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Abstract. In 2016, northern France experienced an unprecedented wheat crop loss. The cause of this event is
not yet fully understood, and none of the most used crop forecast models were able to predict the event (Ben-Ari
et al., 2018). However, this extreme event was likely due to a sequence of particular meteorological conditions,
i.e. too few cold days in late autumn–winter and abnormally high precipitation during the spring season. Here
we focus on a compound meteorological hazard (warm winter and wet spring) that could lead to a crop loss.

This work is motivated by the question of whether the 2016 meteorological conditions were the most ex-
treme possible conditions under current climate, and what the worst-case meteorological scenario would be with
respect to warm winters followed by wet springs. To answer these questions, instead of relying on computa-
tionally intensive climate model simulations, we use an analogue-based importance sampling algorithm that was
recently introduced into this field of research (Yiou and Jézéquel, 2020). This algorithm is a modification of a
stochastic weather generator (SWG) that gives more weight to trajectories with more extreme meteorological
conditions (here temperature and precipitation). This approach is inspired by importance sampling of complex
systems (Ragone et al., 2017). This data-driven technique constructs artificial weather events by combining daily
observations in a dynamically realistic manner and in a relatively fast way.

This paper explains how an SWG for extreme winter temperature and spring precipitation can be constructed
in order to generate large samples of such extremes. We show that with some adjustments both types of weather
events can be adequately simulated with SWGs, highlighting the wide applicability of the method.

We find that the number of cold days in late autumn 2015 was close to the plausible minimum. However, our
simulations of extreme spring precipitation show that considerably wetter springs than what was observed in
2016 are possible. Although the relation of crop loss in 2016 to climate variability is not yet fully understood,
these results indicate that similar events with higher impacts could be possible in present-day climate conditions.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

France is one of the highest wheat producers and exporters
in the world thanks to yields that are roughly twice as high
as the world average (FAO, 2013). Given the prominent role
of wheat production in France, crop failures can impact the
national economy. When an unprecedented disastrous har-
vest was registered in 2016, especially in northern parts of
France, with a loss in production of about 30 % with respect
to 2015 (Ben-Ari et al., 2018), France registered heavy losses
in farmer income and a loss of approximately USD 2.3 billion
in the yearly trade balance (OEC, 2020).

Interestingly, the extreme crop failure of 2016 was not pre-
dicted by any forecasting model, which all strongly overesti-
mated yields even just before the harvesting period (Ben-Ari
et al., 2018). Thus, classical crop yield forecasting models,
based on a combination of expert knowledge and data-driven
methods (Müller et al., 2019; MacDonald and Hall, 1980),
could not anticipate this unprecedented event because it was
outside their training range. To overcome these limitations
Ben-Ari et al. (2018) developed a logistic model that links
the meteorological conditions in the year preceding the har-
vest with the probability of a crop failure.

In their study, Ben-Ari et al. (2018) attribute the crop loss
to a combination of two meteorological events: an insuffi-
cient number of cold days in the December preceding the
harvest and an abnormally high precipitation during spring.
It was argued that this low wheat yield was a preconditioned
event wherein a mild autumn and winter favoured the build-
up of biomass and parasites, which in combination with ex-
cess precipitation in late spring resulted in favourable con-
ditions for root asphyxiation and fungus spread (ARVALIS,
2016). There could also be a direct influence of the meteoro-
logical conditions on plant development. For both potential
mechanisms it is crucial to study the meteorological condi-
tions leading to the crop loss as a compound event, as only
the combination of a warm winter and wet spring had this
unprecedented impact on wheat yields (Zscheischler et al.,
2020).

The research question we want to address is what a worst
case meteorological scenario would be for this kind of crop
loss event under the current climate with enhanced winter
temperatures and spring precipitation? This question arises
from the fact that we only experienced one possible real-
ization of our climate. Even under unchanged climate con-
ditions, unprecedented extreme events would occur as time
goes on. Thus, to be able to put in place effective preven-
tive measures, it is important to understand how severe an
extreme event could be.

To estimate how extreme a crop loss similar to the 2016
event could be, we need tools that all come with their as-
sumptions and caveats. A standard approach would be to use
large ensemble simulations based on circulation models of

current climate conditions (Massey et al., 2015a). If the en-
semble was large enough and physical mechanisms are ade-
quately reproduced in the circulation model, one would find
the most extreme possible version of the 2016 crop loss event
and could even estimate its occurrence probability. This ap-
proach has two main drawbacks: the often huge computa-
tional cost associated with a large number of simulations and
the possibly flawed representation of physical processes in
climate models that could introduce a systematic uncertainty
that cannot be overcome easily (Shepherd, 2019).

A second approach relies on the analysis of historical data.
There are many statistical methods that could be used in
this context. Specifically, copula-based techniques (Jaworski
et al., 2010) can be used to study the dependence between
two or more climate hazards, while models based on extreme
value theory (Cooley, 2009) are suited for analysing particu-
larly rare events. These methods have the merit of being com-
putationally cheap and of relying only on observed data, but
dealing with non-stationarity can be challenging with these
methods.

As another data-driven alternative, the so-called storyline
approach has emerged recently. The idea is to construct a
physically plausible extreme event that one can relate to
without necessarily focusing on the statistical likelihood of
such an event (Hazeleger et al., 2015; Shepherd et al., 2018;
Shepherd, 2019). Rather than asking what the most likely
representation of the climate would be, one could ask how
some extreme realizations of climate could be like. It has
been argued that for adaptation planning the latter question
could be more relevant (Hazeleger et al., 2015). This kind
of “stress-testing” based on the use of scenarios has been
standard practice in catastrophe analysis and emergency pre-
paredness, even outside of the context of climate change (see,
for example, de Bruijn et al., 2016).

In this paper, we construct a climate storyline of a warm
winter followed by a wet spring that is likely to lead to ex-
tremely low wheat crop yield in France. This storyline is
based on an ensemble of simulations of temperature and pre-
cipitation with a stochastic weather generator that we nudge
towards extreme behaviour.

Here, we adapt analogue-based stochastic weather gen-
erators (SWGs) presented by Yiou (2014) and Yiou and
Jézéquel (2020), which simulate spatially coherent time se-
ries of a climate variable, drawn from meteorological obser-
vations. Those SWGs were mainly tested on European sur-
face temperatures. A version was developed to simulate ex-
treme summer heatwaves (Yiou and Jézéquel, 2020). This
paper optimizes the parameters of the SWG of Yiou and
Jézéquel (2020) to simulate extreme warm winters (espe-
cially December) and extreme wet springs.

The goal is to construct a large sample of extreme climate
conditions and assess the atmospheric circulation properties
leading to those conditions of high temperatures and precipi-
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tation. The rationale of ensemble simulations is to determine
uncertainties in the range of values that can be obtained.

Section 2 details the data that is used in this paper and
explains the methodology of importance sampling with ana-
logue simulators. Section 3 describes the experimental re-
sults of the simulations of temperature and precipitation. Sec-
tion 4 provides a discussion of the results.

2 Methods

2.1 Data

We use temperature and precipitation observations from the
E-OBS database (Haylock et al., 2008). The data are avail-
able on a 0.1×0.1◦ grid from 1950 to 2018. As an estimate of
temperature and precipitation in northern France we average
these two fields over a rectangle spanning 45.5–51.5◦ N and
1.5◦W–8.0◦ E (see Fig. 1). This region also includes parts of
the UK, Germany, Belgium, and Switzerland and therefore
does not exactly match the studied area of (Ben-Ari et al.,
2018). The seasonal meteorological conditions we study here
are related to large-scale events, and averaging over a larger
rectangle therefore seems appropriate.

We use the reanalysis data of the National Centers for En-
vironmental Prediction (NCEP) (Kistler et al., 2001) for the
analysis of atmospheric circulation. We consider the geopo-
tential height at 500 hPa (Z500) and mean sea level pres-
sure (SLP) over the North Atlantic region for computation of
circulation analogues and a posteriori diagnostics. We used
the daily averages between 1 January 1950 and 31 Decem-
ber 2018. The horizontal resolution is 2.5◦ in longitude and
latitude. The rationale of using this reanalysis is that it covers
70 years and is regularly updated.

One of the caveats of this reanalysis dataset is the lack
of homogeneity of assimilated data, especially before the
satellite era. This can lead to breaks in pressure-related vari-
ables, although such breaks are mostly detected in the South-
ern Hemisphere and the Arctic region (Sturaro, 2003) and
marginally impact the eastern North Atlantic region.
Z500 patterns are well correlated with western European

temperature and precipitation because those quantities and
their extremes are related to the atmospheric circulation
(Yiou and Nogaj, 2004; Cassou et al., 2005). Since Z500
values depend on temperature, we detrend the Z500 daily
field by removing a seasonal average linear trend from each
grid point. This preprocessing is performed to ensure that the
analogue selection is not influenced by atmospheric trends.

2.2 Stochastic weather generators and importance
sampling

The idea behind importance sampling is to simulate trajecto-
ries of a physical system that optimize a criterion in a com-
putationally efficient way. Ragone et al. (2017) used such an

algorithm to simulate extreme heatwaves with an intermedi-
ate complexity climate model.

The procedure of importance sampling algorithms, say to
simulate extreme heatwaves with a climate model, is to start
from an ensemble of S initial conditions and compute trajec-
tories of the climate model from those initial conditions.

An optimization “observable” is defined for the system. In
this case, it can be the spatially averaged temperature or pre-
cipitation over France. The trajectories for which the observ-
able (e.g. daily average temperature) is lowest during the first
steps of simulation are deleted and replaced by small pertur-
bations of remaining ones. In this way, each time increment
of the simulations keeps the trajectories with the highest val-
ues of the observable. At the end of a simulation, one obtains
S trajectories for which the observable (here average temper-
ature over France) has been maximized. Since those trajec-
tories are solutions of the equations of a climate model, they
are necessarily physically consistent (given that the perturba-
tions are small).

Ragone et al. (2017) argue that the probability of the simu-
lated trajectories is controlled by a parameter that weighs the
importance to the highest observable values: if one trajectory
is deleted at each time step, the simulation of an ensemble of
M-long trajectories has a probability of (1− 1/S)M . Hence,
one obtains a set of S trajectories with very low probability
after M time increments at the cost of the computation of S
trajectories.

For comparison purposes, if one wants to obtain S trajec-
tories that have a low probability (p) observable, then the
number of necessary “unconstrained” simulations is of the
order of M/p, so that most of those simulations are left out.
Systems like weather@home (Massey et al., 2015b) that gen-
erate tens of thousands of climate simulations are just suffi-
cient to obtain S = 100 centennial heatwaves, and the num-
ber of “wasted” simulations is very high. Therefore, impor-
tance sampling algorithms are very efficient ways to circum-
vent this difficulty. The major caveat of this approach is that
one needs to know the equations that drive the system and
be able to simulate them. We use an alternative method that
does not require such knowledge of the system.

We use two SWG-based circulation analogues (Yiou and
Jézéquel, 2020) to simulate events of either warm temper-
ature in December or high precipitation in spring. These
SWGs resample daily weather observations in a plausible
manner to simulate new weather events (Yiou, 2014).

Circulation analogues are computed on SLP (or detrended
Z500) from NCEP between 1950 and 2018. For each day in
1950–2018, K = 20 best analogues are determined by mini-
mizing a spatial Euclidean distance between SLP (or Z500)
maps.

As explained by Yiou and Jézéquel (2020), the SWG ran-
domly samples analogues by weighting the analogue days
with a criterion that favours high temperatures or high pre-
cipitation. Hence, the importance sampling is summarized
by the procedure of giving more weight to analogues that
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Figure 1. Regions used to identify circulation analogues for December temperatures (blue) and spring precipitation (red). The black rectangle
indicates the region over which temperatures and precipitation are averaged in northern France.

yield temperature (or precipitation) properties. There are two
types of importance sampling for the analogues, which are
illustrated in Fig. 2.

The two main types of analogue SWGs are described by
Yiou (2014) and Yiou and Jézéquel (2020) are as follows:

1. A “static” weather generator replaces each day with one
of itsK circulation analogues or itself. With this type of
SWG, simulated trajectories are perturbations (by ana-
logues) of an observed trajectory.

2. A so-called “dynamic” weather generator has a similar
random selection rule, but the “next” day to be simu-
lated follows the selected analogue, rather than the ob-
served actual calendar day. A probability weight ωcal
that is inversely proportional to the distance to the cal-
endar day is introduced:

ωcal = Acale
−αcalRcal(k), (1)

where Acal is a normalizing constant, αcal ≥ 0 is a
weight, and Rcal(k) is the number of days that separate
the date of kth analogue from the calendar day of time t .
This rule is important to prevent time from going “back-
ward”. This type of SWG generates new trajectories by
resampling already observed ones. They are not just per-
turbations of observed trajectories.

Those random selections of analogues are sequentially re-
peated until a lead time T .

An importance sampling is applied while selecting an ana-
logue at each time step by weighing probabilities with the
variable to be optimized (temperature or precipitation). The
K = 20 best analogues and the day of interest are sorted
by daily mean temperature or precipitation. The probability
weights are determined by Yiou and Jézéquel (2020). If R(k)
is the rank (in terms of temperature or precipitation) of day
k in decreasing order and ωk the probability of day k to be
selected, we set

ωk = Ae
−αR(k), (2)

where A is a normalizing constant so that the sum of weights
over k is 1. The α parameter controls the strength of this im-
portance sampling for temperature or precipitation.

The useful property of this formulation of weights is that
the values of ωk do not depend on time t because the rank
values R(k) are integers between 1 and K + 1. The weight
values do not depend on the unit of the variable either, and
thus this procedure is the same for temperature or precipita-
tion. If α = 0, this is equivalent to a stochastic weather gen-
erator described by Yiou (2014).

Combining the weights of the calendar day and the inten-
sity of the climate variable, the probability of day k to be
selected becomes

ω′k = Ae
−αR(k)e−αcalRcal(k). (3)

The generators thus give more weight to the warmest or
wettest days when computing trajectories of December tem-
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Figure 2. Illustration of the analogue-based importance sampling. (a) The static SWG replaces each day in the observed trajectory (black
dots) with one of its analogues (red dots). (b) The dynamic SWG replaces the first day in the observations (black dot) with one of its
analogues, reads the following day of this analogue, and repeats the procedure until creating a new trajectory (red dots).

perature or spring precipitation. We thereby simulate extreme
events, e.g. warm Decembers and wet springs (May to July).

2.3 Experimental set-up

The parameters of the SWG depend on the variables and the
seasons to be simulated. We determine those parameters ex-
perimentally and detail them hereafter. Table 1 lists all pa-
rameters used for the simulation of December temperature
and spring precipitation. These parameters were set after per-
forming a number of sensitivity tests that are going to be dis-
cussed in Sect. 3. Table 2 lists all values tested for α and
αcal. Most figures related to these tests can be found in the
Appendix.

The procedure we follow is as follows.

– Start and end day of simulations. For each year from
1950 to 2018, 1000 simulations are started indepen-
dently for temperature in December and precipitation
in spring. The temperature simulations start on 1 De-
cember and end on 31 December. Precipitation simula-
tions start on 1 April and end on 31 July. This results in
68 000 independent simulations of December tempera-
tures and spring precipitation.

– Identification of circulation analogues. Weather ana-
logues are identified by evaluating the similarity of
weather patterns of an atmospheric variable in a cho-
sen region. For December temperature, analogues are
based on detrended geopotential height at 500 hPa
(Z500) over a region covering most of Europe (70–
23◦ N, 10◦W–40◦ E) (see Fig. 1). Jézéquel et al. (2018)
showed that Z500 is better suited to simulate tempera-
ture anomalies than SLP and that rather small domains
lead to better reconstitutions. This result is supported by
sensitivity tests we performed on the choice of variable
for the computation of the circulation analogues used
to simulate December temperature. For spring precipi-
tation, we use analogues of SLP over a zone covering

30–70◦ N and 50◦W–30◦ E, as shown in Fig. 1. This re-
gion includes large parts of the North Atlantic where
rain-bringing storms usually come from.

– Number of days before selecting a new analogue. For
the simulation of long-lasting precipitation events the
consistency of day-to-day variability is important to en-
sure a plausible water vapour transport. We therefore
adapt the stochastic weather generator (both static and
dynamic). Instead of choosing a new analogue every
day, we stay on an observed trajectory for a number
of days (ndays) before choosing a new analogue (see
Fig. 3). For the analogue selection we weight the ana-
logues based on the accumulated precipitation of the
analogue and the following ndays days, giving more
weight to analogues that bring more precipitation in the
following ndays days.

– Selection of circulation analogues by the generators.
The α-parameter controls the strength of the importance
sampling on either temperature or precipitation, while
αcal controls the influence of the calendar date when
selecting an analogue. For temperature simulations, we
use α = 0.75 and αcal = 6. Note that we thus strongly
condition the calendar day to restrict the SWGs to win-
ter and late autumn days. For precipitation, we set both
α and αcal to 0.5.

3 Results

A lack of cold days in December 2015 and an exception-
ally wet spring caused the 2016 crop loss in northern France.
Although the interplay between these two meteorological
events is crucial for the resulting crop loss, the two events
(warm December and wet spring) seem to have happened in-
dependently from each other: the correlation between tem-
perature in December and precipitation 4 months later is not
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Table 1. Parameters used for the static and dynamic SWG to simulate warm Decembers (second column) and wet April–July periods (last
column).

Parameter Choice for warm Decembers Choice for wet April–July periods

Start day 01/12 01/04
End day 31/12 31/07
Variable for analogues Z500 SLP
Region for analogues 70–23◦ N, 10◦W–40◦ E 30–70◦ N and −50◦W–30◦ E 30–70◦ N
Weighting of temp. or precipitation (α) 0.75 0.5
Weighting of calendar day (αcal) 6 0.5
Number of days before
selecting a new analogue (ndays) 1 5

Table 2. Performed sensitivity tests for the parameters used to simulate warm Decembers (first three rows) and wet April–July periods (last
three rows). The second column lists the parameters of which the sensitivity is assessed. The third column indicates at which levels all other
parameters are fixed for the test. The fourth column lists all tested values and the last column indicates the figure where the results of the test
are shown.

Experiment Tested parameter Fixed parameters Tested values Figure

December variable for analogues α = 0.5, αcal = 6, ndays = 1 Z500, SLP Fig. A1
December αcal α = 0.5, ndays = 1 0, 0.2, 0.5, 1, 2, 4, 6, 8, 10 Fig. A2
December α αcal = 6, ndays = 1 0, 0.1, 0.2, 0.5, 0.75, 1 Fig. A3
April–July ndays α = 0.5, αcal = 0.5 1, 2, 3, 4, 5, 7, 9 Fig. A4
April–July α αcal = 0.5, ndays = 5 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1 Fig. A5
April–July αcal α = 0.5, ndays = 5 0, 0.2, 0.5, 1, 2, 5, 10 Fig. A6

significantly different from zero and we cannot reject the hy-
pothesis that both variables are not correlated (p value of
the Pearson correlation > 0.6). In addition, from an energy
point of view, the characteristic timescale of the atmosphere
does not exceed 35 d (Peixoto and Oort, 1992, Sect. 14.6.2).
This implies that it is unlikely to find links between climate
variables in December and the following May. We therefore
consider that it is reasonable to simulate warm Decembers
and wet springs independently.

3.1 December temperature simulations

The winter preceding the 2016 crop loss was abnormally
warm, with only a few cold days. Here, cold days are de-
fined as days with daily maximal temperatures between 0 and
10 ◦C. This December was the hottest in the observational
record and also the December with the fewest cold days.

Figure 4a shows the observed averages of daily maximal
temperatures and the results from static and dynamic SWG
simulations. The observed December temperatures fluctu-
ate around 6 ◦C, with a small warming trend of 0.2 ◦C per
decade over the whole time series (p value= 0.03). Simu-
lations from the static SWG are consistently around 3.5 ◦C
warmer and follow the year-to-year variability of the obser-
vations. With an average of 12 ◦C, the dynamic SWG sim-
ulations are significantly warmer than the static SWG simu-
lations, and inter-annual variability is strongly reduced. This
is to be expected as the dynamic SWG evolves freely from

the starting day and is therefore less bound to each year’s
circulation.

In years with higher December temperatures, the num-
ber of cold days with maximal temperatures between 0 and
10 ◦C is reduced (see Fig. 4b). Over the period 1950–2018 no
trend in the number of cold days is observed and the number
of cold days fluctuates around 25 d. As the SWG simulates
warmer Decembers the number of cold days is on average
8 d lower in the static SWG and 16 d lower in the dynamic
SWG. Nearly half of the simulations of the dynamic SWG
thus have fewer cold days than what was observed in De-
cember 2015.

December 2015 was unprecedented in terms of missing
cold days, and we simulate a number of warm Decembers
with even fewer cold days. To estimate the probability of
such an extreme December, we fit a beta-binomial distribu-
tion (Jézéquel et al., 2018) to the observations and find that
2015 was a 1-in-4000-year event and that 25% of our dy-
namic SWG simulations are 1-in-1000-year events or even
rarer (see Fig. A3).

As shown in Fig. 5, December 2015 was characterized by
a persistent anticyclonic circulation with its centre over the
Alps. The circulation in the coldest December (1969) was
the opposite of 2015, with negative Z500 anomalies over Eu-
rope and positive anomalies over the Atlantic. In 2008, the
December with most cold days in the observations, the data
resemble 1969 but have less pronounced anomalies.

Earth Syst. Dynam., 12, 103–120, 2021 https://doi.org/10.5194/esd-12-103-2021
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Figure 3. Adapted dynamic weather generators. (a) The adapted static SWG selects a new analogue every nth day (4 d in this illustration)
and follows the observed trajectory (dotted black line) of that day for 3 d. The resulting simulation combines observed 4 d chunks into an
artificial trajectory (red line). (b) The adapted dynamic SWG replaces the first day of the observations with one of its analogues and follows
the observed trajectory of that analogue for 3 d. Following this, a new analogue of the following day in the observed trajectory is chosen.

For all example years, the circulation in the static SWG
simulations exhibits the same features as the observed cir-
culation. The dynamic SWG always simulates high-pressure
anomalies over France irrespective of the starting conditions.
These anomalies are, however, more pronounced in 2015
where the starting circulation favours the anticyclonic pat-
tern over France.

The simulations of warm Decembers are most sensitive to
the weighting of the calendar date. If this parameter is chosen
too loosely, simulations would include days from other sea-
sons, which are generally warmer. As shown in Fig. A2, for
αcal ≥ 6 over 70% of all days in the simulations are sampled
from the November–February period. Increasing the weight-
ing of the calendar day further does not show a significant
effect.

The simulations are also sensitive to the weighting of daily
maximal temperatures α (Fig. A3). For α ≥ 0.75 we simu-
late a large number of Decembers that are more extreme than
2015.

Finally, the choice of geopotential height or mean sea level
pressure to classify circulation analogues does not influence
the simulations (see Fig. A1).

3.2 Spring precipitation

An extremely wet period from April to July 2016 followed
the warm December in 2015, with an average precipitation
of 2.7 mm per day and 332 mm for the whole period. This is
more than the long-term 75th percentile, but it is topped by
some years including 1983, 1987, and 2012.

Figure 6 shows the daily mean precipitation for April–July
periods over 1950–2018. Accumulated April–July precipi-
tation fluctuates around 256 mm with a strong year-to-year
variability. Over the observed period no trend is detected.

Simulations from the static weather generator (blue box-
plots in Fig. 6) also show a strong inter-annual variability but
have significantly larger amounts of precipitation. The aver-
age seasonal precipitation for all simulations and all years
is around 487 mm–190 % of the observed average. Single

simulations even reach daily mean precipitation of 6 mm for
April–July, which is 3 times as high as the observed precipi-
tation in 1983.

April–July periods simulated by the dynamic SWG are
even wetter than the simulations of the static SWG, with an
average seasonal precipitation of 590 mm. As expected, the
inter-annual variations are smaller in the dynamic SWG sim-
ulations than in the static SWG simulations because the dy-
namic SWG evolves freely, with the starting conditions their
only link to the observed circulation.

We estimate the return periods of our simulated events by
fitting a normal distribution to the observed April–July pre-
cipitation events. As we average over a quite large region and
over 4 months, a normal distribution represents the observa-
tions well (even though the analysed variable is precipita-
tion). We find that the 2016 April–July period was a 1-in-17-
year event, while the majority of our SWGs simulations are
1-in-10 000-year events.

In April–July 2016, the atmospheric circulation was char-
acterized by a moderate low-pressure anomaly north of
France and north of the Azores (Fig. 7a). The North Atlantic
Oscillation (NAO) index switched from slightly positive to
negative in May and remained negative until the end of June
(NOAA, 2020).

We next analyse the large-scale atmospheric circulation
patterns that characterize our SWG simulations by compar-
ing them to a few examples of observed events. Figure 7a–
d shows the mean sea level composites of 2016, the driest
(1976), the median (1986), and the wettest (1983) April–July
periods. The main feature in the median event (Fig. 7c) is
a low pressure anomaly north-westward of the British Isles.
The wettest event (Fig. 7d) is characterized by a strong dipole
over the North Atlantic with low pressure in the east and high
pressure in the west. In the driest event (Fig. 7b) this dipole
is reversed and slightly shifted to the east.

For all four events, the static SWG tends to create events
with stronger low pressure anomalies over northern France
(Fig. 7e–h). Similarly, the simulations from the dynamic
SWG all show a strong low-pressure anomaly over north-
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Figure 4. (a) Daily maximal temperature in December from 1950
to 2018. The black line shows E-OBS observations. The boxplots
represent the ensemble variability of the simulations of the static
(blue) and the dynamic (red) SWG for each year. The boxes of
the boxplots indicate the median (q50) and lower (q25) and up-
per (q75) quartiles. The upper whiskers indicate min[max(T ),1.5×
(q75− q25)]. The lower whisker has a symmetrical formulation.
The points are the simulated values that are above or below the de-
fined whiskers. Panel (b) is the same as (a) but for the number of
cold days. The coloured vertical lines indicate the coldest Decem-
ber (green), a median December (yellow), a December with 31 cold
days (cyan) and the warmest December (purple).

ern France (Fig. 7i–l). For the dynamic SWG simulations,
even in 1976, which was the driest April–July period, a low-
pressure anomaly is simulated for northern France where a
high-pressure system had been observed. In the static SWG,
the high-pressure anomaly is relocated to the west, also lead-
ing to a low-pressure anomaly over northern France.

Besides a general tendency towards low-pressure anoma-
lies over northern France, the 2016 April–July period was
characterized by an increased daily pressure variability west
of France (compare Figs. B1a and c). This indicates an en-
hanced storm track activity downstream of our region of in-
terest and could explain the increased precipitation observed

in 2016. In contrast to the persistent anticyclonic anomaly
that led to a continuously warm December in 2015, the wet
April–July period was favoured by a number of storms pass-
ing over northern France.

Our simulations of April–July periods combine 5 d chunks
of observed weather into one coherent time series. By using
5 d chunks instead of combining single-day observations, we
constrain our simulations to observed day-to-day variations
that appear to be crucially important for precipitation events.
This ensures that in our simulations storms predominantly
travel eastwards and that the moisture transport in the simu-
lations is reasonable – at least during the 5 d in question (see
the animated .gif files in the Supplement).

Sensitivity tests indeed show that simulations where a new
analogue is chosen every day result in significantly higher
precipitation, with 7 mm per day for the dynamic SWG sim-
ulations (see Fig. A4). The amount of precipitation steadily
decreases with the length of the observed chunks that are
assembled by the SWGs (ndays). This is to be expected, as
with longer assembled chunks and fewer analogue choices
the simulated weather events resemble the observations more
and more. There is an especially strong decrease in simulated
precipitation from 1 to 3 d, which suggests that when ana-
logues are chosen more frequently than every third day po-
tentially unreasonable weather events are created. Note that
taking 5 d windows is a heuristic choice and that window
sizes between 4 and 7 d give similar results.

The simulations are by definition sensitive to the weight-
ing of the amount of precipitation α. As shown in Fig. A5,
with a relatively small weight of 0.1 most dynamic simu-
lations already bring more precipitation than what was ob-
served in 2016. This could be due to the length of the simula-
tions: it is rather unlikely that extreme weather endures over
4 months. However, with a weak weighting of wet weather
simulations can already result in a long-lasting consistent wet
periods. This increase in precipitation saturates after α ≈ 0.5,
and increasing α further has no effect on the final results.

As for the other free parameters of the SWG, this sensitiv-
ity test does not directly justify the choice of the parameter
α. It instead gives guidance on the values that would be ap-
propriate choices for our application. In the end the parame-
ter is heuristically chosen considering the trade-off between
creating high-precipitation events and keeping as much ran-
domness as possible in our simulations.

As shown in Fig. A6, the weighting of the calendar day has
limited influence on the amount of precipitation in northern
France simulated by our SWGs.

For precipitation in northern France the weighting of the
calendar day is less relevant as there is no pronounced sea-
sonal cycle in precipitation (see Fig. A6).

Finally, one feature in the simulations of April–July de-
serves some more attention: for both static and dynamic
SWG simulations precipitation is exceptionally high in 1994
and 1998. Although observed precipitation in these years was
relatively high, this cannot explain the amount of precipi-
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Figure 5. Geopotential height anomaly at 500 hPa (Z500) composites for a year with 31 cold days (2008), the coldest December (1969), the
median (1978), and the warmest December (2015): (a–c) mean Z500 from NCEP reanalyses, (d–f) static SWG simulations, (g–i) dynamic
SWG simulations. Isolines are shown with 100 m increments. Positive Z500 anomalies are shown with continuous purple isolines, negative
anomalies are shown with dashed cyan lines, and the 500 hPa isoline is shown with a continuous thick black line.

tation in the simulations. One explanation for these outlier
years could be a loop in the simulations leading to an exces-
sive repetition of the same (wet) sequence of days. As shown
in Fig. A7, in 1998 one date is indeed repeated 10 times in
both the static and dynamic weather generator. In most other
years, repetitions of single dates are rare. As our results do
not rely on simulations of single years, this feature does not
affect the overall findings of the study.

These simulations show that there are many possible
April–July periods that would be significantly wetter than
what was observed in 2016 and also wetter than the observed
record precipitation (1983).

4 Discussion

In 2016 northern France suffered an unprecedented crop loss
that can be related to an abnormally warm December in
2015 and a following wet April–July period in 2016 (Ben-
Ari et al., 2016). Here we investigated how extreme these
meteorological precursors of the crop loss could be in the
current climate. Using stochastic weather generators (SWG)
we simulate warm Decembers and wet April–July periods
independently.

The warm December in 2015 resulted in very few cold
days with temperatures between 0 and 10 ◦C. Our simula-
tions show that substantially warmer Decembers would be
possible. However, in terms of cold days, which is a more
relevant indicator for wheat phenology in that season (Ben-
Ari et al., 2018), December 2015 was already extreme, and
only a few simulations show lower numbers of cold days.

For April–July precipitation, we find that much wetter pe-
riods than what was observed in 2016 would be plausible.
The simulated events bring more than twice as much precip-
itation than in 2016.

If crop yields responds to the number of cold days in win-
ter and to the precipitation rate in spring, as shown in Ben-Ari
et al. (2018), then we have shown here that in the current cli-
mate an even worse crop loss event would be possible. The
April–July period in particular could be significantly wetter
than what was observed in 2016.

We used stochastic weather generators to simulate extreme
but plausible weather events. While the method is estab-
lished for summer heat waves (Yiou and Jézéquel, 2020), the
weather events we studied here brought new challenges: al-
though the circulation pattern of the warm December 2015
was similar to a summer heat wave with an anticyclonic pat-
tern over France, special care was required to assure that our
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Figure 6. Daily precipitation averages for April–July from 1950 to
2018. The black line shows E-OBS observations. The boxplots rep-
resent the ensemble variability of the simulations of the static (blue)
and the dynamic (red) SWG for each year. The boxes of boxplots
indicate the median (q50), lower (q25), and upper (q75) quartiles.
The upper whiskers indicate min[max(T ),1.5× (q75− q25)]. The
lower whisker has a symmetrical formulation. The points are the
simulated values that are above or below the defined whiskers. The
coloured vertical lines indicate the driest April–July period (1976),
the wettest period (1983), a median period (1986), and 2016.

simulated events are actually realizations of winter weather.
Here we assured for this by strongly weighting the calendar
date when selecting analogues.

The wet April–July 2016 period was characterized by a
series of passing storms that brought considerable amounts
of precipitation. The main feature of this wet spring season
was therefore not persistence and simulating plausible day-
to-day variations with SWGs was a major challenge. SWGs
that select a new analogue every day tend to simulate persis-
tent rainfall events over spring, with little day-to-day varia-
tion.

As a first attempt to simulate plausible long lasting wet
periods, we propose to reassemble 5 d windows of observed
weather instead of single days. This ensures that low- and
high-pressure systems predominantly travel eastward at a
speed that is tightly linked to observations. An alternative ap-
proach could be to switch trajectories on dry days instead of
switching after a fixed number of days. This would addition-
ally avoid changing trajectories during precipitation events.

Evaluating the plausibility of our simulations remains a
challenge: although sensitivity tests and an analysis of the
simulated circulation patterns reveal the robust and clearly
interpretable behaviour of SWGs, further tests would be re-
quired to assess whether all simulated events could really
happen in our climate. It could, for instance, be interesting
to analyse the simulated wet April–July periods with respect
to more climate variables (e.g. relative humidity) to evaluate
whether the water transport is physically plausible through-
out the simulated period.

To further evaluate the plausibility of our simulations one
could also compare them to extreme events simulated by
large ensemble climate modelling experiments. In a study
using a near-term climate prediction model, Thompson et al.
(2017) found that for England there is a considerable chance
of unprecedented winter rainfall. Replicating a similar study
for northern France spring precipitation would not only pro-
vide an alternative estimate of extreme spring precipitation
but would also allow us to further evaluate the circulation
features of our weather simulations.

Finally, our simulated extremes could be used as input for
the regression-based yield model of Ben-Ari et al. (2018).
These results should, however, be interpreted cautiously as
our simulated weather extremes lie outside of the observed
range and therefore also the range within which the yield
model was trained. They could also be used in process-based
crop models as a worst-case meteorological scenario.

5 Conclusions

This paper is a proof of concept for the importance sampling
for a simulation of a compound event (warm autumn-winter
and wet spring) that would have an impact on crop yield. It
relies on a data-resampling approach to maximize tempera-
ture and precipitation over extended periods of time.

The simulations are based on the a priori knowledge (from
expertise on crop failures in northern France) that warm au-
tumns and winters followed by wet springs have detrimental
effects on crops.

The first application of SWGs to warm winter periods and
wet springs is an important advance in this research field. It
also shows that with only a few adaptations SWGs can be ap-
plied to new weather phenomena, highlighting the merits of
the method. Moreover, the SWG parameters can be adapted
to other types of crops (with other phenological parameters
and key dates).

This approach is rather flexible and could be adapted to
simulate compound extremes using climate model outputs
based on different scenarios of climate change. This could
lead to the first evaluation of the impact of climate change
on worst-case scenarios of crop yields. This type of analy-
sis has some limitations related to the uncertainty of models
and scenarios, and it fails to take into account non-climatic
drivers of crop yields such as pests, supply chains, or eco-
nomical concerns. However, we believe it could be useful to
estimate what could be plausible in terms of purely meteoro-
logical events in a changing climate.
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Figure 7. SLP anomaly composites (Pa) for April–July 2016, the driest period, the median (1986), and the wettest period (1983): (a–d) mean
SLP from NCEP reanalyses, (e–h) static SWG simulations, (i–l) dynamic SWG simulations. Isolines are shown with 100 Pa increments.
Positive SLP anomalies are shown with continuous purple isolines, negative anomalies are shown with dashed cyan lines, and the mean SLP
isoline is shown with a continuous thick black line.
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Appendix A: Sensitivity tests

A1 December temperature

Figure A1. Distribution of the daily maximum temperature in De-
cember averaged in observations (white) and in simulations com-
puted by the static (blue) and dynamic (red) generators using circu-
lation analogues computed using the SLP or Z500. The horizontal
dotted line corresponds to the daily maximum temperature observed
in December 2015. The boxes of boxplots indicate the median
(q50), lower (q25), and upper (q75) quantiles. The upper whiskers
indicate min[max(T ),1.5× (q75−q25)]. The lower whisker has a
symmetrical formulation. The points are the simulated values that
are above or below the defined whiskers.

Figure A2. Percentage of days sampled between November and
February by the dynamic generator when running 100 simulations
of December temperatures as a function of the parameter αcal. The
dotted red line is for αcal = 6 (which is the value used in the analy-
sis).
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Figure A3. Distribution of the number of December days with max-
imal temperatures between 0 and 10 ◦C in observations (white) and
in simulations computed by the static (blue) and dynamic (red) gen-
erators as a function of α. The axis on the right indicates the prob-
ability of occurrence, assuming a beta-binomial distribution of the
number of winter days with parameters estimated from white box-
plot. The horizontal dotted line corresponds to the observed num-
ber of days in December 2015. The boxes of boxplots indicate
the median (q50), lower (q25), and upper (q75) quartiles. The up-
per whiskers indicate min[max(T ), 1.5× (q75− q25)]. The lower
whisker has a symmetrical formulation. The points are the simu-
lated values that are above or below the defined whiskers.

A2 Spring precipitation

Figure A4. Distribution of April–July daily precipitation in obser-
vations (white) and in simulations computed by the static (blue) and
dynamic (red) generators as a function of the number of days before
selecting a new analogue ndays. The axis on the right indicates the
probability of occurrence, assuming a normal distribution of daily
precipitation with parameters estimated from white boxplot. The
horizontal dotted line corresponds to the observed daily precipita-
tion in April–July 2016. The boxes of boxplots indicate the median
(q50), lower (q25), and upper (q75) quartiles. The upper whiskers
indicate min[max(T ), 1.5× (q75− q25)]. The lower whisker has a
symmetrical formulation. The points are the simulated values that
are above or below the defined whiskers.
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Figure A5. Distribution of April–July daily precipitation in obser-
vations (white) and in simulations computed by the static (blue) and
dynamic (red) generators as a function of α. The axis on the right
indicates the probability of occurrence, assuming a normal distri-
bution of daily precipitation with parameters estimated from white
boxplot. The horizontal dotted line corresponds to the observed
daily precipitation in April–July 2016. The boxes of boxplots in-
dicate the median (q50), lower (q25), and upper (q75) quartiles.
The upper whiskers indicate min[max(T ), 1.5× (q75− q25)]. The
lower whisker has a symmetrical formulation. The points are the
simulated values that are above or below the defined whiskers.

Figure A6. Distribution of April–July daily precipitation in obser-
vations (white) and in simulations computed by the static (blue) and
dynamic (red) generators as a function of αcal. The axis on the right
indicates the probability of occurrence, assuming a normal distri-
bution of daily precipitation with parameters estimated from the
white boxplot. The horizontal dotted line corresponds to the ob-
served daily precipitation in April–July 2016. The boxes of boxplots
indicate the median (q50), lower (q25), and upper (q75) quartiles.
The upper whiskers indicate min[max(T ), 1.5× (q75− q25)]. The
lower whisker has a symmetrical formulation. The points are the
simulated values that are above or below the defined whiskers.
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Figure A7. Maximal number of times a single date is repeated for each simulated year. The boxplots indicate the range of this maximal
repetition number for the 1000 simulations for simulations of the static (blue) and dynamic (red) stochastic weather generator. The boxes of
boxplots indicate the median (q50), lower (q25), and upper (q75) quartiles. The upper whiskers indicate min[max(T ), 1.5× (q75− q25)].
The lower whisker has a symmetrical formulation. The points are the simulated values that are above or below the defined whiskers.
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Appendix B: Circulation details

Figure B1. Standard deviation of daily SLP anomalies (Pa) for April–July 2016, the driest period, the median (1986), and 2018: (a–d) SLP
from NCEP reanalyses, (e–h) static SWG simulations, (i–l) dynamic SWG simulations. For the SWG simulations the average of all 1000
runs for the given year is presented.
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