlling the heatwave development can still be compared
between differently forced simulations10,22,29. Other important
processes, such as land-cover changes4,13 in the 1930s, are
examined next.

Role of land-cover changes. Although the role of SSTs in trig-
gering the Dust Bowl Drought is recognised11, land-cover chan-
ges likely amplified the heatwaves13. Land-cover changes across
the US Great Plains in the 1920s and 1930s included widespread
crop failures surpassing 60% in many counties32. Estimates of the
amount of bare soil range from 20 to 80%, depending on regions
with or without erosion13, with AGCMs likely underestimating
the true amount4. In order to evaluate the contribution by land-
cover changes, we conducted sensitivity experiments using Had-
GEM3, in which temperate C3 and tropical C4 grass cover over
the central US-wide was converted to bare soil. This represents
the repeated crop failure4,32 during the 1930s that led to soil
exposure and expansive and rapid loss of top soil10. In three
separate model experiments, the percentage of bare soil averaged
over the central US in 1930 was increased from an approximate
15% reference fractional extent to 30%, 50 and 80%, at the
expense of C3 and C4 grass. This represents a percentage loss of
grass, averaged over the central US in 1930, of 25%, 50% and
100% (Supplementary Fig. 6), which is restored to HIST fractions
by 1940 (see ‘Methods' and Supplementary Fig. 7). As a com-
parison, Cook et al.4 used a conservative estimate of up to 50%
devegetation in some grid boxes in their 1930s simulations. Our
experiments reveal a significant increase in HWF from around
6 days in the 30% soil experiment (Fig. 2e) to ~17 days in the 50%
run (Fig. 2f), eventually reaching an average of 33 days per
summer in the 80% run over the southern–central US (Supple-
mentary Fig. 2). With more exposed bare soil, an earlier eva-
poration deficit appears to drive the elevated heatwave response
through soil desiccation, despite only minor differences in pre-
cipitation between the 50% and 80% soil experiments (Fig. 4c, d).
Reductions in early summer soil moisture and latent heat fluxes
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provide further evidence of an earlier drought emergence under
increasing crop removal, leading to a thicker atmospheric
boundary layer (Supplementary Fig. 8e–g). A more dramatic
HWF response in the heavily forested areas to the south33 than
the grasslands to the north and west, stems from the smaller
diurnal temperature variations in the tropical latitudes. This has a
larger effect on HWF as the heatwave threshold is easier to
exceed, and hence a small increase in summer temperatures can
lead to a larger HWF signal than over a region with more variable
summer temperatures14. Part of bare-soil induced heatwave
impacts stem from greater temperature advection along the Gulf
regions, although this occurs mainly along the coast. High-
resolution modelling experiments suggests the primary role that
land-cover changes had in amplifying the Dust Bowl drought was
by reducing the moisture transport to the central US13; however,
we find little appreciative change in moisture fluxes (Supple-
mentary Fig. 8b). Other studies have shown elevated 1930s dust
aerosols4,11 would have suppressed precipitation through
land–atmosphere feedbacks although these studies excluded the
indirect aerosol effect on cloud microphysics. We see no evidence
of land albedo differences in our bare-soil experiments (Supple-
mentary Fig. 8h), despite the high dust loadings (Supplementary
Fig. 6), although it is possible that precipitation efficiency is
reduced via the dust-radiative effects on clouds34. Our results
suggest that regional-scale land-surface processes play a more
dominant role over the large-scale atmospheric dynamics and
land–atmosphere feedbacks in our bare-soil experiments. If
HadGEM3 had a more accurate spatial and temporal repre-
sentation of the 1930s land cover13 that distinguished the less
drought-resilient dryland crops (due to their shallower root sys-
tem), this may have produced more realistic heatwaves, yet it
would still not capture important land–atmosphere feedbacks
that result from increased soil erosion and elevated dust levels4,11.

Discussion
Supported by the HadGEM3 results (Fig. 2) and consistent with
unforced CMIP5 simulations (Fig. 1), this study reveals that
Atlantic SSTs were an important factor in the Dust Bowl heat-
waves, enhancing spring drought, and allowing heat to develop
earlier over the central US3,6. Pacific SSTs played less of a role in
the heatwave development, at least in our AGCM simulations
(Fig. 2), but have been shown to contribute to the Dust Bowl
drought in other AGCMs7,8 and more generally, to long-term
droughts over the Great Plains in coupled models23. Yet AGCMs
forced with observed SSTs alone or historical boundary condi-
tions remain far from quantitatively reproducing the exceptional
nature of the Dust Bowl heatwaves (or drought) (e.g., Fig. 2). This
is likely stems from how models treat 1930s land-cover changes,
resulting from rapid deep plowing of native grassland. Sub-
sequent drought brought about widespread crop failures32,35, dust
storms36 and protracted heatwaves3. Despite the uncertainty
behind the exact amount of devegetation prior to and during the
1930s4,32 (see Soil Conservation Service erosion map37), our grass
devegetation experiments show a strong enhancement in heat-
wave activity and intensity (i.e., absolute maximum temperatures)
as bare-soil amounts increase. This is due to a greater partitioning
of surface energy fluxes to sensible heat and a rapid drying of
exposed soil (Fig. 4), although elevated dust loads appear not to
suppress precipitation in HadGEM3 as in other AGCMs11. The
1930s extreme heatwaves serve as a reminder that vegetation
feedbacks from a greenhouse gas-induced warming, resulting
from human activities, could lead to the enhancement of extreme
heatwaves and drought triggered by decadal climate variability.
Even with recent crop intensification linked to cooler and wetter
conditions over the central US38, major crop losses would likely

still occur if future Dust Bowl-like heatwaves eventuate35,39 due
to a warmer world.

Methods
Heatwave metrics and surface heat fluxes. The use of consecutive hot days and
nights (3 days for Tmax and 2 nights for Tmin) above their respective daily 90th
percentile threshold is similar to other heatwave definitions15. The threshold is
calculated over the full climatological period, using a centred 15-day window that
removes monthly and seasonal dependencies. Heatwave metrics are then separated
into two categories: (1) activity; total number of summer heatwave days (frequency;
HWF), and longest summer heatwave event (duration; HWD); and (2) intensity;
average temperature of all summer heatwaves (magnitude; HWM). As we do not
study the human health impact, we do not consider relative humidity (increasing
the heat stress40) in our heatwave definition. Even with the lack of reliable humidity
observations in the 1930s41, the study’s main focus is on the record heat, and its
association with SSTs and bare soil. We acknowledge HadGEM3 contains a strong
warm bias in summer hot extremes and a wet spring bias over North America,
along with other AGCMs (see Supplementary Figs. 2, 5), most likely due to an
over-active land–atmosphere coupling26. As such, we primarily focus on HWF as
this metric partially accounts for warm model biases, as temperatures are refer-
enced to a model’s own climatology.

Evaporative fraction (EF) is used as a proxy for soil moisture, calculated from
latent (Qe) and sensible (Qh) heat fluxes as EF=Qe/(Qe+Qh). EF is the ratio of
incoming energy used for evapotranspiration to the total amount of incoming
energy. A more arid surface typically has lower EF values and this reduces
evaporative cooling42; however, the interactions between soil moisture and EF can
be modulated by daily net radiation and meteorological conditions43.

Observational and reanalysis data. Daily temperature observations are from the
Global Historical Climatology Network-Daily (GHCN-D) archive44. Further details
on the extensive coverage in the 1930s and the station selection can be found in
Cowan et al.3. Maximum daily Tmax anomalies in Fig. 1a are taken from the
gridded HadEX2 dataset6 (for a HWF-based version of Fig. 1a, see Supplementary
Fig. 1a). Our hottest heatwave dates were determined from temperatures obtained
from the Berkeley Earth Surface Temperature (BEST) dataset45, which incorporate
the large network of GHCN-D stations (Supplementary Fig. 2a shows a HWM
comparison between BEST and GHCN-D). Given the daily BEST product is
considered experimental, we predominantly focus on GHCN-D for the spatial
representation of the observed heatwaves. Daily mean sea-level pressure (MSLP)
and 500 hPa geopotential height (Z500) fields are from the US National Oceanic
and Atmospheric Administration’s (NOAA) Twentieth Century Reanalysis (20CR)
version 2c46; the reanalysis product assimilates daily observations of surface
pressure with monthly SSTs and sea ice as boundary conditions from Hadley
Centre Sea-Ice and Sea-Surface Temperature Data Set Version 1 (HadISST1).
Monthly precipitation is taken from both GHCN-D and Global Precipitation
Climatology Centre (GPCC)47, as precipitation (and surface heat fluxes) from
20CR contain an abundance of artificial inhomogeneities over the central US prior
to the 1950s arising from changes in observational density48.

HadGEM3-GA6 SST-forced experiments. The SST-forced atmospheric model
experiments are generated using the HadGEM3-GA6 model with a N96 (~210 km
at equator, 135 km at 40°N) horizontal resolution (1.25° × 1.875° and 38 vertical
levels in the atmosphere). It is based on the Met Office Unified Model Global
Atmosphere 6.0 (Version 8.5) and Joint UK Land Environment Simulator (JULES)
land-surface model 6.024. HadGEM3 is driven by observed daily SSTs, interpolated
from monthly values from HadISST2.1, which contains a more comprehensive
coverage of in situ observations and more complete bias corrections than
HadISST117.

The HadGEM3 experimental set-up comprises of ten historical simulations
(HIST) run over 1916–1955 with each member forced with a different SST
realisation that encompasses observational uncertainties and bias adjustments49

and standard CMIP5 historical drivers (e.g., well-mixed greenhouse gases, aerosols,
land-use changes). A further two sets of five idealised simulations were conducted:
the first set kept Atlantic SST anomalies at historical observed values (ATLHIST),
while the second set kept Pacific SST anomalies at historical observed values
(PACHIST). In both ensembles, the remaining oceans cycled through a 1916–1955
climatology for each year, with anomalies joining at 50°S and 60°N, far from the
region of interest. The SST and ice regions below and above the aforementioned
latitudes are kept at climatology in both experiment ensembles. The residual
response was computed as the difference between the ATLHIST and PACHIST

ensembles following the approach of Schubert et al.7. All model-based heatwave
metrics are calculated relative to the ten-member HIST ensemble climatology from
1916–1955. HadGEM3’s HIST mean-state precipitation and surface temperature
are within the range of three other AGCMs that have conduced similar SST-forced
experiments (Supplementary Figs. 3, 5). The three comparison AGCMs are GFDL-
AM3 (~1.9° × 1.9° horizontal resolution), GEOS-5 (1.25° × 1° resolution) and
ESRL-CAM5 (0.5° × 0.5° resolution). The warm bias in over the southern–central
US in HadGEM3 is accentuated in the soil experiments with maximum
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temperatures ranging from 43 °C to 52 °C (Supplementary Fig. 8a), compared with
observed temperatures of 32–34 °C.

HadGEM3-GA6 bare-soil experiments. Each land grid cell consists of different
fractions of surface types, like grass, bare soil, trees and shrubs. Devegetation
experiments were generated by converting C3 (temperate) and C4 (tropical)
grassland fractions over the central US to bare soil. The land fraction ancillary files
are linearly interpolated between decades, meaning values are given every decade
(e.g., 1920, 1930, 1940). The soil experiments are labelled 30%, 50% and 80% soil,
which refers to the approximate percentage of bare soil in 1930 averaged over the
central US (base soil percentage in HIST is 15.3%). The equivalent combined C3
and C4 grass loss, averaged over the central US at 1930 for the three experiments, is
~25%, 50% and 100% (Supplementary Fig. 6). This subsequently increases the dust
aerosol load in the spring season over the same region. In each of these experi-
ments, the bare-soil percentage returns to 15.3% by 1940, meaning the temporal
rate of grass recovery differs between the three experiments during the 1930s
decade (Supplementary Fig. 7). For comparison, Cook et al.4 use up to a 50%
vegetation loss over particular grid points in similar experiments in the GISS
ModelE over the central US Great Plains (105°–95°W, 30°–50°N), which they
assume to be a conservative estimate due to the exclusion of natural vegetation loss
during the Dust Bowl drought. Only one soil sensitivity experiment is conducted
per soil fraction, and as such, given the lack of multiple ensemble members, sta-
tistical significance is based on whether a grid point lies outside the ten-member
HIST range. For example, the HIST mean summer mean surface temperature for
the southern Great Plains over 1930–1937 ranges from 30.2 °C to 31.3 °C across the
ensemble members, whereas the 50% and 80% soil experiment temperatures of
32.8 °C and 35.5 °C, respectively, exceed the HIST range, and therefore are deemed
to be statistically significant. As the bare-soil sensitivity experiments are rudi-
mentary in their design, the aim was not to realistically quantify their imprint on
the Dust Bowl heatwaves, but to gauge the impact devegetation can have on the
amplification of heatwaves and to test for land-atmospheric feedbacks. As with
previous studies using land-cover estimates from the 1930s4,13, the assumptions of
bare soil amounts remain subjective.

Circulation patterns. For the reanalysis and each model simulation, we find the
dates of the hottest summer heatwave week over the central US. To achieve this, for
each grid cell and each summer, we first calculated the heatwave start date using
the heatwave amplitude (i.e., the hottest day of the hottest heatwave), and then
determined how many grid cells shared the same date. A 7-day running mean was
performed over all start dates to choose the week with the largest percentage of
central US grid cells that shared the same heatwave start date (centred in the week).
We then average each simulation’s MSLP and Z500 over the hottest heatwave week
and over 1930–1937 to create the composites shown in Fig. 3. Each composite is
made up of 7 days × 8 years × 5 (or 10) experiments, leading to 280 patterns for
ATLHIST, PACHIST and 560 patterns for HIST.

CMIP5 experiments. Heatwave metrics, calculated from daily Tmax and Tmin,
and monthly SSTs were analysed from the piControl experiments of 22 CMIP5
models50 (Supplementary Tables 1, 2). All model data were interpolated onto a
regular 1° grid prior to analysis. Models with at least 400 piControl years of output
were considered (all except for bcc-csm1-1-m have 500 years), which allowed
for an assessment of multiple occurrences of record-breaking heatwaves over at
least four centuries for each individual model piControl experiment. To ensure
we captured decadally clustered events as observed during the Dust Bowl decade,
rather than outlier record-breaking heatwaves, for each models’ HWF, we
applied an 11-year (summer) running average over each central US grid point for
the entire piControl period. For each century (e.g., years 1–100, years 101–200, to
years 401–500), we selected the maximum HWF value for each grid point and
noted the decade of occurrence. We then determined the percentage of central US
grid points where record-breaking values fell into the same decade, with the highest
percentage selected as the record-breaking decade for that century for that parti-
cular model. If two record-breaking heatwave decades occurred within a 30-year
time span (e.g., end of one century and beginning of the next), the second decade
was ignored to reduce possible contamination from the same decadal SST pattern.
This process produced 103 individual piControl heatwave decades. The years when
record-breaking heatwaves occurred based on HWF and centred on the decade in
question, and the percentage area of the central US impacted, are shown for each
CMIP5 model in Supplementary Table 2. The GFDL-ESM2G model is highlighted
in Fig. 1 as an example of one such model decade that realistically matches the
observations in terms of its SST patterns and heatwave activity (e.g., it breaks
similar HWF records over a large spatial extent of the central US, as seen in the
1930s). To test if the simulated heatwave peaks are actually decadal in nature and
not random occurrences, we conducted bootstrapping analysis on the CMIP5
piControl runs (10,000 times with replacement) for clusters of at least four sig-
nificant heatwave years in a decade that surpass one-standard deviation above the
long-term mean. For a heatwave metric like duration, of the 21 CMIP5 models with
500 piControl years, 11 models exhibit decadal cluster frequencies above the
bootstrapped third quartile, with six at or above the 95th percentile. This infers that

substantial decadal clustering similar to the 1930s, occurs in about half the models,
and strongly in less than 30% of models. These results are similar using heatwave
amplitude.

For the historical experiments, we selected 20 CMIP5 models (first run only) to
assess the heatwave behaviour and maximum daily Tmax in the historical period
simulations (Fig. 1a; Supplementary Fig. 1a). These include the 17 CMIP5 models
listed in Supplementary Table 2, as well as CCSM4, IPSL-CM5A-MR and GFDL-
CM3 (these three models did not have piControl experiments available). The
multi-model ensemble mean shows the forced response on HWF (representing
heatwave activity) and HWM anomalies (representing heatwave intensity). We
would expect to see an increase in the 1930s as there was a large enough forced
response in temperature extremes to land-cover changes (i.e., signal to noise),
however CMIP5 models are unable to capture these extremes as represented by
maximum daily Tmax anomalies (Fig. 1a). An increase in irrigation, not included
in CMIP5 models51, through intense agriculture over the eastern Great Plains is
thought to be related to a lack of a trend in summer temperatures52, compared to
CMIP5 models since the 1950s (Supplementary Fig. 1a).

The Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation
(AMO) annually averaged time series were calculated for the same piControl
period as the heatwave metrics using NCAR’s Climate Variability Diagnostics
Package Repository. The PDO is defined as the leading Principle Component of
North Pacific (20–70°N, 110°E–100°W) area-weighted SST anomalies (with global
mean SST anomalies removed). The AMO is defined as area-weighted SST
anomalies averaged over the North Atlantic (0–60°N, 80°W–0°E), with the global
(60°S–60°N) mean SST anomaly removed. No low-pass filtering is performed on
the decadal oscillation indices. We included all available CMIP5 models in our
multidecadal analysis, although we are aware that the majority of models lack
internally generated Atlantic multidecadal variability53.

Significance tests. In Fig. 2, the non-parametric two-tailed Mann–Whitney U
test28 is used to test the significance in heatwave differences between the ATLHIST

and PACHIST ensembles for each grid point. The null hypothesis tested here is that
the data from ATLHIST and PACHIST have been drawn from the same distribution.
The Mann–Whitney U test determines whether the experiment in question is
distinguishable from its partner experiment at the 95% confidence level. The
Mann–Whitney U test is conducted on the 1930–1937 heatwave summers metrics,
per ensemble member, totalling 80 separate cases (8 events per member ×5
experiment members ×2 experiments). Significance for the precipitation and eva-
porative fraction (Fig. 4) is tested using a bootstrapping method54, whereby Had-
GEM3 experiment members for either ATLHIST or PACHIST are concatenated to
form 200 samples of the same month, made up of 5 members ×40 years
(1916–1955). Differences between two months from the 200 month sample are
randomly resampled 10,000 times and significance are detected if the Δ(ATLHIST,
PACHIST) residual lies outside 2.5–97.5% confidence bounds of the resampled
distribution. The significance is unaffected if choosing anomalies or the mean states
for the difference calculation.

Data availability
The 20CR circulation variables of Z500 and MSLP can be downloaded at https://www.esrl.
noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html. Daily temperature and
precipitation data are from the GHCN-Daily archive are available from http://www1.ncdc.
noaa.gov/pub/data/ghcn/daily. Daily SSTs from HadISST2.1 are available on request.
Monthly precipitation from GPCC are available from https://www.esrl.noaa.gov/psd/data/
gridded/data.gpcc.html. The HadGEM3 experiments are available on request. The CMIP5
piControl experiments are available via https://esgf-node.llnl.gov/projects/cmip5, and can
be downloaded with a valid Earth Systems Grid account. The AMO and PDO time series
from the CMIP5 piControl simulations can be downloaded from NCAR’s Climate
Variability Diagnostics Package Repository: http://www.cesm.ucar.edu/working_groups/
CVC/cvdp/data-repository.html. The comparison AGCMs can be obtained from https://
psl.noaa.gov/ courtesy of the NOAA-ESRL Physical Sciences Laboratory.

Code availability
The code to generate the figures is available at https://github.com/tcowan80/
Cowan_et_al_2020_DustBowl_HadGEM3, and is based on the NCAR Command
Language (version 6.6.2; doi:10.5065/D6WD3XH5). The code to generate climatologies
was constructed using Climate Data Operators (CDO) version 1.9.8.
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