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Abstract12

We introduce the notion of high-order deterministic top-down tree transducers (HODT) whose outputs13

correspond to simply-typed lambda-calculus formulas. These transducers are natural generalizations14

of known models of top-tree transducers such as: Deterministic Top-Down Tree Transducers, Macro15

Tree Transducers, Streaming Tree Transducers. . .We focus on the linear restriction of high order16

tree transducers with look-ahead (HODTRlin), and prove this corresponds to tree to tree functional17

transformations defined by Monadic Second Order (MSO) logic. We give a specialized procedure for18

the composition of those transducers that uses a flow analysis based on coherence spaces and allows19

us to preserve the linearity of transducers. This procedure has a better complexity than classical20

algorithms for composition of other equivalent tree transducers, but raises the order of transducers.21

However, we also indicate that the order of a HODTRlin can always be bounded by 3, and give a22

procedure that reduces the order of a HODTRlin to 3. As those resulting HODTRlin can then be23

transformed into other equivalent models, this gives an important insight on composition algorithm24

for other classes of transducers. Finally, we prove that those results partially translate to the case of25

almost linear HODTR: the class corresponds to the class of tree transformations performed by MSO26

with unfolding (not closed by composition), and provide a mechanism to reduce the order to 3 in27

this case.28
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1 Introduction38

Tree Transducers formalize transformations of structured data such as Abstract Syntax Trees,39

XML, JSON, or even file systems. They are based on various mechanisms that traverse tree40

structures while computing an output: Top-Down and Bottom-Up tree transducers [17, 4]41

which are direct generalizations of deterministic word transducers [8, 7, 3], but also more42

complex models such as macro tree transducers [11] (MTT) or streaming tree transducers [1]43

(STT) to cite a few.44

Logic offers another, more descriptive, view on tree transformations. In particular,45

Monadic Second Order (MSO) logic defines a class of tree transformations (MSOT) [5, 6] which46

is expressive and is closed under composition. It coincides with the class of transformations47

definable with MTT enhanced with a regular look-ahead and restricted to finite copying48

[9, 10], and also with the class of STT [1].49

We argue here that simply typed λ-calculus gives a uniform generalisation of all these50

different models. Indeed, they can all be considered as classes of programs that read input51

tree structures, and, at each step, compose tree operations which in the end produce the52

final output. Each of these tree operations can be represented using simply typed λ-terms.53

In this paper, we define top-down tree transducers that follow the usual definitions of such54

machines, except that rules can produce λ-terms of arbitrary types. We call these machines,55

High-Order Top-down tree transducers, or High-Order Deterministic Tree Transducers56

(HODT) in the deterministic case. This class of transducers naturally contains top-down57

tree transducers, as they are HODT of order 0 (the output of rules are trees), but also MTT,58

which are HODT of order 1 (outputs are tree contexts). They also contain STT, which can59

be translated directly into HODT of order 3 with some restricted continuations. Also, STT60

traverse their input tree represented as a string in a leftmost traversal (a stream). This61

constraint could easily be adapted to our model but would yield technical complications that62

are not the focus of this paper. Finally, our model generalizes High Level Tree Transducers63

defined in [12], which also produce λ-term, but restricted to the safe λ-calculus case.64

In this paper we focus on the linear and almost linear restrictions of HODT. In terms of65

expressiveness, linear HODTR (HODTRlin) corresponds to the class of MSOT. This links66

our formalism to other equivalent classes of transducers, such as finite-copying macro-tree67

transducers [9, 10], with an important difference: the linearity restriction is a simple syntactic68

restriction, whereas finite-copying or the equivalent single-use-restricted condition are both69

global conditions that are harder to enforce. For STT, the linearity condition corresponds to70

the copyless condition described in [1] and where the authors prove that any STT can be71

made copyless.72

The relationship of HODTRlin to MSOT is made via a transformation that reduces the73

order of transducers. We indeed prove that for any HODTRlin, there exists an equivalent74

HODTRlin whose order is at most 3. This transformation allows us to prove then that75

HODTRlin are equivalent to Attribute Tree Transducers with the single use restriction76

(ATTsur). In turn, this shows that HODTRlin are equivalent to MSOT [2].77

One of the main interests of HODTRlin is that λ-calculus also offers a simple composition78

algorithm. This approach gives an efficient procedure for composing two HODTRlin. In79

general, this procedure raises the order of the produced transducer. In comparison, com-80

position in other equivalent classes are either complex or indirect (through MSOT). In any81

case, our procedure has a better complexity. Indeed, it benefits from higher-order which82

permits a larger number of implementations for a given transduction. The complexity of the83

construction is also lowered by the use of a notion of determinism slightly more liberal than84
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usual that we call weak determinism.85

The last two results allow us to obtain a composition algorithm for other equivalent86

classes of tree transducer, such as MTT or STT: compile into HODTRlin, compose, reduce87

the order, and compile back into the original model. The advantage of this approach over88

the existing ones is that the complex composition procedure is decomposed into two simpler89

steps (the back and forth translations between the formalisms are unsurprising technical90

procedures). We believe in fact that existing approaches [12, 1] combine in one step the two91

elements, which is what makes them more complex.92

The property of order reduction also applies to a wider class of HODT, almost linear93

HODT (HODTRal). Again here, this transformation allows us to prove that this class of94

tree transformations is equivalent to that of Attribute Tree Transducers which is known to95

be equivalent to MSO tree transformations with unfolding [2], i.e. MSO tree transduction96

that produce Directed Acyclic Graphs (i.e. trees with shared sub-trees) that are unfolded to97

produce a resulting tree. We call these transductions Monadic Second Order Transductions98

with Sharing (MSOTS). Note however that HODTRal are not closed under composition.99

Section 2 presents the technical definitions used throughout the paper. In particular, it100

gives the definitions of the various notions of transducers studied in the paper and also the101

notion of weak determinism. Section 3 studies the expressivity of linear and almost linear102

higher-order transducer by relating them to MSOT and MSOTS. It focuses more specifically103

on the order reduction procedure that is at the core of the technical work. Section 4 presents104

the composition algorithm for linear higher-order transducers. This algorithm is based on105

Girard’s coherence spaces and can be interpreted as a form of partial evaluation for linear106

higher-order programs. Finally we conclude.107

2 Definitions108

This section presents the main formalisms we are going to use throughout the paper, namely109

simply typed λ-calculus, finite state automata and high-order transducers.110

2.1 λ-calculus111

Fix a finite set of atomic types A, we then define the set of types over A, types(A), as the112

types that are either an atomic type, i.e. an element of A, or a functional type (A→ B), with113

A and B being in types(A). The operator → is right-associative and A1 → · · · → An → B114

denotes the type (A1 → (· · · → (An → B) · · · )). The order of a type A is inductively defined115

by order(A) = 0 when A ∈ A, and order(A→ B) = max(order(A) + 1, order(B)).116

A signature Σ is a triple (C,A, τ) with C being a finite set of constants, A a finite set of117

atomic types, and τ a mapping from C to types(A), the typing function.118

We allow ourselves to write types(Σ) to refer to the set types(A). The order of a signature119

is the maximal order of a type assigned to a constant (i.e. max{order(τ(c)) | c ∈ C}). In this120

work, we mostly deal with tree signatures which are of order 1 and whose set of atomic types121

is a singleton. In such a signature with atomic type o, the types of constants are of the form122

o→ · · · → o→ o. We write on → o for an order-1 type which uses n+ 1 occurrences of o,123

for example, o2 → o denotes o→ o→ o. When c is a constant of type A, we may write cA124

to make explicit that c has type A. Two signatures Σ1 = (C1,A1, τ1) and Σ2 = (C2,A2, τ2)125

so that for every c in C1 ∩ C2 we have τ1(c) = τ2(c) can be summed, and we write Σ1 + Σ2126

for the signature (C1 ∪ C2,A1 ∪ A2, τ) so that if c is in C1, τ(c) = τ1(c) and if c is in C2,127

τ(c) = τ2(c). The sum operation over signatures being associative and commutative, we128

write Σ1 + · · ·+ Σn to denote the sum of several signatures.129

MFCS 2020
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We assume that for every type A, there is an infinite countable set of variables of type A.130

When two types are different the set of variables of those types are of course disjoint. As131

with constants, we may write xA to make it clear that x is a variable of type A.132

When Σ is a signature, we define the family of simply typed λ-terms over Σ, denoted133

Λ(Σ) = (ΛA(Σ))A∈types(Σ), as the smallest family indexed by types(Σ) so that:134

if cA is in Σ, then cA is in ΛA(Σ),135

xA is in ΛA(Σ),136

if A = B → C and M is in ΛC(Σ), then (λxB .M) is in ΛA(Σ),137

if M is in ΛB→A(Σ) and N is in ΛB(Σ), then (MN) is in ΛA(Σ).138

The term M is a pure λ-term if it does not contain any constant cA from Σ. When the type139

is irrelevant we write M ∈ Λ(Σ) instead of M ∈ ΛA(Σ). We drop parentheses when it does140

not bring ambiguity. In particular, we write λx1 . . . xn.M for (λx1(. . . (λxn.M) . . . )), and141

M0M1 . . .Mn for ((. . . (M0M1) . . . )Mn).142

The set fv(M) of free variables of a term M is inductively defined on the structure of M :143

fv(c) = ∅,144

fv(x) = {x},145

fv(MN) = fv(M) ∪ fv(N),146

fv(λx.M) = fv(M)− {x}.147

Terms which have no free variables are called closed. We writeM [x1, . . . , xk] to emphasize that148

fv(M) is included in {x1, . . . , xk}. When doing so, we write M [N1, . . . , Nk] for the capture149

avoiding substitution of variables x1, . . . , xk by the terms N1, . . . , Nk. In other contexts,150

we simply use the usual notation M [N1/x1, . . . , Nk/xk]. Moreover given a substitution θ,151

we write M.θ for the result of applying this (capture avoiding) substitution and we write152

θ[N1/x1, . . . , Nk/xk] for the substitution that maps the variables xi to the terms Ni but is153

otherwise equal to θ. Of course, we authorize such substitutions only when the λ-term Ni154

has the same type as the variable xi.155

We take for granted the notions of β-contraction, noted →β , β-reduction, noted
∗→β ,156

β-conversion, noted =β , and β-normal form for terms.157

Consider closed terms of type o that are in β-normal form and that are built on a tree158

signature, they can only be of the form a t1 . . . tn where a is a constant of type on → o and159

t1, . . . , tn are closed terms of type o in β-normal form. This is just another notation for160

ranked trees. So when the type o is meant to represent trees, types of order 1 which have161

the form o → · · · → o → o represent functions from trees to trees, or more precisely tree162

contexts. Types of order 2 are types of trees parametrized by contexts. The notion of order163

captures the complexity of the operations that terms of a certain type describe.164

A term M is said linear if each variable (either bound or free) in M occurs exactly once165

in M . A term M is said syntactically almost linear when each variable in M of non-atomic166

type occurs exactly once in M . Note that, through β-reduction, linearity is preserved but167

not syntactic almost linearity.168

For example, given a tree signature Σ1 with one atomic type o and two constants f of type169

o2 → o and a of type o, the termM = (λy1y2.f y1 (f a y2)) a (f x a) with free variable x of type170

o is linear because each variable (y1, y2 and x) occurs exactly once inM . The termM contains171

a β-redex so: (λy1y2.f y1 (f a y2)) a (f x a) →β (λy2.f a (f a y2)) (f x a) →β f a (f a (f x a)).172

The term f a (f a (f x a)) has no β-redex so it is the β-normal form of M .173

Another example: the term M2 = (λy.f y y) (x a) with free variable x of type o → o is174

syntactically almost linear because the variable y which occurs twice in the term is of the175

atomic type o. It β-reduces to the term M ′2 = f (x a) (x a) which is not syntactically almost176

linear, so β-reduction does not preserve syntactical almost linearity.177
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We call a term almost linear when it is β-convertible to a syntactically almost linear178

term. Almost linear terms are characterized also by typing properties (see [15]).179

2.2 Tree Automata180

We present here the classical definition of deterministic bottom-up tree automaton (BOT)181

adapted to our formalism. A BOT A is a tuple (ΣP ,Σ, R) where:182

Σ = (C, {o}, τ) is a first-order tree signature, the input signature,183

ΣP = (P, {o}, τP ) is the state signature, and is such that for every p ∈ P , τP (p) = o.184

Constants of P are called states,185

R is a finite set of rules of the form a p1 . . . pn → p where:186

p,p1, . . . , pn are states of P ,187

a is a constant of Σ with type on → o.188

An automaton is said deterministic when there is at most one rule in R for each possible189

left hand side. It is non-deterministic otherwise.190

Apart from the notation, our definition differs from the classical one by the fact there are no191

final states, and hence, the automaton does not describe a language. This is due to the fact192

that BOT will be used here purely for look-ahead purposes.193

2.3 High-Order Deterministic top-down tree Transducers194

From now on we assume that Σi is a tree signature for every number i and that its atomic195

type is oi.196

A Linear High-Order Deterministic top-down Transducer with Regular look-ahead197

(HODTRlin) T is a tuple (ΣQ,Σ1,Σ2, q0, R, A) where:198

Σ1 = (C1, {o1}, τ1) is a first-order tree signature, the input signature,199

Σ2 = (C2, {o2}, τ2) is a first-order tree signature, the output signature,200

ΣQ = (Q, {o1, o2}, τs) is the state signature, and is such that for every q ∈ Q, τs(q) is of201

the form o1 → Aq where Aq is in types(Σ2). Constants of Q are called states,202

q0 ∈ Q is the initial state,203

A is a BOT over the tree signature Σ1, the look-ahead automaton, with set of states P ,204

R is a finite set of rules of the form205

q(a−→x )〈−→p 〉 →M(q1x1) . . . (qnxn)206

207

where:208

q, q1, . . . , qn ∈ Q are states of ΣQ,209

a is a constant of Σ1 with type on1 → o1,210

−→x = x1, . . . , xn are variables of type o1, they are the child trees of the root labeled a,211

−→p = p1, . . . , pn are in P (the set of states of the look-ahead A),212

M is a linear term of type Aq1 → · · · → Aqn → Aq built on signature Σ2 + ΣQ.213

there is one rule per possible left-hand side (determinism).214

Notice that we have given states a type of the form o1 → A where A ∈ types(o2). The215

reason why we do this is to have a uniform notation. Indeed, a state q is meant to transform,216

thanks to the rules in R, a tree built in Σ1 into a λ-term built on Σ2 with type Aq. So217

we simply write qM N1 . . . Nn when we want to transform M with the state q and pass218

N1,. . . , Nn as arguments to the result of the transformation. We write ΣT for the signature219

Σ1 + Σ2 + ΣQ. Notice also that the right-hand part of a rule is a term that is built only220

with constants of Σ2, states from ΣQ and variables of type o1. Thus, in order for this221

term to have a type in types(Σ2), it is necessary that the variables of type o1 only occur as222

MFCS 2020
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the first argument of a state in ΣQ. Finally, remark that we did not put any requirement223

on the type of the initial state. So as to restrict our attention to transducers as they are224

usually understood, it suffices to add the requirement that the initial state is of type o1 → o2.225

However, we consider as well that transducers may produce programs instead of first order226

terms.227

The linearity constraint on M affects both bound variables and the free variables228

x1, . . . , xn, meaning that all of the subtrees x1, . . . , xn are used in computing the out-229

put. That will be important for the composition of two transducers because if the first230

transducer fails in a branch of its input tree then the second transducer, applied to that tree,231

must fail too. This restriction forcing the use of input subtrees does not reduce the model’s232

expressivity because we can always add a state q which visits the subtree but only produces233

the identity function on type o2 (this state then has type Aq = o1 → o2 → o2).234

Almost linear high-order deterministic top-down transducer with regular look-ahead235

(HODTRal) are defined similarly, with the distinction that a term M appearing as a right-236

hand side of a rule should be almost linear.237

As we are concerned with the size of the composition of transducers, we wish to re-238

lax a bit the notion of HODTRlin. Indeed, when composing HODTRlin we may have to239

determinize the look-ahead so as to obtain a HODTRlin, which may cause an exponen-240

tial blow-up of the look-ahead. However if we keep the look-ahead non-deterministic, the241

transducer stays deterministic in the weaker sense that only one rule of the transducer242

can apply when it is actually run. For this we adopt a slightly relaxed notion of determ-243

inistic transducer that we call high-order weakly deterministic top-down transducer with244

regular look-ahead (HOWDTRlin). They are similar to HODTRlin but they can have non-245

deterministic automata as look-ahead with the proviso that when q(a x1 . . . xn)〈p1, . . . , pn〉 →246

M [x1, . . . , xn] and q(a x1 . . . xn)〈p′1, . . . , p′n〉 → M ′[x1, . . . , xn] are two distinct rules of the247

transducer then it must be the case that for some i there is no tree that is recognized by248

both pi and p′i. This property guarantees that when transforming a term at most one rule249

can apply for every possible state. Notice that it suffices to determinize the look-ahead so as250

to obtain a HODTRlin from a HOWDTRlin, and therefore the two models are equivalent.251

Given a HODTRlin, a HODTRal or a HOWDTRlin T , we write T :: Σ1 −→ Σ2 to mean252

that the input signature of T is Σ1 and its output signature is Σ2.253

A transducer T induces a notion of reduction on terms. A T -redex is a term of the form254

q(aM1 . . .Mn) if and only if q(a x1 . . . xn)〈p1, . . . , pn〉 → M [x1, . . . , xn] is a rule of T and255

(the β-normal forms of)M1, . . . ,Mn are respectively accepted by A with the states p1, . . . , pn.256

In that case, a T -contractum of q(aM1 . . .Mn) is M [M1, . . . ,Mn]. Notice that T -contracta257

are typed terms and that they have the same type as their corresponding T -redices. The258

relation of T -contraction relates a term M and a term M ′ when M ′ is obtained from M259

by replacing one of its T -redex with a corresponding T -contractum. We write M →T M
′

260

when M T -contracts to M ′. The relation of β-reduction is confluent, and so is the relation261

of T -reduction as transducers are deterministic, moreover, the union of the two relations is262

terminating. It is not hard to prove that it is also locally confluent and thus confluent. It263

follows that →β,T (which is the union of →β and →T ) is confluent and strongly normalizing.264

Given a term M built on ΣT , we write |M |T to denote its normal form modulo =β,T .265

Then we write rel(T ) for the relation:266

{(M, |q0M |T ) | M is a closed term of type o1 and |q0M |T ∈ Λ(Σ2)} .267

Notice that when |q0M |T contains some states of T , as it is usual, the pair (M, |q0M |T )268

is not in the relation.269

Given a finite set of trees L1 on Σ1 and L2 included in ΛAq0 , we respectively write T (L1)270

and T−1(L2) for the image of L1 by T and the inverse image of L2 by T .271
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We give an example of a HODTRlin T that computes the result of additions of numeric272

expressions (numbers being represented in unary notation). For this we use an input tree273

signature with type o1, and constants Zo1 , So1 and addo1→o1→o1 which respectively denote274

zero, the successor function and addition. The output signature is similar but different to275

avoid confusion: it uses the type o2 and constants Oo2 , No2→o2 which respectively denote276

zero and successor.277

We do not really need the look-ahead automaton for this computation, so we omit it for278

this example. We could have a blank look-ahead automaton A with one state l and rules:279

A(Z) = l, A(S l) = l, A(add l l) = l; which would not change the result of the transducer.280

The transducer has two states: q0 of type o1 → o2 (the initial state), and qi of type281

o1 → o2 → o2. The rules of the transducer are the following:282

q0(Z)→ O, q0(S x)→ N(qi xO),283

q0(addx y)→ qi x (qi y O),284

qi(Z)→ λx.x,285

qi(S x)→ λy.N(qi x y),286

qi(addx y)→ λz.qi x (qi y z),287

As an example, we perform the transduction of the following term add(S(S Z))(S(S(S Z))):288

q0(add(S(S Z))(S(S(S Z)))) →T (qi(S(S Z)))(qi(S(S(S Z)))O)
∗→T (λy1.N((λy2.N((λx.x)y2))y1))((λy3.N((λy4.N((λy5.N((λx.x)y5))y4))y3))O)
∗→β N(N(N(N(N O))))

289

The state qi transforms a sequence of n symbols S into a λ-term of the form λx.Nn(x),290

and the add maps both its children into such terms and composes them. The state q0 simply291

applies O to the resulting term.292

Note that our reduction strategy here has consisted in first computing the T -redices293

and then reducing the β-redices. This makes the computation simpler to present. As we294

mentioned above a head-reduction strategy would lead to the same result.295

The order of the HODTRlin T is max{order(Aq) | q ∈ Q}. Before going further, we want296

to discuss how our framework relates to other transduction models. More specifically how297

the notion of order of transformations generalizes the DTOP and MTT transduction models:298

if we relax the constraint of linearity of our transducers, then DTOP and MTT can be299

seen as non-linear transducers of order 0 and 1 respectively. In contrast of these, we chose300

to study the constraint of linearity instead of the constraint of order and, in this paper,301

we will explore the benefits of this approach. Firstly we will explain why increasing the302

order beyond order 3 does not increase the expressivity of neither HODTRlin nor HODTRal.303

Next we will show how HODTRlin and HOWDTRlin both capture the expressivity of tree304

transformations defined by monadic second order logic. Lastly, we will prove that, contrary305

to MTT, the class of HODTRlin transformations is closed under composition, we will give an306

algorithm for computing the composition of HODTRlin and HOWDTRlin, and explain why307

using HOWDTRlin avoids an exponential blow-up in the size of the composition transducer.308

3 Order reduction and expressiveness309

In this section we outline a construction that transforms a transducer of HODTRlin or310

HODTRal into an equivalent linear or almost linear transducer of order ≤ 3. These two311

constructions are similar and central to proving that HODTRlin and HODTRal are respect-312

ively equivalent to Monadic Second Order Transductions from trees to trees (MSOT) and to313

Monadic Second Order Transductions from trees to terms (i.e. trees with sharing) (MSOTS).314

We will later show that there are translations between HODTRlin of order 3 and attribute tree315

MFCS 2020



34:8 Linear High-Order Deterministic Tree transducers with Regular look-ahead

transducers with the single use restriction and between HODTRal of order 3 and attribute316

tree transducers. These two models are known to be respectively equivalent to MSOT and317

MSOTS [2].318

The central idea in the construction consists in decomposing λ-termsM into pairs 〈M ′, σ〉319

where M ′ is a pure λ-term and σ is a substitution of variables with the following properties:320

M =β M
′.σ,321

the free variables of M ′ have at most order 1,322

for every variable x, σ(x) is a closed λ-term,323

the number of free variables in M ′ is minimal.324

In such a decomposition, we call the term M ′ a template. In case M is of type A, linear or325

almost linear, it can be proven that M ′ can be taken from a finite set [14]. The linear case is326

rather simple, but the almost linear case requires some precaution as one needs first to put327

M in syntactically almost linear form and then make the decomposition. Though the almost328

linear case is more technical the finiteness argument is the same in both cases and is based329

on proof theoretical arguments in multiplicative linear logic which involves polarities in a330

straightforward way.331

The linear case conveys the intuition of decompositions in a clear manner. One takes332

the normal form of M and then delineates the largest contexts of M , i.e. first order terms333

that are made only with constants and that are as large as possible. These contexts are334

then replaced by variables and the substitution σ is built accordingly. The fact that the335

contexts are chosen as large as possible makes it so that no introduced variable can have336

as argument a term of the form xM1 . . .Mn where x is another variable introduced in the337

process. Therefore, the new variables introduced in the process bring one negative atom338

and several (possibly 0) positive ones and all of them need to be matched with positive and339

negative atoms in the type of M as, under these conditions, they cannot be matched together.340

This explains why there are only finitely many possible templates for a fixed type.341

I Theorem 1. For all type A built on tree signature Σ, the set of templates of closed linear342

(or almost linear) terms of type A is finite.343

Moreover, the templates associated with a λ-term can be computed compositionally (i.e.344

from the templates of its parts). As a result, templates can be computed by the look-ahead345

of HODTRlin or of HODTRal. When reducing the order, we enrich the look-ahead with346

template information while the substitution that is needed to reconstruct the produced term347

is outputted by the new transducer. The substitution is then performed by the initial state348

used at the root of the input tree which then outputs the same result as the former transducer.349

The substitution can be seen as a tuple of order 1 terms. It is represented as a tuple using350

Church encoding, i.e. a continuation. This makes the transducer we construct be of order 3.351

I Theorem 2. Any HODTRlin (resp. HODTRal) has an equivalent HODTRlin (resp.352

HODTRal) of order 3.353

The proof of this result shows that every HODTRlin (or HODTRal) can be seen as mapping354

trees to tuples of contexts and combining these contexts in a linear (resp. almost linear)355

way. This understanding of HODTRlin and of HODTRal allows us to prove that they are356

respectively equivalent to Attribute Tree Transducers with Single Use Restriction (ATTsur);357

and to Attribute Tree Transducers (ATT). Then, using [2], we can conclude with the following358

expressivity result:359

I Theorem 3. HODTRlin are equivalent to MSOT and HODTRal are equivalent to MSOTS.360
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The full proofs of these are rather technical and are not detailed here, but they appear361

in the full version of the article. The proof that HODTRlin are equivalent to MSOT could362

have been simpler by using the equivalence with MTT with the single-use restricted property363

instead of ATT, but we would still need to use ATT to show that HODTRal are equivalent364

to MSOTS.365

4 Composition of HODTRlin366

As we are interested in limiting the size of the transducer that is computed, and even though367

our primary goal is to compose HODTRlin, this section is devoted to the composition of368

HOWDTRlin. Indeed, working with non-deterministic look-aheads allows us to save the369

possibly exponential cost of determinizing an automaton.370

4.1 Semantic analysis371

Let T1 = (ΣQ,Σ1,Σ2, q0, R1, A1) and T2 = (ΣP ,Σ2,Σ3, p0, R2, A2) be two Linear High-Order372

Weakly Deterministic tree Transducers with Regular look-ahead. The rules of T1 can be373

written: q(a−→x )〈
−→
` 〉 → M (q1 x1) . . . (qn xn) where q, q1, . . . , qn ∈ Q are states of T1,374

−→
` = `1, . . . , `n are states of A1 and the λ-term M is of type Aq1 → · · · → Aqn → Aq. Our375

goal is to build a HOWDTRlin T :: Σ1 → Σ3 that does the composition of T1 and T2, so we376

want to replace a rule such as that one with a new rule which corresponds to applying T2 to377

the term M .378

In order to do so, we need, for each o2 tree in M , to know the associated state ` ∈ L2379

of T2’s look-ahead, and the state p ∈ P of T2 which is going to process that node. So380

with any such tree we associate the pair (p, `). In this case we call (p, `) the token which381

represents the behavior of the tree. In general, we want to associate tokens not only with382

trees, but also with λ-terms of higher order. For example, we map an occurrence of a symbol383

a ∈ Σ2 of type o2 → o2 → o2, whose arguments x1 and x2 (of type o2) respectively have384

look-ahead states `1 and `2 and are processed by states p1 and p2 ∈ P of T2, to the token385

(p1, `1) ( (p2, `2) ( (p, `) where (p, `) is the token of the tree a x1x2 (of type o2). We386

formally define tokens as follows:387

I Definition 4. The set of semantic tokens JAK over a type A built on atomic type o2 is388

defined by induction:389

Jo2K = {(p, `) | p ∈ P, ` ∈ L2} JA→ BK = {f ( g | f ∈ JAK, g ∈ JBK}390

Naturally, the semantic token associated with a λ-term M of type A built on atomic type391

o2 will depend on the context where the term M appears. For example a tree of atomic type392

o2 can be processed by any state p ∈ P of T2, and a term of type A→ B can be applied to393

any argument of type A. But for any such M taken out of context, there exists a finite set394

of possible tokens for it. For example, a given tree of type o2 can be processed by any state395

p ∈ P depending on the context, but it has always the same look-ahead ` ∈ L2.396

In order to define the set of possible semantic tokens for a term, we use a system of397

derivation rules. The following derivation rules are used to derive judgments that associate398

a term with a semantic token. So a judgment Γ ` M : f associates term M with token f ,399

where Γ is a substitution which maps free variables in M to tokens. The rules are:400

p(a−→x )〈`1, . . . , `n〉
T2−→ M(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1) ( · · ·( (pn, `n) ( (p, `)
401

402
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Γ1 `M : f ( g Γ2 ` N : f

Γ1,Γ2 `M N : g
403

404 Γ, xA : f `M : g

Γ ` λxA.M : f ( g

f ∈ JAK
xA : f ` xA : f

405

Using this system we can derive, for any termMA, all the semantic tokens that correspond406

to possible behaviours of MA when it is processed by T2.407

4.2 Unicity of derivation for semantic token judgements408

We will later show that we can compute the image of M from the derivation of the judgement409

`M : f , assuming that f is the token that represents the behaviour of T2 on M . But before410

that we need to prove that for a given term M and token f the derivation of the judgement411

`M : f is unique:412

I Theorem 5. For every type A, for every term M of type A and every token f ∈ JAK, there413

is at most one derivation D ::`M : f .414

This theorem relies in part on the fact that tokens form a coherent space, as introduced415

by Girard in [13]. The full proof of this theorem is not detailed here but can be found in the416

full version of the article on Hal.417

Now that we have shown that there is only one derivation per judgement `M : f , we are418

going to see how to use that derivation in order to compute the term N that is the image of419

M by transducer T2.420

4.3 Collapsing of token derivations421

We define a function (we call it collapsing function) which maps every derivation D :: `M : f422

to a term D which corresponds to the output of transducer T2 on term M assuming that M423

has behaviour f .424

I Definition 6. Let D be a derivation. We define D by induction on D, there are different425

cases depending on the first rule of D:426

If D is of the form:427

p(a−→x )〈`1, . . . , `n〉
T2−→ N(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1) ( · · ·( (pn, `n) ( (p, `)
428

then D = N ,429

if D is of the form:430

D1 :: Γ1 ` N1 : f ( g D2 :: Γ2 ` N2 : f

Γ1,Γ2 ` N1N2 : g
431

then D = D1D2,432

if D is of the form:433

D1 :: Γ, xA : f ` N : g

Γ ` λxA.N : f ( g
434

then D = λx.D1,435
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if D is of the form:436

f ∈ JAK
xA : f ` xA : f

437

then D = xf .438

We can check that, for all derivation D ::` M : f , the term D is of type f given by:439

(p, `) = Ap and f ( g = f → g.440

Now that we have associated, with any pair (M,f) such that f is a semantic token of441

term M , a term N = D which represents the image of M by T2, we need to show that442

replacing M with N in the computation of transducers leads to the same results.443

4.4 Construction of the transducer which realizes the composition444

We recall some notations: T1 = (ΣQ,Σ1,Σ2, q0, R1, A1) and T2 = (ΣP ,Σ2,Σ3, p0, R2, A2) are445

two HOWDTRlin, Q = {q1, . . . , qm} is the set of states of T1 and, for every state qi ∈ Q, we446

note Aqi the type of qi(t) when t is a tree of type o1. For all type A built on o2, the set of447

tokens of terms of type A is noted JAK and is finite.448

Previously, we saw how to apply transducer T2 to terms M of type A built on the449

atomic type o2, so we can apply T2 to terms which appear on the left side of rules of T1:450

q(a−→x )〈
−→
` 〉 →M (qi1 x1) . . . (qin xn) . In a rule such as this one, in order to replace term M451

with term N = D where D is the unique derivation of the judgement `M : f , we need to452

know which token f properly describes the behaviour of T2 on M . The computation of that453

token is done in the look-ahead automaton A of T .454

We define the set of states of A as: L = L1 × JAq1K× · · · × JAqmK455

With any tree t (of type o1) we want to associate the look-ahead of T1 on t and, for each456

state qi ∈ Q of T1, a token of qi(t). The transition function of the look-ahead automaton A457

is defined by, for all (`1, f1,1, . . . , f1,n), . . . , (`n, fm,1, . . . , fm,n) ∈ L:458

a (`1, f1,1, . . . , f1,m) . . . (`n, fn,1, . . . , fn,m)
A→ (`, f1, . . . , fm)459

where a `1 . . . `n
A1→ ` and, for all state qi ∈ Q, fi is such that in T1 there exists a rule460

qi(a
−→x )〈`1, . . . , `n〉

T1→M (qi1 x1) . . . (qin xn) and a derivation of the judgement `M : f1,i1 (461

· · · ( fn,in ( fi. Note that this look-ahead automaton is non-deterministic in general,462

but the transducer is weakly deterministic in the sense that, at each step, even if several463

look-ahead states are possible, only one rule of the transducer can be applied.464

We define the set of states Q′ of transducer T by:465

Q′ = {(q, f) | q ∈ Q, f ∈ JAqK} ∪ {q′0}466

Then we define the set R of rules of transducer T as the set of rules of the form:467

(q, f)(a−→x )〈(`1, f1,1, . . . , f1,m), . . . 〉 T→ D ((qi1 , f1)x1) . . . ((qin , fn)xn)468

such that there exists in T1 a rule: q(a−→x )〈`1, . . . 〉
T1→ M (qi1 x1) . . . (qin xn) and D is a469

derivation of the judgement `M : f1,i1 ( · · ·( fn,in ( f .470

Because of Theorem 5 that set of rules is weakly deterministic.471

To that set R we then add rules for the initial state q′0, which simply replicate the rules of472

states of the form (q0, (p0, `)): for all a ∈ Σ1, all (`1, f1,1, . . . , f1,m), . . . , (`n, fn,1, . . . , fn,m) ∈473

L and all rule in R of the form:474

(q0, (p0, l))(a
−→x )〈(`1, f1,1, . . . , f1,m), . . . 〉 T→M ((q1, f1)x1) . . . ((qn, fn)xn)475

where p0 is the initial state of T2 and l ∈ L2 is a state of the look-ahead automaton of476

T2, we add the rule :477

q′0(a−→x )〈(`1, f1,1, . . . , f1,m), . . . 〉 T→M ((q1, f1)x1) . . . ((qn, fn)xn)478

This set R of rules is still weakly deterministic according to Theorem 5.479

We have thus defined the HOWDTRlin T = (ΣQ′ ,Σ1,Σ3, q
′
0, R, A).480
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I Theorem 7. T = T2 ◦ T1481

Finally, we will analyze the complexity of this algorithm and show that using the482

algorithm on HOWDTRlin instead of HODTRlin avoids an exponential blow-up of the size483

of the produced transducer.484

First the set of states Q′ of T is of size |Q′| = 1 + Σq∈Q|JAqK| where |JAqK| is the number485

of tokens of type Aq. |JAqK| = (|P | |L2|)|Aq| where |P | is the number of states of transducer486

T2, |L2| is the number of states of the look-ahead automaton of transducer T2 and |Aq| is487

the size of the type Aq. So the size of Q′ is O(Σq∈Q(|P | |L2|)|Aq|), that is a polynomial in488

the size of T2 to the power of the size of types of states of T1.489

It is important to note that the set JAqK of tokens of type Aq is where HOWDTRlin and490

HODTRlin differ in their complexity: the deterministic alternative to the weakly deterministic491

T would require to store with the state not a single token, but a set of two-by-two coherent492

tokens, that would bring the size of Q′ to 1 + Σq∈Q2|JAqK| which would be exponential in the493

size of T2 and doubly exponential in the size of types of T1.494

Then there is the look-ahead automaton: its set of states is L = L1× JAq1K× · · · × JAqmK.495

So the number of states is in O(|L1| (|P | |L2|)Σq∈Q|Aq|). The size of the set of rules of the496

look-ahead automaton is in O(Σa(n)∈Σ1
|L|n+1) where n is the arity of the constant a(n).497

Finally there is the set R of rules of T . For every judgement `M : f1,i1 ( · · ·( fn,in (498

f , finding a derivation D of that judgement and computing the corresponding D is in O(|M |2)499

time where |M | is the size of M . The number of possible rules is in O(Σa(n)∈Σ1
(|Q′|)n+1).500

So computing R is done in time O(|R|2 Σa(n)∈Σ1
(|Q′|)n+1) where R is the set of rules of T1.501

With a fixed input signature Σ1, the time complexity of the algorithm computing T is a502

polynomial in the sizes of T1 and T2, with only the sizes of types of states of T1 as exponents.503

Note that, as our model generalizes other classes of transducers, it is possible to perform504

their composition in our setting. Thanks to results of Theorem 2, it is then possible to reduce505

the order of the result of the composition, and obtain a HODTRlin that can be converted506

back in those other models. This methods gives an important insight on the composition507

procedure for those other formalisms.508

In comparison, the composition algorithms for equivalent classes of transductions are509

either not direct or very complex as they essentially perform composition and order reduction510

at once. For instance, composition of single used restricted MTT is obtained through MSO511

([11]). High-level tree transducers [12] go through a reduction to iterated pushdown tree512

transducers and back. The composition algorithm for Streaming Tree Transducers described513

in [1] is direct, but made complex by the fact that the algorithm hides this reduction of order.514

The double-exponential complexity of composition of HODTRlin compares well to the515

non-elementary complexity of composition in equivalent non-MSOT classes of transducers.516

Although the simple exponential complexity of composition in MSOT is better, we should517

account for the fact that the MSOT model does not attempt to represent the behavior of518

programs.519

5 Conclusion and future work520

In this paper we have presented a new mechanical characterization of Monadic Second Order521

Transductions. This characterization is based on simply typed λ-calculus which allows us to522

generalize with very few primitives most of the mechanisms used to compute the output in523

the transducer literature. The use of higher-order allows us to propose an arguably simple524

algorithm for computing the composition of linear higher-order transducers which coincide525

with MSOT. The correctness of this algorithm is based on denotation semantics (coherence526
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spaces) of λ-calculus and the heart of the proof uses logical relations. Thus, the use of527

λ-calculus allows us to base our work on standard tools and techniques rather than developing528

our own tools as is often the case when dealing with transducers. Moreover, this work sheds529

some light on how composition is computed in other formalisms. Indeed, we argue that for530

MTTsur, STT, or ARRsur, the composition must be the application of our composition531

algorithm followed by the order reduction procedure that we use to prove the equivalence532

with logical transductions.533

The notion of higher-order transducer has already been studied [12, 18, 16], however,534

there is still some work to be done to obtain direct composition algorithms. We plan to535

generalize our approach of the linear case to the general one and devise a semantic based536

partial evaluation for the composition of higher-order transducers.537
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