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Abstract. This paper presents a system to perform large-
ensemble climate stochastic forecasts. The system is based
on random analogue sampling of sea-level pressure data from
the NCEP reanalysis. It is tested to forecast a North Atlantic
Oscillation (NAO) index and the daily average temperature
in five European stations. We simulated 100-member ensem-
bles of averages over lead times from 5 days to 80 days in
a hindcast mode, i.e., from a meteorological to a seasonal
forecast. We tested the hindcast simulations with the usual
forecast skill scores (CRPS or correlation) against persis-
tence and climatology. We find significantly positive skill
scores for all timescales. Although this model cannot out-
perform numerical weather prediction, it presents an interest-
ing benchmark that could complement climatology or persis-
tence forecast.

1 Introduction

Stochastic weather generators (SWGs) have been devised to
simulate many and long sequences of climate variables that
yield realistic statistical properties (Semenov and Barrow,
1997). Their main practical use has been to investigate the
probability distribution of local variables such as precipita-
tion, temperature, or wind speed, and their impacts on agri-
culture (Carter, 1996), energy (Parey et al., 2014), or ecosys-
tems (Maraun et al., 2010). Such systems can simulate hun-
dreds or thousands of trajectories on desktop computers and
propose cheap alternatives to climate model simulations.

There are many categories of SWGs (Ailliot et al., 2015).
Some SWGs are explicit random processes, whose param-
eters are obtained from observations of the variable to be

simulated (Parey et al., 2014). Some SWGs are based on a
random resampling of the observations (Iizumi et al., 2012).
Some SWGs simulate local variables from their dependence
on large-scale variables such as the atmospheric circulation
(Kreienkamp et al., 2013). This allows us to simulate spa-
tially coherent multivariate fields (Yiou, 2014; Sparks et al.,
2018) and can be used for downscaling (Wilks, 1999).

SWGs that use observations as input could in principle
be used to forecast variables. This is the case for analogue
weather generators (Yiou, 2014). Methods of analogues of
atmospheric circulation were first devised for weather fore-
cast (Lorenz, 1969; van den Dool, 1989). They were aban-
doned when numerical weather prediction was developed
and implemented, because their performance was deemed in-
adequate (van den Dool, 2007). However, recent studies on
nowcasting have shown that analogue-based methods could
outperform numerical weather prediction for precipitation
(Atencia and Zawadzki, 2015). Yiou (2014) showed some
skill for temperature simulations in Europe of an analogue
SWG.

Due to uncertainties in observations and the high sensitiv-
ity to initial conditions (van den Dool, 2007), weather fore-
casts estimate probability density functions rather than de-
terministic meteorological values. Therefore, weather fore-
casts examine the properties of all possible trajectories of
an atmospheric system from an ensemble of initial condi-
tions. Such properties include the range and the median, for
example. Then one can compare how the ensemble of tra-
jectories compares to observations and other reference fore-
casts. Numerical weather forecasts rely on large ensembles
of model simulations and require a massive use of supercom-
puters in order to provide estimates of the probability density
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724 P. Yiou and C. Déandréis: Ensemble climate forecast with analogues

function (pdf) of variables of interest, for various lead times.
Being able to increase the ensemble size of weather fore-
cast systems in order to lower the bias of the forecast skill
has been a challenge of major centers of weather prediction
(Weisheimer and Palmer, 2014).

The most trivial prediction systems are based on either
climatology (i.e., predicting from the seasonal average) or
persistence (i.e., predicting from the past observed values)
(Wilks, 1995). Probabilistic and statistical models can pro-
vide more sophisticated benchmarks for weather forecast
systems, still without simulating the underlying primitive hy-
drodynamic equations and using supercomputers. For exam-
ple, statistical models of forecast for precipitation based on
analogues (of precipitation) were tested for North America
(Atencia and Zawadzki, 2015). Such systems tend to out-
perform numerical weather forecast systems, although their
computing cost is steeper than most SWGs. Therefore the
potential of analogue-based methods can be useful to assess
probability distributions, rather than a purely deterministic
forecast.

Machine learning algorithms were recently devised to sim-
ulate complex systems (Pathak et al., 2018a) with surpris-
ing performances. Such algorithms are sophisticated ways
of computing analogues of observed trajectories in a learn-
ing step and simulating potentially new trajectories from this
learning. The main drawback is that such algorithms gener-
ally require a tricky tuning of parameters that might not be
based on a physical intuition. From the inspiration of ma-
chine learning algorithms, we propose devising a weather
forecast system based on a stochastic weather generator that
uses analogues of circulation to generate large ensembles of
trajectories. The rationale for using analogues, rather than
more sophisticated machine learning, is that they correspond
to a physical interpretation of relations between large scales
and regional scales. Moreover, mathematical results in dy-
namical system theory (Freitas et al., 2016; Lucarini et al.,
2016) suggest that properties of recurring patterns are asymp-
totically independent of the distance that is used to compute
analogues.

This paper presents tests of such a system to forecast tem-
peratures in Europe and an index of the North Atlantic Os-
cillation (NAO). The NAO controls the strength and direc-
tion of westerly winds and location of storm tracks across
the North Atlantic in the winter (Hurrell et al., 2003). Pos-
itive values of the index indicate a strengthened Azores an-
ticyclone and a weaker Icelandic low. Negative values indi-
cate a weak Azores anticyclone and a strong Icelandic low.
The North Atlantic Oscillation is strongly tied to temperature
and precipitation variations in Europe (Slonosky and Yiou,
2001).

Since the setup of such a system is fairly light, it is pos-
sible to test it for time leads from a meteorological forecast
(5 days ahead) to a seasonal forecast (80 days ahead). We test
this system in hindcast experiments to forecast climate vari-
ables between 1970 and 2010. The tests are performed with

the usual skill scores (continuous rank probability score and
correlation).

The paper is organized as follows. Section 2 presents
the datasets that are used as input of the system. Section 3
presents the forecast system based on analogues, the skill
scores, and the experimental protocol. Section 4 presents the
results on simulations of the NAO index and European tem-
peratures.

2 Data

We used data from different sources for sea-level pressure
(SLP), NAO index, and temperatures. SLP data are used for
analogue computations as a predictor. The NAO index and
temperatures are the predictands (i.e., variables to be pre-
dicted). It is important that they share a common chronology,
in order to allow their simulation because the NAO index and
temperatures are simulated from SLP analogues.

2.1 Sea-level pressure

We use the reanalysis data of the National Centers for Envi-
ronmental Prediction (NCEP) (Kistler et al., 2001). We con-
sider the SLP over the North Atlantic region. We used SLP
daily averages between January 1948 and 30 April 2018. The
horizontal resolution is 2.5◦ in longitude and latitude. The
rationale of using this reanalysis is that it covers more than
60 years and is regularly updated, which makes it a good
candidate for a continuous time forecast exercise.

One of the caveats of this reanalysis dataset is the lack
of homogeneity of assimilated data, in particular before the
satellite era. This can lead to breaks in pressure-related vari-
ables, although such breaks are mostly detected in the South-
ern Hemisphere and the Arctic regions (Sturaro, 2003). We
are not interested in the evaluation of SLP trends; therefore,
breaks should only marginally impact our results.

2.2 NAO index

The NAO is a major mode of atmospheric variability in the
North Atlantic (Hurrell et al., 2003). Its intensity is deter-
mined by an index that can be computed as the normalized
sea-level pressure difference between the Azores and Iceland
(Hurrell, 1995). The NAO index is related to the strength
and direction of the westerlies, so that high values corre-
spond to zonal flows across the North Atlantic region, stormy
conditions, and rather high temperatures in western Europe
(Slonosky and Yiou, 2001; Hurrell et al., 2003).

We retrieved the daily NAO index from the NOAA
web site: http://www.cpc.ncep.noaa.gov/products/precip/
CWlink/pna/nao.shtml (last access: 12 February 2019).

The procedure to calculate the daily NAO teleconnection
indices is detailed on the NOAA web site. In short, a rotated
principal component analysis (RPCA) is applied to monthly
averages of geopotential height at 500 hPa (Z500) anoma-
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lies (Barnston and Livezey, 1987) in the 20–90◦ N region,
between January 1950 and December 2000, from the NCEP
reanalysis. The empirical orthogonal functions (EOFs) pro-
vide climatological monthly teleconnection patterns (Wilks,
1995). Those monthly teleconnection patterns are interpo-
lated for every day in the year. Then daily Z500 anomaly
fields are projected onto the interpolated climatological tele-
connection patterns in order to obtain a daily NAO index.

The geographical domain on which this NAO index is
computed is larger than the one for SLP data. Scaife et al.
(2014) used an NAO index to test the UKMO seasonal fore-
cast system. The index they used is based on monthly SLP
differences between the Azores and Iceland, and is therefore
different from ours.

2.3 European temperatures

We took daily averages of temperatures from the ECAD
project (Klein-Tank et al., 2002). We extracted data from
Berlin, De Bilt, Toulouse, Orly, and Madrid (Fig. 1). Those
five stations cover a large longitudinal and latitudinal range
in western Europe. These datasets were also chosen because

– they start before 1948 and end after 2010. This allows
the computation of analogue temperatures with the SLP
from the NCEP reanalysis, which includes that period,
and

– they contain less than 10 % of the missing data.

These two criteria allow 528 out of the 11 422 ECAD stations
to be kept that are available in 2018.

3 Methods

3.1 Analogues of circulation

Analogues of circulation are computed on SLP data from
NCEP (Sect. 2.1). For each day between 1 January 1948 and
31 December 2017, the 20 best analogues (with respect to
a Euclidean distance) in a different year are searched. This
follows the procedure of (Yiou et al., 2013). The analogues
are computed over two regions (large region: North Atlantic
region (80◦W–30◦ E; 30–70◦ N); small region: western Eu-
rope (30◦W–20◦ E; 40–60◦ N)). The large region is used to
simulate/forecast the NAO index. This choice is justified by
the fact that the North Atlantic atmospheric circulation pat-
terns are well defined over that region (Michelangeli et al.,
1995). The small region is used to simulate/forecast conti-
nental temperatures, following the domain recommendations
of the analysis of Jézéquel et al. (2018).

3.2 Forecast with an analogue stochastic weather
generator

Ensembles of simulations of temperature or the NAO index
can be performed with the rules illustrated by Yiou (2014),

with an analogue-based stochastic weather generator. This
stochastic weather generator can be run in so-called dynamic
mode. For each initial day t (1), we have N best SLP ana-
logues. We randomly select one (k) of those N analogues
and time t (1)k , with a probability weight that is

1. inversely proportional to the calendar distance of the
analogue dates t (1)k to t (1). This constrains the time of
analogues to move forward;

2. inversely proportional to the correlation of the analogue
with the SLP pattern at time t (1). This constraint favors
analogues with the best patterns, among those with the
closest distance; and

3. a zero weight if t (1)k is larger than t (1). This ensures that
no information coming from times beyond t (1) is used
in the simulation process.

The simulated SLP at the next day t (2) is then the next day of
the selected analogue (t (2) = t (1)k + 1). We repeat this opera-
tion on t (2), . . ., t (t) until a lead time T . This generates one
random daily trajectory between t (1) and t (1)+ T . The ran-
dom sampling procedure is repeated S times to generate an
ensemble of trajectories. Here, S = 100. This procedure is
summarized in Fig. 2.

If we want to simulate a daily sequence starting at time t
and until t + T , we have excluded all analogues whose date
falls in [t, t+T ] in the random analogue selection. This pro-
vides a simple way of performing hindcast forecast for tem-
perature or NAO index.

In this paper, the lead time T is 5, 10, 20, 40, and 80 days
ahead. The latter two values are meant to illustrate the limits
of the system. For each daily trajectory starting at t , we com-
pute the temporal average between t and t + T . Therefore,
we go from an ensemble meteorological forecast (5 days) to
a seasonal forecast (80 days) of averaged trajectories.

The S = 100 simulations at each time step allow compu-
tation of medians and quantiles of the averaged trajectories.

For comparison purposes, climatological and persistence
forecasts are also computed. The climatological forecast for
a lead time T is determined from the seasonal cycle of T
averages of the variable we simulate. For each time t , the
climatological forecast for t + T is the mean seasonal cy-
cle of T averages at the calendar day of t . The persistence
forecast at time t for a lead time of T is the observed av-
erage between t − T and t . Those two types of forecasts are
illustrated in Fig. 3. Ensembles of reference forecasts are per-
formed by adding a Gaussian random noise (independent and
identically distributed), whose variance is the variance of the
observed T averages. These two definitions ensure a coher-
ence between the predictand (averages over T values ahead)
and predictors for references (mean of averages over T val-
ues for climatology, or average over T preceding values for
persistence).

www.geosci-model-dev.net/12/723/2019/ Geosci. Model Dev., 12, 723–734, 2019
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Figure 1. Upper panel: North Atlantic region (blue rectangle) and western European region (red rectangle) on which analogues are computed.

Figure 2. Schematic of the iteration procedure to simulate one random trajectory of temperature (TG) from SLP analogues. The values of
t(k) are the days to be simulated by the system. The values of t(k)1 , . . ., t

(k)
N

are the analogue days for t(k). The red SLP rectangles are the
randomly selected analogues according to the rule defined in the lower box. This procedure is repeated S times to generate an ensemble of
trajectories.

3.3 Alternative autoregressive weather generator

This non-parametric weather generator (based on data re-
sampling) is compared to a parametric autoregressive sim-
ple model, based on a similar principle of a relation between
SLP and variables like temperature and NAO index. We build
a multi-variate autoregressive model of order 1 Rt for SLP by

expressing

Rt+1 = A ·Rt +B t , (1)

where A is a “memory” matrix andB t is multivariate random
Gaussian noise with covariance matrix6. We assume that the
multivariate process Rt yields the same covariance matrix
C(0) and same lag-1 covariance matrix C(1) as SLP. The

Geosci. Model Dev., 12, 723–734, 2019 www.geosci-model-dev.net/12/723/2019/
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Figure 3. Illustration of average forecast for daily mean temperature
(TG) in Toulouse, for 1 January 2007. The continuous black line
indicates the observations of TG for the first 90 days of 2007. The
colors indicate lead times T . The continuous arrows are for averages
of observed TG from 1 January 2007 to the lead time T . The dashed
lines are for the persistence forecast of TG and the dotted lines are
for the climatology forecast of TG on 1 January 2007.

matrices A and 6 can be estimated by

A= C(1)t ·C(0)−1 (2)

and

6 = C(0)−C(1)t ·A. (3)

The superscript t is matrix transposition. In order to avoid
numerical problems in the estimation of C(0)−1, the model
in Eq. (1) is formulated on the first 10 principal compo-
nents (von Storch and Zwiers, 2001) of North Atlantic SLP
(80◦W–30◦ E, 30–70◦ N: blue rectangle in Fig. 1), which ac-
count for ≈ 80 % of the variance. In this way, C(0) is a diag-
onal matrix whose elements are the variances of the 10 prin-
cipal components of SLP. Such a parametric model has been
used as a null hypothesis for weather regime decomposition
by Michelangeli et al. (1995).

We then perform a multilinear linear regression between
the five mean daily temperature records (TG at Berlin,
Toulouse, Orly, Madrid, and De Bilt) and the NAO index:

Xt = a SLPt + b+ εt , (4)

where X = (TGBerlin, . . .,TGDeBilt,NAO), a is a 6× 10 ma-
trix, b is a 10-dimensional vector, and εt is a 10-dimensional
residual term. We simulate Eq. (1) with the same observed

initial conditions as for the analogue forecast. Then Eq. (4)
is applied to simulate an ensemble of forecasts of temper-
atures and NAO index. In this multivariate autoregressive
model (mAR1), the temporal atmospheric dynamics is con-
tained in the matrix A. The major caveat of the parametric
model in Eqs. (1 and 4) is that it does not contain a seasonal
cycle. Introducing a seasonal dependence on the matrices A
and a would require many tests that are beyond the scope of
this paper.

3.4 Forecast skill

The simplest score we use is the temporal correlation be-
tween the median of the ensemble forecast and the observa-
tions. Due to the autocorrelation and seasonality of the vari-
ables we try to simulate (temperature and NAO index), we
consider the correlations for the forecast in the months of
January and July.

The continuous rank probability score (CRPS) compares
the cumulated density functions of a forecast ensemble and
observations yt , for all times t (Ferro, 2014).

CRPS(t)=

∞∫
−∞

(Ft (x)− 1(x ≥ yt ))2dx (5)

Ft is the cumulated density function of the ensemble fore-
cast at time t . It is obtained empirically from the ensemble of
simulations of the model. 1(x ≥ yt ) is the empirical cumu-
lated density function of the observation yt .

The score is the average over all times:

CRPS=
1
N

N∑
t=1

CRPS(t). (6)

The CRPS is a fair score (Ferro, 2014; Zamo and Naveau,
2018) in that it compares the probability distributions of
forecasts and observations and it is optimal when they are
the same. Discrete estimates of CRPS can yield a bias for
small ensemble sizes S. We simulate S = 100 trajectories for
each forecast. This is more than most ensemble weather fore-
casts (typically, S = 51 for the European Center for Medium
Range Forecast (ECMWF) ensemble forecast) and guaran-
tees that the bias due to the number of samples is negligible.
A perfect forecast gives a CRPS value of 0.

The CRPS can be decomposed into reliability, resolution,
and uncertainty terms (Hersbach, 2000, Eq. 35):

CRPS= Reli−Resol+U. (7)

The reliability Reli term measures whether events that are
forecast with a certain probability p did occur with the same
fraction p from the observations (Hersbach, 2000). The re-
maining terms of the right-hand side of Eq. (7) are called the
potential CRPS; i.e., it is the CRPS value one would obtain
if the forecast were perfectly reliable (Reli= 0). Hersbach

www.geosci-model-dev.net/12/723/2019/ Geosci. Model Dev., 12, 723–734, 2019
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(2000) argues that the potential CRPS is sensitive to the av-
erage spread of the ensemble.

The units of CRPS are those of the variable to be fore-
cast; therefore, its interpretation is not universal, and com-
paring the CRPS values for the NAO index and temperatures
is not directly possible. Therefore, it is useful to compare the
CRPS of the forecast with the one of a reference forecast. A
normalization of CRPS provides a skill score with respect to
that reference:

CRPSSref = 1−
CRPS

CRPSref
. (8)

The CRPSS indicates an improvement over the reference
forecast. A perfect forecast has a CRPSS of 1. A positive im-
provement over the reference yields a positive CRPSS value.
A value of 0 or less indicates that the forecast is worse than
the reference.

We compute CRPSS for the climatological and persistence
references. We used packages “SpecsVerification” and “ver-
ification” in R to compute CRPS decomposition and CRPSS
scores. Hence we compare our stochastic forecasts with fore-
casts made from climatology and persistence. By construc-
tion, the persistence forecast shows an offset with the actual
value ahead, because the persistence is the value of the aver-
age of observations between t − T and t . The variability of
the climatological forecast is low because it is an average of
T long sequences.

3.5 Protocol

We tested the ensemble forecast system on the period be-
tween 1970 and 2010. We simulate N = 100 trajectories of
lengths T ∈ {5,10,20,40,80} days for a given date t , and
average each trajectory over T . The dates t are shifted ev-
ery δt ∈ {2,5,10,10,20} days, respectively, for each differ-
ent value of lead times T .

We recall that the tests we perform are on the average of
the forecast between t and t+T , not on the value at time t+
T .

The CRPS and CRPSS are computed for each value of
lead times T , with references of climatology and persistence.
We determine the CRPS reliability and plot quantile–quantile
plots for observed and forecast values of the averages. This
allows assessment of biases in simulating averages. Variables
such as temperature yield a strong seasonality, which is larger
than daily variations. It is hence natural to have very high
correlations or skill scores if one considers those scores over
the whole year. Therefore we compare the skill scores for
January and July, in order to avoid obtaining artificially high
scores.

4 Results

We performed our stochastic forecasts on the NAO index and
European temperatures with the analogue stochastic weather

generator and the mAR1 model. The two datasets (NAO
and temperature) are treated separately because the simu-
lations are done with two different analogue computations
(Sect. 3.1).

4.1 NAO index

For illustration purposes, we comment on the skill of sim-
ulations of 2007. Fig. 4 shows the simulated and observed
values of averages of the NAO index, for five values of T (5,
10, 20, 40, and 80 days). This example suggests a good skill
to forecast the NAO index from SLP analogues, especially at
lead times of T = 5 to 10 days.

The q − q plots of the median of simulations versus ob-
servations show a bias that reduces the range of variations
(Fig. 4, right column). There are two reasons for this reduc-
tion of variance, which is proportional to the lead time T :

1. individual simulated trajectories tend to “collapse” to-
ward a climatological value after ≈ 10 days, and

2. taking the median of all simulations also naturally re-
duces the variance.

The q − q plots are almost linear. This means that the bias
could in principle be corrected by a linear regression. We
will not perform such a correction in the sequel.

The correlation, CRPS reliability, and CRPSS values for
NAO index forecast are shown in Fig. 5. The values of
CRPSSpers (for a persistence reference) are rather stable
(with a slight increase) near 0.45, and the climatology score
slightly decreases with T , although positive.

The CRPS reliability values range from 5×10−3 (10 days)
to 0.01 (40 days). If they are normalized to the CRPS value
(or the variance of the NAO index), this is in the same range
as the results of Hersbach (2000) for the ECMWF forecast
system up to 10 days.

On the one hand, the CRPSSclim values do not depend on
the season (identical triangles in Fig. 5). On the other hand,
CRPSSpers values are higher in July than January for lead
times T ≤ 10 days, and lower for lead times T ≥ 40 days
(squares in Fig. 5). This means that the climatology forecast
tends to be better than the persistence forecast for T > 5 days
(squares higher than triangles in Fig. 5), which can be antici-
pated because of the inherent lag of the persistence forecast.

The correlation scores decrease with lead time T . The cor-
relation skill is higher in January than in July. It is no longer
significantly positive for T larger than 40 days (25th to 75th
quantile intervals contain the 0 value). The correlation score
values range between 0.65 and 0.82 for T = 5-day forecasts,
and 0.45 and 0.77 for T = 10-day forecasts, depending on
the season. This is consistent with the NAO forecast of the
Climate Prediction Center (r = 0.69 for a 10-day forecast).
The correlation score is still significantly positive for T = 20
days. The higher correlation scores over the whole year (not
shown) reflect a (small) seasonal cycle of the NAO index.

Geosci. Model Dev., 12, 723–734, 2019 www.geosci-model-dev.net/12/723/2019/
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Figure 4. Left column: time series of analogue ensemble forecasts for 2007, for lead times T ∈ {5,10,20,40,80} days. Red lines represent
the median of 100 simulations; pink lines represent the 5th and 95th quantiles of the 100-member ensemble. Right column: q − q plots of
NAO forecasts versus observed values for all years in 1970–2010 for all lead times. The dotted line is the first diagonal.

This artificially enhances the score for those lead times be-
cause SLP analogue predictands tend to reproduce the sea-
sonality of the SLP field (by construction of the simula-
tion procedure), and the NAO index and SLP variations are
closely linked on monthly timescales (by construction of the
NAO index).

For comparison purposes, the multivariate autoregressive
model NAO time series are shown in Fig. 6. The skill scores
(correlation and CRPSS) for the NAO index give positive
values, but not as high as for the analogue forecast. Since
this weather generator is designed to yield stationary statisti-
cal properties, the score values do not depend on the season.
CRPSS values for climatology range from 0.36 (T = 5 days)
to 0.23 (T = 80 days). Those values are lower than for the

analogue system for lead times lower than 20 days (Fig. 5,
triangles). The correlation values decrease from 0.58 (T =
5 days) to 0.05 (T = 80 days), which is lower than for the
analogue system (Fig. 5, boxplots).

4.2 European temperatures

The correlation and CRPSS values for daily mean temper-
ature (TG) forecast are shown in Fig. 7. The values of
CRPSSpers (for a persistence reference) increase with lead
time T . This is not surprising because the forecast for the
next T days is based on the average of the past T days.
Therefore, the persistence forecast is always “late” due to the
strong seasonality of temperature variations.

www.geosci-model-dev.net/12/723/2019/ Geosci. Model Dev., 12, 723–734, 2019
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Figure 5. Skill scores for the NAO index for lead times T of 5, 10,
20, 40, and 80 days for January (a: blue) and July (b: red). Squares
indicate CRPSSpers, triangles CRPSSclim, and boxplots correlation.
The diamonds indicate the reliability of CRPS (on the same scale
as CRPSS). Triangles are identical for all days, January and July.
The boxplots for the correlation indicate the spread across the 100-
member ensemble forecasts.

The CRPSSclim values decrease with T and plateau near
≈ 0.2. This skill score is still positive (albeit small) for
a seasonal forecast. This positive average skill (CRPSS>
0.2) illustrates that the stochastic weather generator follows
the seasonality of temperature variations. We note that the
CRPSS values for temperature are higher than for the NAO
index. This is explained by the seasonality of temperatures,
which is more pronounced than in the daily NAO index.

The CRPSS values are rather consistent for four of the sta-
tions (Toulouse, De Bilt, Berlin, and Orly). The stochastic
model CRPSS fares slightly worse at Madrid station.

The CRPS reliability values are shown in Fig. 7. Their ab-
solute values are larger than for the NAO index, and need to
be normalized by the variance of temperature (or the CRPS
value itself), as the units of TG are tenths of degrees. The
average relative reliability values for lead times lower than
10 days are also similar to what is reported by Hersbach
(2000). The reliability values seem to decrease with lead
times in winter. They peak at lead times of 40 days in the
summer (except for Berlin, where the peak is at 20 days in
the summer), and then decrease.

The correlation scores for January and July decrease with
lead time T . The correlation score values for all days are
above 0.97 due to the seasonality of temperatures and fore-
casts. Since this is not informative, this is not shown in
Fig. 7. The correlations are always significantly positive for
Toulouse, De Bilt, Berlin, and Orly. The summer correla-
tion intervals contain the 0 value at Madrid. This is proba-
bly due to the fact that temperature is not linked to the at-
mospheric circulation in the summer, but rather to local pro-
cesses of evapotranspiration (Schaer et al., 1999; Seneviratne
et al., 2006). The distribution of the correlation scores (box-
plots in Fig. 7) is significantly positive for lead times up to
20 days. It becomes stable near values of 0.2 (or increases)

for lead times larger than 40 days. This indicates that there is
certainly an artificial predictability beyond those lead times,
which shows an upper limit of forecasts for this system.

The mAR1 system for temperature is not designed to yield
a seasonal cycle (contrary to the analogue system). There-
fore, the skill scores of this system for temperatures are neg-
ative (for CRPSS) or with non-significant correlations.

5 Conclusions

We have presented a system to generate ensembles of
stochastic simulations of the atmospheric circulation, based
on pre-computed analogues of circulation. This system is
fairly light in terms of computing resources as it can be run
on a (reasonably powerful) personal computer. The most fun-
damental assumption of the system is that the variable to be
predicted is linked to the atmospheric circulation. The geo-
graphical window for the computation of analogues needs to
be adjusted to the variable to be predicted, so that prior ex-
pertise is necessary for this analogue forecast system. This
implies that this approach would not be adequate for vari-
ables that are not connected in any way to the atmospheric
circulation (here approximated by SLP). The use of other at-
mospheric fields (e.g., geopotential heights) might increase
the skill of the system. The computation of analogues with
other parameters (geographical zone, atmospheric predictor,
type of reanalysis, climate model output, etc.) can be eas-
ily performed with a web processing service (Hempelmann
et al., 2018).

We have tested the performance of the system to simulate
an NAO index and temperature variations in five European
stations. The performance of such a system cannot beat a
meteorological or seasonal forecast with a full-scale atmo-
spheric model (Scaife et al., 2014), but its skill is positive,
even at a monthly timescale, with a rather modest compu-
tational cost. From the combination of several skill scores
(from CRPS and correlation), we obtain a forecast limit of
40 days, beyond which the interpretation of score values is
artificial. We emphasize that the forecast is done on averages
over lead times, not on the last value of the lead time.

The reason for the positive skill (especially against clima-
tology) remains to be elucidated, especially for lead times
longer than 20 days. We conjecture that the information con-
tained in the initial condition (as done with regular weather
forecasts) actually controls the mean behavior of the trajec-
tories from that initial condition. But such a skill is actually
“concentrated” in the first few days, because the trajectories
tend to converge to the climatology after 20 days. The com-
bination of several skill scores shows that such a system is
not appropriate for ensemble forecasts beyond lead times of
40 days, which is lower than what is reported by Baker et al.
(2018) for a meteorological forecast of the NAO.

Although the forecast system is random, it contains ele-
ments of the dynamics of the atmosphere, from the choice of
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Figure 6. Multivariate autoregressive (mAR1) model time series of ensemble forecasts for 2007, for lead times T ∈ {5,10,20,40,80} days.
Black lines represent observed averages over lead times T . Red lines represent the median of 100 simulations; pink lines represent the 5th
and 95th quantiles of the 100-member ensemble.
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Figure 7. Skill scores for mean daily temperature in Toulouse and
De Bilt, for lead times T of 5, 10, 20, 40, and 80 days. Squares
indicate CRPSSpers, triangles CRPSSclim, and circles correlation.
The diamonds indicate the reliability of CRPS (on the same scale
as CRPSS). Blue symbols (left) are for January and red symbols
(right) are for July. Triangles are identical for January and July.
The boxplots for the correlation indicate the spread across the 100-
member ensemble forecasts. Skill scores for temperature in Madrid
and Berlin (continued). Skill scores for temperature in Orly (contin-
ued).

the analogues. This system is consistently better than a sim-
ple multivariate autoregressive (mAR1) model for lead times
shorter than 20 days. Since the seasonal cycle is naturally
embedded in the analogue simulations, there is no need to
parameterize it, in contrast to the mAR1 model.

Recent experimental results in chaotic systems have
shown that a well-tuned neural network algorithm could sim-
ulate efficiently the trajectories of a chaotic dynamical sys-
tem (Pathak et al., 2018b). Our system is an extreme sim-
plification of an artificial intelligence algorithm, but it does
demonstrate the forecast skill of such approaches. The advan-
tage here is the physical constraint between the atmospheric
circulation and the variables to be simulated.

This system was tested on temperature for five European
datasets. This could be extended to precipitation or wind
speed. If a real-time forecast is to be performed, we empha-
size that only the predictor (here, SLP) needs to be regularly
updated for the computation of analogues.

The goal of such a system is not to replace ensemble nu-
merical weather/seasonal forecast. Rather, it can refine the
usual references (climatology and persistence) for the eval-
uation of skill scores. This would create a third “machine
learning” reference for CRPSS that might be harder to beat
than the classical references.

Code and data availability. The code for the computation of ana-
logues is available at (free CeCILL license) https://a2c2.lsce.
ipsl.fr/index.php/deliverables/101-analogue-software (last access:
12 February 2019) and at https://github.com/bird-house/blackswan
(last access: 12 February 2019).

The code for simulations is available at https://a2c2.lsce.ipsl.fr/
index.php/licences (last access: 8 February 2019) under a free Ce-
CILL licence (http://www.cecill.info/licences.fr.html, last access:
12 February 2019).

The temperature data are available at https://www.ecad.eu (last
access: 12 February 2019).

The NAO index data are available at http://www.cpc.ncep.noaa.
gov/products/precip/CWlink/pna/nao.shtml (last access: 12 Febru-
ary 2019).

The NCEP reanalysis SLP data are available at https://www.
esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html (last ac-
cess: 12 February 2019).
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