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Abstract—This paper proposes a new motion estimation
method based on convolutional sparse coding to adaptively design
the colored-coded apertures in static and dynamic spectral videos.
The motion in a spectral video is estimated from a low-resolution
reconstruction of the datacube by training a convolutional dic-
tionary per spectral band and solving a minimization problem.
Simulations show improvements in terms of peak signal-to-noise
ratio (of up to 2 dB) of the reconstructed videos by using
the proposed approach, compared with state-of-art non-adaptive
coded apertures.

Index Terms—Compressive spectral video, motion estimation,
adaptive imaging, convolutional sparse coding.

I. INTRODUCTION

Compressive spectral imaging (CSI) systems drastically
reduce the amount of acquired spectral data by capturing
datacube projections in order to reconstruct the underlying
image. One outstanding CSI architecture is the colored-coded
aperture snapshot spectral imager (C-CASSI) [1]. C-CASSI is
a snapshot system that captures compressive projections of the
datacube along time. C-CASSI uses three optical components,
the colored-coded aperture (CCA), the dispersive element
and the focal plane array (FPA). Specifically, the incoming
light of the scene is spatially and spectrally modulated by
the colored-coded aperture and spectrally smeared by the
dispersive element before it impinges on the FPA [1]. The
underlying spectral scene is reconstructed by solving a convex
optimization problem [2], [3]. Unlike traditional CASSI that
uses block-unblock coded apertures (which block or transmit
the full spectral signature in a given pixel [4]), the colored-
coded apertures filter the incoming light per pixel. C-CASSI
has been used successfully for capturing static scenes. Extend-
ing C-CASSI to dynamic scenes is clearly interesting.

Recently, a variation of C-CASSI based on compressive
spectral video sensing (CSVS), called video-C-CASSI, has
been proposed [5]. Most CSVS systems rely on coding and
dispersion of the incoming light towards the camera sensor
[6]–[10]. In addition, video-CASSI improves flexibility in the
encoding of the dynamic scenes by using an array of optical
filters. Moreover, video-C-CASSI employs uniform sampling

along the frames, estimates the motion between successive
frames using optical flow and uses a regularization term to
reduce the errors introduced by the motion of the scene [5].
While optical flow is a well-established algorithm for motion
estimation, recent works showed that motion regularization
based on patch-based or convolutional learned dictionaries
generally improves motion estimation (see, e.g., [11]–[13]).
However, the interest of these approaches for the design of
the colored-coded aperture of dynamic scenes has never been
explored, which is the main objective of this work.

A traditional coded aperture design of C-CASSI is per-
formed in a non-adaptive manner, i.e., the coded aperture is
designed independently from the scene [1], [5]. Recently, a few
works proposed adaptive designs in C-CASSI [14], and CASSI
[15] using static scenes. The main objective of this paper
is to use convolutional sparse coding (CSC), a translation-
invariant image representation [16] to compute the motion
between successive frames of a video, and to consequently
design coded apertures adaptively by separating the sampling
of static and dynamic scenes. The contribution of this work is
to design coded apertures of C-CASSI adaptively to capture
compressive measurements for spectral video. The proposed
method estimates the motion between successive frames by
minimizing a cost function formed by a data attachment term
penalized by a spatial regularization promoting smoothness
and a sparse regularization using a convolutional dictionary
for motion fields. Simulations results show that the proposed
adaptive video-C-CASSI outperforms approaches of the state-
of-art such as random C-CASSI and blue-noise C-CASSI.

II. VIDEO C-CASSI

Video C-CASSI acquires dynamic scenes at a particular
frame rate. It is composed of an objective lens, a temporal
colored-coded aperture (T-CCA), a relay lens, a dispersive
element, and a focal plane array (FPA) or detector. The discrete
measurements for the dth frame on the detector are

Y d
i,j =

L−1∑
`=0

Fd
i,(j+`),`T

d
i,(j+`),` + ωi,j (1)



where Y d
i,j are the elements of a matrix Yd ∈ RN×(M+L−1)

containing the measurements of the dth frame, M × (N +
L − 1) is the dimension of the detector (note that the width
of the compressive measurements is higher than the height
due to the dispersion of the prism), and ωi,j is the Gaussian
noise of the sensing system at position (i, j). The acquisition
process can be compactly written in matrix form as yd =
Hdfd + ωd where yd ∈ RN(M+L−1) is a vector containing
the compressive measurements of Yd and fd ∈ RNML is the
vectorized datacube Fd ∈ RN×M×L for frame #d, ωd is the
corresponding vectorized Gaussian noise and Hd is the dth
C-CASSI sensing matrix whose structure was defined in [1].
Note that Hd models the physical phenomenon of the coded
aperture and the shifting produced by the dispersive element.
More details about the structure of the matrix Hd can be found
in [1].

III. CODED APERTURE DESIGN IN SPECTRAL VIDEOS
USING MOTION ESTIMATION.

A. Motion Estimation

Pairwise video motion estimation (VME) uses two consecu-
tive frames Fd−1

H and Fd
H (of RM×N×L) from a spectral video

acquired at time instants d − 1 and d. Denote as Sd
(`,x) and

Sd
(`,y) ∈ RM×N×L the video motions for the frame d along the
x and y axes. The proposed VME method is inspired by the
works conducted in [11]. It minimizes a function composed
of a data fidelity term Edata, penalized by two regularization
terms Espatial and Esparse

argmin
X,Sd

{
Edata(S

d,Fd
H ,F

d−1
H )+λsEspatial(S

d)+λpEsparse(S
d,X)

}
(2)

where (λp, λs) ∈ R2 are two regularization parameters
(balancing the influence of the data fidelity term and the
regularizations) and Sd = Sd

(`,x) or Sd = Sd
(`,y). Note that the

displacement vectors components along x and y are estimated
independently for simplicity. The first regularization term
promotes smooth variations in the video motion field by using
a standard total variation function, i.e., Espatial(S

d) = ‖∇Sd‖22,
where ∇ is the gradient operator and ‖.‖22 is the squared `2
norm. The other terms in (2) are defined below.

B. Data fidelity term

Optical flow assumes brightness constancy and temporal
consistency leading to the following optical flow equation

∂tf
d
H +∇fTHsd = 0 (3)

where sd ∈ RNM represents the flow field such that sd` is
the vectorized video motion S`, ∂tfdH denotes the temporal
derivative and ∇fTH is the spatial gradient of the brightness.
The data fidelity term resulting from optical flow is

Edata(s
d, fdH , f

d−1
H ) =

∥∥∂tfdH +∇fTHsd
∥∥2
2

(4)

where ‖.‖22 is the squared `2 norm.

C. Sparse regularization

The second regularization term promotes sparsity of the
motion vectors in a dictionary of representative motions. It
decomposes the video motion Sd as a convolution between V
sparse coefficient maps Xv and a set of V filters Gv , i.e.,

Esparse(S
d,X) =

∥∥∥∥∥Sd −
V∑

v=1

Gv ∗Xv

∥∥∥∥∥
2

2

(5)

where ∗ denotes convolution. This regularization was used
successfully for ultrasound images [13]. One of the objectives
of this paper is to analyze its interest for multi-temporal
hyperspectral images.

D. Adaptive coded aperture scheme

Fig. 1 summarizes the four steps proposed to design the
video adaptive colored-coded apertures (VA-CCA). Specifi-
cally, the following iterative process is repeated for all the
frames: (1) sample the datacube to capture the compressive
measurements of a pair of frames, (2) reconstruct the datacube
by solving an inverse problem to define some prior information
[14], (3) estimate the video motions using optical flow, (4)
design the colored-coded apertures by thresholding the motion
estimates resulting from (3). Note that step (3) requires the
computation of a convolutional dictionary (step (3a)) (which
uses the training video motion S̃) and of coefficient maps
((step (3b)) using test video motions St.

E. Adaptive coded aperture design algorithm

Algorithm 1 designs the coded apertures adaptively for a
compressive spectral video sequence. The algorithm uses two
sets of compressive measurements and a sequence of motion
fields estimated from a spectral video. It also requires to
choose the hyperparameters λs, λp that balance the spatial
and sparse regularization terms, respectively. Moreover, the
alternating direction method of multipliers (ADMM) [17] used
in this work requires to set the parameter ρ for the Lagrangian,
and λ to balance the sparsity of the coefficients maps. Note that
a low-resolution reconstruction of the datacube is necessary
to obtain the video sequence appearing in lines 6 and 12 of
the algorithm. This reconstruction is obtained by solving the
following optimization problem f̂dL = Ψ−1

L (argminθL
‖yd −

Hd
LΨd

Lθ
d
L‖22 + τ‖θdL‖1), where y contains the compressive

measurements, Ψ−1
L denotes the low-resolution representation

basis, θdL represents the sparse signal, Hd
L corresponds to

the measurement matrix, ‖.‖1 is the `1-norm, and τ is a
regularization parameter. Line 2 computes the convolutional
dictionary by assuming that each band in a specific spectral
frame of the video can be represented as a set of V filters
Gv convolved with a set of sparse coefficient maps Xv , i.e.,
Sd ≈

∑V
v=1 Gv ∗Xv .

F. Dictionary learning

The determination of a convolutional dictionary satisfying
Sd ≈

∑V
v=1Gv ∗ Xv can be achieved using several off-the-

shelf algorithms [18]. In this paper, the dictionary learning



step is performed by solving the following problem (where
S̃d denotes the training video sequence which was obtained
using Horn-Schunck optical flow estimation)

argmin
Gv,Xd,v

1

2

∑
d

∥∥∥∥∥∑
v

Xd,v ∗Gv − S̃d

∥∥∥∥∥
2

2

+ λ
V∑

v=1

∑
d

‖Xd,v‖1

s.t. ‖Gv‖ = 1 ∀v = 1, ..., V.
(6)

The minimization of (6) can be handled efficiently using the
ADMM.
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Fig. 1. Flowchart of the proposed adaptive coded aperture design for VME.

Algorithm 1 Adaptive coded aperture design for compressive
spectral video using motion estimation.

Input: λs, λp,K,D, λ, ρ, S̃,St : Training/test video motions
Output: Sd

`

1: function CODED APERTURE DESIGN USING VIDEO MO-
TION ESTIMATION (y0,y1, λs, λp,K, J, λ, ρ, S̃,St)

2: Gv ← Computes the dictionary by solving (6)
3: Xv ← Computes the coefficient maps by solving (7)
4: y0 ← H0f . First snapshot
5: f̂0L ← Ψ−1

L (argminθL
‖y0 −H0

LΨd
Lθ

d
L‖22 + τ‖θdL‖1)

6: . Low-resolution
7: f̂0H ← P(f̂0L) . Interpolation
8: F̂0

H ← rearrange(f̂0H) . Rearrange
9: for k ← 1,K do

10: for d← 1, D do
11: f̂dL ← Ψ−1

L (argminθL
‖yd−Hd

LΨd
Lθ

d
L‖22 + τ‖θdL‖1)

12: . Low-resolution
13: f̂dH ← P(f̂dL) . Interpolation
14: F̂d

H ← rearrange(f̂dH) . Rearrange
15: for `← 1, L do
16: argminSd

`

{
Edata(F̂

d−1
H , F̂d

H ,S
d−1
` )+

λs‖∇Sd−1
` ‖22 + λp(k)‖Sd−1

` −
∑

v Gv ∗Xv‖22
}

s.t. ‖Gv‖ = 1 ∀v . Video motion estimation
17: Qd

` ← (Sd−1
` ,Sd

` ) . Thresholding motion
18: qd

` ← vec(Qd
` ) . Vectorized motion areas

19: rd` ← qd
` � bd

` + (1− qd
` )� b̂d

` . Next code
20: Hd

` ← rearrange(rd` ) . Rearrange
21: yd ← Hdf . Next snapshot
22: f̂ ← Ψ−1(argminθ ‖y −HΨθ‖22 + τ‖θ‖1)
23: return Sd

` . (Estimated motion field)

G. Sparse coding
Once the dictionary Gv has been determined, the coefficient

maps of a sequence of test images denoted as Sd
t are obtained

by solving the following optimization problem (see line 3 of
Algorithm 1)

argmin
Xv

1

2

∥∥∥∥∥
V∑

v=1

Xv ∗Gv − Sd
t

∥∥∥∥∥
2

2

+ λ
V∑

v=1

‖Xv‖1 (7)

which can again be done using the ADMM algorithm.

H. Video reconstruction

In order to compute the adaptive coded apertures, some prior
information is required. We propose to use a low resolution
reconstruction of the image f̂dL (see line 11 of Algorithm
1), where Hd

L is a decimated sensing matrix Hd
L = HdD,

D is another decimation matrix such that f̂dL = Df̂d, the
representation basis is denoted by Ψ−1

L and the vectorized
sparse signal is θdL. An interpolation is used in Line 13 of
Algorithm 1 to create a high resolution image f̂dH from a low
resolution reconstruction f̂dL, where P is a bilinear interpolator.
The interpolated datacube f̂dH is rearranged in Line 14 to obtain
the datacube of the dth frame F̂d

H .
The VME is reported in Line 16. In line 17 of the algorithm,

a thresholding using a binary mask Qd
` divides each pixel in

background and target areas using a pair of motions Sd−1
` ,

and Sd
` . The matrix Qd

` is vectorized as qd
` in line 18 and the

resulting coded aperture rd` is computed in line 19. Note that
the coded aperture depends on two blue noise code apertures
b̂d
` and bd

` [19]. One blue noise coded aperture corresponds
to the background area (complement of matrix qd

` , 1 − qd
` )

and a moving blue noise coded aperture bd
` is attributed to the

mobile target (the subset of the scene qd
` ). For an example

of designed codes, the reader is invited to look at Fig. 2
in Section IV. In line 20 the coded aperture is reorganized
leading to the matrix Hd

` . In the following step (line 21)
the compressive measurements yd are obtained by sampling
with the adaptive coded aperture Hd

` . The last step in line 22
reconstructs the spectral video with improved quality due to
the designed patterns.

IV. SIMULATION RESULTS

In order to validate the performance of the proposed coded
aperture design, a set of C-CASSI video measurements was
simulated using the model (1). These measurements were
constructed using a real test spectral source acquired in
the Optics Lab of the High Dimensional Signal Processing
(HDSP) research group at Universidad Industrial de Santander
with a CCD camera using wavelength steps of 10 nm. The
resulting discrete source F used in simulations has 12 frames
of 128× 128 pixels and L = 10 spectral bands ranging from
400 nm to 500 nm. Given the compressive projections, the
compressive sensing algorithm GPSR (Gradient Projection for
Sparse Reconstruction) was used to recover the data [3]. The
4D sparse representation basis used in this experiment was the
Kronecker product between a 2D-Wavelet Symmlet 8 basis for
the spatial dimensions denoted as Ψ2D, a 1D-Discrete Cosine
basis (DCT) for the spectral dimension denoted as W and a
1D-DCT basis for the temporal dimension denoted as U [20].



Algorithm 1 was used to design the video adaptive colored-
coded apertures (VA-CCA) in an adaptive manner. The de-
signed apertures were then used to create a C-CASSI spectral
source and to reconstruct the image sequence of interest.
The performance of the designed apertures was compared
with random colored-coded apertures (R-CCA) [1] with the
same transmittance, with blue noise apertures (BNA) [19], and
with 50% transmittance blocking-unblocking coded apertures
(BUA) [21]. For the experiments, the estimated low-resolution
image had a spatial resolution of 32 × 32 pixels, which
corresponds to a spatial downsampling by a factor of 4. An
example of the motion field obtained for the first frame, and
the first spectral band is depicted in Fig. 2. Fig. 2(a) displays
the motion field, Fig. 2(b) shows a zoomed version of the
motion field, Fig. 2(c) depicts the Otzu thresholding of the
motion field, which divides the scene into static and dynamic
regions, Fig. 2(d) displays a hybrid blue noise coded aperture
which is composed of one blue noise code aperture for the
static part of the scene and a dynamic blue noise that moves
to keep the complementarity between frames.

The quality of image reconstructions was evaluated in terms
of peak-signal-to-noise ratio (PSNR) and structural similarity
index (SSIM). The PSNR, given in decibels (dB), is related to
the mean squared error (MSE) as 10 log10(max2/MSE) where
max is the maximum possible value of an image pixel. SSIM
measures the structure similarity between two imageswith
values varying from 0 to 1, 1 being the value obtained for two
identical images. Table I summarizes the results in terms of
PSNR mean and SSIM for the different coded apertures. The
PSNR and SSIM obtained with the proposed VA-CCA patterns
are higher than those obtained with BUA, BNA, and R-CCA.
Fig. 3 shows the RGB reconstructions of the frames #4, #8,
and #12 and provides the quality of reconstructions in terms
of PSNR. The VA-CCA provides the best reconstructions, with
a PSNR up to 2 dB higher than the block-unblock coded
apertures, 2.9 dB higher than blue noise coded apertures, and
0.7 dB higher than the random colored-coded apertures. These
results are very promising.

TABLE I
MEAN PSNR AND SSIM OF THE RECONSTRUCTION IN DB ACROSS THE

SPECTRAL AND TEMPORAL DIMENSIONS.

Coded Aperture Patterns BU BN CCA VA-CCA
PSNR mean 25.04 24.56 26.75 27.42
SSIM mean 0.844 0.843 0.895 0.906

V. CONCLUSIONS

This paper studied a new design of adaptive colored-coded
apertures (VA-CCA) for compressive spectral sampling in
video C-CASSI. After introducing a mathematical model for
dynamic scenes, we investigated the colored-coded apertures
in C-CASSI relying on prior information on the scene, pro-
vided by motion estimation between pairs of consecutive
frames. The proposed design divides the video scene into
static and dynamic regions, assigning two different blue noise
patterns to the static and mobile parts of the image. The im-
provement in PSNR obtained with the proposed approach is up
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Fig. 3. Video reconstructions for frames 4, 8, and 12 (one frame per column),
using non-adaptive and adaptive coded apertures. (a) block-unblock apertures,
(b) blue noise apertures, (c) random CCA, (d) video adaptive CCA. The PSNR
mean across the spectral band is shown in each frame.

to 2 dB compared to traditional blocking-unblocking apertures,
2.9 dB in comparison with non-adaptive blue noise patterns,
and 0.7 dB higher than random colored-coded apertures.
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the blue area represent the static blue noise coded aperture.
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