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Abstract12

We introduce the notion of high-order deterministic top-down tree transducers (HODT) whose outputs13

correspond to single-typed lambda-calculus formulas. These transducers are natural generalizations14

of known models of top-tree transducers such as: Deterministic Top-Down Tree Transducers, Macro15

Tree Transducers, Streaming Tree Transducers. . .We focus on the linear restriction of high order16

tree transducers with look-ahead (HODTRlin), and prove this corresponds to tree to tree functional17

transformations defined by Monadic Second Order (MSO) logic. We give a specialized procedure for18

the composition of those transducers that uses a flow analysis based on coherence spaces and allows19

us to preserve the linearity of transducers. This procedure has a better complexity than classical20

algorithms for composition of other equivalent tree transducers, but raises the order of transducers.21

However, we also indicate that the order of a HODTRlin can always be bounded by 3, and give a22

procedure that reduces the order of a HODTRlin to 3. As those resulting HODTRlin can then be23

transformed into other equivalent models, this gives an important insight on composition algorithm24

for other classes of transducers. Finally, we prove that those results partially translate to the case of25

almost linear HODTR: the class corresponds to the class of tree transformations performed by MSO26

with unfolding (not closed by composition), and provide a mechanism to reduce the order to 3 in27

this case.28
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1 Introduction36

Tree Transducers formalize transformations of structured data such as Abstract Syntax Trees,37

XML, JSON, or even file systems. They are based on various mechanisms that traverse tree38

structures while computing an output: Top-Down and Bottom-Up tree transducers [18, 4]39

which are direct generalizations of deterministic word transducers [8, 7, 3], but also more40

complex models such as macro tree transducers [11] (MTT) or streaming tree transducers [1]41

(STT) to cite a few.42

Logic offers another, more descriptive, view on tree transformations. In particular,43

Monadic Second Order (MSO) logic defines a class of tree transformations (MSOT) [5, 6] which44
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is expressive and is closed under composition. It coincides with the class of transformations45

definable with MTT enhanced with a regular look-ahead and restricted to finite copying46

[9, 10], and also with the class of STT [1].47

We argue here that simply typed λ-calculus gives a uniform generalisation of all these48

different models. Indeed, they can all be considered as classes of programs that read input49

tree structures, and, at each step, compose tree operations which in the end produce the50

final output. Each of these tree operations can be represented using simply typed λ-terms.51

In this paper, we define top-down tree transducers that follow the usual definitions of such52

machines, except that rules can produce λ-terms of arbitrary types. We call these machines,53

High-Order Top-down tree transducers, or High-Order Deterministic Tree Transducers54

(HODT) in the deterministic case. This class of transducers naturally contains top-down55

tree transducers, as they are HODT of order 0 (the output of rules are trees), but also MTT,56

which are HODT of order 1 (outputs are tree contexts). They also contain STT, which can57

be translated directly into HODT of order 3 with some restricted continuations. Also, STT58

traverse their input tree represented as a string in a leftmost traversal (a stream). This59

constraint could easily be adapted to our model but would yield technical complications that60

are not the focus of this paper. Finally, our model generalizes High Level Tree Transducers61

defined in [12], which also produce λ-term, but restricted to the safe λ-calculus case.62

In this paper we focus on the linear and almost linear restrictions of HODT. In terms of63

expressiveness, linear HODTR (HODTRlin) corresponds to the class of MSOT. This links64

our formalism to other equivalent classes of transducers, such as finite-copying macro-tree65

transducers [9, 10], with an important difference: the linearity restriction is a simple syntactic66

restriction, whereas finite-copying or the equivalent single-use-restricted condition are both67

global conditions that are harder to enforce. For STT, the linearity condition corresponds to68

the copyless condition described in [1] and where the authors prove that any STT can be69

made copyless.70

The relationship of HODTRlin to MSOT is made via a transformation that reduces the71

order of transducers. We indeed prove that for any HODTRlin, there exists an equivalent72

HODTRlin whose order is at most 3. This transformation allows us to prove then that73

HODTRlin are equivalent to Attribute Tree Transducers with the single use restriction74

(ATTsur). In turn, this shows that HODTRlin are equivalent to MSOT [2].75

One of the main interests of HODTRlin is that λ-calculus also offers a simple composition76

algorithm. This approach gives an efficient procedure for composing two HODTRlin. In77

general, this procedure raises the order of the produced transducer. In comparison, com-78

position in other equivalent classes are either complex or indirect (through MSOT). In any79

case, our procedure has a better complexity. Indeed, it benefits from higher-order which80

permits a larger number of implementations for a given transduction. The complexity of the81

construction is also lowered by the use of a notion of determinism slightly more liberal than82

usual that we call weak determinism.83

The last two results allow us to obtain a composition algorithm for other equivalent84

classes of tree transducer, such as MTT or STT: compile into HODTRlin, compose, reduce85

the order, and compile back into the original model. The advantage of this approach over86

the existing ones is that the complex composition procedure is decomposed into two simpler87

steps (the back and forth translations between the formalisms are unsurprising technical88

procedures). We believe in fact that existing approaches [12, 1] combine in one step the two89

elements, which is what makes them more complex.90

The property of order reduction also applies to a wider class of HODT, almost linear91

HODT (HODTRal). Again here, this transformation allows us to prove that this class of92
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tree transformations is equivalent to that of Attribute Tree Transducers which is known to93

be equivalent to MSO tree transformations with unfolding [2], i.e. MSO tree transduction94

that produce Directed Acyclic Graphs (i.e. trees with shared sub-trees) that are unfolded to95

produce a resulting tree. We call these transductions Monadic Second Order Transductions96

with Sharing (MSOTS). Note however that HODTRal are not closed under composition.97

Section 2 presents the technical definitions used throughout the paper. In particular, it98

gives the definitions of the various notions of transducers studied in the paper and also the99

notion of weak determinism. Section 3 studies the expressivity of linear and almost linear100

higher-order transducer by relating them to MSOT and MSOTS. It focuses more specifically101

on the order reduction procedure that is at the core of the technical work. Section 4 presents102

the composition algorithm for linear higher-order transducers. This algorithm is based on103

Girard’s coherence spaces and can be interpreted as a form of partial evaluation for linear104

higher-order programs. Finally we conclude.105

2 Definitions106

This section presents the main formalisms we are going to use throughout the paper, namely107

simply typed λ-calculus, finite state automata and high-order transducers.108

2.1 λ-calculus109

Fix a finite set of atomic types A, we then define the set of types over A, types(A), as the110

types that are either an atomic type, i.e. an element of A, or a functional type (A→ B), with111

A and B being in types(A). The operator → is right-associative and A1 → · · · → An → B112

denotes the type (A1 → (· · · → (An → B) · · · )). The order of a type A is inductively defined113

by order(A) = 0 when A ∈ A, and order(A→ B) = max(order(A) + 1, order(B)).114

A signature Σ is a triple (C,A, τ) with C being a finite set of constants, A a finite set of115

atomic types, and τ a mapping from C to types(A), the typing function.116

We allow ourselves to write types(Σ) to refer to the set types(A). The order of a signature117

is the maximal order of a type assigned to a constant (i.e. max{order(τ(c)) | c ∈ C}). In this118

work, we mostly deal with tree signatures which are of order 1 and whose set of atomic types119

is a singleton. In such a signature with atomic type o, the types of constants are of the form120

o→ · · · → o→ o. We write on → o for an order-1 type which uses n+ 1 occurrences of o,121

for example, o2 → o denotes o→ o→ o. When c is a constant of type A, we may write cA122

to make explicit that c has type A. Two signatures Σ1 = (C1,A1, τ1) and Σ2 = (C2,A2, τ2)123

so that for every c in C1 ∩ C2 we have τ1(c) = τ2(c) can be summed, and we write Σ1 + Σ2124

for the signature (C1 ∪ C2,A1 ∪ A2, τ) so that if c is in C1, τ(c) = τ1(c) and if c is in C2,125

τ(c) = τ2(c). The sum operation over signatures being associative and commutative, we126

write Σ1 + · · ·+ Σn to denote the sum of several signatures.127

We assume that for every type A, there is an infinite countable set of variables of type A.128

When two types are different the set of variables of those types are of course disjoint. As129

with constants, we may write xA to make it clear that x is a variable of type A.130

When Σ is a signature, we define the family of simply typed λ-terms over Σ, denoted131

Λ(Σ) = (ΛA(Σ))A∈types(Σ), as the smallest family indexed by types(Σ) so that:132

if cA is in Σ, then cA is in ΛA(Σ),133

xA is in ΛA(Σ),134

if A = B → C and M is in ΛC(Σ), then (λxB .M) is in ΛA(Σ),135

if M is in ΛB→A(Σ) and N is in ΛB(Σ), then (MN) is in ΛA(Σ).136
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The term M is a pure λ-term if it does not contain any constant cA from Σ. When the type137

is irrelevant we write M ∈ Λ(Σ) instead of M ∈ ΛA(Σ). We drop parentheses when it does138

not bring ambiguity. In particular, we write λx1 . . . xn.M for (λx1(. . . (λxn.M) . . . )), and139

M0M1 . . .Mn for ((. . . (M0M1) . . . )Mn).140

The set fv(M) of free variables of a term M is inductively defined on the structure of M :141

fv(c) = ∅,142

fv(x) = {x},143

fv(MN) = fv(M) ∪ fv(N),144

fv(λx.M) = fv(M)− {x}.145

Terms which have no free variables are called closed. We writeM [x1, . . . , xk] to emphasize that146

fv(M) is included in {x1, . . . , xk}. When doing so, we write M [N1, . . . , Nk] for the capture147

avoiding substitution of variables x1, . . . , xk by the terms N1, . . . , Nk. In other contexts,148

we simply use the usual notation M [N1/x1, . . . , Nk/xk]. Moreover given a substitution θ,149

we write M.θ for the result of applying this (capture avoiding) substitution and we write150

θ[N1/x1, . . . , Nk/xk] for the substitution that maps the variables xi to the terms Ni but is151

otherwise equal to θ. Of course, we authorize such substitutions only when the λ-term Ni152

has the same type as the variable xi.153

We take for granted the notions of β-contraction, noted →β , β-reduction, noted
∗→β ,154

β-conversion, noted =β , and β-normal form for terms.155

Consider closed terms of type o that are in β-normal form and that are built on a tree156

signature, they can only be of the form a t1 . . . tn where a is a constant of type on → o and157

t1, . . . , tn are closed terms of type o in β-normal form. This is just another notation for158

ranked trees. So when the type o is meant to represent trees, types of order 1 which have159

the form o → · · · → o → o represent functions from trees to trees, or more precisely tree160

contexts. Types of order 2 are types of trees parametrized by contexts. The notion of order161

captures the complexity of the operations that terms of a certain type describe.162

A term M is said linear if each variable (either bound or free) in M occurs exactly once163

in M . A term M is said syntactically almost linear when each variable in M of non-atomic164

type occurs exactly once in M . Note that, through β-reduction, linearity is preserved but165

not syntactic almost linearity.166

For example, given a tree signature Σ1 with one atomic type o and two constants f of type167

o2 → o and a of type o, the termM = (λy1y2.f y1 (f a y2)) a (f x a) with free variable x of type168

o is linear because each variable (y1, y2 and x) occurs exactly once inM . The termM contains169

a β-redex so: (λy1y2.f y1 (f a y2)) a (f x a) →β (λy2.f a (f a y2)) (f x a) →β f a (f a (f x a)).170

The term f a (f a (f x a)) has no β-redex so it is the β-normal form of M .171

Another example: the term M2 = (λy.f y y) (x a) with free variable x of type o → o is172

syntactically almost linear because the variable y which occurs twice in the term is of the173

atomic type o. It β-reduces to the term M ′2 = f (x a) (x a) which is not syntactically almost174

linear, so β-reduction does not preserve syntactical almost linearity.175

We call a term almost linear when it is β-convertible to a syntactically almost linear176

term. Almost linear terms are characterized also by typing properties (see [16]).177

2.2 Tree Automata178

We present here the classical definition of deterministic bottom-up tree automaton (BOT)179

adapted to our formalism. A BOT A is a tuple (ΣP ,Σ, R) where:180

Σ = (C, {o}, τ) is a first-order tree signature, the input signature,181

ΣP = (P, {o}, τP ) is the state signature, and is such that for every p ∈ P , τP (p) = o.182

Constants of P are called states,183
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R is a finite set of rules of the form a p1 . . . pn → p where:184

p,p1, . . . , pn are states of P ,185

a is a constant of Σ with type on → o.186

An automaton is said deterministic when there is at most one rule in R for each possible187

left hand side. It is non-deterministic otherwise.188

Apart from the notation, our definition differs from the classical one by the fact there are no189

final states, and hence, the automaton does not describe a language. This is due to the fact190

that BOT will be used here purely for look-ahead purposes.191

2.3 High-Order Deterministic top-down tree Transducers192

From now on we assume that Σi is a tree signature for every number i and that its atomic193

type is oi.194

A Linear High-Order Deterministic top-down Transducer with Regular look-ahead195

(HODTRlin) T is a tuple (ΣQ,Σ1,Σ2, q0, R, A) where:196

Σ1 = (C1, {o1}, τ1) is a first-order tree signature, the input signature,197

Σ2 = (C2, {o2}, τ2) is a first-order tree signature, the output signature,198

ΣQ = (Q, {o1, o2}, τs) is the state signature, and is such that for every q ∈ Q, τs(q) is of199

the form o1 → Aq where Aq is in types(Σ2). Constants of Q are called states,200

q0 ∈ Q is the initial state,201

A is a BOT over the tree signature Σ1, the look-ahead automaton, with set of states P ,202

R is a finite set of rules of the form203

q(a−→x )〈−→p 〉 →M(q1x1) . . . (qnxn)204

205

where:206

q, q1, . . . , qn ∈ Q are states of ΣQ,207

a is a constant of Σ1 with type on1 → o1,208

−→x = x1, . . . , xn are variables of type o1, they are the child trees of the root labeled a,209

−→p = p1, . . . , pn are in P (the set of states of the look-ahead A),210

M is a linear term of type Aq1 → · · · → Aqn → Aq built on signature Σ2 + ΣQ.211

there is one rule per possible left-hand side (determinism).212

Notice that we have given states a type of the form o1 → A where A ∈ types(o2). The213

reason why we do this is to have a uniform notation. Indeed, a state q is meant to transform,214

thanks to the rules in R, a tree built in Σ1 into a λ-term built on Σ2 with type Aq. So215

we simply write qM N1 . . . Nn when we want to transform M with the state q and pass216

N1,. . . , Nn as arguments to the result of the transformation. We write ΣT for the signature217

Σ1 + Σ2 + ΣQ. Notice also that the right-hand part of a rule is a term that is built only218

with constants of Σ2, states from ΣQ and variables of type o1. Thus, in order for this219

term to have a type in types(Σ2), it is necessary that the variables of type o1 only occur as220

the first argument of a state in ΣQ. Finally, remark that we did not put any requirement221

on the type of the initial state. So as to restrict our attention to transducers as they are222

usually understood, it suffices to add the requirement that the initial state is of type o1 → o2.223

However, we consider as well that transducers may produce programs instead of first order224

terms.225

The linearity constraint on M affects both bound variables and the free variables226

x1, . . . , xn, meaning that all of the subtrees x1, . . . , xn are used in computing the out-227

put. That will be important for the composition of two transducers because if the first228

transducer fails in a branch of its input tree then the second transducer, applied to that tree,229

must fail too. This restriction forcing the use of input subtrees does not reduce the model’s230
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34:6 Linear High-Order Deterministic Tree transducers with Regular look-ahead

expressivity because we can always add a state q which visits the subtree but only produces231

the identity function on type o2 (this state then has type Aq = o1 → o2 → o2).232

Almost linear high-order deterministic top-down transducer with regular look-ahead233

(HODTRal) are defined similarly, with the distinction that a term M appearing as a right-234

hand side of a rule should be almost linear.235

As we are concerned with the size of the composition of transducers, we wish to re-236

lax a bit the notion of HODTRlin. Indeed, when composing HODTRlin we may have to237

determinize the look-ahead so as to obtain a HODTRlin, which may cause an exponen-238

tial blow-up of the look-ahead. However if we keep the look-ahead non-deterministic, the239

transducer stays deterministic in the weaker sense that only one rule of the transducer240

can apply when it is actually run. For this we adopt a slightly relaxed notion of determ-241

inistic transducer that we call high-order weakly deterministic top-down transducer with242

regular look-ahead (HOWDTRlin). They are similar to HODTRlin but they can have non-243

deterministic automata as look-ahead with the proviso that when q(a x1 . . . xn)〈p1, . . . , pn〉 →244

M [x1, . . . , xn] and q(a x1 . . . xn)〈p′1, . . . , p′n〉 → M ′[x1, . . . , xn] are two distinct rules of the245

transducer then it must be the case that for some i there is no tree that is recognized by246

both pi and p′i. This property guarantees that when transforming a term at most one rule247

can apply for every possible state. Notice that it suffices to determinize the look-ahead so as248

to obtain a HODTRlin from a HOWDTRlin, and therefore the two models are equivalent.249

Given a HODTRlin, a HODTRal or a HOWDTRlin T , we write T :: Σ1 −→ Σ2 to mean250

that the input signature of T is Σ1 and its output signature is Σ2.251

A transducer T induces a notion of reduction on terms. A T -redex is a term of the form252

q(aM1 . . .Mn) if and only if q(a x1 . . . xn)〈p1, . . . , pn〉 → M [x1, . . . , xn] is a rule of T and253

(the β-normal forms of)M1, . . . ,Mn are respectively accepted by A with the states p1, . . . , pn.254

In that case, a T -contractum of q(aM1 . . .Mn) is M [M1, . . . ,Mn]. Notice that T -contracta255

are typed terms and that they have the same type as their corresponding T -redices. The256

relation of T -contraction relates a term M and a term M ′ when M ′ is obtained from M257

by replacing one of its T -redex with a corresponding T -contractum. We write M →T M
′

258

when M T -contracts to M ′. The relation of β-reduction is confluent, and so is the relation259

of T -reduction as transducers are deterministic, moreover, the union of the two relations is260

terminating. It is not hard to prove that it is also locally confluent and thus confluent. It261

follows that →β,T (which is the union of →β and →T ) is confluent and strongly normalizing.262

Given a term M built on ΣT , we write |M |T to denote its normal form modulo =β,T .263

Then we write rel(T ) for the relation:264

{(M, |q0M |T ) | M is a closed term of type o1 and |q0M |T ∈ Λ(Σ2)} .265

Notice that when |q0M |T contains some states of T , as it is usual, the pair (M, |q0M |T )266

is not in the relation.267

Given a finite set of trees L1 on Σ1 and L2 included in ΛAq0 , we respectively write T (L1)268

and T−1(L2) for the image of L1 by T and the inverse image of L2 by T .269

We give an example of a HODTRlin T that computes the result of additions of numeric270

expressions (numbers being represented in unary notation). For this we use an input tree271

signature with type o1, and constants Zo1 , So1 and addo1→o1→o1 which respectively denote272

zero, the successor function and addition. The output signature is similar but different to273

avoid confusion: it uses the type o2 and constants Oo2 , No2→o2 which respectively denote274

zero and successor.275

We do not really need the look-ahead automaton for this computation, so we omit it for276

this example. We could have a blank look-ahead automaton A with one state l and rules:277

A(Z) = l, A(S l) = l, A(add l l) = l; which would not change the result of the transducer.278
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The transducer has two states: q0 of type o1 → o2 (the initial state), and qi of type279

o1 → o2 → o2. The rules of the transducer are the following:280

q0(Z)→ O, q0(S x)→ N(qi xO),281

q0(addx y)→ qi x (qi y O),282

qi(Z)→ λx.x,283

qi(S x)→ λy.N(qi x y),284

qi(addx y)→ λz.qi x (qi y z),285

As an example, we perform the transduction of the following term add(S(S Z))(S(S(S Z))):286

q0(add(S(S Z))(S(S(S Z)))) →T (qi(S(S Z)))(qi(S(S(S Z)))O)
∗→T (λy1.N((λy2.N((λx.x)y2))y1))((λy3.N((λy4.N((λy5.N((λx.x)y5))y4))y3))O)
∗→β N(N(N(N(N O))))

287

The state qi transforms a sequence of n symbols S into a λ-term of the form λx.Nn(x),288

and the add maps both its children into such terms and composes them. The state q0 simply289

applies O to the resulting term.290

Note that our reduction strategy here has consisted in first computing the T -redices291

and then reducing the β-redices. This makes the computation simpler to present. As we292

mentioned above a head-reduction strategy would lead to the same result.293

The order of the HODTRlin T is max{order(Aq) | q ∈ Q}. Before going further, we want294

to discuss how our framework relates to other transduction models. More specifically how295

the notion of order of transformations generalizes the DTOP and MTT transduction models:296

if we relax the constraint of linearity of our transducers, then DTOP and MTT can be297

seen as non-linear transducers of order 0 and 1 respectively. In contrast of these, we chose298

to study the constraint of linearity instead of the constraint of order and, in this paper,299

we will explore the benefits of this approach. Firstly we will explain why increasing the300

order beyond order 3 does not increase the expressivity of neither HODTRlin nor HODTRal.301

Next we will show how HODTRlin and HOWDTRlin both capture the expressivity of tree302

transformations defined by monadic second order logic. Lastly, we will prove that, contrary303

to MTT, the class of HODTRlin transformations is closed under composition, we will give an304

algorithm for computing the composition of HODTRlin and HOWDTRlin, and explain why305

using HOWDTRlin avoids an exponential blow-up in the size of the composition transducer.306

3 Order reduction and expressiveness307

In this section we outline a construction that transforms a transducer of HODTRlin or308

HODTRal into an equivalent linear or almost linear transducer of order ≤ 3. These two309

constructions are similar and central to proving that HODTRlin and HODTRal are respect-310

ively equivalent to Monadic Second Order Transductions from trees to trees (MSOT) and to311

Monadic Second Order Transductions from trees to terms (i.e. trees with sharing) (MSOTS).312

We will later show that there are translations between HODTRlin of order 3 and attribute tree313

transducers with the single use restriction and between HODTRal of order 3 and attribute314

tree transducers. These two models are known to be respectively equivalent to MSOT and315

MSOTS [2].316

The central idea in the construction consists in decomposing λ-termsM into pairs 〈M ′, σ〉317

where M ′ is a pure λ-term and σ is a substitution of variables with the following properties:318

M =β M
′.σ,319

the free variables of M ′ have at most order 1,320

for every variable x, σ(x) is a closed λ-term,321

the number of free variables in M ′ is minimal.322
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In such a decomposition, we call the term M ′ a template. In case M is of type A, linear or323

almost linear, it can be proven that M ′ can be taken from a finite set [15]. The linear case is324

rather simple, but the almost linear case requires some precaution as one needs first to put325

M in syntactically almost linear form and then make the decomposition. Though the almost326

linear case is more technical the finiteness argument is the same in both cases and is based327

on proof theoretical arguments in multiplicative linear logic which involves polarities in a328

straightforward way.329

The linear case conveys the intuition of decompositions in a clear manner. One takes330

the normal form of M and then delineates the largest contexts of M , i.e. first order terms331

that are made only with constants and that are as large as possible. These contexts are332

then replaced by variables and the substitution σ is built accordingly. The fact that the333

contexts are chosen as large as possible makes it so that no introduced variable can have334

as argument a term of the form xM1 . . .Mn where x is another variable introduced in the335

process. Therefore, the new variables introduced in the process bring one negative atom336

and several (possibly 0) positive ones and all of them need to be matched with positive and337

negative atoms in the type of M as, under these conditions, they cannot be matched together.338

This explains why there are only finitely many possible templates for a fixed type.339

I Theorem 1. For all type A built on tree signature Σ, the set of templates of closed linear340

(or almost linear) terms of type A is finite.341

Moreover, the templates associated with a λ-term can be computed compositionally (i.e.342

from the templates of its parts). As a result, templates can be computed by the look-ahead343

of HODTRlin or of HODTRal. When reducing the order, we enrich the look-ahead with344

template information while the substitution that is needed to reconstruct the produced term345

is outputted by the new transducer. The substitution is then performed by the initial state346

used at the root of the input tree which then outputs the same result as the former transducer.347

The substitution can be seen as a tuple of order 1 terms. It is represented as a tuple using348

Church encoding, i.e. a continuation. This makes the transducer we construct be of order 3.349

I Theorem 2. Any HODTRlin (resp. HODTRal) has an equivalent HODTRlin (resp.350

HODTRal) of order 3.351

The proof of this result shows that every HODTRlin (or HODTRal) can be seen as mapping352

trees to tuples of contexts and combining these contexts in a linear (resp. almost linear)353

way. This understanding of HODTRlin and of HODTRal allows us to prove that they are354

respectively equivalent to Attribute Tree Transducers with Single Use Restriction (ATTsur);355

and to Attribute Tree Transducers (ATT). Then, using [2], we can conclude with the following356

expressivity result:357

I Theorem 3. HODTRlin are equivalent to MSOT and HODTRal are equivalent to MSOTS.358

The proof that HODTRlin are equivalent to MSOT could have been simpler by using the359

equivalence with MTT with the single-use restricted property instead of ATT, but we would360

still need to use ATT to show that HODTRal are equivalent to MSOTS.361

4 Composition of HODTRlin362

As we are interested in limiting the size of the transducer that is computed, and even though363

our primary goal is to compose HODTRlin, this section is devoted to the composition of364

HOWDTRlin. Indeed, working with non-deterministic look-aheads allows us to save the365

possibly exponential cost of determinizing an automaton.366
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4.1 Semantic analysis367

Let T1 = (ΣQ,Σ1,Σ2, q0, R1, A1) and T2 = (ΣP ,Σ2,Σ3, p0, R2, A2) be two Linear High-Order368

Weakly Deterministic tree Transducers with Regular look-ahead. The rules of T1 can be369

written: q(a−→x )〈
−→
` 〉 → M (q1 x1) . . . (qn xn) where q, q1, . . . , qn ∈ Q are states of T1,370

−→
` = `1, . . . , `n are states of A1 and the λ-term M is of type Aq1 → · · · → Aqn → Aq. Our371

goal is to build a HOWDTRlin T :: Σ1 → Σ3 that does the composition of T1 and T2, so we372

want to replace a rule such as that one with a new rule which corresponds to applying T2 to373

the term M .374

In order to do so, we need, for each o2 tree in M , to know the associated state ` ∈ L2375

of T2’s look-ahead, and the state p ∈ P of T2 which is going to process that node. So376

with any such tree we associate the pair (p, `). In this case we call (p, `) the token which377

represents the behavior of the tree. In general, we want to associate tokens not only with378

trees, but also with λ-terms of higher order. For example, we map an occurrence of a symbol379

a ∈ Σ2 of type o2 → o2 → o2, whose arguments x1 and x2 (of type o2) respectively have380

look-ahead states `1 and `2 and are processed by states p1 and p2 ∈ P of T2, to the token381

(p1, `1) ( (p2, `2) ( (p, `) where (p, `) is the token of the tree a x1x2 (of type o2). We382

formally define tokens as follows:383

I Definition 4. The set of semantic tokens JAK over a type A built on atomic type o2 is384

defined by induction:385

Jo2K = {(p, `) | p ∈ P, ` ∈ L2} JA→ BK = {f ( g | f ∈ JAK, g ∈ JBK}386

Naturally, the semantic token associated with a λ-term M of type A built on atomic type387

o2 will depend on the context where the term M appears. For example a tree of atomic type388

o2 can be processed by any state p ∈ P of T2, and a term of type A→ B can be applied to389

any argument of type A. But for any such M taken out of context, there exists a finite set390

of possible tokens for it. For example, a given tree of type o2 can be processed by any state391

p ∈ P depending on the context, but it has always the same look-ahead ` ∈ L2.392

In order to define the set of possible semantic tokens for a term, we use a system of393

derivation rules. The following derivation rules are used to derive judgments that associate394

a term with a semantic token. So a judgment Γ ` M : f associates term M with token f ,395

where Γ is a substitution which maps free variables in M to tokens. The rules are:396

p(a−→x )〈`1, . . . , `n〉
T2−→ M(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1)( · · ·( (pn, `n)( (p, `)
397

398 Γ1 `M : f ( g Γ2 ` N : f

Γ1,Γ2 `M N : g
399

400 Γ, xA : f `M : g

Γ ` λxA.M : f ( g

f ∈ JAK
xA : f ` xA : f

401

Using this system we can derive, for any termMA, all the semantic tokens that correspond402

to possible behaviours of MA when it is processed by T2.403

4.2 Unicity of derivation for semantic token judgements404

We will later show that we can compute the image of M from the derivation of the judgement405

`M : f , assuming that f is the token that represents the behaviour of T2 on M . But before406

that we need to prove that for a given term M and token f the derivation of the judgement407

`M : f is unique:408
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I Theorem 5. For every type A, for every term M of type A and every token f ∈ JAK, there409

is at most one derivation D ::`M : f .410

This theorem relies in part on the fact that tokens form a coherent space, as introduced411

by Girard in [14], the proof is detailed in the appendix.412

Now that we have shown that there is only one derivation per judgement `M : f , we are413

going to see how to use that derivation in order to compute the term N that is the image of414

M by transducer T2.415

4.3 Collapsing of token derivations416

We define a function (we call it collapsing function) which maps every derivation D :: `M : f417

to a term D which corresponds to the output of transducer T2 on term M assuming that M418

has behaviour f .419

I Definition 6. Let D be a derivation. We define D by induction on D, there are different420

cases depending on the first rule of D:421

If D is of the form:422

p(a−→x )〈`1, . . . , `n〉
T2−→ N(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1)( · · ·( (pn, `n)( (p, `)
423

then D = N ,424

if D is of the form:425

D1 :: Γ1 ` N1 : f ( g D2 :: Γ2 ` N2 : f

Γ1,Γ2 ` N1N2 : g
426

then D = D1D2,427

if D is of the form:428

D1 :: Γ, xA : f ` N : g

Γ ` λxA.N : f ( g
429

then D = λx.D1,430

if D is of the form:431

f ∈ JAK
xA : f ` xA : f

432

then D = xf .433

We can check that, for all derivation D ::` M : f , the term D is of type f given by:434

(p, `) = Ap and f ( g = f → g.435

Now that we have associated, with any pair (M,f) such that f is a semantic token of436

term M , a term N = D which represents the image of M by T2, we need to show that437

replacing M with N in the computation of transducers leads to the same results.438

4.4 Construction of the transducer which realizes the composition439

We recall some notations: T1 = (ΣQ,Σ1,Σ2, q0, R1, A1) and T2 = (ΣP ,Σ2,Σ3, p0, R2, A2) are440

two HOWDTRlin, Q = {q1, . . . , qm} is the set of states of T1 and, for every state qi ∈ Q, we441

note Aqi the type of qi(t) when t is a tree of type o1. For all type A built on o2, the set of442

tokens of terms of type A is noted JAK and is finite.443
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Previously, we saw how to apply transducer T2 to terms M of type A built on the444

atomic type o2, so we can apply T2 to terms which appear on the left side of rules of T1:445

q(a−→x )〈
−→
` 〉 →M (qi1 x1) . . . (qin xn) . In a rule such as this one, in order to replace term M446

with term N = D where D is the unique derivation of the judgement `M : f , we need to447

know which token f properly describes the behaviour of T2 on M . The computation of that448

token is done in the look-ahead automaton A of T .449

We define the set of states of A as: L = L1 × JAq1K× · · · × JAqmK450

With any tree t (of type o1) we want to associate the look-ahead of T1 on t and, for each451

state qi ∈ Q of T1, a token of qi(t). The transition function of the look-ahead automaton A452

is defined by, for all (`1, f1,1, . . . , f1,n), . . . , (`n, fm,1, . . . , fm,n) ∈ L:453

a (`1, f1,1, . . . , f1,m) . . . (`n, fn,1, . . . , fn,m)
A→ (`, f1, . . . , fm)454

where a `1 . . . `n
A1→ ` and, for all state qi ∈ Q, fi is such that in T1 there exists a rule455

qi(a
−→x )〈`1, . . . , `n〉

T1→M (qi1 x1) . . . (qin xn) and a derivation of the judgement `M : f1,i1 (456

· · · ( fn,in ( fi. Note that this look-ahead automaton is non-deterministic in general,457

but the transducer is weakly deterministic in the sense that, at each step, even if several458

look-ahead states are possible, only one rule of the transducer can be applied.459

We define the set of states Q′ of transducer T by:460

Q′ = {(q, f) | q ∈ Q, f ∈ JAqK} ∪ {q′0}461

Then we define the set R of rules of transducer T as the set of rules of the form:462

(q, f)(a−→x )〈(`1, f1,1, . . . , f1,m), . . . 〉 T→ D ((qi1 , f1)x1) . . . ((qin , fn)xn)463

such that there exists in T1 a rule: q(a−→x )〈`1, . . . 〉
T1→ M (qi1 x1) . . . (qin xn) and D is a464

derivation of the judgement `M : f1,i1 ( · · ·( fn,in ( f .465

Because of Theorem 5 proved in the appendix, that set of rules is weakly deterministic.466

To that set R we then add rules for the initial state q′0, which simply replicate the rules of467

states of the form (q0, (p0, `)): for all a ∈ Σ1, all (`1, f1,1, . . . , f1,m), . . . , (`n, fn,1, . . . , fn,m) ∈468

L and all rule in R of the form:469

(q0, (p0, l))(a
−→x )〈(`1, f1,1, . . . , f1,m), . . . 〉 T→M ((q1, f1)x1) . . . ((qn, fn)xn)470

where p0 is the initial state of T2 and l ∈ L2 is a state of the look-ahead automaton of471

T2, we add the rule :472

q′0(a−→x )〈(`1, f1,1, . . . , f1,m), . . . 〉 T→M ((q1, f1)x1) . . . ((qn, fn)xn)473

This set R of rules is still weakly deterministic according to Theorem 5.474

We have thus defined the HOWDTRlin T = (ΣQ′ ,Σ1,Σ3, q
′
0, R, A).475

I Theorem 7. T = T2 ◦ T1476

Finally, we will analyze the complexity of this algorithm and show that using the477

algorithm on HOWDTRlin instead of HODTRlin avoids an exponential blow-up of the size478

of the produced transducer.479

First the set of states Q′ of T is of size |Q′| = 1 + Σq∈Q|JAqK| where |JAqK| is the number480

of tokens of type Aq. |JAqK| = (|P | |L2|)|Aq| where |P | is the number of states of transducer481

T2, |L2| is the number of states of the look-ahead automaton of transducer T2 and |Aq| is482

the size of the type Aq. So the size of Q′ is O(Σq∈Q(|P | |L2|)|Aq|), that is a polynomial in483

the size of T2 to the power of the size of types of states of T1.484

It is important to note that the set JAqK of tokens of type Aq is where HOWDTRlin and485

HODTRlin differ in their complexity: the deterministic alternative to the weakly deterministic486

T would require to store with the state not a single token, but a set of two-by-two coherent487

tokens, that would bring the size of Q′ to 1 + Σq∈Q2|JAqK| which would be exponential in the488

size of T2 and doubly exponential in the size of types of T1.489
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Then there is the look-ahead automaton: its set of states is L = L1× JAq1K× · · · × JAqmK.490

So the number of states is in O(|L1| (|P | |L2|)Σq∈Q|Aq|). The size of the set of rules of the491

look-ahead automaton is in O(Σa(n)∈Σ1
|L|n+1) where n is the arity of the constant a(n).492

Finally there is the set R of rules of T . For every judgement `M : f1,i1 ( · · ·( fn,in (493

f , finding a derivation D of that judgement and computing the corresponding D is in O(|M |2)494

time where |M | is the size of M . The number of possible rules is in O(Σa(n)∈Σ1
(|Q′|)n+1).495

So computing R is done in time O(|R|2 Σa(n)∈Σ1
(|Q′|)n+1) where R is the set of rules of T1.496

With a fixed input signature Σ1, the time complexity of the algorithm computing T is a497

polynomial in the sizes of T1 and T2, with only the sizes of types of states of T1 as exponents.498

Note that, as our model generalizes other classes of transducers, it is possible to perform499

their composition in our setting. Thanks to results of Theorem 2, it is then possible to reduce500

the order of the result of the composition, and obtain a HODTRlin that can be converted501

back in those other models. This methods gives an important insight on the composition502

procedure for those other formalisms.503

In comparison, the composition algorithms for equivalent classes of transductions are504

either not direct or very complex as they essentially perform composition and order reduction505

at once. For instance, composition of single used restricted MTT is obtained through MSO506

([11]). High-level tree transducers [12] go through a reduction to iterated pushdown tree507

transducers and back. The composition algorithm for Streaming Tree Transducers described508

in [1] is direct, but made complex by the fact that the algorithm hides this reduction of order.509

The double-exponential complexity of composition of HODTRlin compares well to the510

non-elementary complexity of composition in equivalent non-MSOT classes of transducers.511

Although the simple exponential complexity of composition in MSOT is better, we should512

account for the fact that the MSOT model does not attempt to represent the behavior of513

programs.514

5 Conclusion and future work515

In this paper we have presented a new mechanical characterization of Monadic Second Order516

Transductions. This characterization is based on simply typed λ-calculus which allows us to517

generalize with very few primitives most of the mechanisms used to compute the output in518

the transducer literature. The use of higher-order allows us to propose an arguably simple519

algorithm for computing the composition of linear higher-order transducers which coincide520

with MSOT. The correctness of this algorithm is based on denotation semantics (coherence521

spaces) of λ-calculus and the heart of the proof uses logical relations. Thus, the use of522

λ-calculus allows us to base our work on standard tools and techniques rather than developing523

our own tools as is often the case when dealing with transducers. Moreover, this work sheds524

some light on how composition is computed in other formalisms. Indeed, we argue that for525

MTTsur, STT, or ARRsur, the composition must be the application of our composition526

algorithm followed by the order reduction procedure that we use to prove the equivalence527

with logical transductions.528

The notion of higher-order transducer has already been studied [12, 19, 17], however,529

there is still some work to be done to obtain direct composition algorithms. We plan to530

generalize our approach of the linear case to the general one and devise a semantic based531

partial evaluation for the composition of higher-order transducers.532
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A Order reduction572

A.1 Templates573

A.1.1 Linear templates574

Proof of Theorem 1575

In order to show that the set of linear templates of a given type A is finite, we use notions576

and properties defined in [16]: the definitions of positive and negative subtype occurrences577

and subpremises in A and what it entails in the structure of terms of type A.578

For any type A, we can label occurrences of subtypes in A as positive or negative using579

the following rules:580

A is positive, we note it A+,581

if B → C is a positive subtype of A then B is negative and C is positive, we note it582

(B− → C+)+,583

if B → C is a negative subtype of A then B is positive and C is negative, we note it584

(B+ → C−)−.585

For example, if A = ((o → o) → (o → o)) → ((o → o) → (o → o)) is a type built586

on the atomic tree type o, then we can label occurrences of subtypes of A as follows:587

((o− → o+)+ → (o+ → o−)−)− → ((o+ → o−)− → (o− → o+)+)+.588

So, for all subtype occurrence A′ = A1 → . . . An → o, if A′ is positive then A−1 →589

. . . A−n → o+, if A′ is negative then A+
1 → . . . A+

n → o−.590

With any closed linear term M in β-normal form of type A we associate a bijection from591

the set of positive occurrences of the atomic type o in A to the set of negative occurrences of592

the atomic type o in A, we call it the trace of M and note it Θ(M).593

We show how to compute Θ(M) on an example. To a term M = λy1y2y3.y1 (λy4.y2 y4) y3594

of type A = ((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+ we have:595
596

M = λy1y2y3. y1

λy4. y2

y4

y3 ⇒ (( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

597

The trace is computed by induction on M :598

599

First M introduces y1,y2 and y3: (( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y1 y2 y3
600

Then, because y1 is the head variable of M , the output type of M corresponds to the output601

type of y1:602
603

(( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y1 y2 y3

604

Then in the arguments of y1 we introduce y4 and we have two terms of type o+ to match605
606

with output types o− of variables: (( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y4 y2 y3

607

608

Those are mapped to y2 and y3: (( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y4 y2 y3

609

610
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Finally the argument of y2 is y4: (( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y4

611

This is how we compute the trace of a linear term in linear normal form. The function612

which associates a trace with any linear term in linear normal form is injective, and it is613

possible, given a trace Θ(M), to compute the term M . For example:614

(( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y1
y2

y3y4

⇒

λy1y2y3. y1

λy4. y4 y2

y3
615

(( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y1
y2

y3

y4

⇒

λy1y2y3. y2

y1

λy4. y4 y3
616

However injective, the Θ function is not surjective in general, meaning there are bijections617

from positive to negative atomic subtype occurrences that do not correspond to any term.618

For example, for type A = ((o→ o)→ o→ o)→ (o→ o)→ o→ o, there are only 3 terms in619

linear normal form of type A, and only 3 corresponding traces (the three examples we have620

shown so far). Any other bijection between positive and negative atomic subtype occurrences621

is not a trace either because it binds622

623

variable y4 outside of its scope:
(( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y2y4

624

625

or because some variable
would not appear in the term: (( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

y3
626

The consequence of this is that the number of closed linear terms in linear normal form627

of a given type A is bounded by the number of bijections between A’s sets of positive and628

negative atomic subtype occurrences. In order to have a bound on the number of linear629

templates of a type, we extend the trace function from closed linear terms to linear terms630

with free variables which represent tree contexts, i.e. with type of the form on → o. Again631

we show how it works on an example: the template M = λy1y2y3.C1 (y1 (λy4.y2 y4)C2) y3632

with tree contexts C1 and C2 of respective types o→ o→ o and o,633
634

M = λy1y2y3. C1

y1 y3

λy4. y2 C2

y4

⇒ (( o− → o+ )→ o+ → o− )→ ( o+ → o− )→ o− → o+

C1 : o+ → o+ → o−C2 : o−

y1

y2

y3
y4

635

Naturally, the free variables provide new atomic subtype occurrences and the positivity636

and negativity of those are computed as if C1 and C2 were variables like y2 and y3. If a637
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tree context is of the form on → o then it has 1 negative and n positive atomic subtype638

occurrences.639

In order to show that the set of linear templates of a type is finite, we use the fact that640

templates are minimal decompositions: it means that there can not be a tree context that641

is directly applied to another tree context. This implies that, in the trace of a template, a642

positive atomic subtype occurrence of a tree context can not be mapped to a negative atomic643

subtype occurrence in a tree context. Since there is exactly one negative atomic subtype644

occurrence per tree context, the number of tree contexts in a template of type A is bounded645

by the number of positive atomic subtype occurrences in A. On the other hand, the number646

of positive atomic subtype occurrences in the tree contexts is bounded by the number of647

negative atomic subtype occurrences in A. So, for any given type A, the number of tree648

contexts of a linear template is bounded, the arity n of these tree contexts is bounded and,649

for each tree contexts setting, the number of traces (and therefore the number of templates)650

is bounded. Consequently, for all type A the number of linear templates of type A is bounded651

(by nn where n is the size of type A).652

A.1.2 Almost linear templates653

Before we get to almost linear templates, we need to introduce η-contraction and η-long form654

for terms. An η-redex is a term of the form (λx.(M x)) when x /∈ fv(M) and its η-contractum655

is the term M . The relation of η-contraction, →η, η-reduction,
∗→η, and η-conversion, =η,656

are defined similarly to β-contraction. So as to compare λ-terms, we use the union of657

β-contraction and η-contration, →βη. But this can be done by putting terms in a particular658

form: the η-long form. A term M is said to be in η-long form whenever if N is a subterm659

of M that has type A → B then either N is of the form λx.N ′, or its occurrence in M is660

applied to some argument. For every term M there is a term M ′ in η-long form such that661

M =η M
′ and moreover M =βη N iff given M ′ and N ′ that are η-long forms of M and N ,662

M ′ =β N
′.663

In the case of almost linear templates, we first define an almost linear normal form for664

terms that are equivalent to almost linear terms. For this we use results by M. Kanazawa665

[16] (2012) on almost affine lambda terms. Note that these results are applicable to both666

almost affine and almost linear terms. This report characterizes almost linear terms as terms667

that have the negatively non-duplicated property, consequently almost linear terms are terms668

that are both non-erasing (each bound variable is used at least once) and have the negatively669

non-duplicated property.670

The other result of that paper we are using is a lemma (Lemma 8 page 13), which, for every671

negatively non-duplicated term M in η-long β-normal form, builds, through a deterministic672

procedure, an almost affine term M ′ that β-reduces to M . The way M ′ is computed from673

M is by successively factorizing variables y that are not of atomic type but occur at several674

places in M . For any such variable y, the negatively non-duplicated property implies that675

there are terms N1, . . . , Nm such that y always occurs in a term y N1 . . . Nm of atomic type676

in M ; then there is a subterm My of M containing all occurrences of y N1 . . . Nm, that term677

My is β-equivalent to the term (λy′.M ′y) (y N1 . . . Nm) where M ′y = My[y N1 . . . Nm/y
′]. By678

replacing My with (λy′.M ′y) (y N1 . . . Nm) in M we remove the copying of the non atomic679

variable y and instead have the copying of variable y′ which is of atomic type. By applying680

this process to every copied variable of non-atomic type in M we get the almost linear term681

M ′ β-equivalent to M .682

With any term M equivalent to an almost linear term, we associate the almost linear683

term M ′ obtained by applying that process to the η-long β-normal form of M . Since two684
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equivalent terms M1 and M2 have the same η-long β-normal form, they are associated with685

the same almost linear term M ′. Therefore we have a normal form for all term that is686

equivalent to an almost linear term, we call it the almost linear normal form.687

Once we have the almost linear normal form, we can apply the same reasoning as the688

one for linear templates. Because of the process of factorizing copied non-atomic variables,689

almost linear templates can be more complex than linear ones. But since the number of690

distinct non-atomic variables in a term M is bounded by the size of the type of M , the691

number of almost linear templates of a type A is bounded by ntemplates ∗ (nfact)
nvar where692

ntemplates is the number of linear templates of type A, nfact is a bound on the number of693

templatewise distinct possible factorizations of a non-atomic variable (i.e. two factorizations694

are templatewise distinct only if the templates of the factorized terms are distinct) and nvar695

is a bound on the number of non-atomic variables. We saw before that ntemplates ≤ nn where696

n is the size of the type A. The number of non-atomic variables is bounded by the size n of697

the type A. The template of a factorized term only depends on at which subterm My of M698

the factorization happens, and the number of templatewise distinct such My is bounded by699

the size of the template, so nfact ≤ 2n. Therefore the number of almost linear templates of700

a given type A of size n is bounded by n2n.701

A.2 Effective order reduction702

We will use the following notation: if a λ-term M is associated to the decomposition 〈M ′, σ〉703

where M ′ is a template and σ a substitution of the free variables in M ′, then we note704

T(M) = (M ′, (σ(y1), . . . , σ(yn))) where y1, . . . , yn are the free variables in M . In this case705

we allow = to mean equal up to renaming of free variables. For all type A we note t〈A〉 the706

set of templates of terms of type A.707

A.2.1 Linear case708

Before proving theorem 2 we first prove a useful lemma:709

I Lemma 8. LetM [x1, . . . , xn] be a linear term built on signature Σ1 with typed free variables710

xA1
1 , . . . , xAnn , let t1, . . . , tn be linear templates of x1, . . . , xn. Then there is a linear template711

t and tree contexts C1, . . . , C` with free variables y1,1, . . . , y1,`1 , . . . , yn,1, . . . , yn,`n such that,712

for all linear terms N1, . . . , Nn with T(Ni) = (ti, (Ci,1, . . . , Ci,`i)) for all i :713

T(M [x1/N1, . . . , xn/Nn]) = (t, (C1, . . . , C`)[yi,j/Ci,j ]i≤n,j≤`i)714

Proof. For all i ≤ n: Ni =βη ti[yi,1/Ci,1, . . . , yi,`i/Ci,`i ], where yi,1, . . . , yi,`i are the free715

variables of ti, because T(Ni) = (ti, (Ci,1, . . . , Ci,`i)). Then we define t and (C1, . . . , C`)716

as the template and tree-contexts of the λ-term M [x1/t1, . . . , xn/tn] on the signature Σ ∪717

{yi,j}i≤n,j≤`i (it is a tree signature because variables yi,j are tree-contexts and therefore of718

order at most 1 ). Consequently :719

M [x1/N1, . . . , xn/Nn] = M [x1/t1, . . . , xn/tn][yi,1/Ci,1, . . . , yi,`i/Ci,`i ]720

= t[z1/C1, . . . , z`/C`][y1,1/C1,1, . . . , yn,`n/Cn,`n ]721
722

and so :723

T(M [x1/N1, . . . , xn/Nn]) = (t, (C1, . . . , C`)[yi,j/Ci,j ]i≤n,j≤`i)724

J725
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Now we can prove theorem 2 in the linear case:726

Proof. Let T = (ΣQ,Σ1,Σ2, q0, R, A) be a HODTRlin. We note L the set of states of A. We727

want to define a HODTRlin T
′ = (ΣQ′ ,Σ1,Σ2, q

′
0, R

′, A′) of order 3 equivalent to T .728

We start by defining the look-ahead automaton A′ and its set of states L′ = L ×729

t〈Aq0〉 . . . t〈Aqm〉 where Aq0 , . . . , Aqm are the output type of the states in Q and t〈A〉 is the730

set of templates of type A. So this look-ahead associates, with every input tree N , the731

look-ahead A on tree N and, for each state qi, the template of qi(N). Lemma 8 shows how732

to compute the template of a term M [x1, . . . , xn] using the templates of x1, . . . , xn, then we733

define the rules of A′ accordingly so that, for all input tree N , the state of the look-ahead A′734

on tree N is (l, t0, t1, . . . , tm) where l is the look-ahead of A on N and, for all i ≤ m, ti is735

the template of qi(N). We prove this by induction on the input tree, the induction step is a736

direct application of lemma 8.737

Then we define the set of states Q′ of T ′ : Q′ = {(qi, t) | qi ∈ Q, t ∈ t〈Aqi〉} ∪ {q′0}.738

We will now define the rules in R′ so that, for all qi ∈ Q, t ∈ t〈Aqi〉 and for all input739

tree N : (qi, t)(N) = (C1, . . . , C`) (using continuations to represent the tuple) such that740

T(qi(N)) = (t, (C1, . . . , C`)). For all state (qi, t) ∈ Q′, input tree constant f of arity n, input741

tree variables x1, . . . , xn and their look-ahead states l1, . . . , ln in L and l′1, . . . , l′n in L′, and742

for all rule in R of the form : qi(f x1 . . . xn)〈l1, . . . , ln〉 →M [x1, . . . , xn] where variable x1 is743

processed by state qi1 , x2 by qi2 and so on, we add the following rule in R′ :744

(qi, t) (f x1 . . . xn)〈l′1, . . . , l′n〉 →745

λk.(qi1 , t1)x1 (λy1,1, . . . y1,`1 . . . . (qin , tn)xn (λyn,1 . . . yn,`n .k C1 . . . C`) . . . )746
747

This is a way of setting variables y1,1, . . . , y1,`1 to the tree contexts (C1,1, . . . , C1,`1) =748

(qi1 , t1) (x1), it is necessary because using a projection on the tuple every time a tree context749

C1,i is used would break linearity.750

The output type of such a state (qi, t) is (A1 → . . . A` → o)→ o where o is the atomic751

output tree type and Ai is the type of the i-th free variable of t, then, since the order of one752

of the Ai is at most 1, the order of the output type of (qi, t) is at most 3. So the order of T ′753

is at most 3.754

Note that if state q0 has output type o, the only template for that type is the term x755

where x is a free variable of type o. Then for the initial state q′0 of output type o, we add756

special rules in R′. For all rule already in R′ of the form : (q0, t)(f x1 . . . xn)〈
−→
` 〉 → (C1)757

where (C1) is the unary tuple of type (o→ o)→ o containing the tree C1 of type o, we add758

the rule : q′0(f x1 . . . xn)〈
−→
` 〉 → C1.759

For all qi ∈ Q, t ∈ t〈Aqi〉 and for all input tree N such that T(qi(N)) = (t, (C1, . . . , C`)):760

(qi, t)(N) →∗R′ (C1, . . . , C`); we prove this by induction on the input tree N . Again the761

induction is a direct application of Lemma 8.762

Finally we conclude by applying this property to state q0 ∈ Q and template x ∈ t〈o〉, and763

replacing the first rule applied to (q0, x) by the corresponding rule on q′0.764

J765

A.2.2 Almost linear case766

We first prove the equivalent of lemma 8 for the almost linear case :767

I Lemma 9. Let M [x1, . . . , xn] be an almost linear term on signature Σ1 with typed free768

variables xA1
1 , . . . , xAnn , let t1, . . . , tn be almost linear templates of x1, . . . , xn. Then there is769
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an almost linear template t and tree contexts C1, . . . , C` with free variables y1,1, . . . , yn,`n770

such that, for all almost linear terms N1, . . . , Nn with T(Ni) = (ti, (Ci,1, . . . , Ci,`i)) for all i :771

T(M [x1/N1, . . . , xn/Nn]) = (t, (C1, . . . , C`)[yi,j/Ci,j ]i≤n,j≤`i)772

Proof. The key to this proof is to notice that the property of being an almost linear λ-term773

is preserved by substitution of variables with almost linear λ-terms and by βη-equivalence.774

It ensures that the term M [x1/N1, . . . , xn/Nn] is βη-equivalent to an almost linear λ-term.775

The rest of the proof works like that of lemma 8.776

J777

Then the order reduction theorem for almost linear transducers (theorem 2) is proven778

similarly to the linear case, but using lemma 9 as the almost linear extension of lemma 8.779

B Equivalence with MSOT and MSOTS780

B.1 Definition of ATT781

Attribute grammars [13] are ways to formalize a class of syntax directed translation based782

on context free grammar. They amount to equip a context-free grammar with semantics783

attributes that propagate along the abstract syntax tree. These semantics attributes are784

synthesized when their value is propagated bottom-up and inherited when they are propagated785

top-down.786

Attributed tree transducers, as defined by [2, 13], correspond to the combination of a787

relabeling attribute grammar and an attribute grammar whose attributes are trees. The788

relabeling simulates both the finite state control and the look-ahead automaton of usual789

transducers. In our setting, they can be seen as HODT with look-ahead whose rules are of790

the form q(a x1 . . . xn)→ b q1(x1) . . . qn(xn), where a ∈ Σ, b ∈ ∆ and a and b have the same791

arity. We call REL the class of transductions defined this way.792

Formally, an attributed tree transducer from the input alphabet Σ to the output alphabet793

∆ is a tuple (Σ,∆, S, I, out, R, root) where:794

Σ is the input alphabet,795

∆ is the output alphabet,796

S and I are the finite set of respectively synthesized and inherited attributes,797

out ∈ S, the meaning attribute,798

R, the rules, is a function that maps elements a of Σ of arity n to equations of the form799

(α, i) = M(α1, i1) . . . (αk, ik) for every (α, i) in (S × {0} ∪ I × [1, n]) where M is a linear800

λ-term of type ok → o built on the signature ∆ and where (αj , ij) are pairwise distinct801

constants that have atomic type and where αj is in S ∪ I and ij is in [0, n].802

root, the initialization of inherited attributes which maps elements a of Σ to equations of803

the form (α, 0) = M(α1, 0) . . . (αk, 0) for every α in I, where M is a linear λ-term of type804

ok → o built on the signature ∆ and, for all j ≤ k, (αj , 0) is a constant of atomic type805

and αj is in S ∪ I.806

Now given an input tree N built on signature Σ, we let VN be the set of paths of N that807

is inductively defined by, for N = aN1 . . . Nn: VN = {ε} ∪
⋃n
i=1{i.u | u ∈ VNi}. For u in808

VN , we write N �u for the subterm of N that is at path u and which is defined as N �ε= N ,809

(aN1 . . . Nn) �iu= Ni �u. For u in VN , we let labN (u) be the constant a in Σ such that810

N �u= aN1 . . . Nn. Consider v in VN�u , we have that (N �u) �v= N �uv. Therefore the811

operation that appends u in front of an element of VN�u defines an injection from VN�u into812

VN that preserves the designated term.813
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The attribute transducer associates with each element of VN a set of attributes. Formally,814

it builds a set of equations whose left-hand side belong to A(N) = (S ∪ I) × VN . We815

call the elements of A(N) attribute instances or simply attributes of N when the context816

is clear. For u ∈ VN , the subset Au(N) = {(α, u) | α ∈ S ∪ I} is the set of attributes817

associated with N at path u. For each attribute (α, v) ∈ A(N �u) we define u.(α, v) as the818

attribute (α, uv) ∈ A(N). Given a set of attribute instances S, we write u.S for the set819

{(α, uv) | (α, v) ∈ S}. Then the following identity holds u.Av(N �u) = Auv(N).820

The attribute transducer associates an equation with every attribute (α, u) of A(N) as821

follows. If an equation E(α,i) ∈ R(a) is of the form (α, i) = M(α1, i1) . . . (αn, in) then, for822

all path u ∈ VN such that labN (u) = a, the equation (α, u.i) = M(α1, u.i1) . . . (αn, u.in) is823

the equation for the attribute (α, u.i) and is noted u.E(α,i). The operation u. on equations824

naturally extends to sets of equations. We note Equ(N) the set of equations u.R(labN (u)),825

and Equ↓(N) the set of equations
⋃
v∈VN�u

Equv(N). Then the set of equations associated826

with N (noted Eq(N)) is Eq(N) = Eqε↓(N) =
⋃
u∈VN Equ(N). The complete set of equations827

of N (noted CEq(N)) is CEq(N) = root(labN (ε)) ∪ Eq(N). We will also use the notation828

CEqu↑(N) for the set CEq(N) \ Equ↓(N) for all u ∈ VN .829

We represent the way attributes depend on each other using graph as follows. With an830

equation E(α,i) ∈ R(a) of the form (α, i) = M(α1, i1) . . . (αn, in) we associate the directed831

graph G(E(α,i)) whose set of vertices is V = {(α, i), (α1, i1), . . . , (αn, in)} and set of edges832

is E = {((α, i), (αj , ij)) | j ∈ [1, n]}. Define the operation of non-disjoint union of graphs833

whose sets of vertices are not necessarity disjoint as follows: for all graphs G1 = (V1, E1)834

and G2 = (V2, E2), G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). For all set Eq of equations we define835

the graph G(Eq) associated with the set of equations Eq as
⋃
E∈Eq G(E). We define the836

operation u. on such graphs by: u.G(Eq) = G(u.Eq). The dependency graph and complete837

dependency graph of N are G(Eq(N)) and G(CEq(N)) respectively, and they are noted838

D(N) and CD(N) respectively. Similarly, we will use the notations Du↓(N) for the graph839

G(Equ↓(N)) and CDu↑(N) for the graph G(Equ↑(N)).840

Note that in D(N), there are no edges pointing to inherited attributes of the root node841

of N (attributes in I × {ε}).842

When CD(N) is acyclic, the attribute grammar is said non-circular on N and we note843

Ord(CD(N)) the set of its topological sorts (i.e. the total orders which embed into the844

partial order on nodes induced by the acyclic graph CD(N)). In that case, we can associate845

with every attribute of N a tree built on ∆ by applying the equations in CEq(N). Indeed,846

a topological sort of the acyclic graph CD(N) gives an order in which we can evaluate847

the attributes of N , i.e. associate with them a term built on ∆. Then the tree associated848

with the attribute (out, ε) is the result of the attribute tree transducer. An attribute tree849

transducer is said non-circular when for every N , CD(N) is acyclic. We note ATT the class850

of transductions that are defined by Attribute Tree Transducers. When moreover for every851

N the dependency graph is a tree, the Attribute Tree Transducer is said single use restricted.852

We note ATTsur the class of transductions that are defined by single use restricted Attribute853

Tree Transducers.854

I Theorem 10. [2]855

We have the following equivalences:856

REL ◦ATT = MSOTS,857

REL ◦ATTsur = MSOT ,858
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B.2 REL ◦ATT ⊆ HODTRal and REL ◦ATTsur ⊆ HODTRlin859

In this part we want to prove that the composition of a relabeling attribute grammar with860

an attributed tree transducer can be modeled by a HODTRal, and that if the attributed tree861

transducer is single use restricted then the translated HODTRal is a HODTRlin.862

The order in which the attributes are computed is important, in that regard we need a863

few more definitions.864

B.2.1 Definitions and notations865

For all tree N , we note CD>(N) the graph obtained from CD(N) by adding a vertex noted >866

and an edge ((out, ε),>), and, for all u ∈ VN , we note CD>u↑(N) the graph obtained similarly867

from CDu↑(N) by adding a vertex > and an edge ((out, ε),>). We note A>(N) = {>}∪A(N)868

and, for all path u ∈ VN , A>u (N) = {>} ∪Au(N).869

We use the convention that u.> = u−1.> = >.870

For all graph G = (V,E) and set V ′, we note tr(G)|V ′ the subgraph of the transitive871

closure of G induced by V ′ ∩ V .872

I Lemma 11. For all graphs G1 = (V1, E1) and G2 = (V2, E2) and set V , if V1 ∩ V2 ⊆ V ,873

then tr(G1 ∪G2)|V = tr(tr(G1)|V ∪G2)|V .874

Proof. The set of vertices of both tr(G1 ∪G2)|V and tr(tr(G1)|V ∪G2)|V is V ∩ (V1 ∪ V2).875

For all vertices x and y, if there is in tr(G1)|V a path from x to y there exists a path876

from x to y in G1. Then for all path in tr(G1)|V ∪G2 from x to y there is a path from x to877

y in G1 ∪G2. So, for all edge (x, y) in the graph tr(tr(G1)|V ∪G2)|V there is an edge (x, y)878

in tr(G1 ∪G2)|V .879

Let (x, y) ∈ V 2 be an edge of the graph tr(G1 ∪G2)|V , then there is a path w from x to880

y in G1 ∪G2. This path can be written w = w1 . . . wn where w1, . . . , wn are paths in either881

G1 or G2 and, for all i ≤ n− 1, if wi is a path in G1 then wi+1 is a path in G2 and if wi is882

a path in G2 then wi+1 is a path in G1. Then, for all i ≤ n− 1, the end vertex of path wi883

is in V1 ∩ V2. Since V1 ∩ V2 ⊆ V and x and y are in V , all start and end vertices of paths884

w1, . . . , wn are in V . Then for all path wi in tr(G1)|V there is a path w′i with same start and885

end vertices in the graph G1. Therefore, noting w′i = wi if wi is a path in G2 but not G1 for886

all i ≤ n, w′1, . . . , w′n is a path from x to y in tr(G1)|V ∪G2. So there is an edge (x, y) in the887

graph tr(tr(G1)|V ∪G2)|V . J888

I Definition 12. For all tree path u ∈ VN , we define the synthesis graph of path u in N ,889

noted GSu(N), as the graph u−1.(tr(Du↓(N))|Au(N)
).890

For all tree path u ∈ VN , we call the inheritance graph of path u in N , noted GIu(N),891

the graph u−1.(tr(CD>u↑(N))|V ′ ) where V ′ is the subset of A>u (N) of vertices connected to892

the vertex > in the graph CD>u↑(N).893

For every tree N and path u ∈ VN , the sets of nodes of GSu(N) and GIu(N) are Aε(N �u)894

and A>ε (N �u) respectively, since these sets are not dependent on the tree N or the path u895

we simply note them Aε = (S ∪ I)× {ε} and A>ε = {>} ∪Aε respectively.896

I Lemma 13. For all u ∈ VN , the edges of the graph GSu(N) are of the form ((α, ε), (γ, ε))897

with α ∈ S ∪ I and γ ∈ S.898

I Lemma 14. For all u ∈ VN , GSu(N) = tr(G(R(a))
⋃

1≤i≤n i.GSui(N))|
A>ε

where n is the899

arity of the node at path u in N .900
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Proof. We note G0 the graph tr(G(R(a))
⋃

1≤i≤n i.GSui(N))|
A>ε

. The graphs G0 and901

GSu(N) have the same set of vertices Aε.902

Let (x, y) be an edge of the graph G0, then, by definition of G0, there is a path from u.x903

to u.y in the graph
⋃
i≤n ui.GSui(N) ∪ u.G(R(a)) (this works because u. is only a renaming904

of the attributes). By definition, any edge in u.G(R(a)) is in Du↓(N). For all i ≤ n and for905

all edge (xi, yi) in ui.GSui(N) there is a path in Dui↓(N) from xi to yi, then this path also906

exists in the graph Du↓(N). Then there is in the graph Du↓(N) a path from u.a to u.b. So907

the set of edges of G0 is included in the set of edges of GSu(N).908

Let (x, y) be an edge of GSu(N), then there is in the graph Du↓(N) a path from909

u.x to u.y. This path is of the form w1e1w2 . . . wmemwm+1 where e1, . . . , em are edges910

in u.G(R(a)) and w1, . . . , wm+1 are paths with no edges in u.G(R(a)). Since Du↓(N) =911

u.G(R(a)) ∪
⋃

1≤i≤nDui↓(N) and the graphs Dui↓(N) have disjoint sets of vertices, for all912

j ≤ m+ 1 there is an index ij ≤ n such that the path wj is in the graph Duij↓(N). Then913

for all j ≤ m + 1, noting xj and yj the respective start and end of path wj , there is an914

edge (xj , yj) in the graph uij .GSuij (N). Then the path (x1, y1)e1 . . . em(xm+1, ym+1) is in915

the graph
⋃
i≤n ui.GSui(N) ∪ u.G(R(a)), with u.x = x1 and u.y = ym+1. So there is a path916

from x to y in the graph
⋃
i≤n i.GSui(N) ∪G(R(a)), therefore there is an edge (x, y) in the917

graph tr(
⋃
i≤n i.GSui(N) ∪G(R(a)))|Aε , so that edge is in G0.918

So G0 = GSu(N). J919

I Lemma 15. There exists a bottom-up tree automaton A, whose set of states is the set of920

directed acyclic graphs with set of vertices Aε, which associates with any node in a tree N921

the graph GSu(N).922

Proof. We define the bottom-up tree automaton A = (ΣP ,Σ1, RA) where P is the set of923

states of the form pG where G = (V,E) is a directed acyclic graph with V = Aε and924

E ⊆ {((α, ε), (γ, ε)) | α ∈ S ∪ I, γ ∈ S}, i.e. potential synthesis graphs according to lemma925

13; and RA is the set of rules of the form a(pG1
. . . pGn)→ pG0

where a is a tree constant in926

Σ1 of arity n, and G0 is the graph tr(
⋃
i≤n i.Gi ∪G(R(a)))|Aε where G(R(a)) is the graph927

induced by the equations of the attribute transducer associated with the tree constant a.928

Lemma 14 implies by induction that automaton A indeed associates with any node at929

path u in N the synthesis graph GSu(N) of N at path u. J930

I Definition 16. For all tree path u ∈ VN , The interface graph of N at path u (noted931

Gu(N)) is the directed acyclic graph u−1.( tr(CD>(N))|V ′ ) where V ′ is the subset of A>u (N)932

of vertices connected to the vertex > in the graph CD>(N).933

I Lemma 17. For all path u ∈ VN , Gu(N) = tr(GSu(N) ∪ GIu(N))|V ′ where V
′ is the934

subset of A>ε of vertices connected to the vertex > in the graph GSu(N) ∪GIu(N).935

Proof. We note G = tr(GSu(N) ∪GIu(N))|V ′ . We first prove the following claim:936

B Claim 18. For all x, y ∈ A>ε , there is a path from u.x to u.y in the graph CD>(N) if and937

only if there is a path from x to y in the graph GSu(N) ∪GIu(N).938

Proof. Assume there is a path from u.x to u.y in CD>(N). Since CD>(N) = CD>u↑(N) ∪939

Du↓(N), this path can be seen as a sequence of paths w1 . . . wm alternating between graphs940

CD>u↑(N) and Du↓(N) (if wi is a path in the graph CD>u↑(N) then wi+1 is a path in Du↓(N)941

and conversely). We note xi and yi the respective start and end of path wi for all i ≤ m.942

For all i ≤ m − 1, since the vertex yi = xi+1 is in both graphs CD>u↑(N) and Du↓(N), it943

must be in the set Au(N). Then there is an edge (xi, yi) in either tr(CD>u↑(N))|Au(N)
or944
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tr(Du↓(N))|Au(N)
for all i ≤ m. Because x = u−1.x1 and y = u−1.ym, there is in the graph945

GSu(N) ∪GIu(N) a path from x to y.946

Assume there is a path from x to y in CD>(N). That path is of the form947

(x1, x2)(x2, x3) . . . (xm, xm+1) where, for each i ≤ m, (xi, xi+1) is an edge of either GSu(N) or948

GIu(N). So, for all i ≤ m, there is either in CD>u↑(N) or inDu↓(N) a path from u.xi to u.xi+1.949

Therefore we have in the graph CD>(N) a path from u.x = u.x1 to u.y = u.xm+1. J950

This claim applied with y = > implies that G and Gu(N) have the same sets of vertices.951

The claim also implies that (x, y) is an edge of G if and only if (x, y) is an edge of Gu(N).952

So G = Gu(N) for all path u ∈ VN . J953

I Lemma 19. For all directed acyclic graph G = (V,E), and subset V ′ ⊆ V of vertices, and954

for all two vertices x, y ∈ V ′, noting tr(G)|V ′ = (V ′, E′) the subgraph of the transitive closure955

of G induced by the subset V ′ of vertices, if the graph (V ′, E′ ∪ {(x, y)}) is acyclic then the956

graph (V,E ∪ {(x, y)}) is also acyclic.957

Proof. We use ad absurdum reasoning. We assume that the graph (V ′, E′ ∪ {(x, y)}) is958

acyclic and that there is a cycle in the graph (V,E ∪ {(x, y)}). Since (V,E) is acyclic959

the edge (x, y) is part of the cycle, so the cycle is of the form (x, y)(y, x1) . . . (xn, x) with960

vertices x1, . . . , xn ∈ V . Then there is a path from y to x in G, therefore there is an edge961

(y, x) in tr(G)|V ′ , so (y, x) ∈ E′. Then (V ′, E′ ∪ {(x, y)}) is not acyclic, which leads to a962

contradiction. J963

We will use the notations A[1,n] =
⋃

1≤j≤n(S ∪ I)× {j}, A[0,n] =
⋃

0≤j≤n(S ∪ I)× {j}964

(with the convention that 0 = ε), A>[1,n] = {>} ∪A[1,n] and A>[0,n] = {>} ∪A[0,n].965

I Definition 20. For all path u ∈ VN , we define the local dependency graph of N at path966

u, noted Gu.[0,n](N) where n is the arity of labN (u), as the graph u−1.tr(CD>(N))|V ′ where967

V ′ is the set of vertices in u.A>[0,n] that are connected to the vertex > in the graph CD>(N).968

I Lemma 21. For all tree N and path u ∈ VN , noting a = labN (u) the constant of the node969

at path u in N and n its arity, the local dependency graph Gu.[0,n](N) of N at path u is970

tr(GIu(N) ∪G(R(a)) ∪
⋃

1≤j≤n j.GSuj(N))|V ′ where V
′ is the set of vertices in A>[0,n] that971

are connected to the vertex > in the graph GIu(N) ∪G(R(a)) ∪
⋃

1≤j≤n j.GSuj(N).972

Proof. We first prove the following claim:973

B Claim 22. For all vertices x, y ∈ A>[0,n], there is in the graph CD>(N) a path from u.x974

to u.y if and only if there is a path from u.x to u.y in the graph G = tr(CD>u↑(N))|
A>u (N)

∪975

u.G(R(a)) ∪
⋃

1≤i≤n tr(Dui↓(N))|Auj(N)
.976

Proof. If there is a path from u.x to u.y in G then, because CD>(N) = CD>u↑(N) ∪977

u.G(R(a)) ∪
⋃

1≤i≤nDui↓(N), there must be a path from u.x to u.y in CD>(N).978

If there is a path from u.x to u.y in CD>(N), then this path can be seen as a sequence979

w1 . . . wm of paths where each wj with j ≤ m is a path in either one of the following n+ 2980

graphs: CD>u↑(N), Du1↓(N), . . . Dun↓(N), u.G(R(a)), and, for each j ≤ m−1, wj+1 is a path981

in a different graph than wj . Noting xj the end of path wj or start of path wj+1, since wj and982

wj+1 are paths of a different graph among CD>u↑(N), Du1↓(N), . . . Dun↓(N) and u.G(R(a)),983

xj is in the intersection of the sets of vertices of these two graphs, which is necessarily included984

in the set u.A>[0,n](N). x0 = u.x and xm = u.y are also in the set u.A>[0,n](N). This implies985

that if wj is a path in CD>u↑(N) then there is in tr(CD>u↑(N))|
A>u (N)

a path w′j from xj−1 to986

xj . Also if wj is a path in Dui↓(N) then there is in tr(Dui↓(N))|Auj(N)
a path w′j from xj−1 to987
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xj . So there is in the graph G = tr(CD>u↑(N))|
A>u (N)

∪u.G(R(a))∪
⋃

1≤i≤n tr(Dui↓(N))|Auj(N)
988

a path from u.x to u.y. J989

Since Gu.[0,n](N) = u−1.tr(CD>(N))|
u.A>

[0,n]

and990

tr(GIu(N) ∪G(R(a)) ∪
⋃

1≤j≤n j.GSuj(N))|
A>

[0,n]

= u−1.tr(G)|V ′ , the claim implies that the991

set of vertices of the graph Gu.[0,n](N) is the set V ′ of vertices in A>[0,n] that are connected992

to the vertex > in the graph GIu(N) ∪G(R(a)) ∪
⋃

1≤j≤n j.GSuj(N).993

It also entails that, for all vertices x, y ∈ V ′, there is in the graph Gu.[0,n](N) an edge (x, y)994

if and only if (x, y) is an edge in the graph tr(GIu(N) ∪G(R(a)) ∪
⋃

1≤j≤n j.GSuj(N))|V ′ .995

Therefore Gu.[0,n](N) = tr(GIu(N) ∪G(R(a)) ∪
⋃

1≤j≤n j.GSuj(N))|V ′ . J996

I Corollary 23. The local dependency graph Gu.[0,n](N) can be computed using only the997

constant labN (u), the inheritance graph of N at path u and the synthesis graphs of N at998

paths u1, . . . , un.999

I Lemma 24. If CD>(N) is a tree then, for all path u ∈ VN , Gu.[0,n](N) is a tree.1000

Proof. We use ad absurdum reasoning. We assume that Gu.[0,n](N) is not a tree, so there1001

exists two nodes x, y and two distinct paths from x to y in Gu.[0,n](N) = u−1.tr(CD>(N))|V ′ .1002

Then there are two distinct paths from u.x to u.y in CD>(N), then CD>(N) is not a1003

tree. J1004

I Corollary 25. If the ATT is single use restricted then for all input tree N and path u ∈ VN ,1005

the graph Gu.[0,n](N) is a tree.1006

B.2.2 Topological sorts1007

In order to sequentialize the computation of attributes, we use topological sorts of the graphs1008

of dependency prevously defined. We will later need to use induction on the sorted attributes,1009

in order to facilitate that we define our topological sorts as sequences of attributes:1010

I Definition 26. We call a total order < on a finite set V compatible with a directed acyclic1011

graph G = (V,E) if, for all edge (v, v′) ∈ E, v < v′.1012

Noting n the size of the set V , for all sequence τ = v1 . . . vn ∈ V ∗ of length n such that1013

i 6= j ⇒ vi 6= vj for all 1 ≤ i, j ≤ n, we associate with τ the unique total order < on V such1014

that i < j ⇔ vi < vj for all 1 ≤ i, j ≤ n.1015

We call a sequence τ ∈ V ∗ a topological sort of a directed acyclic graph G = (V,E) if it1016

is of length n and the total order < associated with it is compatible with G.1017

I Lemma 27. For all directed acyclic graph G we can build a topological sort τ of G.1018

Proof. We build τ inductively. We note G = (V,E).1019

Since G is acyclic there exists a vertex x of G which has no incoming edges. We use1020

induction and assume we can build a topological sort τ ′ of the subgraph of G induced by the1021

set V \ {x} of vertices. Then τ = xτ ′ is a topological sort of G. J1022

I Lemma 28. For all path u ∈ VN any topological sort τ of Gu(N) is of the form τ = τ ′(α, ε)>1023

with α ∈ S.1024

Proof. By definition ofGu(N), from any vertex ofGu(N) there is a path to >, so a topological1025

sort of Gu(N) must end with >. The form of the rules of the attribute transducer imply1026

that if there is a path in Gu(N) from (γ, ε) to > with γ ∈ I then there must exists α ∈ S1027
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and a path in the graph Gu(N) from (α, ε) to (γ, ε). So any topological sort of Gu(N) ends1028

with (α, ε)> for some α ∈ S. J1029

I Definition 29. For all sets V and V ′ such that V ′ ⊂ V , for all graph G = (V,E) and1030

topological sort τ of G, we call topological subsort induced by the subset V ′, and we note1031

τ |V ′ , the biggest subsequence of τ included in V ′∗.1032

I Lemma 30. For all directed acyclic graph G = (V,E), topological sort τ of G and subset1033

V ′ of V , τ |V ′ is a topological sort of tr(G)|V ′ .1034

Proof. We note G′ = tr(G)|V ′ = (V ′, E′). Let (a, b) be an edge in E′, then there is a path1035

in the graph G from a to b of the form a v1 . . . vm b. So, noting <τ the total order on V1036

associated with τ , a <τ v1 <τ · · · <τ vm <τ b. Therefore a <τ b, and a appears in the1037

sequence τ strictly before b. Then a appears in the sequence τ |V ′ strictly before b, and1038

a <τ ′ b where <τ ′ is the total order on V ′ associated with τ |V ′ .1039

We have shown that <τ ′ is compatible with G′, so τ |V ′ is a topological sort of tr(G)|V ′ . J1040

I Lemma 31. For all directed acyclic graph G = (V,E), subset V ′ of V and topological sort1041

τ ′ of tr(G)|V ′ , there exists a topological sort τ of G such that τ ′ = τ |V ′ .1042

Proof. We note x1, . . . , xn the vertices in V ′ such that τ ′ = x1 . . . xn, and tr(G)|V ′ = (V ′, E′).1043

We note Eτ ′ the set of edges Eτ ′ = {(xi, xj)}1≤i<j≤n, then we show that the graph G′ =1044

(V ′, E′ ∪ Eτ ′) is acyclic.1045

If G′ contained a cycle, it would imply that there was in (V ′, E′) a path from xj to xi1046

with i < j, which is contradicts the fact that τ ′ = x1 . . . xn is a topological sort of (V ′, E′).1047

Since (V ′, E′ ∪ Eτ ′) is acyclic, we can use lemma 19 and deduce that (V,E ∪ Eτ ′) is also1048

acyclic. Then there exists a topological sort τ of (V,E∪Eτ ′). Because Eτ ′ = {(xi, xj)}1≤i<j≤n1049

and by definition of topological sorts: τ |V ′ = τ ′. Also τ is a topological sort of G. J1050

I Definition 32. For all graphs G and G̃ with the same set of vertices, we say that G̃ is an1051

over-specification of G, and we note G̃ D G, if all topological sort of G̃ is a topological sort1052

of G.1053

I Lemma 33. The relation D has the following properties:1054

1. for all graphs G1, G2 and G3, G1 D G2 D G3 ⇒ G1 D G3 (transitivity),1055

2. for all graphs G = (V,E) and G̃ = (V, Ẽ), E ⊆ Ẽ ⇒ G̃ D G,1056

3. for all graph G = (V,E), G D tr(G)|V D G,1057

4. for all graphs G and G̃ and set V ′, G̃ D G⇒ tr(G̃)|V ′ D tr(G)|V ′1058

5. for all graphs G1, G2, G̃1 and G̃2, G̃1 D G1 and G̃2 D G2 ⇒ G̃1 ∪ G̃2 D G1 ∪G21059

Proof.1060

1. Implied by the definition of D.1061

2. Implied by the definition of topological sorts.1062

3. The previous point implies that tr(G)|V D G. For all topological sort τ of G, by transitivity1063

of the order associated with τ , τ is also a topological order of the transitive closure tr(G)|V1064

of G. So G D tr(G)|V .1065

4. For all topological sort τ ′ of tr(G̃)|V ′ , according to lemma 31, there is a topological sort τ1066

of G̃ such that τ |V ′ = τ ′. Then τ is also a topological sort of G and, according to lemma1067

30, τ ′ = τ |V ′ is a topological sort of tr(G)|V ′ .1068

5. Let us assume that G̃1 D G1 and G̃2 D G2 with G1 = (V1, E1) and G2 = (V2, E2). For1069

all topological sort τ of G̃1 ∪ G̃2, according to lemma 30, τ |V1
and τ |V2

are topological1070

sorts of G̃1 and G̃2 respectively. So τ |V1 and τ |V2 respectively are topological sorts of G11071

and G2. So τ is a topological sort of G1 ∪G2. Therefore G̃1 ∪ G̃2 D G1 ∪G2.1072
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J1073

I Lemma 34. For all graphs G1 and G2 such that G2 D G1 and G2 is closed by transitivity,1074

then G2 can be obtained from G1 by adding edges.1075

Proof. We note G1 = (V,E1) and G2 = (V,E2). Then G2 can be obtained from G1 by1076

adding edges if and only if E1 ⊆ E2. We use ad absurdum reasoning and assume there is an1077

edge (x, y) ∈ E1 \ E2. We note Vy↓ = {z | z ∈ V, (z, y) ∈ E2} and Vx = V \ ({y} ∪ Vy↓). So1078

x ∈ Vx. Let τy↓ and τx be topological sorts of the acyclic graphs tr(G2)|Vy↓ and tr(G2)|Vx1079

respectively. We now prove that τ = τy↓yτx is a topological sort of G2: for all z1, z2 ∈ E2,1080

if (z1, z2) ∈ Vy↓ × {y} then z1 <τ z2 because we put τy↓ before y in τ ,1081

if (z1, z2) ∈ Vy↓ × Vx then z1 <τ z2 because we put τy↓ before τx in τ ,1082

if (z1, z2) ∈ {y} × Vx then z1 <τ z2 because we put y before τx in τ ,1083

if (z1, z2) ∈ V 2
y↓ then z1 <τy↓ z2 entails z1 <τ z2,1084

the case (z1, z2) ∈ {y}2 is impossible because G2 is acyclic,1085

if (z1, z2) ∈ V 2
x then z1 <τx z2 entails z1 <τ z2.1086

the case (z1, z2) ∈ {y} × Vy↓ is impossible because z2 ∈ Vy↓ ⇒ (z2, y) ∈ E2 and G2 is1087

acyclic,1088

the case (z1, z2) ∈ Vx × Vy↓ is impossible because the transitivity of G2 would imply that1089

(z1, y) ∈ E2, which contradicts the fact that z1 /∈ Vy↓,1090

the case (z1, z2) ∈ Vx × {y} also contradicts z1 /∈ Vy↓.1091

So τ is a topological sort of G2. But since (x, y) ∈ E1 and y <τ x, τ is not a topological sort1092

of G1. That is in contradiction with the fact that G2 D G1. J1093

I Lemma 35. There exists a constructive function f such that, for all path u ∈ VN where1094

the tree constant a = labN (u) is of arity n and for all topological sort τ0 of Gu(N), τ =1095

f(a, τ0, (GSu1(N), . . . , GSun(N))) is a topological sort of Gu.[0,n](N) and, for each j ≤ n,1096

j−1.(τ |A>j ) is a topological sort of Guj(N).1097

Proof. We note V ′ the set of vertices of the graph Gu(N). For all tree constant a of arity1098

n, for all topological sort τ0 over a subset of A>ε and for all synthesis graphs G1, . . . , Gn1099

(acyclic graphs with vertices in A>ε and edges included in ((S ∪ I)× {ε})× (S × {ε}) as per1100

lemma 13), we define f(a, τ0, (G1, . . . , Gn)) as the topological sort τ , obtained using lemma1101

27, of the graph G = tr(
⋃

1≤i≤n i.Gi ∪G(R(a)) ∪Gτ0)|V ′′ where Gτ0 is the graph with set of1102

vertices V ′ and set of edges Eτ0 = {(x, y) | x <τ0 y}, and V ′′ is the set of vertices in A>[0,n]1103

that are connected to the vertex > in the graph
⋃

1≤i≤n i.Gi ∪G(R(a)) ∪Gτ0 .1104

In order to use lemma 27 we need to prove that G is acyclic. By construction, τ0 is the1105

only topological sort of Gτ0 . Since τ0 is a topological sort of Gu(N), Gτ0 D Gu(N). According1106

to lemma 17 Gu(N) = tr(GSu(N)∪GIu(N))|
A>ε

, so Gu(N) D GSu(N)∪GIu(N) D GIu(N).1107

Then, according to lemma 34, Gτ0 can be obtained from GIu(N) by adding edges. So G can1108

be obtained from
⋃

1≤i≤n i.Gi ∪G(R(a)) ∪GIu(N) by adding edges. By adding these same1109

edges to Gu(N) = tr(
⋃

1≤i≤n i.Gi ∪G(R(a)) ∪GIu(N))|
A>ε

we get Gτ0 , which is acyclic, so1110

according to lemma 19 G is acyclic too.1111

Since > is not a vertex in the graph
⋃

1≤i≤n i.Gi ∪G(R(a)) and the vertices of Gτ0 are1112

the vertices of Gu(N), the set V ′′ of vertices connected to > in
⋃

1≤i≤n i.Gi ∪G(R(a))∪Gτ01113

is also the set of vertices connected to > in the graph
⋃

1≤i≤n i.Gi ∪ G(R(a)) ∪ GIu(N).1114

Then, according to lemma 21, Gu.[0,n](N) = tr(
⋃

1≤i≤n i.Gi ∪ G(R(a)) ∪ GIu(N))|V ′′ . So1115

G can be obtained from Gu.[0,n](N) by adding edges, therefore G D Gu.[0,n](N). So τ is a1116

topological sort of Gu.[0,n](N). J1117
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I Lemma 36. For all path u ∈ VN any topological sort τ of Gu.[0,n](N) is of the form1118

τ = τ ′(α, ε)> with α ∈ S.1119

Proof. Similar to proof of lemma 28. J1120

From now on, when we introduce a topological sort τ over a subset of A>ε or A>[0,n], we1121

assume it is of the form described in lemmas 28 and 36.1122

B.2.3 Sequentializing the computation of attributes1123

For all input tree N and path u ∈ VN , a topological sort of the interface graph Gu(N) gives1124

an order in which the attibutes can be computed. The type of the output λ-term of the1125

subtree N �u then depends on the topological sort of Gu(N) which gives the computation1126

order of the attributes. That type is defined as follows:1127

I Definition 37. For all topological sort τ over a subset of A>ε (of the form described in1128

lemma 28), we associate with τ the type t(τ) inductively defined by:1129

if τ is of the form (α, ε) τ ′ with α ∈ S then t(τ) , o× t(τ ′),1130

if τ is of the form (α, ε) τ ′ with α ∈ I then t(τ) , o→ t(τ ′),1131

if τ = (α, ε)> where α ∈ S, then t(τ) , o.1132

For all input tree N and path u ∈ VN , we want to associate a λ-term with the subtree1133

N �u of N which sequentializes the computation of the attributes of the node at path u,1134

in order to do so we use a topological sort of the interface graph at path u in N , with the1135

following semantics:1136

I Definition 38. For all topological sort τ over the set A>ε , term N and path u ∈ VN , noting1137

Att(N, (α, u)) the tree associated with the attribute (α, u) in the ATT, we define Rτ (N, u)1138

by induction on τ :1139

R(α,u)τ ′(N, u) , {(M1,M2) |M1 →∗βη Att(N, (α, u)),M2 ∈ Rτ ′(N, u)} if α ∈ S,1140

R(α,u)τ ′(N, u) , {M |M(Att(N, (α, u))) ∈ Rτ ′(N, u)} if α ∈ I.1141

R(α,ε)>(N, u) , {M |M →∗βη Att(N, (α, u))} where α ∈ S.1142

Notice that terms in Rτ (N, u) have type t(τ).1143

I Lemma 39. For all terms M and M ′ that are βη-equivalent,1144

M ∈ Rτ (N, u)⇔M ′ ∈ Rτ (N, u)1145

Proof. Straightforward induction on τ . J1146

For the purpose of clarity, we will use a special notation for the binding of variables: for1147

binding a variable x to a term M inside a term M ′, in place of (λx.M ′)M we will write1148

let x = M in M ′. We want to build a λ-term which computes the term associated with a node1149

depending on the terms associated with its child nodes. That will depend on a topological1150

sort of the local dependency graph, which gives an order to compute the attributes of the1151

nodes and its child nodes. We use the following definition:1152

I Definition 40. For all tree constant a of arity n in Σ, for all topological sort τ over a1153

subset of A>[0,n], injective substitution var which associates variables of type o with attributes1154

and injective substitution Cont which associates variables with indices between 1 and n such1155

that for all i ∈ [1, n], Cont(i) is of type t(τ |A>i ), we define the term Ma(τ, var, Cont) by1156

induction on τ as follows:1157
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if τ = (α, 0)> with α ∈ S then : Ma(τ, var, Cont) , var(R(a)((α, 0)))1158

if τ = (α, 0) τ ′ with α ∈ S and τ ′ 6= > then :1159

Ma(τ, var, Cont) , let y(α,0) = var(R(a)((α, 0))) in1160

(y(α,0),Ma(τ ′, var ] [(α, 0)→ y(α,0)], Cont))1161

if τ = (γ, 0) τ ′ with γ ∈ I then :1162

Ma(τ, var, Cont) , λy(γ,0).Ma(τ ′, var ] [(γ, 0)→ y(γ,0)], Cont)1163

if τ = (α, i) τ ′ with α ∈ S, i 6= 0 and τ |A>i 6= (α, i)> then :1164

Ma(τ, var, Cont) , let (y(α,i), X
′
i) = Cont(i) in1165

Ma(τ ′, var ] [(α, i)→ y(α,i)], Cont ◦ [i→ X ′i])1166

with X ′i a fresh variable of type t(τ ′|A>i ).1167

if τ = (α, i) τ ′ with α ∈ S, i 6= 0 and τ |A>i = (α, i)> then :1168

Ma(τ, var, Cont) , let y(α,i) = Cont(i) in Ma(τ ′, var ] [(α, i)→ y(α,i)], Cont
′)1169

where Cont′ is Cont from which we removed the association [i→ Cont(i)].1170

if τ = (γ, i) τ ′ with γ ∈ I and i 6= 0 then :1171

Ma(τ, var, Cont) , let y(γ,i) = var(R(a)((γ, i))) and X ′i = Cont(i) y(γ,i) in1172

Ma(τ ′, var ] [(γ, i)→ y(γ,i)], Cont ◦ [i→ X ′i])1173

where X ′i is a fresh variable of type t(τ ′|A>i ).1174

Then we prove that Ma fits the semantics we have chosen:1175

I Lemma 41. For all constant a of arity n in Σ, and for all topological sort τ over a subset1176

of A>[0,n], noting τi = τ |A>i for i ≤ n, noting M = Ma(τ, var, Cont) where var is the empty1177

substitution and for all i ∈ [1, n], Cont(i) = Xi with Xi a free variable of type t(τi), then1178

M is of type t(τ0) and, for all tree N and path u ∈ VN such that labN (u) = a and τ is a1179

topological sort of Gu.[0,n](N), for all terms M1 ∈ Rτ1(N, u1), . . . ,Mn ∈ Rτn(N, un):1180

M [X1/M1, . . . , Xn/Mn] ∈ Rτ0(N, u)1181

Proof. We first prove a more general claim by induction on τ :1182

B Claim 42. For all topological sort τ over a subset of A>[0,n], for all tree N and path1183

u ∈ VN such that labN (u) = a and τ is a topological sort of Gu.[0,n](N), for all injective1184

mapping var from attributes to variables such that, for all (α, i) ∈ τ , all attribute appearing1185

in R(a)((α, i)) is either in τ or in the domain of var, for all function Cont associating1186

variables with indices i ∈ [1, n] and for all substitution σ of the variables in Cont such that1187

∀i ∈ [1, n], σ(Cont(i)) ∈ Rτi(N, ui) with τi = τ |A>i :1188

σ ◦ ν(Ma(τ, var, Cont)) ∈ Rτ0(N, u)1189

where ν is the variable substitution such that for all attribute (α, i) in dom(var):1190

ν(var((α, i))) = Att(N, (α, ui)).1191

Proof. We fix a topological sort τ over a subset of A>[0,n], an input tree N , a path u ∈ VN such1192

that labN (u) = a and τ is a topological sort of Gu.[0,n](N), an injective mapping var from1193

attributes to variables such that, noting dom(var) its domain, for all (α, i) ∈ τ , all attribute1194

appearing in R(a)((α, i)) is either in τ or in dom(var). We note ν the variable substitution1195

such that for all attribute (α, i) ∈ dom(var), ν(var((α, i))) = Att(N, (α, ui)) (exists because1196

var is injective), we also fix a function Cont associating variables with indices in [1, n], and1197

a substitution σ of the free variables in Cont such that ∀i ∈ [1, n], σ(Cont(i)) ∈ Rτi(N, ui)1198

where τi = τ |A>i .1199

We assume the induction hypothesis for all topological sort τ ′ shorter (with a smaller1200

number of elements) than τ .1201

As in the definition of Ma we have 6 cases:1202
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if τ = (α, 0)> with α ∈ S then Ma(τ, var, Cont) , var(R(a)((α, 0))). In this case1203

σ ◦ ν(Ma(τ, var, Cont)) = ν ◦ var(R(a)((α, 0))). Since all attributes appearing in1204

R(a)((α, 0)) are in dom(var), and ∀(α, i) ∈ dom(var), ν(var((α, i))) = Att(N, (α, ui)).1205

Then by definition of Att(N, (α, u)) with labN (u) = a :1206

σ ◦ ν(Ma(τ, var, Cont)) = Att(N, (α, u)) ∈ R(α,0)>(N, u).1207

if τ = (α, 0) τ ′ with α ∈ S and τ ′ 6= > then Ma(τ, var, Cont) ,1208

let y(α,0) = var(R(a)((α, 0))) in (y(α,0),Ma(τ ′, var ] [(α, 0)→ y(α,0)], Cont)).1209

The induction hypothesis implies that σ ◦ ν′(Ma(τ ′, var, Cont)) ∈ Rτ ′0(N, u) where1210

ν′ = ν ] [y(α,0) → Att(N, (α, u))]. Similarly to the case τ = (α, 0)>:1211

ν(var(R(a)((α, 0)))) = Att(N, (α, u)).1212

Therefore σ ◦ ν(Ma((α, 0)τ ′, var, Cont)) ∈ R(α,0)τ ′0
(N, u).1213

if τ = (γ, 0) τ ′ with γ ∈ I then1214

Ma(τ, var, Cont) , λy(γ,0).Ma(τ ′, var] [(γ, 0)→ y(γ,0)], Cont). The induction hypothesis1215

entails that σ ◦ ν′(Ma(τ ′, var ] [(γ, 0)→ y(γ,0)], Cont)) ∈ Rτ ′0(N, u) where1216

ν′ = ν ] [y(γ,0) → Att(N, (γ, u))]. Then, by definition of R(γ,0)τ ′0
(N, u) for γ ∈ I,1217

σ ◦ ν(Ma(τ, var, Cont)) ∈ R(γ,0)τ ′0
(N, u).1218

if τ = (α, i) τ ′ with α ∈ S, i 6= 0 and τi 6= (α, i)> then Ma(τ, var, Cont) ,1219

let (y(α,i), X
′
i) = Cont(i) in Ma(τ

′, var ] [(α, i)→ y(α,i)], Cont ◦ [i→ X ′i]) where X ′i is a1220

fresh variable of type t(τ ′i). Noting (M1,M2) = σ(Cont(i)) ∈ R(α,i)τ ′i
(N, ui), we have1221

M1 →∗βη Att(N, (α, ui)) and M2 ∈ Rτ ′i (N, ui). So we apply the induction hypothesis on1222

σ′ ◦ ν′(Ma(τ ′, var ] [(α, i)→ y(α,i)], Cont ◦ [i→ X ′i])) where1223

ν′ = ν ] [y(α,i) → Att(N, (α, ui))] and σ′ is obtained from σ by removing the association1224

[Cont(i)→ σ(Cont(i))] and adding [X ′i →M2]. So1225

σ ◦ ν(Ma(τ, var, Cont)) =βη σ
′ ◦ ν′(Ma(τ ′, var ] [(α, i)→ y(α,i)], Cont ◦ [i→ X ′i]))1226

and therefore σ ◦ ν(Ma(τ, var, Cont)) ∈ Rτ0(N, u).1227

if τ = (α, i) τ ′ with α ∈ S, i 6= 0 and τi = (α, i)> then Ma(τ, var, Cont) ,1228

let y(α,i) = Cont(i) in Ma(τ ′, var][(α, i)→ y(α,i)], Cont
′) where Cont′ is Cont from which1229

we removed the association i→ Cont(i). This case is analogous to the previous one, and1230

with the same arguments we reach the conclusion that σ◦ν(Ma(τ, var, Cont)) ∈ Rτ0(N, u).1231

if τ = (γ, i) τ ′ with γ ∈ I and i 6= 0 then1232

Ma(τ, var, Cont) , let y(γ,i) = var(R(a)((γ, i))) and X ′i = Cont(i) y(γ,i) in1233

Ma(τ ′, var ] [(γ, i)→ y(γ,i)], Cont ◦ [i→ X ′i])1234

where X ′i is a fresh variable of type t(τ ′i). We have σ(Cont(i)) ∈ R(γ,i)τ ′i
(N, ui) and1235

ν(var(R(a)((γ, i)))) =βη Att(N, (γ, ui)), then1236

σ(Cont(i)) ν(var(R(a)((γ, i)))) ∈ Rτ ′i (N, ui). We apply the induction hypothesis on σ′ ◦1237

ν′(Ma(τ ′, var] [(γ, i)→ y(γ,i)], Cont ◦ [i→ X ′i])) where ν′ = ν ] [y(γ,i) → Att(N, (γ, ui))]1238

and σ′ is obtained from σ by removing the association [Cont(i)→ σ(Cont(i))] and adding1239

[X ′i → σ(Cont(i)) ν(var(R(a)((γ, i))))]. Therefore σ ◦ ν(Ma(τ, var, Cont)) =1240

σ′ ◦ ν′(Ma(τ ′, var ] [(γ, i)→ y(γ,i)], Cont ◦ [i→ X ′i])) ∈ Rτ0(N, u).1241

This ends the inductive proof of the claim. J1242

Since τ is a topological sort of the graph Gu.[0,n](N), for all (α, i) ∈ τ , all attribute appearing1243

in R(a)((α, i)) is in τ . Therefore we can apply the claim on τ with Cont(i) the substitution1244

such that Cont(i) = Xi for i ∈ [1, n], σ the substitution such that σ(Xi) = Mi for i ∈ [1, n]1245

and var and ν empty substitutions. So :1246

Ma(τ, var, Cont)[X1/M1, . . . , Xn/Mn] = σ(Ma(τ, var, Cont)) ∈ Rτ0(N, u)1247

J1248
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Now that we have shown that M computes terms correctly, we need to prove that it is1249

almost linear in general, and linear if our ATT is single use restricted.1250

I Lemma 43. For all tree constant a of arity n in Σ, for all topological sort τ over a subset1251

of A>[0,n], injective substitution var which associates variables of type o with attributes and1252

injective substitution Cont which associates variables with indices between 1 and n such that,1253

for all i ∈ [1, n], Cont(i) is of type t(τ |A>i ), the term Ma(τ, var, Cont) is almost linear.1254

Proof. In the inductive definition of Ma(τ, var, Cont), the variables we use are either in var1255

or in Cont. Variables in var are of atomic type so copying them does not prevent almost1256

linearity. Each time a variable of Cont is used, it occurs once and is removed from Cont in1257

the inductive call to Ma(τ ′, var′, Cont′). So Ma(τ, var, Cont) is almost linear. J1258

I Lemma 44. Assumming the ATT is single use restricted, for all tree constant a of arity1259

n in Σ, for all topological sort τ over a subset of A>[0,n], injective substitution var which1260

associates variables of type o with attributes and injective substitution Cont which associates1261

variables with indices between 1 and n such that, for all i ∈ [1, n], Cont(i) is of type t(τ |A>i ),1262

the term Ma(τ, var, Cont) is linear.1263

Proof. As we saw in the previous lemma, variables in Cont are never copied, so we only1264

need to prove that variables in var are not copied.1265

According to corollary 25, since the ATT is single use restricted, the graph Gu.[0,n](N) is1266

a tree. For all attribute (α, i) in Gu.[0,n](N) there exists a unique attribute x in Gu.[0,n](N)1267

such that there is an edge ((α, i), x) in Gu.[0,n](N). So x is the only attribute in Gu.[0,n](N)1268

such that (α, i) occurs in R(a)(x).1269

A straightforward induction on τ proves that for all τ, var and Cont such that var((α, i)) =1270

y(α,i), the number of occurrences of y(α,i) in Ma(τ, var, Cont) is 1 if x is in τ and 0 otherwise.1271

Therefore the term Ma(τ, var, Cont) is linear. J1272

Then we define the term that will compute the inherited attributes of the root node of1273

an input tree by applying the root equations:1274

I Definition 45. With G(root) the graph whose set of vertices is A>ε an edges represent1275

dependencies in the root equations; for all subsort τ of a topological sort of G(root), injective1276

substitution var which associates variables of type o with attributes, and variable X0 of type1277

t(τ), we define the term Mroot(τ, var,X0) of type o by induction on τ as follows:1278

if τ = (α, 0)> with α ∈ S then : Mroot(τ, var,X0) , X01279

if τ = (α, 0) τ ′ with α ∈ S and τ ′ 6= > then :1280

Mroot(τ, var,X0) , let (y(α,0), X
′
0) = X0 in Mroot(τ

′, var ] [(α, 0)→ y(α,0)], X
′
0)1281

if τ = (γ, 0) τ ′ with γ ∈ I then : Mroot(τ, var,X0) ,1282

let y(γ,0) = var(root((γ, 0))) and X ′0 = X0 y(γ,0) in Mroot(τ
′, var ] [(γ, 0) → y(γ,0)], X

′
0)1283

where X ′0 is a fresh variable of type t(τ ′).1284

For all subsort τ of a topological sort of G(root) we define the term Mroot(τ) as the term1285

λX0.Mroot(τ, var,X0) where var is the empty substitution and X0 is a free variable of type1286

t(τ).1287

Then we prove that Mroot computes the right output:1288

I Lemma 46. For all subsort τ of a topological sort of G(root), for all tree N such that τ is1289

a topological sort of Gε(N) and for all term M0 ∈ Rτ (N, ε), the term Mroot(τ)M0 β-reduces1290

to the output of the ATT on input N .1291
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Proof. Similar to lemma 41. J1292

I Lemma 47. For all subsort τ of a topological sort of G(root), injective substitution var1293

which associates variables of type o with attributes and variable X0 of type t(τ), the term1294

Mroot(τ, var,X0) is almost linear in general and linear if the ATT is single use restricted.1295

Proof. Similar to lemmas 43 and 44. J1296

I Definition 48. Let T = (Σ1,Σ2, S, I, out, R, root) be an ATT.1297

We define the HODTRal HO(T ) , (ΣQ,Σ1,Σ2, q0, R
′, A) by:1298

A, the look-ahead automaton, is the bottom-up tree automaton given by lemma 15,1299

ΣQ is the signature of the set of states, which is1300

Q , {q0} ∪ {qτ (α,ε)> | τ (α, ε)> is a topological sort on a subset of A>ε and α ∈ S}, the1301

number of states is |Q| = |S ∪ I|!. The type of a state qτ is o1 → t(τ), where t(τ) is1302

defined in definition 37,1303

Σ1 and Σ2 are respectively the input and output tree signatures from the ATT T ,1304

R′ is the set of rules, it includes the rules the form:1305

qτ0(a−→x )〈
−→
` 〉 →M(qτ1x1) . . . (qτnxn)1306

where
−→
` = `1, . . . , `n are the states of look-ahead associated with the subtrees −→x =1307

x1, . . . , xn respectively and, noting τ = f(a, τ0, (`1, . . . , `n)) the topological sort computed1308

in lemma 35, for all 1 ≤ j ≤ n: τj is the topological sort τj = j−1.(τ |A>j ). And with1309

M = let X1 = qτ1(x1) and . . . Xn = qτn(xn) in Ma(τ, var, Cont) where var is the empty1310

substitution, Cont = [i→ Xi]i∈[1,n] and Ma is defined in definition 40.1311

To that first set of rules we add special rules for the initial state q0 : for all rule already in1312

R′ of the form qτ0(a−→x )〈
−→
` 〉 →M where τ0 is a subsort of a topological sort of G(root),1313

we add to R′ the rule:1314

q0(a−→x )〈
−→
` 〉 →Mroot(τ0)M1315

A complexity analysis on the size of HO(T ) reveals that, noting m = |S|+ |I| the number1316

of attributes, n the maximum arity of a symbol in Σ1 and p the number of symbols in Σ1,1317

the number of states in the look-ahead automaton of HO(T ) grows in em
2

(graphs with1318

attributes as vertices), the number of states of HO(T ) grows with m! (orderings on the set of1319

attributes). Then the number of rules of HO(T ) grows in m! ∗ p ∗ em2∗n and the size of these1320

rules grows linearly with the size of the rules of T and the number m of attributes. Note1321

that the only non-linear factor is m! ∗ em2∗n and comes from the potentially big numbers of1322

accessible synthesis graphs and topological sorts of synthesis graphs, which could be smaller1323

in practical cases.1324

I Theorem 49. For all ATT T , the HODTRal T
′ = HO(T ) is equivalent to T , and T ′ is1325

linear if T is single use restricted.1326

Proof. Let N be an input tree of T ′.1327

For all path u ∈ VN , according to lemma 15, the look-ahead state associated with the1328

node at path u in N is the synthesis graph GSu(N) of N at path u.1329

Then a straighforward downward induction using lemma 35 shows that for all non-ε1330

path u ∈ VN the node at path u in N is processed by a state of the form qτ where τ is a1331

topological sort of Gu(N).1332

A straighforward upward induction using lemma 41 proves that for all non-ε path u ∈ VN1333

the result of the computation of qτ (N �u) is a term in Rτ (N, u).1334
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Finally, using lemma 46, we conclude that q0(N) computes exactly the output of the ATT1335

T on the input tree N . Thus we have shown that T ′ computes the same transduction as T .1336

Furthermore, lemmas 43, 44 and 47 imply that T ′ is almost linear in general and linear if1337

T is single use restricted. J1338

I Theorem 50. For all ATT T and relabeling attribute grammar P there exists a HODTRal1339

T ′ equivalent to P ◦ T and if T is single use restricted then T ′ is linear.1340

Proof. The relabeling P can be modeled by a simple HODTRlin. Then we can compose it1341

with HO(T ) in order to obtain a HODTRal T
′ equivalent to P ◦ T such that if T is single1342

use restricted then HO(T ) is linear and therefore T ′ is also linear. J1343

I Corollary 51. The class MSOT is included in the class HODTRlin and the class MSOTS1344

is included in the class HODTRal.1345

B.3 HODTRal ⊆ REL ◦ATT and HODTRlin ⊆ REL ◦ATTsur1346

I Theorem 52. For all HODTRal T = (ΣQ,Σ1,Σ2, q0, R, A) there exists a relabeling attribute1347

grammar P and an ATT T ′ such that T is equivalent to P ◦ T ′ and, if T is linear, then T ′1348

is single use restricted.1349

Proof. First we assume that T is the result of the order reduction procedure described in1350

the proof of theorem 2, so the result of applying a state q ∈ Q to an input tree N is a tuple1351

of tree contexts: q(N)→T (C1, . . . , Cn).1352

The relabeling attribute grammar framework is powerful enough to simulate the bottom-1353

up look-ahead automaton and the top-down finite state structure of T . Therefore we can1354

build a relabeling attribute grammar P that computes, for each node of an input tree N ,1355

which rule of T would be applied to it. Then T ′ will compute the actual results of applying1356

these rules.1357

Since each state q of T computes a tuple of contexts, we need attributes to simulate1358

tree contexts. We can do this by mapping the free variables of a tree context to inherited1359

attributes, and mapping the tree context to a synthesized attribute. For example a tree1360

context C1 = f y1 y2, where f is a tree constant of arity 2 and y1 and y2 are free variables,1361

will be represented by one synthesized attribute α1 linked to two inherited attributes β1 and1362

β2 by the equation: (α1, ε) = f (β1, ε) (β2, ε). This way we can build an ATT T ′ such that1363

P ◦ T ′ is equivalent to T .1364

Furthermore, if T is linear, then each tree context is used exactly once, so attributes are1365

never used twice and T ′ is single use restricted. J1366

I Corollary 53. HODTRal ⊆ REL ◦ATT and HODTRlin ⊆ REL ◦ATTsur.1367

Finally we can conclude, thanks to theorem 10, that HODTRal = MSOTS and HODTRlin1368

= MSOT (theorem 3).1369

C Composition1370

C.1 Proof of theorem 51371

In order to prove that for all term M of type A and all token f ∈ JAK there is at most1372

one derivation of the judgement `M : f , we first need to introduce known definitions and1373

properties of coherent spaces under the framework of linear logic, as first introduced by1374

Girard in [14].1375
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Coherent spaces1376

Our main goal now is to indicate that for all term M of type A and all token f ∈ JAK which1377

corresponds to a behaviour of M , there is only one possible derivation for the judgement1378

`M : f , which will be the key trick to preserve linearity in composition. In order to prove1379

that, we will see that tokens form a coherent space.1380

First, we define a coherence relation ¨A⊆ JAK× JAK for all type A by induction on A:1381

I Definition 54. For all p, p′ ∈ P and `, `′ ∈ L2,1382

(p, `) ¨o2 (p′, `′) ⇔ ` = `′1383

For all type A,B ∈ types(o2), for all f, f ′ ∈ JAK and g, g′ ∈ JBK:1384

f ( g ¨A→B f ′( g′ ⇔ (f ¨A f ′ ⇒ (g ¨B g′ ∧ (f 6= f ′ ⇒ g 6= g′)))1385

Intuitively, two tokens are coherent if they can both be derived from the same term. For1386

tokens of a tree for instance, that means that they must share the same look-ahead.1387

We also define the corresponding incoherence relation �A∈ JAK× JAK: intuitively, two1388

tokens are incoherent if they can not both be possible distinct tokens for the same term, so1389

if they are either not coherent together, or if they are equal.1390

I Definition 55. For all type A built on o2:1391

f �A f ′ ⇔ ¬(f ¨A f ′) ∨ f = f ′1392

The incoherence relation allows us to give a simpler alternative definition of the coherence1393

relation ¨A←B between tokens in JA→ BK: for all f, f ′ ∈ JAK and g, g′ ∈ JBK,1394

f ( g ¨A→B f ′( g′ ⇔ (f ¨A f ′ ⇒ g ¨B g′) ∧ (g �B g′ ⇒ f �A f ′)1395

I Theorem 56. For all type A and term MA of type A, if there exists two semantic tokens1396

f, f ′ ∈ JAK associated with MA, i.e. the judgments `M : f and `M : f ′ are derivable, then1397

f and f ′ are coherent: f ¨A f ′.1398

In order to prove this theorem, we need to prove a stronger theorem, by induction on1399

term M :1400

I Theorem 57. If there exists two derivations D :: Γ ` M : f and D′ :: Γ′ ` M : f ′ then1401

Γ( f ¨ Γ′( f ′.1402

Here, when writing Γ( f with Γ = x1 : f1, . . . , xn : fn, we mean by Γ the tensor product1403

(f1, . . . , fn).1404

Proof. We prove this by induction on term M :1405

If M = a is a constant from Σ2 then the last rules of D and D′ are:1406

D ::
p(a−→x )〈`1, . . . , `n〉

T2−→ M(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1)( · · ·( (pn, `n)( (p, `)
1407

D′ ::
p′(a−→x )〈`′1, . . . , `′n〉

T2−→ M(p′1 x1) . . . (p′n xn) A2(a (`′1, . . . , `
′
n)) = `′

` a : (p′1, `
′
1)( · · ·( (p′n, `

′
n)( (p′, `′)

1408
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If ((p1, `1), . . . , (pn, `n)) ¨ ((p′1, `
′
1), . . . , (p′n, `

′
n)) then (`1, . . . , `n) = (`′1, . . . , `

′
n), therefore1409

` = `′ and so (p, `) ¨ (p′, `′). If ((p1, `1), . . . , (pn, `n)) ¨ ((p′1, `
′
1), . . . , (p′n, `

′
n)) and (p, `) =1410

(p′, `′) then p = p′ and, since `i = `′i for all i and T2 is deterministic, pi = p′i for all i. This1411

shows that ((p1, `1), . . . , (pn, `n)) ¨ ((p′1, `
′
1), . . . , (p′n, `

′
n)) and (p, `) = (p′, `′) implies that1412

((p1, `1), . . . , (pn, `n)) = ((p′1, `
′
1), . . . , (p′n, `

′
n)). As a consequence,1413

((p1, `1), . . . , (pn, `n)) ( (p, `) ¨ ((p′1, `
′
1), . . . , (p′n, `

′
n)) ( (p′, `′). So we have shown the1414

equivalent statement: (p1, `1)( . . . (pn, `n)( (p, `) ¨ (p′1, `
′
1)( . . . (p′n, `

′
n)( (p′, `′).1415

If M = N1N2 then the last rules of D and D′ respectively are of the form:1416

Γ1 ` N1 : g( f Γ2 ` N2 : g

Γ1,Γ2 ` N1N2 : f

Γ′1 ` N1 : g′( f ′ Γ′2 ` N2 : g′

Γ′1,Γ
′
2 ` N1N2 : f ′

1417

Through the induction hypothesis, we get that Γ1 ( (g ( f) ¨ Γ′1 ( (g′ ( f ′) and1418

Γ2 ( g ¨ Γ′2 ( g′. Then Γ1,Γ2 ¨ Γ′1,Γ
′
2 implies that Γ1 ¨ Γ′1 and Γ2 ¨ Γ′2, which1419

means that g ( f ¨ g′ ( f ′ and g ¨ g′, which in turn implies that f ¨ f ′. Reciprocally,1420

assuming that f � f ′, we have two cases depending on whether or not g � g′. On the one1421

hand we have that g � g′ implies that Γ2 � Γ′2 and therefore Γ1,Γ2 � Γ′1,Γ
′
2, on the other1422

hand we have that f � f ′ and g ¨ g′ imply that g ( f � g′ ( f ′ and so Γ1 � Γ′1 and1423

Γ1,Γ2 � Γ′1,Γ
′
2. In either case f � f ′ implies that Γ1,Γ2 � Γ′1,Γ

′
2. Finally we can conclude1424

that Γ1,Γ2 ( f ¨ Γ′1,Γ
′
2 ( f ′1425

If M = λxB .N then f = g( h, f ′ = g′( h′ and the last rules of D and D′ respectively1426

are:1427

Γ, xB : g ` N : h

Γ ` λxB .N : g( h

Γ′, xB : g′ ` N : h′

Γ′ ` λxB .N : g′( h′
1428

The induction hypothesis gives (Γ, xB : g) ( h ¨ (Γ′, xB : g′) ( h′, which we can1429

write: (Γ, g) ( h ¨ (Γ′, g′) ( h′ using the tensor product, and that is equivalent to1430

Γ( (g( h) ¨ Γ′( (g′( h′).1431

If M = xA then f, f ′ ∈ JAK. So Γ = xA : f and Γ′ = xA : f ′ and derivations D and D′1432

are:1433

f ∈ JAK
xA : f ` xA : f

f ′ ∈ JAK
xA : f ′ ` xA : f ′

1434

Trivially f ¨ f ′ ⇒ f ¨ f ′ and f � f ′ ⇒ f � f ′, therefore f ( f ¨ f ′ ( f ′. So1435

Γ( f ¨ Γ′( f ′.1436

We have shown theorem 57, of which theorem 56 is a particular case, by induction on1437

M . Indeed if M is a closed term and Γ and Γ′ are empty substitutions then Γ( f is f and1438

Γ′( f ′ is f ′, therefore f ¨ f ′. J1439

We have shown that any two tokens derivable for a same term are coherent. So the set of1440

tokens derivable for a given term MA form a clique in the coherence graph of JAK, we call it1441

the coherent state of term MA in JAK.1442

Now, using the previous theorem, we will be able to prove that there is only one way of1443

deriving any given derivable judgement `M : f .1444

Unicity of derivation for semantic token judgements1445

We can now prove theorem 5:1446
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Proof. Because subterms of M may have free variables, we add a substitution Γ to the1447

induction hypothesis:1448

“If there exists two derivations D :: Γ `M : f and D′ :: Γ `M : f then D and D′ are the1449

same.”1450

We prove this by induction on term M , so there are four distinct cases.1451

If M = a is a constant from Σ2 or if M = x is a free variable in Γ then derivations D and1452

D′ are axioms so they must be equal.1453

If M = N1N2 then the last rules of D and D′ respectively are of the form:1454

Γ1 ` N1 : g( f Γ2 ` N2 : g

Γ1,Γ2 ` N1N2 : f

Γ′1 ` N1 : g′( f Γ′2 ` N2 : g′

Γ′1,Γ
′
2 ` N1N2 : f

1455

where Γ1,Γ2 = Γ = Γ′1,Γ
′
2 . Since the variables substituted by substitutions Γ1 and Γ′11456

must be the free variables in term N1, Γ1 = Γ′1 (because dom(Γ1) = FV(N1) = dom(Γ′1)).1457

Similarly, we deduce that Γ2 = Γ′2. Then we can apply theorem 57 to the derivations of1458

Γ2 ` N2 : g and Γ′2 ` N2 : g′, and to the derivations of Γ1 ` N1 : g( f and Γ′1 ` N1 : g′( f .1459

The first application yields g ¨ g′ (since Γ2 = Γ′2), the second yields g ( f ¨ g′ ( f1460

(because Γ1 = Γ′1), together they imply that g = g′. Finally we can apply the induction1461

hypothesis to get unicity of a derivation of Γ1 ` N1 : g( f and unicity of a derivation of1462

Γ2 ` N2 : g, this implies that derivations D and D′ are the same.1463

If M = λxB .N then f = g( h and the last rule of D and D′ is the same:1464

Γ, xB : g ` N : h

Γ ` λxB .N : g( h
1465

The induction hypothesis implies the unicity of a derivation of Γ, xB : g ` N : h, which1466

entails the unicity of a derivation of Γ ` λxB .N : g( h. J1467

C.2 Proof of theorem 71468

First we need to prove that collapsed derivations of semantic tokens accurately represent the1469

application of T2 on terms, in order to do so we use a logical relation.1470

Logical relation1471

Our logical relation is indexed on a type A and a semantic token f ∈ JAK, it is defined as1472

follows:1473

I Definition 58. We define the logical relation RAf , for all type A built on atomic type o21474

and for all semantic token f ∈ JAK, by induction on type A:1475

Ro2(p,`) = {(M,N) | p(M�β)
T2= N�β , A2(M�β) = `}1476

RA→Bf(g = {(M,N) | ∀(M ′, N ′) ∈ RAf , (MM ′, N N ′) ∈ RBg }1477

Now we prove the adequation of this logical relation: for all type A ∈ types(o2), token1478

f ∈ JAK and for any closed terms M and N of respective types A and f :1479

∃D ::`M : f and D =βη N ⇒ (M,N) ∈ RAf1480

We prove a more general claim by induction on term M :1481
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I Theorem 59. For all type A ∈ types(o2), token f ∈ JAK, terms M of type A and N of1482

type f . For all substitutions of variables Γ and σ such that Γ(x) = g ⇒ σ(x)∈RBg and1483

dom(Γ) = FV(M):1484

∃D :: Γ`M :f ∧ D =βηN ⇒ (M.(π1 ◦ σ) , N.(π2 ◦ σ) ) ∈ RAf1485

In order to prove this theorem, we first need to show that the logical relation is compatible1486

with β-reduction (and η-expansion):1487

I Lemma 60. For all type A and token f ∈ JAK, for all terms M,N,M ′, N ′ such that1488

M =βη M
′ and N =βη N

′: (M,N) ∈ RAf ⇒ (M ′, N ′) ∈ RAf .1489

Proof. We prove this lemma by induction on type A. Let M,N,M ′, N ′ be terms such that1490

M =βη M
′, N =βη N

′ and (M,N) ∈ RAf .1491

If A = o2 and f = (p, `) then p(M�β)
T2= N�β and A2(M�β) = `. So1492

p(M ′�β) = p(M�β)
T2= N�β = N ′�β and A2(M ′�β) = A2(M�β) = `. In that case (M ′, N ′) ∈1493

RAf .1494

If A = B → C and f = g( h then, for all (M1, N1) ∈ RBg , (MM1, N N1) ∈ Rch. Since1495

M =βη M
′ and N =βη N

′, we have (MM1, N N1) =βη (M ′M1, N
′N1) and, by induction1496

hypothesis on type C, (M ′M1, N
′N1) ∈ RCh . So (M ′, N ′) ∈ RB→Cg(h . J1497

We can now prove theorem 59.1498

Proof. We use an induction on term M .1499

Let A ∈ types(o2), token f ∈ JAK, terms M of type A and N of type f . Let Γ and σ1500

substitutions of variables such that Γ(x)=g ⇒ σ(x)∈RBg and dom(Γ) = FV(M). Let D a1501

derivation of the judgement Γ`M :f (unique according to theorem 5). Assume that D =βηN .1502

We want to prove (M.(π1 ◦ σ) , N.(π2 ◦ σ) ) ∈ RAf .1503

In most cases, we will show that (M.(π1 ◦σ),D.(π2 ◦σ)) ∈ RAf and conclude using lemma1504

60. We distinguish four cases depending on M , one for each derivation rule as head of1505

derivation D:1506

If M = xA then the head rule of D is:1507

f ∈ JAK
xA : f ` xA : f

1508

Since Γ(xA) = f , we have σ(xA) ∈ RAf . So (M.(π1◦σ), N.(π2◦σ)) = (π1(σ(xA)), π2(σ(xA))) ∈1509

RAf .1510

If M = M1M2 then the head rule of D is:1511

D1 :: Γ1 `M1 : f ′( f D2 :: Γ2 `M2 : f ′

Γ1,Γ2 `M1M2 : f
1512

where Γ = Γ1,Γ2 such that the domains of Γ1 and Γ2 are the sets of free variables of M1 and1513

M2 respectively. Similarly, we can split substitution σ into σ1 and σ2 in order to apply the1514

induction hypothesis on D1 with σ1 and on D2 with σ2. Noting B the type of M2 we get:1515

(M1.(π1 ◦ σ1),D1.(π2 ◦ σ1)) ∈ RB→Af ′(f (M2.(π1 ◦ σ2),D2.(π2 ◦ σ2)) ∈ RBf ′1516

By definition of RB→Af ′(f we get (M1.(π1 ◦ σ1)M2.(π1 ◦ σ2),D1.(π2 ◦ σ1)D2.(π2 ◦ σ2)) ∈ RAf . So1517

((M1M2).(π1 ◦ σ), (D1D2).(π2 ◦ σ)) ∈ RAf . Since D = D1D2, we conclude using lemma 60.1518

If M = λxB .M ′ then the head rule of D is:1519

D′ :: Γ, xB : g `M ′ : f ′

Γ ` λxB .M ′ : g( f ′
1520
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where A = B → C and f = g( f ′. First we show that (λx.M ′.(π1 ◦ σ), λx.D′.(π2 ◦ σ)) ∈1521

RB→Cg(f ′ . Let (M0, N0) ∈ RBg . In order to use the induction hypothesis we define Γ′ = Γ, xB : g1522

and the substitution σ′ = σ◦ [x← (M0, N0)], then: (M ′.(π1◦σ′),D′.(π2◦σ′)) ∈ RCf ′ . Because1523

of the definition of σ′ we have: (λx.M ′.(π1 ◦σ))M0 =βη M
′.(π1 ◦σ′) and (λx.D′.(π2 ◦σ)) =βη1524

D′.(π2 ◦σ′). Using lemma 60 we deduce that ((λx.M ′.(π1 ◦σ))M0, (λx.D′.(π2 ◦σ))N0) ∈ RCf ′ .1525

This proves that (λx.M ′.(π1 ◦ σ), λx.D′.(π2 ◦ σ)) ∈ RB→Cg(f ′ . We conclude using lemma 60.1526

If M = a then the head rule of D is:1527

p(a−→x )〈`1, . . . , `n〉
T2−→ N ′ (p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1)( · · ·( (pn, `n)( (p, `)
1528

Since Γ is the empty substitution, we only need to prove (M,N) ∈ Ro2→ ... o2
(p1,`1)( ...((p,`). In1529

order to do this we define the property P(i) for 0 ≤ i ≤ n by:1530

1531

P(i) = ”For all (M1, N1) ∈ Ro2(p1,`1), . . . , (Mi, Ni) ∈ Ro2(pi,`i)
,1532

we have (MM1 . . .Mi, N
′N1 . . . Ni) ∈ Ro2→ ...→ o2

(pi+1,`i+1)( ... (pn,`n)((p,`)”1533
1534

We prove P(i) by downward induction for 0 ≤ i ≤ n.1535

We start by proving P(n):1536

let (M1, N1) ∈ Ro2(p1,`1), . . . , (Mn, Nn) ∈ Ro2(pn,`n). So for all i ≤ n, we have pi(Mi�β)
T2= Ni�β1537

and A2(Mi�β) = `i. Now we look at p(MM1 . . .Mn�β):1538

p((MM1 . . .Mn)�β) = p(a (M1�β) . . . (Mn�β))

T2= N ′ (p1(M1�β)) . . . (pn(Mn�β))

T2= N ′ (N1�β) . . . (Nn�β)

T2= (N ′N1 . . . Nn)�β1539

Note that we can apply the rule of T2 because we know that A2(Mi�β) = `i for all i ≤ n.1540

Then we check A2((MM1 . . .Mn)�β):1541

A2((MM1 . . .Mn)�β) = A2(a (M1�β) . . . (Mn�β))

= A2(a `1 . . . `n)

= `1542

We have shown P(n) = ”(MM1 . . .Mn, N
′N1 . . . Nn) ∈ Ro2(p,`)”.1543

Next we prove the induction step, for 1 ≤ j ≤ n, P(j)⇒ P(j − 1): we assume P(j) and1544

want to prove P(j − 1).1545

Let (M1, N1) ∈ Ro2(p1,`1), . . . , (Mj−1, Nj−1) ∈ Ro2(pj−1,`j−1). According to P(j), for all1546

(Mj , Nj) ∈ Ro2(pj ,`j)
: (MM1 . . .Mj , N

′N1 . . . Nj) ∈ Ro2→ ...→o2
(pj+1,`j+1)( ...((p,`). So1547

(MM1 . . .Mj−1, N
′N1 . . . Nj−1) ∈ Ro2→ ...→o2

(pj ,`j)((pj+1,`j+1)( ...((p,`) and P(j − 1) is true.1548

Therefore, by induction, P(0) = ”(M,N ′) ∈ Ro2→ ... o2
(p1,`1)( ···((p,`)” is true. Since1549

N ′ = D =βη N we can conclude that (M,N) ∈ Ro2→ ... o2
(p1,`1)( ···((p,`) using lemma 60.1550

This ends the proof of theorem 59. J1551

As a corollary of theorem 59 we get that if there exists a derivation D of a judgement1552

`M : f then (M,D�βη) ∈ RAf .1553

With this corollary we can now prove theorem 7.1554
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Proof of theorem 71555

With T defined in section 4.4, we prove that T = T2 ◦ T1.1556

Proof. We first prove the following statement by induction on a tree t of type o1:1557

For all state q ∈ Q of transducer T1 and for all token f ∈ JAqK such that q(t) T1→ M and1558

`M : f , there exists a term N such that (q, f)(t)
T→ N and (M,N) ∈ RAqf .1559

Let t = a t1 . . . tn a tree of type o1, q ∈ Q a state of T1 and f ∈ JAqK a token such that1560

q(t)
T1→M and `M : f . Then there is a rule:1561

q(a t1 . . . tn)
T1→M0 (q1 t1) . . . (qn tn)1562

If term M0 forgets one or several of its arguments, then there exists a term M ′0 which uses1563

all its arguments such that M0 (q1 t1) . . . (qn tn) =βη M
′
0 (qi1 ti1) . . . (qim tim) where i1, . . . , im1564

are the indices of the arguments used by M0. For the sake of clarity we forget this renaming1565

of variables and proceed assuming M0 uses all of its arguments.1566

Since the computation of q(t) T1→ M terminates and M0 uses all its arguments: for1567

all i ≤ n, the computation of qi(ti) by T1 terminates, we note its result Mi (a term of1568

type Aqi). Therefore M0M1 . . .Mn →∗βη M . So ` M0M1 . . .Mn : f and there exists1569

f1 ∈ JAq1K, . . . , fn ∈ JAqnK such that `M0 : f1 ( · · ·( fn( f and, for all i ≤ n, `Mi : fi.1570

Then we can apply the induction hypothesis to each tree ti with state qi and token fi: for1571

all i ≤ n, there is a term Ni such that (qi, fi)(ti)
T→ Ni and (Mi, Ni) ∈ R

Aqi
fi

.1572

Because of the rule q(a t1 . . . tn)
T1→M0 (q1t1) . . . (qntn) in T1, there must be in T a rule:1573

(q, f)(a t1 . . . tn)
T→ D0 ((q1, f1)(t1)) . . . ((qn, fn)(tn))1574

Where D0 is the derivation of the judgement `M0 : f1 ( · · ·( fn( f . So1575

(q, f)(a t1 . . . tn)
T→ D0N1 . . . Nn.1576

By using theorem 59 (adequation) on D0 we get (M0,D0) ∈ RAq1→...Aqn→Aqf1(...fn(f . By definition1577

of the logical relation, we obtain (M0M1 . . .Mn,D0N1 . . . Nn) ∈ R
Aq
f . Finally we apply1578

lemma 60. So, with N = D0N1 . . . Nn, we have (q, f)(t)
T→ N and (M,N) ∈ RAqf .1579

Let t1 be a tree of type o1. Assume that T2 ◦ T1(t1) = t3. Then there is a term t2 of type1580

o2 such that q0(t1)
T1→ t2 and p0(t2)

T2→ t3. Then we can derive the judgement ` t2 : (p0, `)1581

where ` is the look-ahead of T2 on tree t2 and p0 is the initial state of T2. So there exists1582

a term N such that (q0, (p0, `))(t1)
T→ N and (t2, N) ∈ Ro2(p0,`)

. By definition of the logical1583

relation we have: p0(t2)
T2= N�β , so t3 = N�β and (q0, (p0, `))(t1)

T→ t3. Thanks to the1584

definition of R, we can conclude that q′0(t1)
T→ t3. So T2 ◦T1(t1) = t3 implies that T (t1) = t3.1585

For the reverse implication, we first show by induction on tree t that, for all state q ∈ Q1586

and token f ∈ JAqK, if (q, f)(t)
T→ N then there exists a term M such that q(t) T1→ M ,1587

`M : f and (M,N) ∈ RAqf .1588

Let t = a t1 . . . tn a tree of type o1 with (q, f)(t)
T→ N . So there is a rule of T such1589

that (q, f)(t)
T→ N0 ((q1, f1)(t1)) . . . ((qn, fn)(tn)). Then there are N1, . . . , Nn such that1590

(q, f)(t)
T→ N0N1 . . . Nn, N =βη N0N1 . . . Nn and, for all i ≤ n, (qi, fi)(ti)

T→ Ni. Then we1591

apply the induction hypothesis and get Mi such that qi(ti)
T1→Mi and `Mi : fi. There is in1592

T1 a rule q(t) T1→M0 (q1t1) . . . (qntn), so q(t) T1→M0M1 . . .Mn, with `M0 : f1 ( . . . fn( f .1593

So for M = M0M1 . . .Mn we have ` M : f . Finally we deduce that (M,N) ∈ RAqf using1594

the property we proved earlier in this proof and the lemma 60.1595
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Now we try to show that T (t1) = t3 ⇒ T2 ◦ T1(t1) = t3. Assume that T (t1) = t3. Then1596

q′0(t1)
T→ t3, so there exists a token (p0, `) ∈ Jo2K such that (q0, (p0, `))(t1)

T→ t3. So there1597

exists a term M such that q(t1)
T1→M , `M : f and (M, t3) ∈ Ro2(p0,`)

. Then, by definition of1598

the logical relation: p0(M�β)
T2→ t3. So T2 ◦ T1(t1) = t3.1599

So the transduction of T is the composition of the transductions of T2 and T1. J1600
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