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—— Abstract

We introduce the notion of high-order deterministic top-down tree transducers (HODT) whose outputs
correspond to single-typed lambda-calculus formulas. These transducers are natural generalizations
of known models of top-tree transducers such as: Deterministic Top-Down Tree Transducers, Macro
Tree Transducers, Streaming Tree Transducers. .. We focus on the linear restriction of high order
tree transducers with look-ahead (HODTRyin), and prove this corresponds to tree to tree functional
transformations defined by Monadic Second Order (MSO) logic. We give a specialized procedure for
the composition of those transducers that uses a flow analysis based on coherence spaces and allows
us to preserve the linearity of transducers. This procedure has a better complexity than classical
algorithms for composition of other equivalent tree transducers, but raises the order of transducers.
However, we also indicate that the order of a HODTRy, can always be bounded by 3, and give a
procedure that reduces the order of a HODTRyin to 3. As those resulting HODTRji, can then be
transformed into other equivalent models, this gives an important insight on composition algorithm
for other classes of transducers. Finally, we prove that those results partially translate to the case of
almost linear HODTR: the class corresponds to the class of tree transformations performed by MSO
with unfolding (not closed by composition), and provide a mechanism to reduce the order to 3 in
this case.
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1 Introduction

Tree Transducers formalize transformations of structured data such as Abstract Syntax Trees,
XML, JSON, or even file systems. They are based on various mechanisms that traverse tree
structures while computing an output: Top-Down and Bottom-Up tree transducers [18, 4]
which are direct generalizations of deterministic word transducers [8, 7, 3], but also more
complex models such as macro tree transducers [11] (MTT) or streaming tree transducers [1]
(STT) to cite a few.

Logic offers another, more descriptive, view on tree transformations. In particular,
Monadic Second Order (MSO) logic defines a class of tree transformations (MSOT) [5, 6] which
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Linear High-Order Deterministic Tree transducers with Regular look-ahead

is expressive and is closed under composition. It coincides with the class of transformations
definable with MTT enhanced with a regular look-ahead and restricted to finite copying
[9, 10], and also with the class of STT [1].

We argue here that simply typed A-calculus gives a uniform generalisation of all these
different models. Indeed, they can all be considered as classes of programs that read input
tree structures, and, at each step, compose tree operations which in the end produce the
final output. Each of these tree operations can be represented using simply typed A-terms.

In this paper, we define top-down tree transducers that follow the usual definitions of such
machines, except that rules can produce A-terms of arbitrary types. We call these machines,
High-Order Top-down tree transducers, or High-Order Deterministic Tree Transducers
(HODT) in the deterministic case. This class of transducers naturally contains top-down
tree transducers, as they are HODT of order 0 (the output of rules are trees), but also MTT,
which are HODT of order 1 (outputs are tree contexts). They also contain STT, which can
be translated directly into HODT of order 3 with some restricted continuations. Also, STT
traverse their input tree represented as a string in a leftmost traversal (a stream). This
constraint could easily be adapted to our model but would yield technical complications that
are not the focus of this paper. Finally, our model generalizes High Level Tree Transducers
defined in [12], which also produce A-term, but restricted to the safe A-calculus case.

In this paper we focus on the linear and almost linear restrictions of HODT. In terms of
expressiveness, linear HODTR (HODTRy;,) corresponds to the class of MSOT. This links
our formalism to other equivalent classes of transducers, such as finite-copying macro-tree
transducers [9, 10], with an important difference: the linearity restriction is a simple syntactic
restriction, whereas finite-copying or the equivalent single-use-restricted condition are both
global conditions that are harder to enforce. For STT, the linearity condition corresponds to
the copyless condition described in [1] and where the authors prove that any STT can be
made copyless.

The relationship of HODTR);, to MSOT is made via a transformation that reduces the
order of transducers. We indeed prove that for any HODTRy;,, there exists an equivalent
HODTRj;, whose order is at most 3. This transformation allows us to prove then that
HODTRj;, are equivalent to Attribute Tree Transducers with the single use restriction
(ATTsyu;)- In turn, this shows that HODTRy;, are equivalent to MSOT |[2].

One of the main interests of HODTRy;, is that A-calculus also offers a simple composition
algorithm. This approach gives an efficient procedure for composing two HODTRy;,. In
general, this procedure raises the order of the produced transducer. In comparison, com-
position in other equivalent classes are either complex or indirect (through MSOT). In any
case, our procedure has a better complexity. Indeed, it benefits from higher-order which
permits a larger number of implementations for a given transduction. The complexity of the
construction is also lowered by the use of a notion of determinism slightly more liberal than
usual that we call weak determinism.

The last two results allow us to obtain a composition algorithm for other equivalent
classes of tree transducer, such as MTT or STT: compile into HODTR};,, compose, reduce
the order, and compile back into the original model. The advantage of this approach over
the existing ones is that the complex composition procedure is decomposed into two simpler
steps (the back and forth translations between the formalisms are unsurprising technical
procedures). We believe in fact that existing approaches [12, 1] combine in one step the two
elements, which is what makes them more complex.

The property of order reduction also applies to a wider class of HODT, almost linear
HODT (HODTR,;). Again here, this transformation allows us to prove that this class of
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tree transformations is equivalent to that of Attribute Tree Transducers which is known to
be equivalent to MSO tree transformations with unfolding [2], i.e. MSO tree transduction
that produce Directed Acyclic Graphs (i.e. trees with shared sub-trees) that are unfolded to
produce a resulting tree. We call these transductions Monadic Second Order Transductions
with Sharing (MSOTS). Note however that HODTR,, are not closed under composition.

Section 2 presents the technical definitions used throughout the paper. In particular, it
gives the definitions of the various notions of transducers studied in the paper and also the
notion of weak determinism. Section 3 studies the expressivity of linear and almost linear
higher-order transducer by relating them to MSOT and MSOTS. It focuses more specifically
on the order reduction procedure that is at the core of the technical work. Section 4 presents
the composition algorithm for linear higher-order transducers. This algorithm is based on
Girard’s coherence spaces and can be interpreted as a form of partial evaluation for linear
higher-order programs. Finally we conclude.

2 Definitions

This section presents the main formalisms we are going to use throughout the paper, namely
simply typed A-calculus, finite state automata and high-order transducers.

2.1 \-calculus

Fix a finite set of atomic types A, we then define the set of types over A, types(.A), as the
types that are either an atomic type, i.e. an element of A, or a functional type (A — B), with
A and B being in types(A). The operator — is right-associative and A; — --- — A, — B
denotes the type (41 — (--- — (A, — B)---)). The order of a type A is inductively defined
by order(A) = 0 when A € A, and order(A — B) = max(order(A4) + 1, order(B)).

A signature ¥ is a triple (C, A, 7) with C being a finite set of constants, A a finite set of
atomic types, and 7 a mapping from C to types(.A), the typing function.

We allow ourselves to write types(X) to refer to the set types(.A). The order of a signature
is the maximal order of a type assigned to a constant (i.e. max{order(7(c)) | ¢ € C}). In this
work, we mostly deal with tree signatures which are of order 1 and whose set of atomic types
is a singleton. In such a signature with atomic type o, the types of constants are of the form
0— -+ — 0— 0. We write 0" — o for an order-1 type which uses n + 1 occurrences of o,
for example, 0> — o denotes 0 — 0 — 0. When c¢ is a constant of type A, we may write ¢
to make explicit that ¢ has type A. Two signatures ¥; = (C1, A1, 71) and Xg = (Ca, Ag, 72)
so that for every ¢ in C; N Cy we have 71(¢) = 72(c) can be summed, and we write X1 + ¥
for the signature (Cy U Cy, A; U Ag, 7) so that if ¢ is in C1, 7(¢) = 71(c) and if ¢ is in Cy,
7(c) = 12(c). The sum operation over signatures being associative and commutative, we
write X1 + - - - 4+ 3, to denote the sum of several signatures.

We assume that for every type A, there is an infinite countable set of variables of type A.

When two types are different the set of variables of those types are of course disjoint. As
with constants, we may write 24 to make it clear that z is a variable of type A.

When ¥ is a signature, we define the family of simply typed A-terms over 3, denoted
A(Z) = (A (D)) actypes(s)» as the smallest family indexed by types(X) so that:

if ¢4 is in ¥, then ¢? is in A4(X),

4 is in A4(R),

if A= B — C and M is in A(X), then (A\zZ.M) is in A4(X),

if M is in AB74(X) and N is in AB(X), then (MN) is in A4(%).
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The term M is a pure A-term if it does not contain any constant ¢ from 3. When the type
is irrelevant we write M € A(X) instead of M € A“(X). We drop parentheses when it does
not bring ambiguity. In particular, we write Az ...z, .M for (Az1(...(Azp.M)...)), and
M0M1 “ee Mn for (( . (M()Ml) e )Mn)

The set fv(M) of free variables of a term M is inductively defined on the structure of M:

fv(e) =0,

fv(x) = {a},

fv(MN) =fv(M) Ufv(N),

fv(Axe. M) =fv(M) — {z}.

Terms which have no free variables are called closed. We write M|z, ..., x| to emphasize that
fv(M) is included in {z1,...,2}. When doing so, we write M[Ny,..., Ni] for the capture
avoiding substitution of variables x1, ..., xx by the terms Ny, ..., Ni. In other contexts,
we simply use the usual notation M[N;/x1,..., Ni/xzx]. Moreover given a substitution 6,

we write M.0 for the result of applying this (capture avoiding) substitution and we write
O[N1/x1,..., N /xg] for the substitution that maps the variables x; to the terms N; but is
otherwise equal to 6. Of course, we authorize such substitutions only when the A-term N;
has the same type as the variable z;.

We take for granted the notions of S-contraction, noted —g, S-reduction, noted i>5,
B-conversion, noted =g, and S-normal form for terms.

Counsider closed terms of type o that are in S-normal form and that are built on a tree
signature, they can only be of the form at; ...t, where a is a constant of type o™ — o and
t1, ..., t, are closed terms of type o in S-normal form. This is just another notation for
ranked trees. So when the type o is meant to represent trees, types of order 1 which have
the form o — -+ — 0 — o represent functions from trees to trees, or more precisely tree
contexts. Types of order 2 are types of trees parametrized by contexts. The notion of order
captures the complexity of the operations that terms of a certain type describe.

A term M is said linear if each variable (either bound or free) in M occurs exactly once
in M. A term M is said syntactically almost linear when each variable in M of non-atomic
type occurs exactly once in M. Note that, through S-reduction, linearity is preserved but
not syntactic almost linearity.

For example, given a tree signature ¥; with one atomic type o and two constants f of type
0% — oand a of type o, the term M = (Ay1y2.f y1 (f ay2)) a (f x a) with free variable x of type
o is linear because each variable (y1, y2 and x) occurs exactly once in M. The term M contains
a B-redex so: (Ayryo-f 1 (Faye)) a(foa) =5 (gofa(fays)) (fra) =5 fa(fa(fza)).
The term fa(fa(fxa)) has no B-redex so it is the S-normal form of M.

Another example: the term Ms = (Ay.f yy) (x a) with free variable z of type o — o is
syntactically almost linear because the variable y which occurs twice in the term is of the
atomic type o. It S-reduces to the term M} = f (z a) (z a) which is not syntactically almost
linear, so B-reduction does not preserve syntactical almost linearity.

We call a term almost linear when it is S-convertible to a syntactically almost linear
term. Almost linear terms are characterized also by typing properties (see [16]).

2.2 Tree Automata

We present here the classical definition of deterministic bottom-up tree automaton (BOT)
adapted to our formalism. A BOT A is a tuple (¥p, X, R) where:
¥ = (C,{o}, 1) is a first-order tree signature, the input signature,
Yp = (P, {o},7p) is the state signature, and is such that for every p € P, 7p(p) = o.
Constants of P are called states,



184
185
186
187

188

192

193
194
195
196
197
198
199
200
201
202
203
204
206
383
208
209
210
211

212

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230

P.D. Gallot, A. Lemay and S. Salvati

R is a finite set of rules of the form ap; ...p, — p where:

P,p1,---,DPn are states of P,

a is a constant of ¥ with type o™ — o.
An automaton is said deterministic when there is at most one rule in R for each possible
left hand side. It is non-deterministic otherwise.

Apart from the notation, our definition differs from the classical one by the fact there are no
final states, and hence, the automaton does not describe a language. This is due to the fact
that BOT will be used here purely for look-ahead purposes.

2.3 High-Order Deterministic top-down tree Transducers

From now on we assume that X; is a tree signature for every number 7 and that its atomic
type is o;.
A Linear High-Order Deterministic top-down Transducer with Regular look-ahead
(HODTRuim) T is a tuple (Xg, X1, X2, o, R, A) where:
¥ = (C1,{01},m1) is a first-order tree signature, the input signature,
Yo = (Co,{02}, 2) is a first-order tree signature, the output signature,
Yo = (Q,{o1,02},7s) is the state signature, and is such that for every ¢ € Q, 75(q) is of
the form o; — A, where A, is in types(X2). Constants of @ are called states,
qo € Q is the initial state,
A is a BOT over the tree signature X1, the look-ahead automaton, with set of states P,
R is a finite set of rules of the form
2@ (F) = M(@r21) ... (anen)
where:
q,q1;---,qn € Q are states of X,
a is a constant of ¥; with type o} — o1,
7= x1,...,Ty, are variables of type o1, they are the child trees of the root labeled a,
P =p1,...,p, are in P (the set of states of the look-ahead A4),
M is a linear term of type Ay, — -+ = A4, — A, built on signature X5 + Xg.
there is one rule per possible left-hand side (determinism).

Notice that we have given states a type of the form o; — A where A € types(o2). The
reason why we do this is to have a uniform notation. Indeed, a state ¢ is meant to transform,
thanks to the rules in R, a tree built in ¥; into a A-term built on ¥, with type A4. So
we simply write ¢ M Ny ... N, when we want to transform M with the state ¢ and pass
Ni,..., N, as arguments to the result of the transformation. We write ¥ for the signature
Y1 + X2 + ¥g. Notice also that the right-hand part of a rule is a term that is built only
with constants of ¥g, states from ¥ and variables of type o;. Thus, in order for this
term to have a type in types(2s), it is necessary that the variables of type o1 only occur as
the first argument of a state in ¥g. Finally, remark that we did not put any requirement
on the type of the initial state. So as to restrict our attention to transducers as they are
usually understood, it suffices to add the requirement that the initial state is of type o1 — 0s.
However, we consider as well that transducers may produce programs instead of first order
terms.

The linearity constraint on M affects both bound variables and the free variables
T1,...,T,, meaning that all of the subtrees zi,...,x, are used in computing the out-
put. That will be important for the composition of two transducers because if the first
transducer fails in a branch of its input tree then the second transducer, applied to that tree,
must fail too. This restriction forcing the use of input subtrees does not reduce the model’s
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expressivity because we can always add a state g which visits the subtree but only produces
the identity function on type os (this state then has type 4, = 01 — 02 — 02).

Almost linear high-order deterministic top-down transducer with regular look-ahead
(HODTR,)) are defined similarly, with the distinction that a term M appearing as a right-
hand side of a rule should be almost linear.

As we are concerned with the size of the composition of transducers, we wish to re-
lax a bit the notion of HODTR);,. Indeed, when composing HODTRy;, we may have to
determinize the look-ahead so as to obtain a HODTRy;,, which may cause an exponen-
tial blow-up of the look-ahead. However if we keep the look-ahead non-deterministic, the
transducer stays deterministic in the weaker sense that only one rule of the transducer
can apply when it is actually run. For this we adopt a slightly relaxed notion of determ-
inistic transducer that we call high-order weakly deterministic top-down transducer with
regular look-ahead (HOWDTRy;;,). They are similar to HODTRy;, but they can have non-
deterministic automata as look-ahead with the proviso that when g(azy ... 2n){(p1,. .., Pn) —
Mlzy,...,z,) and g(axy ... x,)(PY, ..., pL) — M'[x1,...,2,] are two distinct rules of the
transducer then it must be the case that for some i there is no tree that is recognized by
both p; and p,. This property guarantees that when transforming a term at most one rule
can apply for every possible state. Notice that it suffices to determinize the look-ahead so as
to obtain a HODTRy;, from a HOWDTRj;,, and therefore the two models are equivalent.

Given a HODTR);,, a HODTR,; or a HOWDTRy;, T, we write T :: ¥1 — Y5 to mean
that the input signature of T" is ¥; and its output signature is .

A transducer T induces a notion of reduction on terms. A T-redex is a term of the form
glaMy ... M) if and only if g(azy ... xn){p1,...,pn) = M[z1,...,2,] is a rule of T and
(the S-normal forms of) My, ..., M, are respectively accepted by A with the states p1, ..., pp.
In that case, a T-contractum of g(a My ... M,,) is M[M,..., M,]. Notice that T-contracta
are typed terms and that they have the same type as their corresponding T-redices. The
relation of T-contraction relates a term M and a term M’ when M’ is obtained from M
by replacing one of its T-redex with a corresponding T-contractum. We write M —r M’
when M T-contracts to M’. The relation of 3-reduction is confluent, and so is the relation
of T-reduction as transducers are deterministic, moreover, the union of the two relations is
terminating. It is not hard to prove that it is also locally confluent and thus confluent. It
follows that — g (which is the union of —3 and —7) is confluent and strongly normalizing.
Given a term M built on 37, we write |M|r to denote its normal form modulo =4 7.

Then we write rel(T) for the relation:

{(M, |goM]|7) | M is a closed term of type o1 and |goM|r € A(X3)} .

Notice that when |goM | contains some states of T, as it is usual, the pair (M, |goM|r)
is not in the relation.

Given a finite set of trees L; on ¥; and Ly included in A0, we respectively write T'(L;)
and T~!(Ly) for the image of L; by T and the inverse image of Lo by T.

We give an example of a HODTRy;, T that computes the result of additions of numeric
expressions (numbers being represented in unary notation). For this we use an input tree
signature with type o1, and constants Z°, §°1 and add® ~° 7°" which respectively denote
zero, the successor function and addition. The output signature is similar but different to
avoid confusion: it uses the type oo and constants O°2, N°277°2 which respectively denote
zero and successor.

We do not really need the look-ahead automaton for this computation, so we omit it for
this example. We could have a blank look-ahead automaton A with one state [ and rules:
AZ)=1,A(S1) =1, A(add l]) = I; which would not change the result of the transducer.
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The transducer has two states: qo of type 01 — oo (the initial state), and ¢; of type
01 — 02 — 02. The rules of the transducer are the following:

q0(Z) = O, qo(Sx) = N(giz O),

qo(addzy) = gz (¢;y 0),

q¢:(Z) = A\z.x,

ai(Sz) = Ay.N(gizy),

gi(addry) — Az.q; 7 (¢ y 2),

As an example, we perform the transduction of the following term add(S(S 2))(S(S(S 2))):
90(add(S(S 2))(S(S(52)))) —r (0:(S(S2)))(a:(S(S(S 2)))0)
S Ay N((Ayz-N((Az.2)y2))y1)) (Ays- N (Aya-N (Ays- N (Az.2)ys))ya) )ys)) O)
S5 NIN(N(N(NO)))

The state ¢; transforms a sequence of n symbols S into a A\-term of the form \x. N™(z),
and the add maps both its children into such terms and composes them. The state gg simply
applies O to the resulting term.

Note that our reduction strategy here has consisted in first computing the T-redices
and then reducing the S-redices. This makes the computation simpler to present. As we
mentioned above a head-reduction strategy would lead to the same result.

The order of the HODTRy;, T is max{order(A,) | ¢ € @Q}. Before going further, we want
to discuss how our framework relates to other transduction models. More specifically how
the notion of order of transformations generalizes the DTOP and MTT transduction models:
if we relax the constraint of linearity of our transducers, then DTOP and MTT can be
seen as non-linear transducers of order 0 and 1 respectively. In contrast of these, we chose
to study the constraint of linearity instead of the constraint of order and, in this paper,
we will explore the benefits of this approach. Firstly we will explain why increasing the
order beyond order 3 does not increase the expressivity of neither HODTR);, nor HODTR,;.
Next we will show how HODTR);, and HOWDTRy;, both capture the expressivity of tree
transformations defined by monadic second order logic. Lastly, we will prove that, contrary
to MTT, the class of HODTRy;,, transformations is closed under composition, we will give an
algorithm for computing the composition of HODTRj;, and HOWDTRy;,, and explain why
using HOWDTRy;, avoids an exponential blow-up in the size of the composition transducer.

3  Order reduction and expressiveness

In this section we outline a construction that transforms a transducer of HODTRy;, or
HODTR,; into an equivalent linear or almost linear transducer of order < 3. These two
constructions are similar and central to proving that HODTRy;, and HODTR,, are respect-
ively equivalent to Monadic Second Order Transductions from trees to trees (MSOT) and to
Monadic Second Order Transductions from trees to terms (i.e. trees with sharing) (MSOTS).
We will later show that there are translations between HODTRy;, of order 3 and attribute tree
transducers with the single use restriction and between HODTR, of order 3 and attribute
tree transducers. These two models are known to be respectively equivalent to MSOT and
MSOTS [2].

The central idea in the construction consists in decomposing A-terms M into pairs (M’ o)
where M’ is a pure A-term and o is a substitution of variables with the following properties:

M =B M/.O‘,

the free variables of M’ have at most order 1,

for every variable z, o(z) is a closed A-term,

the number of free variables in M’ is minimal.
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In such a decomposition, we call the term M’ a template. In case M is of type A, linear or
almost linear, it can be proven that M’ can be taken from a finite set [15]. The linear case is
rather simple, but the almost linear case requires some precaution as one needs first to put
M in syntactically almost linear form and then make the decomposition. Though the almost
linear case is more technical the finiteness argument is the same in both cases and is based
on proof theoretical arguments in multiplicative linear logic which involves polarities in a
straightforward way.

The linear case conveys the intuition of decompositions in a clear manner. One takes
the normal form of M and then delineates the largest contexts of M, i.e. first order terms
that are made only with constants and that are as large as possible. These contexts are
then replaced by variables and the substitution o is built accordingly. The fact that the
contexts are chosen as large as possible makes it so that no introduced variable can have
as argument a term of the form x M; ... M,, where z is another variable introduced in the
process. Therefore, the new variables introduced in the process bring one negative atom
and several (possibly 0) positive ones and all of them need to be matched with positive and
negative atoms in the type of M as, under these conditions, they cannot be matched together.
This explains why there are only finitely many possible templates for a fixed type.

» Theorem 1. For all type A built on tree signature X, the set of templates of closed linear
(or almost linear) terms of type A is finite.

Moreover, the templates associated with a A-term can be computed compositionally (i.e.
from the templates of its parts). As a result, templates can be computed by the look-ahead
of HODTRy;, or of HODTR,. When reducing the order, we enrich the look-ahead with
template information while the substitution that is needed to reconstruct the produced term
is outputted by the new transducer. The substitution is then performed by the initial state
used at the root of the input tree which then outputs the same result as the former transducer.
The substitution can be seen as a tuple of order 1 terms. It is represented as a tuple using
Church encoding, i.e. a continuation. This makes the transducer we construct be of order 3.

» Theorem 2. Any HODTRy;, (resp. HODTR,) has an equivalent HODTRy;, (resp.
HODTRy;) of order 3.

The proof of this result shows that every HODTRy;;, (or HODTR,)) can be seen as mapping
trees to tuples of contexts and combining these contexts in a linear (resp. almost linear)
way. This understanding of HODTRy;, and of HODTR,; allows us to prove that they are
respectively equivalent to Attribute Tree Transducers with Single Use Restriction (AT Ty, );
and to Attribute Tree Transducers (ATT). Then, using [2], we can conclude with the following
expressivity result:

» Theorem 3. HODTRy;, are equivalent to MSOT and HODTR,; are equivalent to MSOTS.

The proof that HODTRy;, are equivalent to MSOT could have been simpler by using the
equivalence with MTT with the single-use restricted property instead of ATT, but we would
still need to use ATT to show that HODTR,; are equivalent to MSOTS.

4  Composition of HODTRy,

As we are interested in limiting the size of the transducer that is computed, and even though
our primary goal is to compose HODTRy;,, this section is devoted to the composition of
HOWDTRyy,. Indeed, working with non-deterministic look-aheads allows us to save the
possibly exponential cost of determinizing an automaton.
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4.1 Semantic analysis

Let T = (Xq, X1, X2, qo, R1, A1) and Tp = (X p, g, X3, po, Re, A2) be two Linear High-Order
Weakly Deterministic tree Transducers with Regular look-ahead. The rules of T} can be
written: q(a7)<7> — M (q1 z1)...(qn zn) where ¢,q1,...,q, € Q are states of T7,
7= ly,..., ¢, are states of A; and the A-term M is of type Ay, — -+ = A, = Ay. Our
goal is to build a HOWDTRy;, T :: ¥1 — X3 that does the composition of T} and 75, so we
want to replace a rule such as that one with a new rule which corresponds to applying 75 to
the term M.

In order to do so, we need, for each o, tree in M, to know the associated state £ € Lo
of Ty’s look-ahead, and the state p € P of T which is going to process that node. So
with any such tree we associate the pair (p,f). In this case we call (p,¢) the token which
represents the behavior of the tree. In general, we want to associate tokens not only with
trees, but also with A-terms of higher order. For example, we map an occurrence of a symbol
a € g of type 0o — 03 — 02, whose arguments z; and x5 (of type 0z) respectively have
look-ahead states 1 and ¢ and are processed by states p; and ps € P of Ty, to the token
(p1,€1) —o (p2,€2) — (p,£) where (p,¢) is the token of the tree a zix2 (of type 02). We
formally define tokens as follows:

» Definition 4. The set of semantic tokens [A] over a type A built on atomic type o2 is
defined by induction:
[o2] = {(p,6) | p€ P, € Lo} [A—= Bl ={f—g|fe[Alg<[B[}

Naturally, the semantic token associated with a A-term M of type A built on atomic type
02 will depend on the context where the term M appears. For example a tree of atomic type
0o can be processed by any state p € P of Ty, and a term of type A — B can be applied to
any argument of type A. But for any such M taken out of context, there exists a finite set
of possible tokens for it. For example, a given tree of type 02 can be processed by any state
p € P depending on the context, but it has always the same look-ahead ¢ € Lo.

In order to define the set of possible semantic tokens for a term, we use a system of
derivation rules. The following derivation rules are used to derive judgments that associate
a term with a semantic token. So a judgment I' - M : f associates term M with token f,
where I' is a substitution which maps free variables in M to tokens. The rules are:

Pa @)y, l) =5 M(pro1) ... (P 2n) Bofa(lr, .o b)) = ¢
Fa:(pr,l) —o = (pn,ln) — (p, )
IWFM:f—g ToFN:f
I'y,ToFMN:g
Dat:fFM:g felA]
TFXMAM: f—og A fhadf

Using this system we can derive, for any term M4, all the semantic tokens that correspond
to possible behaviours of M4 when it is processed by Tb.

4.2 Unicity of derivation for semantic token judgements

We will later show that we can compute the image of M from the derivation of the judgement
F M : f, assuming that f is the token that represents the behaviour of T, on M. But before
that we need to prove that for a given term M and token f the derivation of the judgement
F M : f is unique:
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» Theorem 5. For every type A, for every term M of type A and every token f € [A], there
is at most one derivation D 1+ M : f.

This theorem relies in part on the fact that tokens form a coherent space, as introduced
by Girard in [14], the proof is detailed in the appendix.

Now that we have shown that there is only one derivation per judgement - M : f, we are
going to see how to use that derivation in order to compute the term N that is the image of
M by transducer Tb.

4.3 Collapsing of token derivations

We define a function (we call it collapsing function) which maps every derivation D :: - M : f
to a term D which corresponds to the output of transducer 75 on term M assuming that M
has behaviour f.

» Definition 6. Let D be a derivation. We define D by induction on D, there are different
cases depending on the first rule of D:
If D is of the form:
T
(@) (lr,. .. ) =2 N(prai)...(pnay) Ao(a(ly,... . 0n)) =1
Fa: (plvgl) o0 (pnvgn) - (p,()

then D =N,
if D is of the form:
Dy =T1FNy:f—og Dy :T9F Ny f
Fl,FQ FNlNglg

the’ﬂ@:ﬁlﬁg,
if D is of the form:
Dy =T,z :fFN:g
FTFMAN:f—og

then D = Az.Dy,
if D is of the form:
felA]
A f ot f
then D = 2.

We can check that, for all derivation D ::F M : f, the term D is of type f given by:
. 0) = Apand =g =f = 7.

Now that we have associated, with any pair (M, f) such that f is a semantic token of
term M, a term N = D which represents the image of M by Th, we need to show that
replacing M with N in the computation of transducers leads to the same results.

4.4 Construction of the transducer which realizes the composition

We recall some notations: Th = (¢, 31, X2, ¢o, R1,41) and Th = (Xp, X9, X3, po, Re, As) are
two HOWDTRyin, @ = {q1,- .-, qm} is the set of states of T} and, for every state ¢; € Q, we
note Ay, the type of ¢;(t) when ¢ is a tree of type o;. For all type A built on oz, the set of
tokens of terms of type A is noted [A] and is finite.
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Previously, we saw how to apply transducer T to terms M of type A built on the
atomic type oz, so we can apply 75 to terms which appear on the left side of rules of T7:
q(a 7)<7> — M (¢;, ®1) .. .(¢i, ®») . In a rule such as this one, in order to replace term M
with term N = D where D is the unique derivation of the judgement - M : f, we need to
know which token f properly describes the behaviour of 75 on M. The computation of that
token is done in the look-ahead automaton A of T'.

We define the set of states of A as: L = L1 x [Ag, ] x -+ X [4g,.]

With any tree ¢ (of type 01) we want to associate the look-ahead of 77 on t and, for each
state ¢; € Q of Ty, a token of ¢;(¢). The transition function of the look-ahead automaton A

is defined by, for all (41, fi1,---5 fin)s---s Bns frn1s -y fran) € Lt

a(ly, fray s frm) o (Bny Frts o Frm) = (6 1o oy fn)

where aly...4, Aoy and, for all state ¢; € @, f; is such that in T3 there exists a rule
G(a )by, ... 0) i (¢, x1) - .. (gi,, xr) and a derivation of the judgement - M : f1,;, —o

- —o fni, —o fi. Note that this look-ahead automaton is non-deterministic in general,

but the transducer is weakly deterministic in the sense that, at each step, even if several
look-ahead states are possible, only one rule of the transducer can be applied.

We define the set of states Q' of transducer T' by:

Q' ={(¢.f)|a€Q.f€[A]}U{a}

Then we define the set R of rules of transducer T as the set of rules of the form:

(0, H@ @), i frm)s--) 2 D (g 1) 21) - (@50 ) 7o)

such that there exists in 7} a rule: q(a @){(,...) KA (¢i, 1) ... (¢i, ) and D is a
derivation of the judgement - M : f1;, — -+ —o f,,; —o f.

Because of Theorem 5 proved in the appendix, that set of rules is weakly deterministic.

To that set R we then add rules for the initial state ¢(,, which simply replicate the rules of
states of the form (qgo, (po,¢)): for all a € Eq, all (€1, f1,1,---5 f1m)s-- s (Gns fru1s- -y frm) €
L and all rule in R of the form:

(QO7 (va l))(a ?)«617 flyl’ ) fl,m)a cee > Z} M (((hv fl) 1’1) s ((qw fn) xn)

where pg is the initial state of 75 and [ € Lo is a state of the look-ahead automaton of
Ty, we add the rule :

ab(@ @) (0, fras s frm)s- ) > M (a1, f1) 21) - (G fn) @)

This set R of rules is still weakly deterministic according to Theorem 5.

We have thus defined the HOWDTRy;,, T = (2¢/, X1, X3, g, R, A).

» Theorem 7. T =T5 0T

Finally, we will analyze the complexity of this algorithm and show that using the
algorithm on HOWDTRy;, instead of HODTRy;, avoids an exponential blow-up of the size
of the produced transducer.

First the set of states Q' of T is of size |Q'| = 1 + Xyeq|[A4]| where |[A4,]] is the number
of tokens of type A,. |[4,]| = (|P||Lz2|)!*4! where |P| is the number of states of transducer
Ty, |Ls| is the number of states of the look-ahead automaton of transducer T, and |4, is
the size of the type A,. So the size of Q" is O(Z,eq(|P||L2|)!44!), that is a polynomial in
the size of T, to the power of the size of types of states of T.

It is important to note that the set [A,] of tokens of type A, is where HOWDTR};, and
HODTRy;y, differ in their complexity: the deterministic alternative to the weakly deterministic
T would require to store with the state not a single token, but a set of two-by-two coherent
tokens, that would bring the size of Q' to 1 + ¥,e02/[44ll which would be exponential in the
size of Tb and doubly exponential in the size of types of T7.
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Then there is the look-ahead automaton: its set of states is L = Ly x [Ag ] X -+ X [4g,.]-
So the number of states is in O(|L1| (| P||Ly|)¥ec@!44l). The size of the set of rules of the
look-ahead automaton is in O(X,m ¢y, |L|"*!) where n is the arity of the constant a(™.

Finally there is the set R of rules of T'. For every judgement = M : f;,;, —o -+ —o fp,; —o
f, finding a derivation D of that judgement and computing the corresponding D is in O(|M|?)
time where |M]| is the size of M. The number of possible rules is in O(Z,mcx, (|Q'])" ).
So computing R is done in time O(|R|* 0 ex, (|Q])" ") where R is the set of rules of 7.
With a fixed input signature 1, the time complexity of the algorithm computing 7T is a
polynomial in the sizes of T7 and Ts, with only the sizes of types of states of T} as exponents.

Note that, as our model generalizes other classes of transducers, it is possible to perform
their composition in our setting. Thanks to results of Theorem 2, it is then possible to reduce
the order of the result of the composition, and obtain a HODTRy;, that can be converted
back in those other models. This methods gives an important insight on the composition
procedure for those other formalisms.

In comparison, the composition algorithms for equivalent classes of transductions are
either not direct or very complex as they essentially perform composition and order reduction
at once. For instance, composition of single used restricted MTT is obtained through MSO
([11]). High-level tree transducers [12] go through a reduction to iterated pushdown tree
transducers and back. The composition algorithm for Streaming Tree Transducers described
in [1] is direct, but made complex by the fact that the algorithm hides this reduction of order.

The double-exponential complexity of composition of HODTRy;, compares well to the
non-elementary complexity of composition in equivalent non-MSOT classes of transducers.
Although the simple exponential complexity of composition in MSOT is better, we should
account for the fact that the MSOT model does not attempt to represent the behavior of
programs.

5 Conclusion and future work

In this paper we have presented a new mechanical characterization of Monadic Second Order
Transductions. This characterization is based on simply typed A-calculus which allows us to
generalize with very few primitives most of the mechanisms used to compute the output in
the transducer literature. The use of higher-order allows us to propose an arguably simple
algorithm for computing the composition of linear higher-order transducers which coincide
with MSOT. The correctness of this algorithm is based on denotation semantics (coherence
spaces) of A-calculus and the heart of the proof uses logical relations. Thus, the use of
A-calculus allows us to base our work on standard tools and techniques rather than developing
our own tools as is often the case when dealing with transducers. Moreover, this work sheds
some light on how composition is computed in other formalisms. Indeed, we argue that for
MTT,,,, STT, or ARR,,, the composition must be the application of our composition
algorithm followed by the order reduction procedure that we use to prove the equivalence
with logical transductions.

The notion of higher-order transducer has already been studied [12, 19, 17|, however,
there is still some work to be done to obtain direct composition algorithms. We plan to
generalize our approach of the linear case to the general one and devise a semantic based
partial evaluation for the composition of higher-order transducers.
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s A Order reduction

s» A.1 Templates
s« A.1.1 Linear templates

szs  Proof of Theorem 1

576 In order to show that the set of linear templates of a given type A is finite, we use notions
sz and properties defined in [16]: the definitions of positive and negative subtype occurrences
s7s  and subpremises in A and what it entails in the structure of terms of type A.

579 For any type A, we can label occurrences of subtypes in A as positive or negative using
sso  the following rules:

ss1 A is positive, we note it AT,

582 if B — C' is a positive subtype of A then B is negative and C is positive, we note it
583 (B_ — C+)+

s8a if B — C is a negative subtype of A then B is positive and C is negative, we note it

585 (B+ — C_)_
sss For example, if A = ((o — 0) = (0 = 0)) = ((0 = 0) = (0 — 0)) is a type built
ss7  on the atomic tree type o, then we can label occurrences of subtypes of A as follows:

ses (07 = 0T)T = (o7 =07)7 )" = ((oF = 07)" = (06~ = o")M)T.

s80 So, for all subtype occurrence A’ = Ay — ... A, — o, if A’ is positive then A] —
s0 ...A; — oT, if A’ is negative then AT — ... At — o~.
s01 With any closed linear term M in S-normal form of type A we associate a bijection from

se2 the set of positive occurrences of the atomic type o in A to the set of negative occurrences of
so3 the atomic type o in A, we call it the trace of M and note it O(M).

504 We show how to compute ©(M) on an example. To a term M = Ay1y2y3.y1 (Ays-y2 Y1) Us
sos of type A= ((0~ —0") w 0" —07) = (07 -0 ) =0 — o we have:

M = Ay1y2y3- Y1

/ N\
AYa. Y2 Y3 = ((_> _>_> — _>)_>_>
|

Ya

so8 The trace is computed by induction on M:

First M introduces y;,y2 and ys: ’((0* — oT)—= ot — o )‘—)’( ot — o~ )‘—) — ot
Y1 Y2

s01 Then, because y; is the head variable of M, the output type of M corresponds to the output

603

8 type of y1: ’((o* — ot) = of % %’(0+ — 07)‘%%

1 Y2

604
sos Then in the arguments of y; we introduce y4 and we have two terms of type o™ to match

"~ with output types o~ of variables: ( —> ) — . . E @

Ya

608 Those are mapped to ys and ys: (( % % % — (ot %) % _
Ya Y2 Y
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Finally the argument of ys is y4: (( — @ — @ — — @ — ) s — @
Ya

611

612 This is how we compute the trace of a linear term in linear normal form. The function
e13  which associates a trace with any linear term in linear normal form is injective, and it is

e1a possible, given a trace ©(M), to compute the term M. For example:
AY1Y2Y3- Y1

Ya Y3 / \
(()%_) _>(—>)—>—> = AW Y2

Y2

U1 Y3
AY1Y2y3- Y2

” " Y2 ‘
(GEGEGEGEIGEGE GO "
/ \
Y3

>\y4 -Yaq Y3

617 However injective, the © function is not surjective in general, meaning there are bijections
e1s from positive to negative atomic subtype occurrences that do not correspond to any term.
s For example, for type A = ((0 = 0) = 0 — 0) = (0 = 0) = 0 — o, there are only 3 terms in
e20 linear normal form of type A, and only 3 corresponding traces (the three examples we have
e2s shown so far). Any other bijection between positive and negative atomic subtype occurrences
e22 1S not a trace either because it binds

Y2
variable y, outside o.f its scope: (( 7 oF ) = Olil S o) > @ N

624 or because some variable

o would not appear in the term: (o= — ot) = 0" = 07 ) = (07 = 07 ) —
Y3

626

627 The consequence of this is that the number of closed linear terms in linear normal form
e2s Of a given type A is bounded by the number of bijections between A’s sets of positive and
s20 negative atomic subtype occurrences. In order to have a bound on the number of linear
e30 templates of a type, we extend the trace function from closed linear terms to linear terms
e3x  with free variables which represent tree contexts, i.e. with type of the form o™ — 0. Again
ez we show how it works on an example: the template M = Ay1y2y3.C1 (y1 (A\ys.y2 y4) C2) ys

633 with tree contexts C'y and Cs of respective types o — 0o — o and o,

M = Myiyays. C1 Y2

/ \
/\ = ((—> —>—>)—> —>

AYa- Y2 Cy
Ya
635
636 Naturally, the free variables provide new atomic subtype occurrences and the positivity

e37 and negativity of those are computed as if C7 and Cy were variables like yo and y3. If a
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tree context is of the form 0™ — o then it has 1 negative and n positive atomic subtype
occurrences.

In order to show that the set of linear templates of a type is finite, we use the fact that
templates are minimal decompositions: it means that there can not be a tree context that
is directly applied to another tree context. This implies that, in the trace of a template, a
positive atomic subtype occurrence of a tree context can not be mapped to a negative atomic
subtype occurrence in a tree context. Since there is exactly one negative atomic subtype
occurrence per tree context, the number of tree contexts in a template of type A is bounded
by the number of positive atomic subtype occurrences in A. On the other hand, the number
of positive atomic subtype occurrences in the tree contexts is bounded by the number of
negative atomic subtype occurrences in A. So, for any given type A, the number of tree
contexts of a linear template is bounded, the arity n of these tree contexts is bounded and,
for each tree contexts setting, the number of traces (and therefore the number of templates)
is bounded. Consequently, for all type A the number of linear templates of type A is bounded
(by n™ where n is the size of type A).

A.1.2 Almost linear templates

Before we get to almost linear templates, we need to introduce n-contraction and n-long form
for terms. An n-redex is a term of the form (Az.(M z)) when x ¢ fv(M) and its n-contractum
is the term M. The relation of n-contraction, —,, n-reduction, —*>n, and n-conversion, =,
are defined similarly to f-contraction. So as to compare A-terms, we use the union of
B-contraction and 7n-contration, —g,. But this can be done by putting terms in a particular
form: the n-long form. A term M is said to be in n-long form whenever if N is a subterm
of M that has type A — B then either N is of the form Az.N’, or its occurrence in M is
applied to some argument. For every term M there is a term M’ in n-long form such that
M =,, M' and moreover M =g, N iff given M’ and N’ that are n-long forms of M and N,
M' =g N'.

In the case of almost linear templates, we first define an almost linear normal form for
terms that are equivalent to almost linear terms. For this we use results by M. Kanazawa
[16] (2012) on almost affine lambda terms. Note that these results are applicable to both
almost affine and almost linear terms. This report characterizes almost linear terms as terms
that have the negatively non-duplicated property, consequently almost linear terms are terms
that are both non-erasing (each bound variable is used at least once) and have the negatively
non-duplicated property.

The other result of that paper we are using is a lemma (Lemma 8 page 13), which, for every
negatively non-duplicated term M in n-long S-normal form, builds, through a deterministic
procedure, an almost affine term M’ that S-reduces to M. The way M’ is computed from
M is by successively factorizing variables y that are not of atomic type but occur at several
places in M. For any such variable y, the negatively non-duplicated property implies that
there are terms Ny, ..., N,, such that y always occurs in a term y N; ... N,, of atomic type
in M; then there is a subterm M, of M containing all occurrences of y IV; ... Ny, that term
M, is B-equivalent to the term (Ay’.M;) (y N1 ... Np) where M, = M,[y N1 ... Ny /y']l. By
replacing M, with (A\y'.M) (y N1 ... Ny,) in M we remove the copying of the non atomic
variable y and instead have the copying of variable ¢ which is of atomic type. By applying
this process to every copied variable of non-atomic type in M we get the almost linear term
M’ B-equivalent to M.

With any term M equivalent to an almost linear term, we associate the almost linear
term M’ obtained by applying that process to the n-long S-normal form of M. Since two
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equivalent terms M7 and M have the same 7n-long S-normal form, they are associated with
the same almost linear term M’. Therefore we have a normal form for all term that is
equivalent to an almost linear term, we call it the almost linear normal form.

Once we have the almost linear normal form, we can apply the same reasoning as the
one for linear templates. Because of the process of factorizing copied non-atomic variables,
almost linear templates can be more complex than linear ones. But since the number of
distinct non-atomic variables in a term M is bounded by the size of the type of M, the
number of almost linear templates of a type A is bounded by niempiates * (Nfact)™ *" where
Ntemplates 15 the number of linear templates of type A, nyqe is a bound on the number of
templatewise distinct possible factorizations of a non-atomic variable (i.e. two factorizations
are templatewise distinct only if the templates of the factorized terms are distinct) and m.44;
is a bound on the number of non-atomic variables. We saw before that ntempiates < n'* where
n is the size of the type A. The number of non-atomic variables is bounded by the size n of
the type A. The template of a factorized term only depends on at which subterm M, of M
the factorization happens, and the number of templatewise distinct such M, is bounded by
the size of the template, so nf.ct < 2n. Therefore the number of almost linear templates of
a given type A of size n is bounded by n?".

A.2 Effective order reduction

We will use the following notation: if a Ad-term M is associated to the decomposition (M’ o)
where M’ is a template and o a substitution of the free variables in M’, then we note
T(M) = (M',(o(y1),...,0(yn))) where y1, ...,y are the free variables in M. In this case
we allow = to mean equal up to renaming of free variables. For all type A we note t(A) the
set of templates of terms of type A.

A.2.1 Linear case

Before proving theorem 2 we first prove a useful lemma:

» Lemma 8. Let M[x1,...,x,] be a linear term built on signature X1 with typed free variables
m‘f‘l, ooy xin et ty, ... t, be linear templates of x1,...,x,. Then there is a linear template
t and tree contexts C1,...,Cy with free variables y11,...,Y1,65--+sYn1,---,Yn,e, Such that,

for all linear terms Ny,..., Ny with T(N;) = (t;,(Ci1,...,Ciy,)) for alli :
T(M[z1/Nu, ..., 20 /Np]) = (£, (C1, ..., COYi,j/Cijli<n,ji<e)

Proof. For all i < n: Nz =8n t; [yi,l/Ci,la N 7?/1’,&-/071,&]7 where Yily -+ Yin; are the free
variables of ¢;, because T(N;) = (t;,(Ci1,...,Ciys)). Then we define t and (C4,...,Cy)
as the template and tree-contexts of the A\-term M[x;/t1,. ..,z /ty] on the signature ¥ U
{Yi,j ti<n,j<e (it is a tree signature because variables y; ; are tree-contexts and therefore of
order at most 1 ). Consequently :

M[$1/N17 cee axn/Nn] = M[$1/t1, .- ~axn/tn][yi,1/ci,17 cee vyi,li/ci,éi]
=t[z1/C1,. .., 20/Colly1,1/C115 -+ - s Ynye, /Cne,]

and so :

T(M[z1/Ni,..., 200 /Np]) = (t,(C1,...,Co)lyi,5/Cijli<nj<e;)
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Now we can prove theorem 2 in the linear case:

Proof. Let T = (Xq, X1, X2, o, R, A) be a HODTRy;,,. We note L the set of states of A. We
want to define a HODTRy, T7 = (X¢r, X1, X2, g, R/, A’) of order 3 equivalent to T

We start by defining the look-ahead automaton A’ and its set of states L' = L x
t(Aq,) - - t(Aq,.) where Ay, ..., Ag, are the output type of the states in @ and t(A) is the
set of templates of type A. So this look-ahead associates, with every input tree N, the
look-ahead A on tree N and, for each state ¢;, the template of ¢;(IN). Lemma 8 shows how
to compute the template of a term M|z1,...,z,] using the templates of z1,...,z,, then we
define the rules of A’ accordingly so that, for all input tree IV, the state of the look-ahead A’
on tree N is (I,to,t1,...,t,) where [ is the look-ahead of A on N and, for all i < m, ¢; is
the template of ¢;(IN). We prove this by induction on the input tree, the induction step is a
direct application of lemma 8.

Then we define the set of states @' of T" : Q" = {(¢:,t) | ¢ € Q,t € t(Ay)} U{q}}-
We will now define the rules in R’ so that, for all ¢; € Q,t € t(4,,) and for all input
tree N : (¢, t)(N) = (C1,...,C¢) (using continuations to represent the tuple) such that
F(q:(N)) = (t,(C1,...,Cy)). For all state (¢;,t) € Q', input tree constant f of arity n, input
tree variables x1,...,xz, and their look-ahead states l,...,l, in L and I{,...,I/, in L', and
for all rule in R of the form : ¢;(fz1...2,){l1,...,ln) = MJ[z1,...,z,] where variable z; is
processed by state g;,, z2 by ¢;, and so on, we add the following rule in R’ :

(qist) (fzy .. .xp)(ly, ... 1) —
Me(qi,t1) 1 Ay, vy o (G tn) Tn AYna - Ynp, kC1...Co)...)

This is a way of setting variables y11,...,%1,¢, to the tree contexts (Ci1,...,C14) =
(giy,t1) (z1), it is necessary because using a projection on the tuple every time a tree context
C1,; is used would break linearity.

The output type of such a state (g;,t) is (A1 — ... Ay = 0) — o where o is the atomic
output tree type and A; is the type of the i-th free variable of ¢, then, since the order of one
of the A; is at most 1, the order of the output type of (g;,t) is at most 3. So the order of T”
is at most 3.

Note that if state gy has output type o, the only template for that type is the term x
where z is a free variable of type o. Then for the initial state ¢{, of output type o, we add
special rules in R'. For all rule already in R’ of the form : (qo,¢)(fx1...2,){ ) — (C1)
where (C7) is the unary tuple of type (0 — 0) — o containing the tree C; of type o, we add
the rule : ¢((f .. x,ﬂ(% — (.

For all ¢; € Q,t € t(A,,) and for all input tree N such that T(¢;(N)) = (¢, (Ch,...,Co)):
(i, t)(N) =% (C4,...,Cf); we prove this by induction on the input tree N. Again the
induction is a direct application of Lemma 8.

Finally we conclude by applying this property to state gy € @ and template x € t{0), and
replacing the first rule applied to (o, z) by the corresponding rule on ¢j.

<
A.2.2 Almost linear case
We first prove the equivalent of lemma 8 for the almost linear case :
» Lemma 9. Let M[zq,...,z,] be an almost linear term on signature X1 with typed free

variables x‘fh, . ,xﬁ", let t1,...,t, be almost linear templates of x1,...,x,. Then there is
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an almost linear template t and tree contexts Ch,...,Cp with free variables y1,1,...,Yn.e,
such that, for all almost linear terms N1, ..., Ny with T(N;) = (¢, (Ci1,...,Ciy,)) for alli :

‘I(M[xl/va v 7$n/Nn]) = (t7 (Clv ceey Cé)[?Ji,j/Ci,j}ign,jgli)

Proof. The key to this proof is to notice that the property of being an almost linear A-term

is preserved by substitution of variables with almost linear A-terms and by #n-equivalence.

It ensures that the term M[x1/Ny,...,x,/Ny] is Bn-equivalent to an almost linear A-term.
The rest of the proof works like that of lemma 8.

<

Then the order reduction theorem for almost linear transducers (theorem 2) is proven
similarly to the linear case, but using lemma 9 as the almost linear extension of lemma 8.

B Equivalence with MSOT and MSOTS
B.1 Definition of ATT

Attribute grammars [13] are ways to formalize a class of syntax directed translation based
on context free grammar. They amount to equip a context-free grammar with semantics
attributes that propagate along the abstract syntax tree. These semantics attributes are
synthesized when their value is propagated bottom-up and inherited when they are propagated
top-down.

Attributed tree transducers, as defined by [2, 13], correspond to the combination of a
relabeling attribute grammar and an attribute grammar whose attributes are trees. The
relabeling simulates both the finite state control and the look-ahead automaton of usual
transducers. In our setting, they can be seen as HODT with look-ahead whose rules are of
the form q(axy...xn) = bqi(x1) ... gn(zy), where a € £, b € A and a and b have the same
arity. We call REL the class of transductions defined this way.

Formally, an attributed tree transducer from the input alphabet ¥ to the output alphabet
Ais a tuple (X, A, S, I, out, R, root) where:

Y is the input alphabet,

A is the output alphabet,

S and [ are the finite set of respectively synthesized and inherited attributes,

out € S, the meaning attribute,

R, the rules, is a function that maps elements a of 3 of arity n to equations of the form

(o, 1) = M (a1, 41) ... (g, ix) for every (a, i) in (S x {0} U T x [1,n]) where M is a linear

A-term of type o® — o built on the signature A and where (o, i;) are pairwise distinct

constants that have atomic type and where o is in S U I and i; is in [0, n].

root, the initialization of inherited attributes which maps elements a of ¥ to equations of

the form («,0) = M(aq,0)...(ag,0) for every « in I, where M is a linear A-term of type

o* — o built on the signature A and, for all j < k, (crj,0) is a constant of atomic type

and a; is in SUI.

Now given an input tree N built on signature X, we let Vy be the set of paths of N that
is inductively defined by, for N = aN;y...N,: Vy = {e} UU_ {i.u | u € Vy,}. For u in
VN, we write N |, for the subterm of N that is at path u and which is defined as N |.= N,
(aN1...N,) liw= N; |y For uwin Vy, we let laby(u) be the constant a in ¥ such that
N |y=aN;...N,. Consider v in Vy|,, we have that (N |,) |y= N |4 Therefore the
operation that appends u in front of an element of V|, defines an injection from V|, into
Vi that preserves the designated term.
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The attribute transducer associates with each element of Vv a set of attributes. Formally,
it builds a set of equations whose left-hand side belong to A(N) = (SUT) x Vy. We
call the elements of A(N) attribute instances or simply attributes of N when the context
is clear. For u € Vy, the subset A,(N) = {(a,u) | @« € SU I} is the set of attributes
associated with IV at path u. For each attribute («,v) € A(N |,) we define u.(«,v) as the
attribute (o, uv) € A(N). Given a set of attribute instances S, we write u.S for the set
{(ev,uv) | (o, v) € S}. Then the following identity holds u.A,(N |,) = Auw(V).

The attribute transducer associates an equation with every attribute (o, u) of A(N) as
follows. If an equation E(, ;) € R(a) is of the form (a,i) = M(ay,i1) ... (an,in) then, for
all path v € Viy such that laby(u) = a, the equation (o, u.i) = M (a1, u.i1) ... (0, w.ip) is
the equation for the attribute (a,u.7) and is noted u.E, ;. The operation u. on equations
naturally extends to sets of equations. We note Fgq,(N) the set of equations u.R(laby (u)),
and Eq, (N) the set of equations Uvevmu Equ»(N). Then the set of equations associated
with N (noted Eq(N)) is Eq(N) = Eqe|(N) = U,cvy, Fqu(N). The complete set of equations
of N (noted CEq(N)) is CEq(N) = root(laby(€)) U Eq(N). We will also use the notation
CEqy+(N) for the set CEq(N) \ Egy (N) for all u € Vi.

We represent the way attributes depend on each other using graph as follows. With an
equation E(, ;) € R(a) of the form (a,i) = M(a1,i1) ... (an,in) We associate the directed
graph G(E(,,;)) whose set of vertices is V' = {(a, 1), (a1,41), ..., (an,in)} and set of edges
is E = {((a,1), (j,4;)) | j € [1,n]}. Define the operation of non-disjoint union of graphs
whose sets of vertices are not necessarity disjoint as follows: for all graphs G; = (V1, E1)
and Go = (Va, Es), G1 UG2 = (V4 U Vo, Eq U Ey). For all set Eq of equations we define
the graph G(Eq) associated with the set of equations Eq as Jgep, G(£). We define the
operation . on such graphs by: u.G(Eq) = G(u.Eq). The dependency graph and complete
dependency graph of N are G(Eq(N)) and G(CEq(N)) respectively, and they are noted
D(N) and CD(N) respectively. Similarly, we will use the notations D, (N) for the graph
G(Equ (N)) and CD,4(N) for the graph G(Equ4(N)).

Note that in D(N), there are no edges pointing to inherited attributes of the root node
of N (attributes in I x {e}).

When CD(N) is acyclic, the attribute grammar is said non-circular on N and we note
Ord(CD(N)) the set of its topological sorts (i.e. the total orders which embed into the
partial order on nodes induced by the acyclic graph CD(N)). In that case, we can associate
with every attribute of N a tree built on A by applying the equations in CEq(N). Indeed,
a topological sort of the acyclic graph CD(N) gives an order in which we can evaluate
the attributes of N, i.e. associate with them a term built on A. Then the tree associated
with the attribute (out, €) is the result of the attribute tree transducer. An attribute tree
transducer is said non-circular when for every N, CD(N) is acyclic. We note ATT the class
of transductions that are defined by Attribute Tree Transducers. When moreover for every
N the dependency graph is a tree, the Attribute Tree Transducer is said single use restricted.
We note ATTg,, the class of transductions that are defined by single use restricted Attribute
Tree Transducers.

» Theorem 10. /2/

We have the following equivalences:
REL o ATT = MSOTS,
REL o ATT,,, = MSOT,
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B.2 RELoATT C HODTR, and RELo ATT,,, C HODTR;,

In this part we want to prove that the composition of a relabeling attribute grammar with
an attributed tree transducer can be modeled by a HODTR,;, and that if the attributed tree
transducer is single use restricted then the translated HODTR,; is a HODTRy;y,.

The order in which the attributes are computed is important, in that regard we need a
few more definitions.

B.2.1 Definitions and notations

For all tree N, we note CD T (N) the graph obtained from C'D(N) by adding a vertex noted T
and an edge ((out,€), T), and, for all u € Vi, we note CDIT(N) the graph obtained similarly
from C' D, (N) by adding a vertex T and an edge ((out,€), T). Wenote AT (N) = {T}UA(N)
and, for all path u € Vi, Al (N) = {T} U A,(N).

We use the convention that u.T =u~1. T =T.

For all graph G = (V, E) and set V', we note tr(G)
closure of G induced by V' NV.

the subgraph of the transitive

[y

» Lemma 11. For all graphs G1 = (V1,E1) and Go = (Va, E3) and set V, if ViNVy CV,
then tr(G1 U Ga)|,, = tr(tr(G1)), UG2)),, -

Proof. The set of vertices of both tr(G1 U G2)|,, and tr(tr(G1)), UGa)),, is VN (V1 UVa).

For all vertices x and y, if there is in tr(G1)|, a path from z to y there exists a path
from z to y in G;. Then for all path in tr(G1)|, U Go from 2 to y there is a path from x to
y in G1 U Ga. So, for all edge (z,y) in the graph tr(tr(Gy)|, U G2)|, there is an edge (z,y)
in tr(G1 U Ga)),, -

Let (z,y) € V? be an edge of the graph tr(Gy U Ga)),,, then there is a path w from z to
y in G1 U G3. This path can be written w = w; ... w, where w1, ..., w, are paths in either
G or G4 and, for all i <n — 1, if w; is a path in G; then w;41 is a path in G and if w; is
a path in G then w;;; is a path in G;. Then, for all i <n — 1, the end vertex of path w;
isin V1 NV, Since V1 NV, C V and x and y are in V, all start and end vertices of paths
w1, ..., wy, are in V. Then for all path w; in tr(G1)), there is a path w] with same start and
end vertices in the graph G;. Therefore, noting w; = w; if w; is a path in G2 but not G; for
all i <n, wi,...,w, is a path from x to y in tr(Gy)}, UGz. So there is an edge (z,y) in the
graph tr(tr(G1)), U G2)),, <

» Definition 12. For all tree path u € Vi, we define the synthesis graph of path u in N,
noted GSy,(N), as the graph u_l.(tr(DuL(N))uu(N)).

For all tree path u € Vi, we call the inheritance graph of path u in N, noted GI,(N),
the graph u_l.(tr(CDIT(N))‘V,) where V' is the subset of Al (N) of vertices connected to
the vertex T in the graph C’DIT(N).

For every tree N and path u € Vi, the sets of nodes of GS,, (V) and GI,,(N) are A(N |,)
and A (N |,) respectively, since these sets are not dependent on the tree N or the path u
we simply note them A, = (SUI) x {e} and A] = {T} U A, respectively.

» Lemma 13. For all u € Vi, the edges of the graph GS,(N) are of the form ((a,€), (v, ¢€))
with o € SUI and v € S.

> Lemma 14. For all u € Vi, GSy(N) = tr(G(R(a)) U, <;<,, 1-GSui(N))| ,; where n is the

Al

arity of the node at path u in N.
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Proof. We note Go the graph tr(G(R(a)) U, <<, ©-GSui(N)),~. The graphs Gy and
GSu(N) have the same set of vertices A.. ‘

Let (z,y) be an edge of the graph Gy, then, by definition of Gy, there is a path from u.x
to w.y in the graph (J,.,, ui.GSui(N) Uu.G(R(a)) (this works because w. is only a renaming
of the attributes). By definition, any edge in u.G(R(a)) is in D, (N). For all i < n and for
all edge (x;,y;) in ui.GSy;(N) there is a path in Dy, (N) from z; to y;, then this path also
exists in the graph D, (N). Then there is in the graph D, (N) a path from u.a to u.b. So
the set of edges of Gy is included in the set of edges of GS,(N).

Let (x,y) be an edge of GS,(N), then there is in the graph D, (N) a path from
u.x to u.y. This path is of the form wiejws ... wynenwmy1 where ey, ..., e, are edges
in w.G(R(a)) and w1, ..., wmn4+1 are paths with no edges in u.G(R(a)). Since D, (N) =
u.G(R(a)) U <;<p, Duiy (V) and the graphs D, (IN) have disjoint sets of vertices, for all
j < m+ 1 there is an index i; < n such that the path w; is in the graph D,; (V). Then
for all j < m + 1, noting z; and y; the respective start and end of path wj, there is an
edge (z;,y;) in the graph wi;.GSy;,(N). Then the path (z1,y1)e1 ... em(Tmi1,Yms1) is in
the graph (J,.,, ui.GSyi(N) Uu.G(R(a)), with v.x = 21 and 4.y = ym41. So there is a path
from z to y in the graph |J,.,, i.GS.i(N) U G(R(a)), therefore there is an edge (z,y) in the
graph tr({J,;,, .G Sui(N) U G’(R(a)))‘Ae, so that edge is in Gy.

So Gy = GS,(N). <

» Lemma 15. There exists a bottom-up tree automaton A, whose set of states is the set of
directed acyclic graphs with set of vertices A., which associates with any node in a tree N

the graph GS,(N).

Proof. We define the bottom-up tree automaton A = (Xp, 31, Ry) where P is the set of
states of the form pg where G = (V,E) is a directed acyclic graph with V = A, and
E C{((a,e),(v,€)) |« € SUI v € S}, i.e. potential synthesis graphs according to lemma
13; and Ry is the set of rules of the form a(pg, ...pag,) — PG, where a is a tree constant in
¥ of arity n, and Gy is the graph tr(lJ,;<,, i.G: UG(R(a)))|,. where G(R(a)) is the graph
induced by the equations of the attribute transducer associated with the tree constant a.
Lemma 14 implies by induction that automaton A indeed associates with any node at
path w in N the synthesis graph GS, (V) of N at path wu. <

» Definition 16. For all tree path w € Vi, The interface graph of N at path u (noted
Gu(N)) is the directed acyclic graph w='.(tr(CD"(N)),,) where V' is the subset of A} (N)
of vertices connected to the vertex T in the graph CDT(N).

» Lemma 17. For all path u € Vy, Gy (N) = tr(GS,(N) U GI,(N)),,, where V' is the
subset of Al of vertices connected to the vertex T in the graph GS,(N) U GI,(N).

Proof. We note G = tr(GS,(N) UGI,(N)),,. We first prove the following claim:

> Claim 18. For all 2,y € A, there is a path from u.z to u.y in the graph CDT(N) if and
only if there is a path from z to y in the graph GS,(N)U GI,(N).

Proof. Assume there is a path from w.z to u.y in CDT(N). Since CDT(N) = CDIT(N) U
D, (N), this path can be seen as a sequence of paths w; ... w,, alternating between graphs
CDIT(N) and D, (N) (if w; is a path in the graph C’DJT(N) then w;4 is a path in D, (N)
and conversely). We note x; and y; the respective start and end of path w; for all i < m.
For all i < m — 1, since the vertex y; = x;4+1 is in both graphs C’DIT(N) and D, (N), it

must be in the set A,(N). Then there is an edge (z;,y;) in either tr(C’D,}(N)) or

lAw ()
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L2y and y = u~ L.y, there is in the graph

tr(Dul(N))| ., (v, for all i < m. Because z = u~
GS,(N)UGI,(N) a path from z to y.
Assume there is a path from z to y in CDT(N). That path is of the form

(x1,22)(x2,23) ... (Tm, Tmy1) where, for each i < m, (z;,2;11) is an edge of either GS,,(N) or

GI,(N). So, for all i < m, there is either in CD;'—T(N) orin D, (N) a path from u.z; to w.z;11.

Therefore we have in the graph CD T (N) a path from u.x = u.z; to U.y = U.Tp 11 <

This claim applied with y = T implies that G and G, (N) have the same sets of vertices.
The claim also implies that (z,y) is an edge of G if and only if (x,y) is an edge of G, (N).

So G = G, (N) for all path u € Vi. <

» Lemma 19. For all directed acyclic graph G = (V, E), and subset V' C'V of vertices, and
for all two vertices x,y € V', noting tr(G),,, = (V', E") the subgraph of the transitive closure

of G induced by the subset V' of vertices, if the graph (V', E' U{(z,y)}) is acyclic then the
graph (V,EU{(z,y)}) is also acyclic.

Proof. We use ad absurdum reasoning. We assume that the graph (V', E’ U {(x,y)}) is
acyclic and that there is a cycle in the graph (V,E U {(z,y)}). Since (V,E) is acyclic
the edge (x,y) is part of the cycle, so the cycle is of the form (z,y)(y,x1) ... (z,, z) with

vertices x1,...,T, € V. Then there is a path from y to x in G, therefore there is an edge
(y,z) in tr(G)),,, so (y,x) € E'. Then (V', B U {(x,y)}) is not acyclic, which leads to a
contradiction. <

We will use the notations Apy ) = Uy <<, (SUT) X {5}, Ajon) = Up<jcn(SUT) x {5}
(with the convention that 0 = ¢), A[E,n] ={T}UAp, and AEB’”] ={T}U A

» Definition 20. For all path v € Viy, we define the local dependency graph of N at path
u, noted G, [0,.n)(N) where n is the arity of laby (u), as the graph uil.tr(CDT(N))‘V,
V' is the set of vertices in u.AE('—J’n] that are connected to the vertex T in the graph CDT(N).

where

» Lemma 21. For all tree N and path u € Vi, noting a = laby (u) the constant of the node
at path w in N and n its arity, the local dependency graph G (o (N) of N at path u is
tr(GL,(N)UG(R(a)) UU <<, J-GSuj(N))),, where V' is the set of vertices in A[T)’n] that
are connected to the vertex T in the graph GI,(N) U G(R(a)) UU, <<, J.GSuj(N).

Proof. We first prove the following claim:

> Claim 22. For all vertices x,y € AEB n]’ there is in the graph CDT(N) a path from u.z

to u.y if and only if there is a path from u.x to w.y in the graph G = tr(CDIT(N))
u.G(R(a)) UlU <<, tr(DUi\L(N))lAuj(N)'

Proof. If there is a path from w.z to w.y in G then, because CDT(N) = CDIT(N) U
u.G(R(a)) U <;<, Duii(N), there must be a path from w.z to u.y in CDT(N).

If there is a path from u.z to u.y in CD T (N), then this path can be seen as a sequence
W1 . .. Wy, of paths where each w; with j < m is a path in either one of the following n + 2
graphs: CDIT(N), Dy1 (N), ... Dyny(N),u.G(R(a)), and, for each j < m—1, w;; is a path
in a different graph than w;. Noting x; the end of path w; or start of path w; 1, since w; and
w;41 are paths of a different graph among CDJT(N), Dy1y(N),...Dyny(N) and u.G(R(a)),
x; is in the intersection of the sets of vertices of these two graphs, which is necessarily included
in the set u.A[—g’n] (N). o = u.x and z,, = u.y are also in the set u.AEB’n] (N). This implies
that if w; is a path in CDIT(N) then there is in tr(CDIT(N))‘

xj. Also if w; is a path in D,,;| (V) then there is in tr(D,; (V)

laT v

AT @ path w} from z;_; to

/
Ay () 8 path w’; from x;_; to
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xj. So there is in the graph G = tr(CDIT(N))MI(N) U“'G(R(a))UU1gign tr(Duii(N))lAujm)
a path from u.z to u.y. <

Since G, o, (N) = u~L.tr(CDT(N)), L, and
“0,m)

tr(GL,(N) U G(R(a)) UU <<, 3.GSuj(N))) ,+ = u~t.tr(G)),,,, the claim implies that the
== [0.n]
T

set of vertices of the graph G, [p,,](IV) is the set V' of vertices in A[o,n]

to the vertex T in the graph GI,(N) U G(R(a)) UU, < <, J.-GSu;j(N).
It also entails that, for all vertices 2,y € V', there is in the graph G, (o, (V) an edge (z,y)

if and only if (2, y) is an edge in the graph tr(GL,(N) U G(R(a)) U U, < <, J.GSuj(NV))
Therefore Gy, [0, (V) = tr(GL.(N) U G(R(a)) UU; <<y, 5-GSuj(IV))

that are connected

[y

<

lyre

» Corollary 23. The local dependency graph G (o) (N) can be computed using only the
constant laby (u), the inheritance graph of N at path u and the synthesis graphs of N at
paths ul, ..., un.

» Lemma 24. If CD'(N) is a tree then, for all path u € Vi, Gu.jo,n)(N) is a tree.

Proof. We use ad absurdum reasoning. We assume that G, [o,n] (N) is not a tree, so there
exists two nodes x,y and two distinct paths from z to y in Gy [g,n)(N) = u‘l.tr(CDT(N))h/,.
Then there are two distinct paths from u.z to w.y in CDT(N), then CDT(N) is not a
tree. <

» Corollary 25. If the ATT is single use restricted then for all input tree N and pathu € Vi,
the graph G 0,5 (N) is a tree.

B.2.2 Topological sorts

In order to sequentialize the computation of attributes, we use topological sorts of the graphs
of dependency prevously defined. We will later need to use induction on the sorted attributes,
in order to facilitate that we define our topological sorts as sequences of attributes:

» Definition 26. We call a total order < on a finite set V' compatible with a directed acyclic
graph G = (V, E) if, for all edge (v,v') € E, v <v'.

Noting n the size of the set V', for all sequence T = vy ...v, € V* of length n such that
17 ] =>v; #Fv; forall1 <4,7 <n, we associate with T the unique total order < on 'V such
that i < j < v; <wj; for all1 <4,5 < n.

We call a sequence T € V* a topological sort of a directed acyclic graph G = (V, E) if it
is of length n and the total order < associated with it is compatible with G.

» Lemma 27. For all directed acyclic graph G we can build a topological sort T of G.

Proof. We build 7 inductively. We note G = (V, E).

Since G is acyclic there exists a vertex x of G which has no incoming edges. We use
induction and assume we can build a topological sort 7/ of the subgraph of G induced by the
set V'\ {z} of vertices. Then 7 = z7’ is a topological sort of G. <

» Lemma 28. For all pathu € Viy any topological sort T of G, (N) is of the form T = 7/(a, €) T
with a € S.

Proof. By definition of G, (N), from any vertex of G,,(N) there is a path to T, so a topological
sort of G, (N) must end with T. The form of the rules of the attribute transducer imply
that if there is a path in G, (N) from (v,€) to T with v € I then there must exists a € S
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and a path in the graph G, (N) from («,€) to (v,€). So any topological sort of G,,(N) ends
with (a,€)T for some a € S. <

» Definition 29. For all sets V and V' such that V' C V, for all graph G = (V, E) and
topological sort 7 of G, we call topological subsort induced by the subset V', and we note
7|y, the biggest subsequence of T included in V'*.

» Lemma 30. For all directed acyclic graph G = (V| E), topological sort 7 of G and subset
V" of V, 7|y is a topological sort of tr(G),,, .

Proof. We note G' = tr(G)),,, = (V', E’). Let (a,b) be an edge in E’, then there is a path
in the graph G from a to b of the form av; ... v, b. So, noting <, the total order on V
associated with 7, a <, v1 <; -+ <; vy <, b. Therefore a <, b, and a appears in the
sequence 7 strictly before b. Then a appears in the sequence 7|y strictly before b, and
a <, b where <, is the total order on V' associated with 7|y.

We have shown that <. is compatible with G’, so 7]y~ is a topological sort of tr(G) <

[y

» Lemma 31. For all directed acyclic graph G = (V, E), subset V' of V' and topological sort
7" of tr(G),,,, there exists a topological sort T of G such that 7" = T|y.

Proof. We note 21, ..., x, the vertices in V’ such that 7" = x; ... 2y, and tr(G)|
We note E/ the set of edges E; = {(2;, %)} 1<i<j<n, then we show that the graph G’ =
(V',E" U E,/) is acyclic.

If G’ contained a cycle, it would imply that there was in (V’, E) a path from z; to z;
with ¢ < j, which is contradicts the fact that 7" = z; ...z, is a topological sort of (V', E").

Since (V/, E’ U E.) is acyclic, we can use lemma 19 and deduce that (V, EU E.) is also
acyclic. Then there exists a topological sort 7 of (V, EUE.). Because E; = {(x;, %)} 1<i<j<n
and by definition of topological sorts: 7|y = /. Also 7 is a topological sort of G. <

» Definition 32. For all graphs G and G with the same set of vertices, we say that G is an
over-specification of G, and we note G > G, if all topological sort of G is a topological sort
of G.

» Lemma 33. The relation > has the following properties:

1. for all graphs G1,Go and G3, G1 > Go > G5 = G1 > G3 (transitivity),

2. for all graphs G = (V,E) and G = (V,E), ECE =G> G,

3. for all graph G = (V, E), G &> tr(G)|, > G,

4. for all graphs G and G and set V', G > G = tr(G)| , B tr(G)),,

5. for all graphs Gl,GQ,Gl and Gg, Gi> Gy and Go > Go = G1 UGy > Gy UGs

Proof.

1. Implied by the definition of >.

2. Implied by the definition of topological sorts.

3. The previous point implies that tr(G);,, > G. For all topological sort 7 of G, by transitivity
of the order associated with 7, 7 is also a topological order of the transitive closure tr(G)
of G. So G & tr(G), -

4. ForNaH topological sort 7/ of tr(G)|V,, according to lemma 31, there is a topological sort 7
of G such that 7|y» = 7’. Then 7 is also a topological sort of G and, according to lemma
30, 7 =7|y isa top9logical sort og tr(G)),, -

5. Let us assume that G; > G and Gy > Gy with G; = (V1, Eq) and Go = (Vs, Es). For
all topological sort 7 of G1 U Ga, according to lemma 30, 7|y, and 7|y, are topological
sorts of G1 and Gy respectively. So Tlv, and 7|y, respectlvely are topological sorts of G
and Ga. So 7 is a topological sort of G; U G5. Therefore G1 U G2 > G UG,.

lv

= (V' E).
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<

» Lemma 34. For all graphs G1 and Ga such that Go > Gy and Gy is closed by transitivity,
then Go can be obtained from G1 by adding edges.

Proof. We note G; = (V, E1) and Gy = (V, E). Then Gy can be obtained from Gy by
adding edges if and only if F4 C Ey. We use ad absurdum reasoning and assume there is an
edge (z,y) € E1 \ E2. Wenote Vy, ={z|2€V,(z,y) € Ex} and V, =V \ {y} UV,,). So
xz € V. Let 7, and 7, be topological sorts of the acyclic graphs tr(Gg)‘Vyl and tr(Ga)|,,
respectively. We now prove that 7 = 7, y7, is a topological sort of Gy: for all 21,22 € s,
1f (21, 22) € Vi x {y} then z; <; 22 because we put 7, before y in 7,
1f (21,22) € {y} x V,, then z; <, 29 because we put y before 7, in T,
(2’1, 22
the case (21, 22) € {y}? is impossible because Gy is acyclic,

if (21, 22) € Vy x V, then 21 <; 22 because we put 7, before 7, in 7,
)€ i then 21 <;,, 22 entails 21 <; 22,

if (21,22) € V,2 then 21 <,, 2z entails 21 <, zo.
the case (z1,22) € {y} x V,; is impossible because z2 € V| = (22,y) € E2 and G is
acyclic,
the case (z1,22) € V,; x V is impossible because the transitivity of G2 would imply that
(21,y) € Eo, which contradicts the fact that z; ¢ V|,
the case (z1,22) € V x {y} also contradicts z; ¢ V.
So 7 is a topological sort of Go. But since (z,y) € F1 and y <, x, T is not a topological sort
of GG1. That is in contradiction with the fact that G, > Gy. <

» Lemma 35. There exists a constructive function f such that, for all path u € VN where
the tree constant a = laby(u) is of arity n and for all topological sort 1o of G (N), T =
fa,70,(GSu1(N),...,GSun(N))) is a topological sort of Gy (o5 (N) and, for each j < n,
j_l.(T|AjT) is a topological sort of Gy;(N).

Proof. We note V' the set of vertices of the graph G, (V). For all tree constant a of arity
n, for all topological sort 7y over a subset of A] and for all synthesis graphs Gy, ..., G,
(acyclic graphs with vertices in A and edges included in ((SUT) x {e}) x (S x {e}) as per
lemma 13), we define f(a, 79, (G1,...,Gy)) as the topological sort 7, obtained using lemma
27, of the graph G = tr(U, <,<,, 1-Gi UG(R(a)) U Gy, where G, is the graph with set of
vertices V' and set of edges E,, = {(z,y) | <, ¥}, and V" is the set of vertices in A[o ]
that are connected to the vertex T in the graph (J,.,.,, 1.G; UG(R(a)) U G,.

In order to use lemma 27 we need to prove that G is acyclic. By construction, 7y is the
only topological sort of G,. Since 79 is a topological sort of G,,(N), G, > G, (N). According
to lemma 17 Gy, (N) = tr(GSy(N)UGIL,(N))| 80 Gu(N) B GSy(N)UGIL,(N) &> GI,(N).
Then, according to lemma 34, G, can be obtained from GI,(N) by adding edges. So G can
be obtained from (J; .,,, ©.Gi U G(R(a)) UGI,(N) by adding edges. By adding these same
edges to G, (N) = tr(U, <<, 1.G: UG(R(a)) U GI,(N))
according to lemma 19 G is acyclic too.

Since T is not a vertex in the graph (J,,.,, .G UG(R(a)) and the vertices of G, are
the vertices of G, (), the set V" of vertices connected to T in |J, ., i.Gi UG(R(a)) UG,
is also the set of vertices connected to T in the graph |J,.;., i-Gi U G(R(a)) U GI,(N).
Then, according to lemma 21, G, [0,,](N) = tr(U;<;<p i.G; U G(R(a)) U GI.(N)),.- So
G can be obtained from G, o,)(IV) by adding edges, therefore G > G, 0., (V). So T is a
topological sort of G [o,n) (V). <

|+ We get G,, which is acyclic, so
l
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» Lemma 36. For all path u € Vi any topological sort T of Gy (0,0 (N) is of the form
T=7"(a,€) T witha € S.

Proof. Similar to proof of lemma 28. <

From now on, when we introduce a topological sort 7 over a subset of A or A[—B n]r We
assume it is of the form described in lemmas 28 and 36.

B.2.3 Sequentializing the computation of attributes

For all input tree N and path u € Vy, a topological sort of the interface graph G, (V) gives
an order in which the attibutes can be computed. The type of the output A-term of the
subtree N |, then depends on the topological sort of G, (N) which gives the computation
order of the attributes. That type is defined as follows:

» Definition 37. For all topological sort T over a subset of AT (of the form described in
lemma 28), we associate with T the type t(7) inductively defined by:

if T is of the form (a,€) 7' with a € S then t(1) = o x t(1'),

if T is of the form (a,€) T with o € I then t(1) £ 0 — t(7'),

if T = (a,€) T where a € S, then t(1) £ o.

For all input tree N and path u € V, we want to associate a A-term with the subtree
N |, of N which sequentializes the computation of the attributes of the node at path w,
in order to do so we use a topological sort of the interface graph at path u in N, with the
following semantics:

» Definition 38. For all topological sort T over the set A, term N and path u € Vi, noting
Att(N, (o, u)) the tree associated with the attribute (o, u) in the ATT, we define R.(N,u)
by induction on T:

Ra,uyr (N, u) £ {(My, Ms) | My =y Att(N, (o, u)), M2 € R (N, u)} if a € 5,

Ra,uyr (N, u) 2 IM | M(Att(N, (a,u))) € R (N,u)} ifa € I.

Ria,eT(Nu) £ {M | M =%, Att(N, (a,u))} where a € S.

Notice that terms in R (N, u) have type t(7).

» Lemma 39. For all terms M and M’ that are 8n-equivalent,
M € R,(N,u) & M € R.(N,u)
Proof. Straightforward induction on 7. |

For the purpose of clarity, we will use a special notation for the binding of variables: for
binding a variable = to a term M inside a term M’, in place of (Ax.M’) M we will write
let z = M in M’. We want to build a A-term which computes the term associated with a node
depending on the terms associated with its child nodes. That will depend on a topological
sort of the local dependency graph, which gives an order to compute the attributes of the
nodes and its child nodes. We use the following definition:

» Definition 40. For all tree constant a of arity n in X, for all topological sort T over a
subset of A[E)n], injective substitution var which associates variables of type o with attributes
and injective substitution Cont which associates variables with indices between 1 and n such
that for all i € [1,n], Cont(i) is of type t(7|47), we define the term M, (7, var, Cont) by
induction on 7 as follows: '
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if T = (a,0) T with o € S then : M, (7, var, Cont) £ var(R(a)((c,0)))
if 7= (0,0) 7" witha €S and 7/ # T then :
M, (7, var, Cont) £ let y(q,0) = var(R(a)((c,0)))in
(Y(a,0)s Ma(T",var & [(a, 0) = Y(a,0)], Cont))

if 7= (v,0) 7" with v € I then :
M, (1, var, Cont) £ Ay(y,0)-Ma (7, var ¢ [(7,0) = y(4.,0)], Cont)
if 7= (a,i) 7" with € S, i # 0 and 7|57 # (a,9) T then :
M, (7, var, Cont) £ let (y(a,:), X!) = Cont(i)in

Mo (7', var & [(a, i) = yea,i], Cont o [i = X{])
with X[ a fresh variable of type t(7/]| 47).
if 7= (a,8) 7 witha € S, i # 0 and 71'|A;F = (a,4) T then :
M, (7, var, Cont) £ let Y(a,iy = Cont(i) in My (7', var & [(a, i) = y(a,qi], Cont’)
where Cont’ is Cont from which we removed the association [t — Cont(i)].
if 7= (v,i) 7" withy €I and i # 0 then :
M, (7, var, Cont) £ let y(, ;) = var(R(a)((7,4))) and X| = Cont(i) y(,,; in

M, (7', var W {(v,7) = y(y,l, Cont o [i — X(])
where X is a fresh variable of type t(7'| o7).

Then we prove that M, fits the semantics we have chosen:

» Lemma 41. For all constant a of arity n in X, and for all topological sort T over a subset
of A[To,n]’ noting T; = T‘A;r for i < n, noting M = M, (1, var, Cont) where var is the empty
substitution and for all i € [1,n], Cont(i) = X; with X; a free variable of type t(7;), then
M is of type t(70) and, for all tree N and path u € Vy such that laby(u) = a and 7 is a

topological sort of Gy [0.n)(N), for all terms My € R, (N,ul),..., M, € R, (N,un):
M[X1 /M, ..., Xn/M,] € Ry (N, u)
Proof. We first prove a more general claim by induction on 7:

> Claim 42. For all topological sort T over a subset of A[—B,n], for all tree N and path
u € Vi such that laby(u) = a and 7 is a topological sort of G [o.n)(IV), for all injective
mapping var from attributes to variables such that, for all («,4) € 7, all attribute appearing
in R(a)((«,4)) is either in 7 or in the domain of var, for all function Cont associating
variables with indices ¢ € [1,n] and for all substitution o of the variables in Cont such that

Vi € [1,n],0(Cont(i)) € Ry, (N, ui) with 7; = 7] 47:
o o v(Mg(1,var,Cont)) € R, (N, u)

where v is the variable substitution such that for all attribute (e, ¢) in dom(var):
v(var((a,i))) = Att(N, (o, ui)).

Proof. We fix a topological sort T over a subset of A—'(—) s

that laby(u) = a and 7 is a topological sort of Gy, o,,,](IV), an injective mapping var from
attributes to variables such that, noting dom(var) its domain, for all (a, ) € 7, all attribute
appearing in R(a)((«, 1)) is either in 7 or in dom(var). We note v the variable substitution
such that for all attribute (a,4) € dom(var), v(var((«,1))) = Att(N, (o, ui)) (exists because
var is injective), we also fix a function Cont associating variables with indices in [1,n], and
a substitution o of the free variables in Cont such that Vi € [1,n],o(Cont(i)) € R, (N, ui)
where 7; = 7[47.

an input tree N, a path u € Vi such

We assume the induction hypothesis for all topological sort 7/ shorter (with a smaller
number of elements) than 7.
As in the definition of M, we have 6 cases:
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if 7= (a,0) T with a € S then M, (7, var, Cont) £ var(R(a)((a,0))). In this case
o o v(M,(7,var,Cont)) = v o var(R(a)((a,0))). Since all attributes appearing in

)-
R(a)((«,0)) are in dom(var), and V(«,i) € dom(va ), v(var((a,i))) = Att(N, (o, ui)).

Then by definition of Att(N, (a,w)) with laby(u) = a :

o o v(My(7,var,Cont)) = Att(N, (a,u)) € Ra,0T (N, u).

if 7= (a,0)7" with a € S and 7/ # T then M, (7, var, Cont) =

let Y(a,0) = var(R(a)((«,0)))in (y(a,0), Ma (7", var W [(a,0) = y(a,0)], Cont)).

The induction hypothesis implies that o o v/ (M, (7', var, Cont)) € R, (N,u) where
V' =V Y0 — Att(N, (a,u))]. Similarly to the case 7 = (o, 0) T
v(var(R(a)((a,0)))) = Att(N, (a, u)).

Therefore o o v(M,((a, 0)7", var, Cont)) € R(a,0)7; (N, u).

if 7 = (v,0) 7" with v € I then

M, (7, var, Cont) £ AY(y,0)- Mo (7", vare[(y,0) = y(4,0)], Cont). The induction hypothesis
entails that o o /(M (7', var & [(v,0) = y(,,0)], Cont)) € R (N, u) where

V= vy — Att(N,(v,u))]. Then, by definition of R, o) (N,u) for v € I,

o o v(My(7, var, Cont)) € R(y,0) (N, u).

if 7= (a,i)7 with a € 5,7 # 0 and 7; # (i) T then M, (7, var, Cont) £

let (Y(a,i), Xi) = Cont(i)in My (7', var & [(a, i) = Y(a,i], Cont o [i = X[]) where X| is a
fresh variable of type t(7/). Noting (M1, M2) = o(Cont(i)) € R(a,i)r (N, ui), we have
My =7, Att(N, (a,ui)) and My € R,/ (N, ui). So we apply the induction hypothesis on
o' o V! (Mg (7', var W [(a, i) = Y, Cont o [i = X[])) where

V' =vW Y,y — Att(N, (a,ui))] and ¢’ is obtained from o by removing the association
[Cont(i) = o(Cont(i))] and adding [X] — Ms]. So

o o v(My(7,var,Cont)) =g, o’ o V(M (7', var & [(a, i) = Y(a,y], Cont o [i = X[]))

and therefore o o v(M, (7, var, Cont)) € R, (N,u).

if 7= (a,i) 7 with @ € S,i# 0 and 7; = (a, i) T then M, (7, var, Cont) £

let y(a,iy = Cont(i)in My (7', varw[(a, i) = Y(a,i)], Cont’) where Cont’ is Cont from which
we removed the association ¢ — Cont(i). This case is analogous to the previous one, and

with the same arguments we reach the conclusion that oov(Mg (7, var, Cont)) € R, (N, u).

if 7= (v,i)7 with v € I and i # 0 then
M, (7, var, Cont) £ let y(, ;) = var(R(a)((v,7))) and X| = Cont(i) y(,,;) in
Mg (7', var W{(vy,1) = y(y,], Cont o [i — Xj])

where X/ is a fresh variable of type t(7/). We have o(Cont(i)) € R(y,i)-/ (N, ui) and
v(var(R(a)((7,9)))) =gy ALL(N, (7, ui)), then
o(Cont(i)) v(var(R(a)((7,7)))) € R/ (N,ui). We apply the induction hypothesis on o’ o
V' (Mo (7', var W(y,i) = yey,5), Contoli — X[])) where v/ = v W [y(,,) — Att(N, (v, ui))]
and ¢’ is obtained from ¢ by removing the association [Cont(i) — o(Conit(i))] and adding
[X] — o(Cont(i)) v(var(R(a)((7,1))))]. Therefore o o v(M, (7, var, Cont)) =
o' o V! (Mg (7', var W{(vy,1) = Y., Cont o [i — Xj])) € Rry(N,u).

This ends the inductive proof of the claim. <

Since 7 is a topological sort of the graph G, jo,n) (), for all (a,4) € 7, all attribute appearing
in R(a)((e,4)) is in 7. Therefore we can apply the claim on 7 with Cont(i) the substitution
such that Cont(i) = X; for i € [1,n], o the substitution such that o(X;) = M; for i € [1,n]
and var and v empty substitutions. So :

M, (7, var, Cont)[ X1 /M, ..., Xn/M,] = c(M,(7,var, Cont)) € R, (N, u)
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Linear High-Order Deterministic Tree transducers with Regular look-ahead

Now that we have shown that M computes terms correctly, we need to prove that it is
almost linear in general, and linear if our ATT is single use restricted.

» Lemma 43. For all tree constant a of arity n in 3, for all topological sort T over a subset
of AEB n]? injective substitution var which associates variables of type o with attributes and
injective substitution Cont which associates variables with indices between 1 and n such that,

for alli € [1,n], Cont(i) is of type t(7]|47), the term M, (7, var, Cont) is almost linear.

Proof. In the inductive definition of M, (7, var, Cont), the variables we use are either in var
or in Cont. Variables in var are of atomic type so copying them does not prevent almost
linearity. Each time a variable of Cont is used, it occurs once and is removed from Cont in
the inductive call to M, (7, var’, Cont’). So M, (1, var, Cont) is almost linear. <

» Lemma 44. Assumming the ATT is single use restricted, for all tree constant a of arity
n in X, for all topological sort T over a subset of AEB’H], injective substitution var which
associates variables of type o with attributes and injective substitution Cont which associates
variables with indices between 1 and n such that, for all i € [1,n], Cont(i) is of type t(T|47),
the term M, (7, var, Cont) is linear. '

Proof. As we saw in the previous lemma, variables in Cont are never copied, so we only
need to prove that variables in var are not copied.

According to corollary 25, since the ATT is single use restricted, the graph G jo,n)(N) is
a tree. For all attribute (c,4) in Gy [o,,)(IV) there exists a unique attribute z in G, [o,n(N)
such that there is an edge ((a,7),z) in Gy [0, (V). So z is the only attribute in G, (o n(N)
such that (o, %) occurs in R(a)(z).

A straightforward induction on 7 proves that for all 7, var and Cont such that var((a,)) =
Y(a,i)> the number of occurrences of y(q ;) in My (7, var, Cont) is 1 if z is in 7 and 0 otherwise.

Therefore the term M, (7, var, Cont) is linear. <

Then we define the term that will compute the inherited attributes of the root node of
an input tree by applying the root equations:

» Definition 45. With G(root) the graph whose set of vertices is Al an edges represent
dependencies in the root equations; for all subsort T of a topological sort of G(root), injective
substitution var which associates variables of type o with attributes, and variable Xy of type
t(r), we define the term Moot (T, var, Xo) of type o by induction on 7 as follows:

if = (a,0) T with o € S then : Moot (1, var, Xo) £ Xo

if 7= (a,0) 7" witha € S and 7" # T then :

M, o0t (T, var, Xo) £ let (y(a,0), X4) = Xoin Myoot (77, var © [(a, 0) = y(a,0)], Xb)

if T = (v,0) 7 with v € I then : Moot (1, var, Xo) =

let y(,0) = var(root((,0)))and X{ = Xo Y(+,0)In Myoot (77, var & [(7,0) = y¢,0)], Xg)

where X{, is a fresh variable of type t(77).

For all subsort T of a topological sort of G(root) we define the term Moot (T) as the term
AX0- Moot (7, var, Xo) where var is the empty substitution and Xq is a free variable of type

t(7).
Then we prove that M,.,,; computes the right output:

» Lemma 46. For all subsort T of a topological sort of G(root), for all tree N such that T is
a topological sort of G<(N) and for all term My € R-(N,¢), the term Moot (7) My B-reduces
to the output of the ATT on input N.
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Proof. Similar to lemma 41. <

» Lemma 47. For all subsort 7 of a topological sort of G(root), injective substitution var
which associates variables of type o with attributes and variable X of type t(7), the term
M0t (T, var, Xo) is almost linear in general and linear if the ATT is single use restricted.

Proof. Similar to lemmas 43 and 44. >

» Definition 48. Let T = (21,3, 5, I, out, R, root) be an ATT.
We define the HODTR,; HO(T) £ (£q, %1, Y2, g0, R', A) by:
A, the look-ahead automaton, is the bottom-up tree automaton given by lemma 15,
X s the signature of the set of states, which is
Q2 {qp}u{q (a,e) T | T (v, €) T is a topological sort on a subset of Al and a € S}, the
number of states is |Q| = |S UI|!. The type of a state q. is o1 — (1), where t(7) is
defined in definition 37,
Y1 and Yo are respectively the input and output tree signatures from the ATT T,
R’ is the set of rules, it includes the rules the form:

o (@ZWE) = M(goy1) . (qrn)

where 7 = {1,...,L, are the states of look-ahead associated with the subtrees 7 =
Z1,. .., Ty respectively and, noting T = f(a, 70, (¢1,...,£n)) the topological sort computed
in lemma 35, for all 1 < j < n: 7, is the topological sort T; = j_l.(T\AJ_T). And with
M = let X1 = ¢ (x1)and ... X,, = ¢, (zy) in M (7, var, Cont) where var is the empty
substitution, Cont = [i — Xi]ie[1,n) and M, is defined in definition 40.

To that first set of rules we_add special rules for the initial state qo : for all rule already in
R’ of the form q.,(a 7)(7} — M where 19 is a subsort of a topological sort of G(root),
we add to R’ the rule:

d0(a @) T = Myoor(70) M

A complexity analysis on the size of HO(T') reveals that, noting m = | S|+ |I| the number
of attributes, n the maximum arity of a symbol in 31 and p the number of symbols in Xy,
the number of states in the look-ahead automaton of HO(T') grows in e (graphs with
attributes as vertices), the number of states of HO(T') grows with m! (orderings on the set of
attributes). Then the number of rules of HO(T') grows in m! * p x e™**" and the size of these
rules grows linearly with the size of the rules of T" and the number m of attributes. Note
that the only non-linear factor is m! x e and comes from the potentially big numbers of
accessible synthesis graphs and topological sorts of synthesis graphs, which could be smaller
in practical cases.

W@Z*n

» Theorem 49. For all ATT T, the HODTR, T’ = HO(T) is equivalent to T, and T" is
linear if T is single use restricted.

Proof. Let N be an input tree of T”.

For all path u € Vi, according to lemma 15, the look-ahead state associated with the
node at path u in N is the synthesis graph GS,(N) of N at path w.

Then a straighforward downward induction using lemma 35 shows that for all non-e
path u € V the node at path u in N is processed by a state of the form ¢, where 7 is a
topological sort of G,,(N).

A straighforward upward induction using lemma 41 proves that for all non-e¢ path u € Vi
the result of the computation of ¢, (N |,) is a term in R, (N, u).
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Linear High-Order Deterministic Tree transducers with Regular look-ahead

Finally, using lemma 46, we conclude that go(N) computes exactly the output of the ATT
T on the input tree N. Thus we have shown that T” computes the same transduction as 7.
Furthermore, lemmas 43, 44 and 47 imply that 7" is almost linear in general and linear if
T is single use restricted. |

» Theorem 50. For all ATT T and relabeling attribute grammar P there exists a HODTR
T’ equivalent to PoT and if T is single use restricted then T’ is linear.

Proof. The relabeling P can be modeled by a simple HODTRj;,. Then we can compose it
with HO(T) in order to obtain a HODTR,; 7" equivalent to P o T such that if T is single
use restricted then HO(T) is linear and therefore T” is also linear. <

» Corollary 51. The class MSOT is included in the class HODTRy, and the class MSOTS
1s included in the class HODTR,;.

B.3 HODTR, C RELoATT and HODTRj;, € REL o ATT,,,

» Theorem 52. For all HODTR, T = (£¢, X1, X2, qo, R, A) there exists a relabeling attribute
grammar P and an ATT T’ such that T is equivalent to P o T’ and, if T is linear, then T’
1s single use restricted.

Proof. First we assume that T is the result of the order reduction procedure described in
the proof of theorem 2, so the result of applying a state ¢ € @ to an input tree N is a tuple
of tree contexts: ¢(N) —r (Cy,...,Ch).

The relabeling attribute grammar framework is powerful enough to simulate the bottom-
up look-ahead automaton and the top-down finite state structure of T'. Therefore we can
build a relabeling attribute grammar P that computes, for each node of an input tree N,
which rule of T would be applied to it. Then 7" will compute the actual results of applying
these rules.

Since each state ¢ of T computes a tuple of contexts, we need attributes to simulate
tree contexts. We can do this by mapping the free variables of a tree context to inherited
attributes, and mapping the tree context to a synthesized attribute. For example a tree
context Cy1 = fy1 Y2, where f is a tree constant of arity 2 and y; and y, are free variables,
will be represented by one synthesized attribute a; linked to two inherited attributes 87 and
B2 by the equation: («ay,€) = f (B1,¢€) (B2,€). This way we can build an ATT T such that
PoT' is equivalent to 7.

Furthermore, if T is linear, then each tree context is used exactly once, so attributes are
never used twice and 7" is single use restricted. |

» Corollary 53. HODTR, € REL o ATT and HODTR;,, C REL o ATTg,,.

Finally we can conclude, thanks to theorem 10, that HODTR,; = MSOTS and HODTRy;,
= MSOT (theorem 3).

C Composition

C.1  Proof of theorem 5

In order to prove that for all term M of type A and all token f € [A] there is at most
one derivation of the judgement - M : f, we first need to introduce known definitions and

properties of coherent spaces under the framework of linear logic, as first introduced by
Girard in [14].
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Coherent spaces

Our main goal now is to indicate that for all term M of type A and all token f € [A] which
corresponds to a behaviour of M, there is only one possible derivation for the judgement
F M : f, which will be the key trick to preserve linearity in composition. In order to prove
that, we will see that tokens form a coherent space.

First, we define a coherence relation 4 C [A] x [A] for all type A by induction on A:

» Definition 54. For all p,p’ € P and {,{' € Lo,
P, 0) S0, (0, 0) & L=V
For all type A, B € types(0a), for all f, f' € [A] and g,¢" € [B]:
f—ogcasp f'—g & (foaf' =@ssd Nf#L = 9#9))

Intuitively, two tokens are coherent if they can both be derived from the same term. For
tokens of a tree for instance, that means that they must share the same look-ahead.

We also define the corresponding incoherence relation <4€ [A] x [A]: intuitively, two
tokens are incoherent if they can not both be possible distinct tokens for the same term, so
if they are either not coherent together, or if they are equal.

» Definition 55. For all type A built on os:
fxaf & (foaf)Vvi=f
The incoherence relation allows us to give a simpler alternative definition of the coherence
relation <4, p between tokens in [A — B]: for all f, f' € [A] and g, ¢’ € [B],
f—ogcasp ['—gd & (foaf =g9°d)Ng=Bg = [=af)

» Theorem 56. For all type A and term M* of type A, if there exists two semantic tokens
f, f' € [A] associated with M?, i.e. the judgments = M : f and = M : f' are derivable, then
f and f' are coherent: f <4 f'.

In order to prove this theorem, we need to prove a stronger theorem, by induction on
term M:

» Theorem 57. If there exists two deriwations D : T M : f and D' : TV = M : f' then
P —ofol— f.

Here, when writing I' — f with ' = x1 : f1,...,2, : fn, we mean by I the tensor product

(flw"ufn)‘

Proof. We prove this by induction on term M:

If M = a is a constant from Yq then the last rules of D and D’ are:

p. P, ) Ly M(py21) ... (P 2n) Ao(a(ly,... 0)) =0
S |—a,:(pl,él)—o...—o(pn,én)_o(p’e)
o PTG, ) Ly M@, ) ... (P, 2) M(a(ly,.. o)) =0

Fa:(py,by) — - —o (P, £,) — (', 1)
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If ((p1,£1),---, (Pn,ln)) < ((P1,0)),- .-, (P, 2),)) then (¢1,...,4,) = (¢),...,L,), therefore
¢="{ and so (p,¢) < (p/,0"). If (p1,£41),--.,(Pn,ln)) < ((p1,41),--., (P, ¢)) and (p,€) =
(p',¢') then p = p’ and, since ¢; = ¢} for all ¢ and T4 is deterministic, p; = pj for all 4. This

shows that ((p1,41),..., (Pn,ln)) < (P, 4)), ..., (P, 2),)) and (p,€) = (p/,¢') implies that

((p1,01)y- s (Pny 8n)) = (D1, 0)), ..., (P, 20,)). As a consequence,
((p1,01), -y (Pnyln)) — (p,0) = (P, 4)),. .., (P, 2),)) — (p/,¢'). So we have shown the

equivalent statement: (p1,¢1) —o ... (pn,ln) — (p,€) < (P, 4)) — ... (pl,L.,) — (P, ).
If M = Ny N5 then the last rules of D and D’ respectively are of the form:

Ti1FNi:g—f TobFNy:yg I'EN :g — f TLoENy: ¢
I, To Ny Ny f I, I Ny Ny - f!

Through the induction hypothesis, we get that 'y — (g — f) < T} — (¢’ — f’) and
Iy —o g<c T — g. Then I'1,I'y; < T',T% implies that 'y < T’} and T's < T, which
means that g — f < ¢’ — f’ and g < ¢/, which in turn implies that f < f’. Reciprocally,
assuming that f < f’, we have two cases depending on whether or not g < ¢’. On the one
hand we have that g < ¢’ implies that 'y < I', and therefore I';,T's < T}, T, on the other
hand we have that f < f’ and g © ¢’ imply that g — f < ¢’ — f’ and so I'y < T} and
I, Ty < T%,TY%. In either case f < f’ implies that I'1, 'y < I'},T%. Finally we can conclude
that 1117 112 —*3.f Z 1137 Ijé —ADIf/

If M = \xB.N then f =g — h, f' = g’ —o h’ and the last rules of D and D’ respectively
are:

IaP:gFN:h IMaB: g FN:W

PFXeB.N:g—h I"EXeB.N:g — R

The induction hypothesis gives (I',2? : g) — h = (I',2% : ¢') — h’, which we can
write: (I',g) — h < (I",g') — h' using the tensor product, and that is equivalent to
I —o(g—h)cI' — (¢ —h).

If M =24 then f, f' € [A]. SoT =24 : f and I" = z” : f’ and derivations D and D’
are:

f € [A4] [ e[4]

A flaA:f A flExf e f
Trivially f < f/ = f< ffand f =< f/ = f =< [, therefore f — f < f' — f'. So
I' ofcI’—o f.

We have shown theorem 57, of which theorem 56 is a particular case, by induction on
M. Indeed if M is a closed term and I" and IV are empty substitutions then I' — f is f and
I — f"is f', therefore f < f'. <

We have shown that any two tokens derivable for a same term are coherent. So the set of
tokens derivable for a given term M# form a clique in the coherence graph of [A], we call it
the coherent state of term M4 in [A].

Now, using the previous theorem, we will be able to prove that there is only one way of
deriving any given derivable judgement - M : f.

Unicity of derivation for semantic token judgements

We can now prove theorem 5:
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Proof. Because subterms of M may have free variables, we add a substitution I" to the
induction hypothesis:

“If there exists two derivations D ::T'H M : f and D’ :: T+ M : f then D and D’ are the
same.”

We prove this by induction on term M, so there are four distinct cases.

If M = a is a constant from Y5 or if M = z is a free variable in I' then derivations D and
D’ are axioms so they must be equal.

If M = N; Ny then the last rules of D and D’ respectively are of the form:

MEN :g—of TobNy:yg I'ENy:g —f TLFENy: g
1117 112 F‘ ]\fl ]\ﬁz . jT Ija, I‘é f‘ J\fl ]\72 Z!f

where I'1,I'y = T' = I'}, T . Since the variables substituted by substitutions I'y and T%)

must be the free variables in term Ny, I'y = I'} (because dom(I';) = FV(N;) = dom(T})).

Similarly, we deduce that I's = T';. Then we can apply theorem 57 to the derivations of

Ty Ny:gandT) F Ny : ¢/, and to the derivations of Ty = Ny : g — fand Ty - Ny : ¢’ —o f.

The first application yields g < ¢’ (since T's = I'}), the second yields g — f < g — f
(because I'; = I'}), together they imply that g = ¢’. Finally we can apply the induction
hypothesis to get unicity of a derivation of I'y = N7 : g —o f and unicity of a derivation of
T's = Ny : g, this implies that derivations D and D’ are the same.

If M = A\zB.N then f = g —o h and the last rule of D and D’ is the same:

IaB:gFN:h
'FXxB.N:g—h

The induction hypothesis implies the unicity of a derivation of I',2? : ¢ - N : h, which
entails the unicity of a derivation of I' - Az®.N : g —o h. <

C.2 Proof of theorem 7

First we need to prove that collapsed derivations of semantic tokens accurately represent the
application of T» on terms, in order to do so we use a logical relation.

Logical relation

Our logical relation is indexed on a type A and a semantic token f € [A], it is defined as
follows:

» Definition 58. We define the logical relation R4, for all type A built on atomic type oo
and for all semantic token f € [A], by induction on type A:

R, ={(M,N) [ p(M|g) Z Nlg, Ay(M|z) = £}
R{Z 7 ={(M,N) |Y(M',N') € R}, (M M',N N') € R}}}

Now we prove the adequation of this logical relation: for all type A € types(os), token
f € [A] and for any closed terms M and N of respective types A and f:

Dk M:f and D=4, N = (M,N)€ R}

We prove a more general claim by induction on term M:
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» Theorem 59. For all type A € types(os), token f € [A], terms M of type A and N of
type f. For all substitutions of variables T' and o such that T'(x) =g = o(z)€ Rf and
dom(T') = FV(M):

ID:TEM:f AN D=g,N = (M.(mo0), N(mo0))€R]}

In order to prove this theorem, we first need to show that the logical relation is compatible
with S-reduction (and n-expansion):

» Lemma 60. For all type A and token f € [A], for all terms M, N, M’ N’ such that
M =g, M" and N =g, N': (M,N) € R} = (M',N') € R}.

Proof. We prove this lemma by induction on type A. Let M, N, M’, N’ be terms such that
M =g, M', N =g, N' and (M,N) € R;‘.T
If A=oy and f = (p,¢) then p(M|s) 2 N|g and Ay(M|g) = £. So

p(M'|g) = p(Mlg) L Nl|g= N'|g and Ay(M'|g) = A2(M|p) = £. In that case (M',N’) €
R4,

! If A=B — C and f = g — h then, for all (M;,N;) € Rf, (M M;,N N;y) € Rf. Since
M =g, M' and N =g, N', we have (M My, N N1) =g, (M’ My, N’ N1) and, by induction
hypothesis on type C, (M’ My, N’ Ny) € R{. So (M',N') € REZF <

g—oh *
We can now prove theorem 59.

Proof. We use an induction on term M.

Let A € types(oz), token f € [A], terms M of type A and N of type f. Let ' and o
substitutions of variables such that I'(z)=g = o(z)€ R} and dom(I') = FV(M). Let D a
derivation of the judgement I'=M : f (unique according to theorem 5). Assume that D =g, N.
We want to prove (M.(m 00), N.(my00)) € R}‘»‘.

In most cases, we will show that (M.(r00),D.(m200)) € R? and conclude using lemma
60. We distinguish four cases depending on M, one for each derivation rule as head of
derivation D:

If M = z* then the head rule of D is:

felAl
A fFad: f
Since T'(z4) = f, we have o(z4) € RJ‘?‘. So (M.(m100), N.(1300)) = (71 (0 (xz4)), m2(o(z4))) €
R4,
f
If M = M, M5 then the head rule of D is:
D1::F1|—M1:f’—of DQZZFQI_MQZJH

I‘1,112’_1\/-"1]\/-"2if

where I' = ', I's such that the domains of I'; and I'y are the sets of free variables of M; and
My respectively. Similarly, we can split substitution ¢ into o7 and o3 in order to apply the
induction hypothesis on Dy with o7 and on D, with o2. Noting B the type of My we get:

(M;.(T1001),D1.(ma001)) € R?:‘? (My.(1 0 03), Do.(m3 0 03)) € R]]cg,

By definition of R}B/:"} we get (M;.(m 0 01)Ma.(m1 003),D1.(m3001)Da.(me 003)) € R]‘?. So
((My M3).(my 00), (D1 Ds).(m200)) € R}?. Since D = D; Da, we conclude using lemma 60.
If M = Ax®.M’ then the head rule of D is:
D uT,aB:g-M : f
FEXxB.M :g— f'
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where A= B — C and f = g — f’. First we show that (A\x.M'.(71 0 0),\e.D'.(m 0 0)) €
Rf__gjg. Let (Mg, No) € Rf. In order to use the induction hypothesis we define IV =T, 25 : ¢
and the substitution o’ = oo[z + (Mo, No)], then: (M’.(m100"),D’.(1m200")) € RJ(Z,. Because

of the definition of o’ we have: (\z.M’.(m100)) My =g, M'.(m100") and (Ax.D’.(m200)) =3,

D’.(mp00"). Using lemma 60 we deduce that ((Az.M’.(7y00)) Moy, (Ax.D’.(m300)) No) € R?,.

This proves that (Az.M'.(my 0 o), \z.D’.(m300)) € Rf:ﬁ. We conclude using lemma 60.
If M = a then the head rule of D is:

p(a?)@l,...,fn) g N’ (p1 361)(Pnl‘n) A2(a(€17"'>£n)) =t
Fa: (p1,€1) —0 .-+ —0 (pnygn) —° (p,f)

Since T is the empty substitution, we only need to prove (M, N) € R

(p1.6) . —(p)” 1B
order to do this we define the property P (i) for 0 < i <n by:

’P(z) = "For all (Mth) S R?;Lel), ey (MzaNz) € R?;i’éi),

we have (M My ...M;,N'N;...N;) € R?;:1'7'Z:1‘;2_0m D) —o(prt)

We prove P(i) by downward induction for 0 < i < n.
We start by proving P(n):
let (M1, Ny) € R, ..., (M, N,) € R, So for all i < n, we have p;(M;ils) = N;|s
and Az (M;lg) = ¢;. Now we look at p(M My ... M,|g):
p((M My ... My)lg) =pla(Milg)...(Myls))
T
=N (pl(Ml Lﬁ)) S (pn(Mn Lﬁ))
Z N (Nilg) ... (Nals)
Z(N'N N s

Note that we can apply the rule of T, because we know that Ay (M;|g) = ¢; for all i < n.

Then we check Ay((M M ... M,)|g):

We have shown P(n) ="(M M;...M,,N'Ny...N,) € R((); 0

Next we prove the induction step, for 1 < j <n, P(j) = P(j — 1): we assume P(j) and
want to prove P(j — 1).

Let (M;,Ny) € R??

(oa2)? (M;_1,N;_1) € R? - According to P(j), for all

(Pj—1.45—

O ) < e NN R e
(M M1 e J\4j_17 N N1 ‘e Nj—l) € R(P_j,£j)—°(p_7+1lj+1)—0...—O(pl) and P(] — 1) 1s true.
Therefore, by induction, P(0) =7 (M, N’) € R?;;)ei')'jfm—o(p p” s true. Since

N’ =D =g, N we can conclude that (M,N) € R‘(J;E;)'ffm_o(pj)

This ends the proof of theorem 59. <

using lemma 60.

As a corollary of theorem 59 we get that if there exists a derivation D of a judgement
kM : f then (M, Dlg,) € Rf.
With this corollary we can now prove theorem 7.
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Proof of theorem 7

With T defined in section 4.4, we prove that T =T o T7.

Proof. We first prove the following statement by induction on a tree t of type o1:
For all state ¢ € @ of transducer T; and for all token f € [A,] such that ¢(¢) B M and
F M : f, there exists a term N such that (g, f)(t) L N and (M,N) e sz%_

Let t = aty...t, atree of type 01, ¢ € Q a state of Ty and f € [4,] a token such that
q(t) BN and - M f. Then there is a rule:

q(at1 .. tn) g MO (QI tl) cee (qn tn)

If term M, forgets one or several of its arguments, then there exists a term M| which uses
all its arguments such that Mo (1 t1) ... (qn tn) =gy M (G, tiy) - - - (i, ti,,) Where i1, ..., ip
are the indices of the arguments used by Mj. For the sake of clarity we forget this renaming
of variables and proceed assuming M, uses all of its arguments.

Since the computation of ¢(t) U M terminates and My uses all its arguments: for
all ¢ < n, the computation of ¢;(¢;) by 71 terminates, we note its result M; (a term of
type Ag,). Therefore Mo M, ... M, —>;§n M. Sot MyM;i...M, : f and there exists
fir€[Aql, .., fn € [Ag,] such that = My : fi —--- —o f,, —o f and, foralli <n, F M;: f;.
Then we can apply the induction hypothesis to each tree ¢; with state ¢; and token f;: for
all i < n, there is a term N; such that (g;, f;)(t;) KN N; and (M;, N;) € qui.

Because of the rule g(at; ...t,) kLS Mo (g1t1) ... (qntn) in T7, there must be in 7" a rule:

(@ f)(aty...tn) = Do (g1, f1)(t1) - - (s fu) (t0))

Where Dy is the derivation of the judgement - My : f; —o -+ —o f,, — f. So
(¢, f)(aty...tn) Do Ny ... Ny

By using theorem 59 (adequation) on Dy we get (Mg, Dy) € R}?f;f:}fjgf_)A". By definition
of the logical relation, we obtain (Mo M ... M,,DyN;...N,) € R?q. Finally we apply
lemma 60. So, with N =Dy Ny ... N,, we have (g, f)(t) L N and (M,N) € R?q.

Let ¢1 be a tree of type 01. Assume that T» o T1(t1) = t3. Then there is a term ¢ of type
09 such that go(t1) By to and po(t2) £l t3. Then we can derive the judgement F t2 : (pg, ¢)
where ¢ is the look-ahead of T5 on tree to and pq is the initial state of T5. So there exists

a term N such that (qo, (po, £))(t1) L N and (t2,N) € R‘();o ¢)- By definition of the logical

relation we have: pg(t2) g Nlg, so ts = Nlg and (qo, (po,¥))(t1) % t;. Thanks to the
definition of R, we can conclude that g{(¢1) Lty So TyoTy (t1) = t3 implies that T'(t1) = t3.

For the reverse implication, we first show by induction on tree t that, for all state ¢ € Q
and token f € [4,], if (q, f)(¢) 2 N then there exists a term M such that q(t) o,
- M f and (M,N) € R}".

Let t = a ty...t, a tree of type o1 with (g, f)(t) L N. So there is a rule of T such
that (q, f)(t) L N ((q1, f1)(t1)) - .- ((gns fn)(tn)). Then there are Ny,..., N, such that
(¢, /)) 5 No Ny ... Ny, N =g, Ny Ny ... N,, and, for all i <n, (i, fi)(t;) — N;. Then we
apply the induction hypothesis and get M; such that ¢;(t;) Kbt M; and = M; : f;. There is in
T, a rule ¢(t) ny Mo (q1t1) - - - (gntn), so q(t) Ea MoM;...M,, withtMy: fi1 —...f, —f.
So for M = My M; ... M, we have - M : f. Finally we deduce that (M, N) € R?“ using
the property we proved earlier in this proof and the lemma 60.
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Now we try to show that T'(t1) =t3 = Ty oTi(t1) = t3. Assume that T(t1) = t3. Then
q4(t1) L #5, so there exists a token (po,¢) € [oz] such that (qgo, (po,¢))(t1) % t5. So there
exists a term M such that q(t,) = M, - M : f and (M, t3) € R ). Then, by definition of

the logical relation: po(M|g) Kk} ts. So Th o Ty(t1) = t3.
So the transduction of T is the composition of the transductions of 75 and 77 . <
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