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Shaping caustics into propagation-invariant light

Alessandro Zannotti® '™, Cornelia Denz', Miguel A. Alonso® 23 & Mark R. Dennis® 4°

Structured light has revolutionized optical particle manipulation, nano-scaled material pro-
cessing, and high-resolution imaging. In particular, propagation-invariant light fields such as
Bessel, Airy, or Mathieu beams show high robustness and have a self-healing nature. To
generalize such beneficial features, these light fields can be understood in terms of caustics.
However, only simple caustics have found applications in material processing, optical trap-
ping, or cell microscopy. Thus, these technologies would greatly benefit from methods to
engineer arbitrary intensity shapes well beyond the standard families of caustics. We
introduce a general approach to arbitrarily shape propagation-invariant beams by smart beam
design based on caustics. We develop two complementary methods, and demonstrate var-
ious propagation-invariant beams experimentally, ranging from simple geometric shapes to
complex image configurations such as words. Our approach generalizes caustic light from the
currently known small subset to a complete set of tailored propagation-invariant caustics
with intensities concentrated around any desired curve.
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he field of structured light has grown significantly since the

early studies of Laguerre- and Hermite-Gaussian modes in

laser cavities!»2. This growth stemmed both from increased
theoretical understanding and from the advent of new optical
devices such as spatial light modulators (SLMs). This area of
research has now transcended optics, leading to a range of
applications in fundamental physics?, telecommunications?-9,
security’~%, micromachining!®!1, imaging!2-1>, and the manip-
ulation of cells and microorganisms!®17. In particular, the fact
that phase-structured light carries orbital angular momentum
(OAM)!8 allows the exertion not only of forces but also of torques
onto atoms, bacteria, or micromachines!2.

A class of structured optical field that has received considerable
attention is that of the so-called propagation-invariant or non-
diffracting beams, whose transverse intensity distribution remains
essentially invariant over a significant propagation distance!®.
Propagation-invariant beams have a transverse angular spectrum
confined to a ring?® whose radius is proportional to their
numerical aperture. The best-known examples are Bessel2!22,
Mathieu!2324, and Weber!%23:2> beams, which are described by
closed-form expressions that are separable in polar, elliptic and
parabolic coordinates, respectively. The intensity maxima of these
beams are therefore localized around the corresponding conic
section shapes, characterized by their caustics2426-28, Some of
these propagation-invariant beams have been used in advanced
optical trapping setups!®17:29, imaging with high resolution!%1,
and ultrafast nanoscale material processing with high aspect
ratios!%11:30. However, having only a limited set of beams of this
type restricts significantly their usefulness. All the applications
mentioned earlier would greatly benefit from the ability to tailor
the shapes of propagation-invariant beams for the purpose
at hand.

The achievement of our work is propagation-invariant beams
with customizable intensity profiles. To design the respective
beams, we develop two methods for shaping the corresponding
caustics. These methods are illustrated with the experimental
implementation of beams whose intensity features trace a range
of geometrical shapes as well as more complex patterns such as
words, which remain essentially invariant over a significant
propagation distance.

Results
Caustics in propagation-invariant beams. The conceptual basis
for this work is the relation between these wave solutions and the
simpler ray model, for which the intensity maxima follow the
shapes of the caustics, which are the envelopes of the two-
parameter family of rays associated with the field3!. Within the
ray picture, propagation invariance requires that all rays travel at
the same angle 6 with respect to the propagation direction
(chosen as the z axis), and that the two-parameter ray family is
composed of one-parameter subfamilies of parallel rays con-
strained to planes parallel to z. This structure guarantees that the
caustics themselves are invariant in z, since they correspond to
the envelopes of these planes. The fact that all rays have equal
angle with respect to the z axis implies that the transverse Fourier
spectrum of the wave field is restricted to a ring!® (whose radius is
k| = ksin 0, where k is the wavenumber). The azimuthal angle ¢
of each subfamily of rays indicates the point along the ring to
which they correspond.

The mathematical correspondence between the ring’s ampli-
tude and phase distributions, A(¢) and ®(¢), and the beam’s
transverse field is given by Whittaker’s integral!®-20:

Vo) = § A epliog) +ikr-u@ldg (1)

where r=(x, y) is the transverse position vector and u(¢) =
(cos¢, sing) is a unit vector that indicates the transverse
direction of the corresponding rays and the planes that embed
them. The connection with ray optics and caustics results from
applying the method of stationary phase?! to Eq. (1). As shown in
the ‘Methods’ section, this leads to the following relation in terms
of the parametrized caustic shape r.(¢):

r(9) = ki (@ (g)u(g) — (P (9)]. 2)

By choosing A and ® appropriately, different caustic shapes can
be achieved. The beam’s intensity maxima are localized within the
vicinity of these caustics. For example, Bessel beams (for which A
is constant and ®(¢) =¢¢ for integer £) have caustics with
circular (or punctual, for £=0) cross-sections?832-34 while
Mathieu beams have caustics with elliptic or hyperbolic cross-
sections?4,

Figure la-e illustrates some of these ideas for the simple
example of a Bessel beam with topological charge £=1. The
transition between the Fourier plane in Fig. 1a and the physical
space in Fig. 1b-e is implemented experimentally with a
converging lens placed one focal length away from the Fourier
plane. The cross-sections of the planes containing the rays shown
in Fig. 1c form the circular caustic shown in Fig. 1b. The 3D
configuration of some of these rays (one from each subfamily) is
also shown in Fig. 1d; the complete two-parameter family of rays
includes the subset shown as well as replicas displaced in z (see
Supplementary Note 1 for a discussion of the whole ray family).
Note that the rays are color coded (by hue) to show the
corresponding phase at the ring. For visual convenience the
accumulation of phase due to propagation is factored out. Finally,
the 3D intensity distribution for this Bessel beam, dominated by
the innermost intensity circle, is also shown in Fig. le. Figure 1f-j
shows similar information for a more complicated beam with
O(¢) = —2.5sin(2¢). This phase distribution leads to a
propagation-invariant astroid caustic that exhibits four cusps
(see ‘Methods’ section for an explanation of the origin of these
cusps). More information regarding the visualization of the rays is
provided in Supplementary Note 1.

Solving the inverse problem using the differential Eq. (2). Our
goal, however, is to solve the inverse problem: find the phase
distribution ® that produces any desired propagation-invariant
caustic. The first approach is the solution of Eq. (2) for ®(¢) for a
given r(¢). For simplicity we keep the amplitude A(¢) constant.
The details of this approach are given in the ‘Methods’ section,
and some results are shown in Fig. 2 for simple caustic config-
urations. For example, solving the differential equation for the
astroid caustic shown in Fig. 2a gives the sinusoidal phase func-
tion ®(¢) = lp — g/2 sin(2¢) shown in Fig. 2b, with g € R,
which is mapped mod 27 on the Fourier ring shown in Fig. 2c.
(Note that this astroid can carry OAM with topological charge £.)
From the Fourier phase function, we calculate the transverse ray
picture of the beam shown in Fig. 2d. The resulting experimen-
tally measured transverse intensity and phase distributions,
shown in Fig. 2e, f, respectively (for q=15), present a square
lattice at the center, surrounded by several rings. This beam
interpolates between Bessel beams (q=0) and four interfering
plane waves (q — oo): we call this light field a Bessel-lattice beam

1//122. Figure 2g-1, m-r shows the corresponding results for deltoid

and cardioid caustics, respectively. We use a cw laser beam with
wavelength Ao = 2m/ky =532 nm, shaped by a SLM, for their
experimental realization. All beams demonstrated here have the
same real space structure size a=2m/k; =15um related to

the propagation constant k, via k; = k> + k’. Figure 2s presents
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Fig. 1 Caustics in propagation-invariant beams. a-e A Bessel beam J; with OAM of charge # =1 has a circular caustic. a Fourier phase pattern, with
azimuthally linearly increasing phase ® = £¢, confined to an infinitesimal thin ring. Fourier transform by a lens. Fourier wavefront shaping determines the
direction of the propagating rays, and the caustic (b) forms in real space as the envelope of the rays in a transverse plane (c). A subset of the rays, each
coming from a specific point on the ring, is shown in (d). The complete family of rays is composed of a continuum of bundles like the one shown in d but
displaced in z. The corresponding field has a propagation-invariant transverse intensity (e) with a pronounced central ring according to the circular caustic.
f-j A more complex phase function ® = ¢¢ — q/2sin(2¢) yields an astroid caustic, which includes four cusp caustics.

the experimental verification of the propagation invariance of the
astroid caustic, by showing a xz-cross-section of the measured
intensity volume (corresponding to the white dashed line in
Fig. 2e). This Bessel-lattice beam with charge £ = 0 propagates for
one Rayleigh length z, = 2koa? = 5.32 mm without significantly
changing its transverse intensity distribution. In general, all
propagation-invariant beams realizable with our method have
standard properties with respect to their diffraction length: the-
oretically these beams do not diffract, but experimental limita-
tions such as finite apertures lead to finite but very long focal
lengths!%2223. The detailed discussion of the experimentally
achievable invariant length of such beams in Supplementary
Note 2 suggests that an enlargement of the size (aperture) of the
SLM (for a fixed wavelength 1,) would have the largest effect on
improving the distance of invariant propagation. Figure 2t, u
shows a propagation-invariant Bessel-lattice beam 1[/2}5, where the
OAM with charge € = 2 has the effect of making the square lattice
rectangular. An interesting effect can be explored in which the
Bessel-lattice beam yg= from Fig. 2a—f is made to pass through a
£=2 phase vortex plate, resulting in the diffracting field
¥ = g5 - explifg]. Its experimentally obtained initial intensity
and phase distributions are shown in images Fig. 2v, w. A cross-
section of the intensity under propagation is shown in Fig. 2x,
where we can see that the beam stabilizes during evolution over
one Rayleigh length z, and acquires the shape corresponding to
y>% as shown in Fig. 2y, z. Hence, the total momentum of the
light field is conserved and transforms the initial (diffractive)
state to its invariant form when propagating sufficiently far. In
Supplementary Notes 1-5, we present further investigations
and a generalization of this effect, which can be considered both

as angular momentum transfer as well as a form self-
healing>1%:3°.

The first approach described above allows finding the phase
functions that produce different caustic shapes. However, a
limitation of this approach becomes evident from the example of
a cardioid caustic in Fig. 2m-r. Since each point of the Fourier
ring contributes to one and only one caustic point, the caustic is
either convex or at least the curvature always must have the same
sign. That is, inflection points of the desired caustic cannot be
included in the intensity distribution, and even regions of small
curvature give very faint intensity features as can be appreciated
in Fig. 2q. These limitations are overcome by the second
approach described in what follows. More information on the
algorithm and the experimental setup are given in the ‘Methods.’

Solving the inverse problem using Bessel beams as a pencil. The
second method for producing propagation-invariant intensity
features in the transverse plane that follow any desired curve is
based on ‘drawing’ this curve using a Oth-order Bessel beam
(whose caustic is a point) as a pencil. That is, the desired pattern
is generated by superimposing coherently a continuum of Oth-
order Bessel beams whose foci trace the anticipated curve. The
‘Methods’ section describes this algorithm in detail. Related
approaches to create 3D high-intensity curves based on super-
imposing Gaussian beams or for lower-dimensional accelerating
fields were demonstrated in36-38, but without the propagation
invariance achieved here. Figure 3 shows a collection of experi-
mentally obtained propagation-invariant beams generated with
this algorithm. A propagation-invariant straight line segment,
measured over one Rayleigh length z,, is shown in the top row of
Fig. 3. By deftly superimposing differently oriented cusps, the
propagation-invariant letters ‘AZ’ can be composed over the
transverse plane shown in the second row of Fig. 3. The images
presented in the third row of Fig. 3 show further propagation-
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Fig. 2 Engineering desired caustics in light, demonstrating their propagation invariance and momentum conservation. a-f Astroid. a Desired caustic.
b 1D phase function. ¢ Phase function mapped onto 2D Fourier ring. d Transverse projection of the rays. e, f Experimentally measured transverse intensity
and phase. g-1 Deltoid. m-r Cardioid. s Invariant propagation of the astroid from image (e), xz-cross-section through the intensity volume. t, u Invariant
astroid with charge # = 2. v-z Self-healing/momentum transfer in astroid: v, w Diffractive astroid, initial field with phase vortex of charge #=2.

x Propagation showing diffraction and transfer to final OAM state. y, z Momentum transfer to final astroid state same as (e, f), which then propagates

invariantly.

invariant high-intensity rims in the initial transverse plane: a
cardioid (i), a nephroid (j), a parabola (k), and a cusp (1) are
examples of simple geometric shapes. Notice that the intensity is
roughly uniform along the whole curve, regardless of the curva-
ture. Smart beam design even allows for rather complex shapes,
demonstrated as a proof of principle by imprinting the word
‘LIGHT into the light field, as shown in Fig. 3m. The quality of
these complex intensity profiles can be further improved by
engineering the interference more rigorously, i.e., by adjusting the
relative phase differences of the individual caustic building blocks
with respect to each other precisely. The propagation invariance
of these and other beams created with the Bessel pencil method is
demonstrated for the example of the cardioid from Fig. 3i in the
sequence of images in Fig. 3n, whose intensity is preserved over a
propagation distance of one Rayleigh length. We show further
examples of transverse caustic shapes and their invariance during
propagation in Supplementary Note 4.

Discussion

Caustics can be shaped into propagation-invariant light that
presents any desired high-intensity curve in its transverse profile.
We present methods to tailor the light’s wavefront, forming

translation invariant, customized caustics as the envelope of
families of rays. The two approaches presented here are illustrated
by experimentally implementing propagation-invariant beams
whose caustics trace fundamental forms like astroids, deltoids,
cardioids, and nephroids, as well as more sophisticated structures
such as letters or words. These self-healing beams propagate
robustly in the presence of perturbations. We demonstrate the
properties of an astroid-shaped Bessel-lattice beam that inter-
polates between the sum of four plane waves and a Bessel beam.
Propagation-invariant caustics satisfy the need for customized
high-energy transfer in nano-fabrication applications with light
or electron beams for ultrafast cutting and deep drilling in
transparent materials!®!l, 2D caustic light, e.g., with centered
periodic lattices and well-defined curvilinear borders, enables
fabricating refractive index modulations in (nonlinear) materials
for novel topological structures. Imaging systems like light sheet
microscopy benefit from the robust long-focus propagation of
high-intensity caustics with phase singularities!®1°. Similar to the
alphabet of orthogonal states of Bessel beams with different order,
the presented propagation-invariant caustics can be used to
construct other families of orthogonal states with particular self-
healing features, thus are highly important for secure high-
dimensional (quantum) communication340,
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Fig. 3 Bessel pencil method for drawing any desired curve. (Top row) Straight line segment. a Desired curve. b, ¢ Experimentally measured transverse
intensity and phase. d Experimentally obtained intensity volume over one Rayleigh length. (Second row) Superposition of building blocks allows creating
cuspoid letters ‘AZ" in propagation-invariant light. (Third row) Smart beam design facilitates complex structures: cardioid (i), nephroid (j), parabola (k),
cusp (I) and the word ‘LIGHT" in propagation-invariant light fields. n Proof of invariance during propagation at the example of the cardioid (i) over a

distance of one Rayleigh length z.

Reference Signal
Z-scan N beam beam
F— > — 1 ]
| | |
| ! |
| camera MO ! BS, L, FF L, BS,  SLM

Fig. 4 Experimental setup. Nd:YVO, laser source, cw, wavelength Ao =
532 nm. SLM spatial light modulator, BS beam splitter, L lens, FF Fourier
filter, MO microscope objective, S shutter.

Methods

Experimental setup. Figure 4 shows the experimental setup. A frequency-
doubled cw Nd:YVO, laser beam with wavelength Ay =532 nm is expanded in a
plane wave, illuminating a phase-only full HD SLM ‘Holoeye HEO.” We address a
pre-calculated phase pattern to the SLM that allows encoding the real space
amplitude and phase simultaneously on a single phase-only modulator?!. There-
fore, in the common focal plane of the lenses L1 (f= 385 mm) and L2 (f= 38 mm)
an appropriate filter in Fourier space is necessary (FF). The desired light field forms
in the image plane of the modulator. A movable microscope objective (MO),
Olympus MPLN with a magnification of 10 and numerical aperture of 0.25,
together with a camera, iDS UI-3370CP-M-GL, constitute the imaging system,
capable of observing the propagation of a light field. A second expanded beam, a
plane wave, serves as a reference beam and can be switched on for phase mea-
surements using a shutter (S). To recover the spatial phase, a standard digital
holographic method is applied, that is based on the superposition of the signal
beam with a slightly tilted reference beam*2.

First approach. The caustics, parametrized by ¢, are located at the points r for
which the first and second derivatives of the phase of the integral in Eq. (1) with
respect to ¢ vanish:

' (¢)+kyr-u(g) =0, @'(¢)—k r-u(g)=0 3)

Since u and u’ are orthonormal and complete over the plane, we can write
r=(r-u)u+ (r-u)u to find the parametrized caustic:

r.(¢) = i [@"(¢)u(¢) — @'($)u'(¢)]. (4)

Note that the angular coordinate ¢ in the Fourier ring is not an angular
coordinate in the caustic space. A parametrization of the caustic with ¢ as the
parameter may be found by considering the derivative of both sides of the previous
equation:

K(9) = ki [0 (9) + @' (¢)]u(g). (5)

Cusps in the caustic can occur where r.(¢) = 0, namely, for values of ¢ for which
D" (¢) + @' (¢) = 0. Solving this differential equation allows for the realization of
the light field y(r) from Eq. (1) inversely, embedding in it the parametrized caustic
r(¢).

Second approach. A second approach to realize a desired curve is to use the most
localized propagation-invariant light spot we can achieve, a Oth-order Bessel beam,
as a pencil to draw the curve. Since £ =0, its caustic is a point. In accordance with
Eq. (1), the angular spectrum for such a Bessel beam centered at r. is

Ag exp [in —ik,r, - u((/))] The key to designing the real space light field y(r) is to
construct the angular spectrum by coherent integration of this expression along the
desired path r.(7) and choosing the phase yg(7) and amplitude Ag(7) appropriately
along the curve. Note that the parameter 7 is not necessarily the azimuthal angle ¢,
but the arc length of the curve. Since the phase of the field along the curve should
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grow with the curve’s arc length 7, it is given as:

nin =k [ 5)|ds. ®)

Similarly, to make the weight uniform along the curve we use:

A(0) o 1/3/[e0)]. )

The total light field that contains a high-intensity curve r.(t), parametrized by 7,
between two points A and B can then be calculated via the angular spectrum as:

y(r) = / Ag(1) expliyy(¢) — ik x,(7) - u(@)] dr. ®)

Data availability

The datasets generated during and/or analyzed during the current study are archived in
the AP-WWU repository and are available from the corresponding author on reasonable
request. Source data are provided with this paper.
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