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Abstract. Simulating ensembles of extreme events is a nec-
essary task to evaluate their probability distribution and ana-
lyze their meteorological properties. Algorithms of impor-
tance sampling have provided a way to simulate trajecto-
ries of dynamical systems (like climate models) that yield
extreme behavior, like heat waves. Such algorithms also
give access to the return periods of such events. We present
an adaptation based on circulation analogues of importance
sampling to provide a data-based algorithm that simulates
extreme events like heat waves in a realistic way. This al-
gorithm is a modification of a stochastic weather generator,
which gives more weight to trajectories with higher temper-
atures. This presentation outlines the methodology using Eu-
ropean heat waves and illustrates the spatial and temporal
properties of simulations.

1 Introduction

The summer heat waves in western Europe in 2003 or in Rus-
sia in 2010 were not only record breaking events but outliers
of the temperature distribution by exceeding several standard
deviations. Those events were regarded as catastrophes in the
countries where they occurred, and drastic measures of adap-
tation had to be taken, so that the following events (although
milder) had much lower impacts. One can ask whether such
events were unprecedented because the observational records
are too short (i.e., their return periods are longer than any
time series of observations) or because climate change cre-
ated new conditions of emergence. In order to solve this
conundrum, it is necessary to be able to simulate the most

intense event over a given region that is compatible with
present-day conditions and compare it with observed records.
This necessitates efficient simulation methods. The general
challenge that we want to address is to simulate an ensemble
of heat waves with a return period larger than 1000 years,
with present-day conditions (i.e., less than 100 years of ob-
servations)

Available ensembles of climate model simulations from
the Coupled Model Intercomparison Project phase 5
(CMIPS; Taylor et al., 2012), Euro-CORDEX (Vautard et al.,
2013) and weather@home (Massey et al., 2015) contain
mostly “normal” summers, so that samples of extreme sum-
mers are often scarce. In addition, model biases can add is-
sues regarding the reliability of simulated structures or return
levels (Maraun et al., 2017).

Long-lasting events like heat waves or cold spells yield
a challenge beyond the simulation of large values of tem-
perature. For example, heat waves are characterized by pro-
longed episodes of high temperatures that are associated with
persisting anticyclonic atmospheric patterns (Cassou et al.,
2005; Kornhuber et al., 2017; Quesada et al., 2012). The
maximum duration of those events is obviously bounded by
the seasonal cycle because the lower solar input in autumn
imposes an end on all summer heat waves, although the
length of seasons is subject to variations (Cassou and Catti-
aux, 2016). This outlines the necessity to simulate the climate
ingredients leading to a warm or cold spell. This inspired the
idea of storylines that emphasize the mechanisms behind ex-
tremes (Hazeleger et al., 2015; Zappa and Shepherd, 2017;
Shepherd et al., 2018; Shepherd, 2019). Storylines allow in-
vestigating how extremes are affected by climate change.
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Statistical models have been developed to simulate ex-
treme events (Ghil et al., 2011). Extreme value theory (EVT)
is useful to investigate and to simulate short-lived events, es-
pecially when they deviate from Gaussian distributions. But
it might not be appropriate to investigate long-lasting events
(which end up leading to a Gaussian distribution). The in-
vestigation of multivariate fields (e.g., a temperature and the
atmospheric circulation) is possible but requires rather com-
plex implementations.

Dynamic weather generators that simulate ensembles of
climate variables have been devised to circumvent this sam-
pling difficulty. The weather@home experiment (Massey
et al., 2015) simulate tens of thousands of trajectories of
the HadAM3P model, which is the atmosphere component
of the coupled ocean—atmosphere model of the UK Met Of-
fice Hadley Centre (Gordon et al., 2000). Although spectacu-
lar, this system is not very flexible (the model parameters are
fixed, the region is imposed, etc.) nor optimal in the sense
that one gets “only” 10 millennial heat waves in 10* runs.
The limits of atmospheric-only model approaches have also
been demonstrated (Fischer et al., 2018; Dong et al., 2017).

Stochastic weather generators (Ailliot et al., 2015) are sta-
tistical models that yield reasonable physical features and can
be run many times at a low computational cost. In princi-
ple, such stochastic models can enlarge the sampling size to
millions of simulations so that one could obtain hundreds of
extreme events with millennial return times rather inexpen-
sively.

Ragone et al. (2017) were the first to perform simulations
of extreme heat waves in Europe with importance sampling
algorithms and a simplified climate model. They were able to
simulate 100 heat waves with a return period of 1000 years
at the cost of 100 simulations, by avoiding simulating normal
years. The main caveat of that proof of concept is linked to
potential model biases (Fraedrich et al., 2005) and the lack
of a seasonal cycle (they simulated perpetual summers).

The goal of this study is to assemble ideas from stochastic
weather generators and importance sampling to simulate ex-
treme events with realistic atmospheric circulation features.
We will call this system an empirical importance sampling
algorithm. For simplicity (and without lack of generality)
we will focus on the simulation of summer European heat
waves, as a proof of concept. Hence the paper will be based
on summer daily temperature at several European stations.
The paper will present a data-based stochastic weather gen-
erator that nudges simulated trajectories toward high temper-
atures. We will investigate the physical and statistical proper-
ties of this weather generator. In particular, we will identify
the weather types associated with extreme heat waves.

Section 2 presents the temperature and atmospheric circu-
lation data that are used in the paper. Section 3 recalls the
ideas of importance sampling and details the analogue-based
algorithm for sampling heat waves. Section 4 shows the re-
sults of simulations of extreme heat waves.

Geosci. Model Dev., 13, 763-781, 2020

2 Data
2.1 Atmospheric circulation

We use the reanalysis data of the National Centers for Envi-
ronmental Prediction (NCEP) (Kistler et al., 2001). We con-
sider the geopotential height at 500 mb (Z500) over the North
Atlantic region for the computation of circulation analogues.
Sea-level pressure (SLP) is used for a posteriori diagnos-
tics. We used the daily averages between 1 January 1948 and
31 December 2018. The horizontal resolution is 2.5° in lon-
gitude and latitude. The rationale of using this reanalysis is
that it covers 70 years and is regularly updated.

We consider Z500/SLP fields over two regions outlined in
Fig. 1. The region in red is used to compute Z500 analogues.
It is similar to the one advocated by Jézéquel et al. (2018).
The region in blue is used for verification. The reason to use
7500 for computations, rather than SLP, is linked to the “heat
low” of SLP during heat waves (Jézéquel et al., 2018). SLP
and Z500 yield similar properties during the winter.

One of the caveats of this reanalysis dataset is the lack
of homogeneity of assimilated data, in particular before the
satellite era. This can lead to breaks in pressure related vari-
ables, although such breaks are mostly detected in the South-
ern Hemisphere and the Arctic regions (Sturaro, 2003), and
it marginally impacts the eastern North Atlantic region.

Since Z500 values depend on temperature, we detrend the
7500 daily field by removing a seasonal average linear trend
from each grid point. This preprocessing is performed to en-
sure that the results do not depend on atmospheric trends. All
the analogue computations of this paper were performed on
detrended and raw Z500 data, in order to verify the robust-
ness of the results to Z500 trends.

2.2 Temperature observations

We took daily averages (TGs) of temperatures from the Eu-
ropean Climate Assessment & Dataset (ECA & D) project
(Klein-Tank et al., 2002). We extracted data from Berlin, De
Bilt, Toulouse, Orly and Madrid (Fig. 1). We consider data
from June-July—August (JJA). Those five stations cover a
large longitudinal and latitudinal range in western Europe.
These datasets were also chosen because

— they start before 1948 and end after 2018. This al-
lows the computation of analogue temperatures with the
7500 from the NCEP reanalysis, which includes that pe-
riod;

— they contain less than 10 % of missing data.

These two criteria allow keeping 528 of the 11422 ECA&D
stations that are available in 2018.

The five daily TGs are then averaged in order to provide a
daily European temperature index. This choice is made to
simplify the presentation of results. Results for individual

www.geosci-model-dev.net/13/763/2020/
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Figure 1. Location of five European stations. Longitudes are expressed in degrees east. Latitudes are expressed in degrees north. The red
rectangle indicate the zone on which Z500 circulation analogues are computed. The blue rectangle indicates the region of pattern verification

for Z500 and SLP.

stations are presented in the Supplement. This would over-
come the potential caveat of the European temperature index,
which does not capture the spatial variability of European
heat waves (Stefanon et al., 2012). Since we focus on ex-
tremely hot temperature spells, this proof-of-concept study
is limited to summer, and we consider the period between
1 June to 31 August.

3 Methodology

This section first recalls how analogues of circulation are
computed as well as the general principle of a stochastic
weather generator based on analogues. It then focuses on
an empirical algorithm to simulate heat waves, based on this
stochastic weather generator.

3.1 Circulation analogues

Analogues of circulation are computed on Z500 data from re-
analysis data of the NCEP reanalysis (Sect. 2.1) on the region
outlined in red in Fig. 1. The reason to use this field rather
than SLP is linked to the heat low of SLP during heat waves
(Jézéquel et al., 2018). SLP and Z500 yield similar proper-
ties during the winter. For each day between 1 January 1948
and 31 December 2018, the best 20 analogues (with respect
to a Euclidean distance) in a different year and within 30 cal-

www.geosci-model-dev.net/13/763/2020/

endar days are searched. This follows the procedure of Yiou
etal. (2013).

The small region (20° W-25° E; 40-70° N) is used to com-
pute analogues of Z500, to simulate continental tempera-
tures, following the domain recommendations of the anal-
ysis of Jézéquel et al. (2018). We compute analogues on
“raw” daily Z500 data and detrended Z500. Detrending is
performed by removing a smoothing spline on the spatially
averaged Z500. The increasing trend of surface temperatures
necessitates this trend removal in Z500.

The larger region (80° W-25°E; 30-70° N) covers the
North Atlantic region. The atmospheric circulation of the
North Atlantic evolves within this region. This region is used
to compute composites of large-scale SLP/Z500 fields dur-
ing simulated events, for an evaluation of large-scale features
during those small-scale events.

The analogues of Z500 are computed with the “black-
swan” Web Processing Service (WPS) described by Hempel-
mann et al. (2018).

3.2 Stochastic weather generators

Ensembles of simulations of temperature can be performed
with the rules illustrated by Yiou (2014), with analogue-
based stochastic weather generators (SWGs). This type of
SWG is equivalent to a resampling procedure (Ailliot et al.,
2015).

Geosci. Model Dev., 13, 763-781, 2020
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A static SWG can be defined to simulate surrogate ensem-
bles of Z500 sequences that are analogous to observed Z500
sequences. For each day ¢ between 1 June and 31 August,
we keep the K = 20 best Z500 analogues. We randomly se-
lect one day (k) among those K analogues and ¢ (i.e., among
K + 1 days), with a probability weight that is inversely pro-
portional to the correlation of the K analogues with the Z500
pattern at time ¢. This constraint favors analogues with the
best patterns among those with the closest distance. This also
favors the choice of . With this type of SWG, simulated tra-
jectories are random perturbations (by analogues) of an ob-
served trajectory.

A dynamic SWG is defined to simulate ensembles of Z500
sequences that could have been, from a given initial condi-
tion. For an initial day ¢ (e.g., a 1 June), we have K best Z500
analogues. We randomly select one date  among the dates of
the K analogues and ¢ (hence K +1 dates), with a probability
weight that is

1. inversely proportional to the number of calendar days
between the analogues dates 7 and t. This con-
strains the time of analogues to move forward. The
weights of the analogues can be chosen proportional
to exp (—ozca] |F — t|), where oy > 0 weighs the impor-
tance given to seasonality or the calendar day;

2. proportional to the correlation of the analogue with the
7500 pattern at time ¢. This constraint favors analogues
with the best patterns among those with the closest dis-
tance.

The simulated next day ¢’ (e.g., a 2 June) is then the next day
of the selected analogue: ¢’ = 7 + 1 of the initial day (1 June).
Then ¢ is replaced by ¢’. This random selection of analogues
is sequentially repeated until a lead time 7' = 90 d to simulate
a whole summer. This generates one random daily trajectory
of Z500 or any climate variable between ¢ and 7 + 7. Note
that the dynamic weather generator spans a wider range of
possibilities than the static weather generator, which is con-
strained by observed trajectories.

These two types of SWG (static and dynamic) give use-
ful information that is exploited in this paper. The random
sampling procedures are repeated S times to generate an en-
semble of trajectories. Yiou (2014) showed that temperature
biases are rather small but the time auto-covariance is under-
estimated in both SWGs.

3.3 Empirical importance sampling

The idea behind importance sampling is to simulate trajecto-
ries of a physical system that optimize a criterion in a com-
putationally efficient way. Ragone et al. (2017) used such
an algorithm to simulate extreme heat waves with an inter-
mediate complexity climate model. The procedure of im-
portance sampling algorithms, say to simulate extreme heat
waves with a climate model, is to start from an ensemble of

Geosci. Model Dev., 13, 763-781, 2020

S initial conditions and compute trajectories of the climate
model from those initial conditions. An optimization observ-
able is defined for the system. In this case, it can be the spa-
tially averaged temperature over Europe. The trajectories for
which the observable (daily average temperature) is lowest
during the first steps of simulation are deleted and replaced
by small perturbations of remaining ones. In this way, each
time increment of the simulations keeps trajectories with the
highest values of the observable. At the end of the season,
one obtains § simulations for which the observable (here av-
erage temperature over Europe) has been maximized. Since
those trajectories are solutions of the equations of a climate
model, they are necessarily physically consistent. Ragone
et al. (2017) argue that the probability of the simulated tra-
jectories is controlled by a parameter that weighs the impor-
tance to the highest observable values: if n trajectories are
deleted at each time step, the simulation of an ensemble of
T-long trajectories has a probability of (1 —n/S)”. Hence
one obtains a set of S trajectories with very low probability
after T time increments, at the cost of the computation of
S trajectories. For comparison purpose, if one wants to ob-
tain S trajectories that have a low probability (p) observable,
then the number of necessary “unconstrained” simulations is
of the order of S/p, so that most of those simulations are
left out. Systems like weather@home (Massey et al., 2015)
that generate tens of thousands of climate simulations are just
sufficient to obtain S = 100 centennial heat waves, and the
number of “wasted” simulations is very high. Therefore, im-
portance sampling algorithms are very efficient ways to cir-
cumvent this difficulty.

Here, we propose an adaptation of such an algorithm to
the stochastic weather generators of Sect. 3.2 to simulate ex-
treme heat waves. The observable to be optimized is average
daily temperature (named TG in the ECA & D nomenclature,
Klein-Tank et al., 2002). To this end, we propose a new “rule”
to the SWGs (static and dynamic) by giving more weight to
the hottest temperatures. At each time step 7, we note 1% the
dates of the K best analogues. The temperature values of the
K analogues of t and TG, are sorted in decreasing order. The
ranks are written Ry (k € {0, ..., K}). For example, the rank
of the hottest temperature among analogues and temperature
at day ¢ is 1. We chose weights {w(k) }ke{o ’’’’’ %
w® = Ae Rk, (1)

where « is a positive number and A is a normalizing constant
so that the sum of weights over k is 1:

—Ka
A=e ¥ —, 2
l—e@ @
The useful property of this formulation of weights is that the
values of w® do not depend on time 7 because the rank val-
ues Ry are integers between 1 and K + 1. The weight values
do not depend on the unit of the variable either, so that this
procedure does not need major adaptation to simulate other

www.geosci-model-dev.net/13/763/2020/
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Goal: simulate ensembles of sequences of analogue TG with highest possible temperature and compatible Z500
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Figure 2. Illustration of the analogue importance sampling for mean daily temperature (TG). The red rectangles indicate the selected Z500
analogues for date @) The red stars in the lower graphs are the temperature values during the selected analogue date. Blue arrows indicate
the correspondence between Z500 analogues and daily TG. Here, TG is the daily mean temperature for the Berlin—-De Bilt—Orly—Toulouse—
Madrid (BDOTM) average. Panel (b) illustrates simulated TG (red, orange and brown lines); the black line is the observed TG; the blue line

is the seasonal cycle of TG.

types of climate variables (e.g., precipitation or wind speed).
If o = 0, this is equivalent to a stochastic weather generator
described in Sect. 3.2.

The date for the next day is chosen at random by sam-

pling {r,1M,...,1®)} with the weights {w®}, .

Therefore, if T is the simulated temperature among T =
(TG;, TGV, ..., TGX)}, then Pr(T - T<k>) —w®. The
expected value E (T) is then

K K
E(T) = AZe_"‘R"T(") = Aze—“"sort(T)“‘), 3)
k=0 k=0

where sort(T') are the sorted values of T in descending order.
This allows us to select the circulation analogues that favor
the highest temperature. The o parameter gives some flexi-
bility to select analogues with lower temperatures. It plays
the same role as the simulation parameter of Ragone et al.
(2017), which controls the return times of trajectories. This
choice of weights is also interesting because it allows for an
approximation of the mean value of simulations as a function
of the parameter «, as one can recognize a discrete Laplace
transform of the distribution of T in Eq. (3).

This new rule replaces the analogue correlation weights
of the dynamic and static SWGs defined in Sect. 3.2. The
calendar day weight has to be maintained in order to keep a
seasonality, especially for the dynamic scheme. Hence, this
allows simulating

1. the hottest season that could have been with a similar
atmospheric circulation, with a static analogue SWG;

www.geosci-model-dev.net/13/763/2020/

2. the hottest season that could have been in the same cli-
mate, with a dynamic analogue SWG.

The algorithm is illustrated in Fig. 2.

The dynamic SWG option is closest to the importance
sampling experiments performed by Ragone et al. (2017).
The major algorithmic difference is that importance sam-
pling “eliminates™ trajectories with “poor” properties of the
observable, while the analogue importance sampling ‘“fa-
vors” the trajectories with the “best” properties.

The analogue importance sampling uses a self-coherent
dataset as a basis (here: observations for temperature and a
reanalysis for Z500 analogues), ensuring that the simulated
trajectories bear physical consistence between temperature
and the atmospheric circulation. The physical relevance also
requires that simulations follow a seasonal cycle. If one is in-
terested in simulating a perpetual summer, then the weight
value o, on the calendar day is not very important. For
physically realistic simulations, the value of a4 can be cho-
sen to be the smallest for which the temperature simulation
median yields a seasonality. This prevents the system from
staying in a perpetual mid-August.

The calendar “nudging” parameter oy needs to be cho-
sen with care so that the additional rule does not create un-
physical simulations (i.e., with time going backwards or sim-
ulating a perpetual summer). The value of o, Was estimated
by trial and error, by taking the smallest value for which most
(e.g., more than 70 %) of the dynamic simulations end with
dates after the second half of August. In our case (summer
temperature simulations), a parameter value of 5 is deemed

Geosci. Model Dev., 13, 763-781, 2020
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Figure 3. Percentage of dynamic simulations (from 100 simula-
tions) of extreme summers for which the last day falls after 15 Au-
gust, as a function of the parameter o ,), between 1 and 10. The
vertical dashed line is for o, = 5; the horizontal dashed line is for
70 %.

reasonable for summer temperature simulations. The value of
otca) could be different if another warm season has to be sim-
ulated because the dynamics of temperature variations de-
pends on the season.

From the numerical point of view, if « = 0.1, 15 to 18 ana-
logues have a probability larger than 0.1 of being selected.
If seasonal trajectories (N = 90d) are simulated, this means
that more than 15%° ~ 10'% different trajectories of warm
seasons are possible.

From Eq. (3), the probability distribution of the simula-
tions is linked to the value of «. A formulation of the ex-
pected probability can be obtained heuristically. For exam-
ple, let O be the smallest number so that

1 0
ZZexp(—ak) >1—c¢, 4)
k=1

where € > 0 is a small number (for example 1/N, where
N is the number of simulations that are needed to observe
one simulated event) and A was given by Eq. (2). Then the
probability of dynamic trajectories with parameter value o
is close to (Q/K YM  where M is the average number of in-
dependent days during the simulated season (M = 18 for a
season of 90d) and K is the number of analogues (K = 20).
Such a heuristic formulation is close to what is obtained by
Ragone et al. (2017). Yet this formulation suffers from nu-
merical problems for large values of « (larger than 0.5) and
small values of K (like 20). An alternate empirical estima-
tion of the probability distribution of the average of the tra-
jectories is to consider that the seasonal average of temper-
ature closely follows a Gaussian distribution. Then an em-

Geosci. Model Dev., 13, 763-781, 2020

pirical estimate of the probability is obtained by comparing
the quantiles of the observed distribution of average temper-
atures and the mean of simulated averages. With a chosen
value of K = 20, the heuristic and empirical approximations
give similar estimates of the probability (or return period)
for values of @ < 0.5. We shall keep the empirical estimate
of probabilities or return periods in the rest of the paper. Re-
fined heuristic estimates are left for future (more statistical)
work.

We emphasize that the methodology shown in this section
(or in Ragone et al., 2017) is quite general and not specific
to summer heat waves, as other types of extremes like cold
spells (Cattiaux et al., 2010) or long episodes of precipitation
(Schaller et al., 2016) can be envisioned.

4 Results

SWG simulations are done for each individual city (Berlin,
De Bilt, Orly, Toulouse and Madrid) and their average. Only
the results on the average over the five cities are shown
in the core of the paper, for compactness. Results for in-
dividual cities are shown in the figures in the Supplement.
S = 100 simulations are performed with the static and dy-
namic SWGs. The simulations are initialized by conditions
on 1 June, between 1948 and 2018, and are run until 31 Au-
gust. Hence 100 x 71 summers are simulated for each ex-
periment. The parameter « takes its values in {0,0.2,0.5, 1}
to evaluate the relation between the simulation averages and
their return period (or probability).

In order to evaluate the effect of the initial condition on
the simulated patterns, we select the warmest (2003), cold-
est (1956) and median (1986) summers for the averaged Eu-
ropean temperature. For illustration purposes, we add 2018,
which was a major heat wave in northern Europe. This selec-
tion helps show how extremely hot summers can be amplified
(2003 and 2018) and how median and rather cool summers
could have been hot, with present-day climate conditions.

4.1 Interannual trends

The distribution of temperature simulations is shown in
Fig. 4, with parameter « values of 0, 0.2, 0.5 and 1. The
static SWG distributions (blue box plots) yield variations that
are closely correlated (r = 0.75) with the observed values
(black lines). The dynamic SWG distributions (red box plots)
have lower-amplitude variations, although they are also cor-
related with observed values (r = 0.58). Figure 4 shows that
the SWG distribution means increase with the o parameter.
When o =0, there is no importance sampling, so that both
types of simulations fluctuate around the mean value of ob-
servations (Fig. 4a). In that case, the record value (in 2003) or
second-highest value (in 2018) of temperature is not reached
by the S = 100 simulations. The record low temperature (in
1956) is also barely reached.

www.geosci-model-dev.net/13/763/2020/
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median (g50), lower (g25) and upper (g75) quartiles. The upper whiskers indicate min[max(7"), 1.5 x (g75 — g25)]. The lower whisker has a
symmetric formulation. The points are the simulated values that are above or below the defined whiskers.

We observe no trend in the simulated trajectories with o >
0 for all years. This is explained by a tendency to select recent
analogues in the importance sampling because of the general
temperature trend. The amplitude of the simulations is higher
for dynamical simulations than for static simulations because
the simulated trajectories are not constrained by the observed
ones and could hence behave in a rather different way.

www.geosci-model-dev.net/13/763/2020/

As soon as « > 0, the distributions of simulated tem-
perature exceed the observed values (Fig. 4b—d) because
the SWG tends to select analogues for which temperature
is higher than observed, by construction. When « > 0, the
dynamic trajectories generally yield higher values than the
static trajectories because the dynamic SWG chooses the
warmest analogues among all analogues. We observe that
when o > 0.5, then the dynamic trajectories are all above

Geosci. Model Dev., 13, 763-781, 2020
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Figure 5. Box plots of simulated June—July—August (JJA) temper-
atures (TG in degrees Celsius) as a function of the parameter « for
all years. The boxes of box plots indicate the median (g5q), lower
(g25) and upper (g75) quartiles of the simulated values. The up-
per whiskers indicate min[max(7'), 1.5 x (g75 —g25)]. The lower
whisker has a symmetric formulation. The points are the simulated
values that are above or below the defined whiskers.The axis on the
right indicates return times (in years), assuming a Gaussian distri-
bution of JJA temperature averages with parameters estimated from
the white box plot. The horizontal dotted line is the mean TG in
2003.

the 2003 record. Roughly half of the static trajectories with
o =1 stand above the 2003 record.

When o > 0, the static SWG generates similar circulation
patterns that lead to warmer summer temperatures (blue box
plots). The 2003 record value in observations always yields
the warmest JJA simulations. 2018 is the second-hottest sum-
mer in the observations, but it is no longer the second when
o > 0, with the static SWG, as a few years with heat waves
with analogue atmospheric circulation could have exceeded
the 2018 temperature value.

We observe an increase in average extreme summers with
parameter «. Figure 5 summarizes the temperature probabil-
ity distributions for all years, in the observations and sim-
ulations, for varying values of «. Here, return periods are
estimated from a Gaussian approximation of the variability
of average temperature (e.g., the black box plot in Fig. 5)
for present-day conditions. This is justified by noting that
we consider the probability distribution of temporal averages
(92d in JJA) of spatial averages (five stations). Those av-
erages motivate a Gaussian approximation from the central
limit theorem (von Storch and Zwiers, 2001).

Geosci. Model Dev., 13, 763-781, 2020

Here we obtain a return time of the 2003 summer heat
wave of around 350 years in present-day conditions (i.e.,
the last decades) (Fig. 5). The return time of this heat wave
has been estimated to be as large as 10° years (Schaer et al.,
2004; Stott et al., 2004; Cattiaux and Ribes, 2018). Such re-
sults were based on extrapolating the probability density law
of temperature observations since 1900. Therefore the under-
lying hypothesis to estimate the return period (or probability)
is different from the estimate of Schaer et al. (2004). The
SWG approach answers the question of how likely the oc-
currence of an event (in present-day conditions) is. Note that
the event itself does not need to have occurred. Using long
time series answers the question of what the frequency of the
event is. In that case, the event must have occurred. Hence,
our estimate is closer to a “hitting time” than a “return time”,
according to the definition of Haydn et al. (2005).

For the rest of the paper, we chose a value of o = 0.5,
which corresponds to heat waves whose intensity is compa-
rable to the 2003 record for the static SWG and higher for the
dynamic SWG (Fig. 5). The simulated heat waves are more
intense than the one of 2003, although the climate conditions
are similar to present-day ones. Therefore, such heat waves
are even rarer than the 2003 record value.

For comparison purposes, we simulated local heat waves
in each of the five stations. Figures A1, B1 and C1 in the Ap-
pendix show the probability distribution of simulated sum-
mers (with « = 0.5) for Berlin, Orly and Madrid.

4.2 Daily variations

The daily variations in dynamic simulations of average tem-
perature for the 4 selected years (1956, 1986, 2003 and 2018)
are shown in Fig. 6, with o = 0.5. This figure illustrates how
the simulated temperatures evolve above the seasonal cycle.

The values exceed the observed values within 3 d, espe-
cially for the coldest summer (in 1956, Fig. 6b). The maxi-
mum of the ensembles (red lines) generally reaches a plateau
in 10d after 1 June. The median and 95th quantile trajecto-
ries yield a higher temporal variability, which is lower than
the observed one. We note that the algorithm allows selecting
colder Z500 analogues, so that temperature does not contin-
uously increase but yields time variability. This also means
that all trajectories are different from each other.

The daily variations also explain the weak (visual) cor-
relation between the means of simulations and observations
in Fig. 4. The whole correlation is constrained by the few
days after the initial condition (1 June), as the simulations
progressively “forget” the initial condition, especially for the
cold summer in 1956.

4.3 Atmospheric patterns
We focus on the atmospheric circulation patterns that prevail

in summer (JJA) over the North Atlantic region for simula-
tion ensembles, during the 4 selected years. We show the SLP

www.geosci-model-dev.net/13/763/2020/
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(Fig. 7) and Z500 (Fig. 8) composites over JJA. The compos-
ites are the JJA averages for reanalyses and over all static and
dynamic simulations.

The observed mean JJA SLP patterns are very different for
each year (Fig. 7a—d). In particular, the two major heat waves
of 2003 (hottest) and 2018 (second-hottest) shown in Fig. 4
yield rather contrasting SLP and Z500 pattern anomalies at
the North Atlantic scale, although both years are character-
ized by positive SLP/Z500 anomalies over western Europe.

Static simulations show mean JJA SLP and Z500 patterns
that are similar to the observed ones for 2003, 1956, 1986 and
2018 (Figs. 7e-h and 8e-h). The mean SLP/Z500 patterns
show deepened or shifted structures to maximize mean tem-
perature. Those figures illustrate how a slight modification
of the atmospheric structure could increase European sum-
mer temperature. Therefore, small perturbations of the daily
atmospheric Z500 structures (a few meters) can be associated
with &~ 4 K to the mean JJA temperature of the coldest sum-
mer in the time series (1956), with @ = 0.5. This temperature
change is larger than the expected increase from a perfect gas

www.geosci-model-dev.net/13/763/2020/

law (= 0.4 K). Interestingly, the shifts in SLP patterns are
much larger than for Z500.

Dynamic simulations simulate optimal atmospheric pat-
terns that are very similar across the North Atlantic, with
strong anticyclonic patterns over western Europe (Figs. 7i—1
and 8i-1). The resulting SLP and Z500 patterns are very sim-
ilar for the 4 selected years, with positive anomalies above
western Europe. The Z500 conditions for 2018 contrast with
the other years with positive anomalies in the central North
Atlantic. This shows how the dynamic simulations differ
from each other and depend on the initial conditions. The
sensitivity to initial conditions was exploited by Yiou and
Déandréis (2019) for ensemble forecasts with analogues.

The differences between the static and dynamic sim-
ulations illustrate the different concepts that those two
weather generators convey. The dynamic simulations end up
with rather similar ranges of temperatures and resembling
SLP/Z500 structures over the whole North Atlantic (high
pressure or Z500 over western Europe), which can be inter-
preted as an optimal pattern leading to major heat waves.

Geosci. Model Dev., 13, 763-781, 2020
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Figure 7. Maps of SLP anomaly composites (in Pa, with 50 Pa increments) for the warmest summer (2003), coolest (1956), median (1986)
and 2018. The 0 hPa isoline is indicated with a thick blue line. Negative anomalies are in dashed isolines. Horizontal axes are for longitudes
in degrees east. Vertical axes are for latitudes in degrees north. Upper row (a—d): mean SLP from NCEP reanalyses. Center row (e=h): static

simulations. Bottom row (i-l): dynamic simulations.

For comparison purposes, Figs. A2, B2 and C2 show the
atmospheric Z500 patterns linked to local heat waves cen-
tered on Berlin, Orly and Madrid (from east to west). The
optimal Z500 patterns with dynamic simulations for Orly are
similar to the ones of the average temperature across the five
stations.

5 Conclusions

This paper presents a method to simulate ensembles of ex-
treme climate conditions. The underlying principle was to
combine ideas from importance sampling (Ragone et al.,
2017) and stochastic weather generators based on circula-
tion analogues (Yiou, 2014). This method was tested to sim-
ulate European summer heat waves but can be adapted to
simulate other types of events. The stochastic analogue sam-
pling ensures a physical coherence of daily variations (circu-
lation and temperature) through realistic circulation patterns
(Yiou, 2014). The main caveat of this method is that it is
based on a closed framework of a relation between temper-
ature and the atmospheric circulation. It does not take into
account the role of feedbacks, like soil moisture (Vautard
et al., 2007), that could amplify a temperature response. A
second caveat is that this resampling methodology is useful

Geosci. Model Dev., 13, 763-781, 2020

to simulate seasons (or long periods of time). It would not be
relevant to simulate short-lived events because there would
not be enough resampling possibilities. We emphasize that
daily temperature values are bounded by the observations;
therefore one cannot simulate a daily value that has not been
observed. However, the seasonal averages are not bounded
because they are close to a Gaussian distribution, and sim-
ulated average variables can exceed the observed ones (by
far). The methodology explicitly exploits this mathematical
property of random variables, in particular in the estimation
of return periods. A third caveat of the present study is the
length of available observations for the simulation of extreme
events, so that the links between the atmospheric circulation
and temperature might not be completely sampled.

This methodology simulates ensembles of extreme heat
waves that are possible in present-day conditions. We empha-
size that no hypothesis on climate change is made to simulate
events that are more intense than the record of 2003.

One parameter of the simulations controls the weight to
be given to the hottest analogues. This parameter also con-
trols the return period of simulation ensembles, similarly to
the control parameter of Ragone et al. (2017). Thus, the sim-
ulated ensembles are associated with a return period (or a
range of return periods).

www.geosci-model-dev.net/13/763/2020/
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This methodology is relatively easy to implement and

does not require running a high-resolution climate model
because it uses already existing datasets. It was tested on
rather restricted cases of summer warm temperatures. It can
be adapted to simulate other types of extreme events:

— Temperature extremes in other seasons. For exam-

ple, extremely hot/cool winters or cool summers also
have large impacts on society (energy, agriculture) and
ecosystems’ phenology.

— Extremes with other climate variables (precipitation,

wind speed). Long-lasting precipitation episodes do de-
pend on atmospheric circulation patterns (e.g., Schaller
et al., 2016). The fact that the weights that are chosen in
the simulations do not depend on the units of the vari-
ables facilitates such an adaptation.

— Time-varying constraints can be added to simulate im-

pacting compound events (Zscheischler et al., 2018),
e.g., wet springs and hot summers. For example, one
could maximize precipitation rate during spring and
then temperature in early summer in order to generate
events that have high impacts on agriculture.

www.geosci-model-dev.net/13/763/2020/

— Extremes in scenario model simulations. The examples

in this paper exclusively used NCEP reanalysis (Kistler
et al., 2001) data and ECA & D (Klein-Tank et al.,
2002) observations for present-day climate conditions.
Simulations could use the CMIP model database (Tay-
lor et al., 2012) for analogue computation, and hence it
would be possible to investigate changes in extremes for
scenario simulations, relative to control simulations.

Therefore, we consider that this paper paves the way for
many types of studies of impacts of extreme events and risk
assessment for extremes (Sutton, 2019).

Geosci. Model Dev., 13, 763-781, 2020
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Appendix A: Diagnostics for Berlin

Time variations of simulated trajectories for extreme heat
waves (with arg = 0.5) in Berlin are shown in Fig. A1l. The
hottest year is 1992. The coolest summer is in 1954. The me-
dian summer is in 1989.

The atmospheric Z500 patterns for the summers of 1954,
1989, 1992 and 2018 are shown in Fig. A2. The patterns are
different from the ones that are obtained when maximizing
European average temperature (Fig. 8).
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Figure A1. Time variations of probability distributions of simulated average temperatures (TG) for arg = 0.5 in Berlin. The black continuous
line represents the observed variations in Berlin summer averages between 1948 and 2018. Temperatures are expressed in degrees Celsius.
The vertical colored lines outline the coldest (blue), median (green), warmest (red) and 2018 summers. The box plots represent the ensemble
variability of the simulations for each year. The red box plots are for the dynamic simulations. The blue box plots are for the static simulations.
The boxes of box plots indicate the median (gsq), lower (g25) and upper (g75) quartiles. The upper whiskers indicate min[max(7"), 1.5 x
(g75 — g25)]. The lower whisker has a symmetric formulation. The points are the simulated values that are above or below the defined

whiskers.
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Figure A2. Z500 anomaly composites (in meters, with 10 m increments) for the warmest summer in Berlin (1992), coolest (1954), median
(1989) and 2018. The Om isoline is indicated with a thick blue line. Negative anomalies are in dashed isolines. Horizontal axes are for
longitudes in degrees east. Vertical axes are for latitudes in degrees north. Upper row (a—d): mean Z500 from NCEP reanalyses. Center row
(e-h): static simulations. Bottom row (i-1): dynamic simulations.
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Appendix B: Diagnostics for Orly

Time variations of simulated trajectories for extreme heat
waves (with arg = 0.5) in Orly are shown in Fig. B1. The
hottest year is 2003. The coolest summer is in 1956. The me-
dian summer is in 1964.

The atmospheric Z500 patterns for the summers of 1956,
1964, 2003 and 2018 are shown in Fig. B2. The patterns are
similar to the ones that are obtained when maximizing Euro-
pean average temperature (Fig. 8).
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Figure B1. Time variations of probability distributions of simulated average temperatures (TG) for g = 0.5 in Orly. The black continuous
line represents the observed variations in Orly summer averages between 1948 and 2018. Temperatures are expressed in degrees Celsius.
The vertical colored lines outline the coldest (blue), median (green), warmest (red) and 2018 summers. The box plots represent the ensemble
variability of the simulations for each year. The red box plots are for the dynamic simulations. The blue box plots are for the static simulations.
The boxes of box plots indicate the median (gsq), lower (g25) and upper (g75) quartiles. The upper whiskers indicate min[max(7"), 1.5 x
(g75 — g25)]. The lower whisker has a symmetric formulation. The points are the simulated values that are above or below the defined

whiskers.
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Figure B2. Z500 anomaly composites (in meters, with 10 m increments) for the warmest summer in Orly (2003), coolest (1956), median
(1964) and 2018. The Om isoline is indicated with a thick blue line. Negative anomalies are in dashed isolines. Horizontal axes are for
longitudes in degrees east. Vertical axes are for latitudes in degrees north. Upper row (a—d): mean Z500 from NCEP reanalyses. Center row
(e-h): static simulations. Bottom row (i-1): dynamic simulations.
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Appendix C: Diagnostics for Madrid

Time variations of simulated trajectories for extreme heat
waves (with atg = 0.5) in Madrid are shown in Fig. C1. The
hottest year is 1992. The coolest summer is in 1954. The me-
dian summer is in 1989.

The atmospheric Z500 patterns for the summers of 1977,
1982, 2015 and 2018 are shown in Fig. C2. The patterns are
different from the ones that are obtained when maximizing
European average temperature (Fig. 8).
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Figure C1. Time variations of probability distributions of simulated average temperatures (TG) for atg = 0.5 in Madrid. The black con-
tinuous line represents the observed variations in Orly summer averages between 1948 and 2018. Temperatures are expressed in degrees
Celsius. The vertical colored lines outline the coldest (blue), median (green), warmest (red) and 2018 summers. The box plots represent
the ensemble variability of the simulations for each year. The red box plots are for the dynamic simulations. The blue box plots are for the
static simulations. The boxes of box plots indicate the median (g50), lower (g5) and upper (g75) quartiles. The upper whiskers indicate
min[max(7T), 1.5 x (g75 —g25)]. The lower whisker has a symmetric formulation. The points are the simulated values that are above or below
the defined whiskers.
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Figure C2. Z500 anomaly composites (in meters, with 10 m increments) for the warmest summer in Madrid (2015), coolest (1977), median
(1982) and 2018. The Om isoline is indicated with a thick blue line. Negative anomalies are in dashed isolines. Horizontal axes are for

longitudes in degrees east. Vertical axes are for latitudes in degrees north. Upper row (a—d): mean Z500 from NCEP reanalyses. Center row
(e-h): static simulations. Bottom row (i-1): dynamic simulations.
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