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ABSTRACT 25 

A new myxozoan species belonging to the genus Henneguya was isolated from the 26 

serous membrane of the visceral cavity of the hognosed catfish Brochis multiradiatus 27 

from Peruvian Amazon. Whitish plasmodia, macroscopically visible, were found in four 28 

of the thirty examined fishes. Mature myxospores were ellipsoidal in shape in frontal 29 

view and had a total length of 44.5 ± 0.6 μm (43.9–45.1), spore body measured 18.7 ± 30 

0.9 μm (16.8–19.6) in length, 7.1 ± 0.2 μm (6.6–7.4) in width and 5.5 ± 0.3 μm (4.9–31 

5.6) in thickness. The two polar capsules were elongated and equal in size, measuring 32 

9.1 ± 0.1 μm (8.8–9.4) in length and 1.7 ± 0.1 μm (1.6–1.8) in width, occupying half of 33 

the myxospore body. Polar tubules coiled in 10 to 11 turns perpendicular to the long 34 

axis of the polar capsule. The caudal appendage was not bifurcated and measured 25.8 ± 35 

0.6 μm (24.7–26.5) in length. The sequencing of the 18S rDNA gene resulted in 1400 36 

bp and this sequence did not match any of the myxozoans available in GenBank. 37 

Phylogenetic analysis placed the new species in a well-supported subclade of 38 

Henneguya spp. infecting callichthyid fishes, with Henneguya loretoensis being the 39 

closest species. This study is the first description of a myxozoan species, Henneguya 40 

multiradiatus n. sp. from a fish of the genus Brochis.   41 

Keywords: Cnidaria, Endocnidozoa, Hognosed catfish, Myxosporean, 18S rDNA 42 

sequencing, Peru 43 

1. Introduction 44 

Myxozoans are microscopic endoparasites with complex life cycles involving 45 

invertebrate and vertebrate hosts [1]. Recently, due to synapomorphies and cnidarian-46 

specific genes, myxozoans were placed within the phylum Cnidaria and currently 47 

represent about 20% of the known cnidarian species diversity around the world [1]. 48 
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While predominantly known to infect freshwater and marine fishes, myxozoans can also 49 

infect other groups of vertebrates such as amphibians, reptiles, birds, and terrestrial 50 

small mammals [2]. Within fish-infecting myxozoans, Henneguya Thélohan, 1892, is 51 

one of the largest genera, with more than 195 described species within a wide 52 

geographical range [3]. Henneguya spp. are histozoic parasites and they show high host-53 

specificity and organ- or tissue tropism, with some species inducing severe 54 

henneguyosis in wild and cultured fish [4–7].    55 

It is well known that the growing global pet trade, including aquarium market, plays a 56 

role in the spread of pathogens [8]. According to Hallett et al. [9], the aquatic pet trade 57 

would very likely stand as a primary mode for international transport of myxozoan 58 

parasites. In fact, there are some reports about the introduction of myxosporeans 59 

through commercial transfers of pets with some cases of ecological and economic 60 

impacts [10–12]. As such, there is a growing need for myxozoans screening during 61 

parasitological surveys in these aquatic pet animals.    62 

The armored catfish corydoradines are members of the family Callichthyidae. With over 63 

190 described species, it is one of the most diverse siluriform assemblages in the 64 

Neotropics [13]. These neotropical freshwater catfishes are endemic to South America 65 

[13]. Among these corydoradines, Brochis multiradiatus Orcés V., 1960 is found in the 66 

Napo River in Ecuador and Peru [14]. It can reach up to 6.7 cm in length and is largely 67 

marketed in the aquarium trade, being one of the most popular in the Chinese 68 

ornamental fish market [15]. Although corydoradines are highly appreciated in the 69 

international aquarium trade, there are few parasitological surveys about this fish, 70 

especially those concerning myxozoan parasites.   71 

To our knowledge, nothing is known about myxozoan parasites infecting any member 72 

of the genus Brochis. Herein, based on morphological, biological/ecological traits and 73 
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molecular data, we described a new Henneguya species infecting the ornamental fish B. 74 

multiradiatus from the Amazon region of Peru, a key supply region of wild ornamental 75 

fishes for the international aquarium trade.    76 

2. Material and methods  77 

In September 2019, thirty wild specimens of B. multiradiatus were collected by a local 78 

fisherman. The fishes were caught in the Napo River, in an adjacent area of the village 79 

Cabo Pantoja (0°57′25″S, 75°27′11″W), Department of Loreto, Peru. The fish were 80 

transported alive to the field laboratory where they were euthanized by neural pithing 81 

and examined. The procedures were approved by the Federal University of São Paulo-82 

UNIFESP Ethics Committee (CEUA No. 9209080214), in accordance with Brazilian 83 

law for scientific use of animals (Federal Law No. 11794, dated 8 October 2008). The 84 

family and current status of the host fish (valid species name or synonym) were 85 

reviewed using FishBase [14].  86 

Morphometric analyses were performed on mature myxospores following the criteria 87 

outlined by Lom and Arthur [16]. Measurements and photographs were taken from 30 88 

myxospores using a computer equipped with Axiovision 4.1 image capture software 89 

coupled to an Axioplan 2 Zeiss microscope (Carl Zeiss AG, Oberkochen, Germany). 90 

The dimensions of the myxospores were given in micrometers (μm) and expressed as 91 

the mean ± standard deviation, followed by the range in parentheses. Prevalence of 92 

infection [(number of infected fish/total number of fishes examined) ×100] was 93 

calculated according to Bush et al. [17]. Smears containing free myxospores were air-94 

dried, fixed with methanol and stained with Ziehl-Neelsen to mount on permanent slides 95 

that were deposited in the cnidarian collection of the zoology Museum of the University 96 

of São Paulo - USP, São Paulo, Brazil (MZUSP).   97 
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For molecular studies, a plasmodium was dissected from the host tissue and fixed in 98 

absolute ethanol. The genomic DNA was extracted from a single plasmodium using 99 

DNeasy® Blood & Tissue Kit (Qiagen, Valencia, USA), in accordance with the 100 

manufacturer's instructions. The DNA concentration was measured using a NanoDrop 101 

2000 spectrophotometer (Thermo Scientific, Wilmington, USA). Polymerase chain 102 

reactions (PCRs) were performed in accordance with Milanin et al. [18] and conducted 103 

in a final volume reaction of 25 μL, which comprised 10–50 ng of extracted DNA, 0.2 104 

pmol for each primer, 12.5 μL of Dream Taq Green PCR Master Mix (Thermo 105 

Scientific) and nuclease-free water. Partial 18S rDNA sequence was amplified using the 106 

primer pairs ERIB1 [19] - ACT1r [20] and Myxgen4F [21] - ERIB10 [19] (Table 1), 107 

which amplified two fragments containing approximately 1.000 and 1.200 bp 108 

respectively. PCR amplification was done by initial denaturation at 95 °C for 5 min, 109 

followed by 35 cycles at 95 °C for 1 min, 64 °C (ERIB1-ACT1r) or 58 °C (Myxgen4F-110 

ERIB10) for 1 min, 72 °C for 2 min, and then final elongation at 72 °C for 5 min. PCRs 111 

were performed in an AG22331 Hamburg Thermocycler (Eppendorf, Hamburg, 112 

Germany). PCR products were subjected to electrophoresis in 2.0% agarose gel 113 

(BioAmerica, Irvine, USA) in a TAE buffer (Tris-Acetate EDTA: Tris 40 mM, acetic 114 

acid 20 mM, EDTA 1 mM), stained with Sybr Safe DNA gel stain (Invitrogen by Life 115 

Technologies, Carlsbad, USA), and then analyzed with a Stratagene 2020E trans 116 

illuminator (Stratagene California, San Diego, USA). The size of the amplicons was 117 

estimated by comparison with the 1 Kb Plus DNA Ladder (Invitrogen by Life 118 

Technologies). PCR products were purified using USB® ExoSap-IT® (Thermo Fisher 119 

Scientific) in accordance to the manufacturer's instructions and sequenced using the 120 

same PCR primers plus two additionally MC5 and MC3 primers used to overlap the 121 

obtained amplification fragments [22]. Sequencing was performed at Paulista Medical 122 
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School, Federal University of São Paulo, using a BigDye® Terminator v3.1 Cycle 123 

Sequencing kit (Applied Biosystems Inc., California, USA) in an ABI 3130 automatic 124 

DNA analyzer (Applied Biosystems Inc.™). The obtained sequence was visualized, 125 

assembled and edited using BioEdit 7.1.3.0 software [23]. A standard nucleotide 126 

BLAST (blastn) search was conducted to verify the similarity of the sequence obtained 127 

in this study with other sequences available in GenBank [24]. Phylogenetic analysis was 128 

conducted using the most closely related myxozoans sequences with similarity > 80%. 129 

The sequences were aligned with ClustalW within BioEdit version 7.1.3.0 [23]. 130 

Phylogenetic analysis was performed using Maximum Likelihood (ML) method with a 131 

Kimura 2-parameter (K2P) evolution sequence model in MEGA 6.0 [25]. Bootstrap 132 

analysis (1000 replicates) was employed to assess the relative robustness of the 133 

branches in ML tree. Ceratonova shasta sequence was used as outgroup. The pairwise 134 

method with the p-distance model in MEGA 6.0 [25] was performed to evaluate the 135 

genetic distance between the myxozoan species clustering together with the new 136 

sequence obtained.  137 

3. Results 138 

Whitish plasmodia macroscopically visible measuring 2.1 to 3 mm in diameter and 139 

containing large quantities of myxospores belonging to the genus Henneguya were 140 

found in the serous membrane of the visceral cavity of wild specimens of B. 141 

multiradiatus (Fig. 1A). The prevalence of the myxozoan parasites in these fish hosts 142 

was 13.3% (4/30) and no signs of diseases were observed in the infected individuals.        143 

Henneguya multiradiatus n. sp. 144 

Taxonomic summary 145 

Phylum: Cnidaria Verrill, 1865 146 
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Class: Myxosporea Bütschli, 1881 147 

Order: Bivalvulida Shulman, 1959 148 

Family: Myxobolidae Thélohan, 1892 149 

Genus: Henneguya Thélohan, 1892 150 

Type host: Brochis multiradiatus (Orcés V., 1960) (Siluriformes: Callichthyidae) 151 

Site of infection: Serous membrane of the visceral cavity  152 

Type locality: Napo River, adjacent area of the village Cabo Pantoja (0°57′25″S, 153 

75°27′11″W), Department of Loreto, Peru.    154 

Prevalence: 13.3 % (4/30). 155 

Type of material: Syntypes-air-dried slide stained with Ziehl-Neelsen deposited in the 156 

cnidarian collection of Zoology Museum of the University of São Paulo - USP, São 157 

Paulo, Brazil (MZUSP 8508). Partial 18S rDNA sequence (1400bp) was deposited in 158 

GenBank under accession number MT415832.          159 

Etymology: The specific name (H. multiradiatus) is based on host species name.  160 

Morphological characterization 161 

Mature myxospores were ellipsoidal in shape from the frontal view, measuring 44.5 ± 162 

0.6 μm (43.9–45.1) in total length, 18.7 ± 0.9 μm (16.8–19.6) in spore body length, 7.1 163 

± 0.2 μm (6.6–7.4) in width and 5.5 ± 0.3 μm (4.9–5.6, n=5) in thickness (Figs. 1B and 164 

2). Two elongated polar capsules, equal in size, measuring 9.1 ± 0.1 μm (8.8–9.4) in 165 

length and 1.7 ± 0.1 μm (1.6–1.8) in width, occupying half of myxospore body (Figs. 166 

1B-C and 2). Polar tubules had 10 to 11 coils, perpendicular to long axis of polar 167 
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capsule (Figs. 1C and 2). Non-bifurcate caudal appendage, measuring 25.8 ± 0.6 μm 168 

(24.7–26.5) in length (Figs. 1B and 2). 169 

Molecular characterization and phylogenetic analysis 170 

Partial 18S rDNA sequence obtained from mature myxospores of H. multiradiatus n. sp. 171 

resulted in 1400 bp with a CG content of 49.4% and did not match any other myxozoans 172 

available in GenBank. The comparison of the new sequence obtained by BLAST 173 

revealed the highest sequence similarity to Henneguya loretoensis Mathews, Naldoni 174 

and Adriano 2017 (GenBank accession number MF434827.1, query coverage 99%, 175 

maximum identities 98.2%). The phylogenetic analysis placed H. multiradiatus n. sp. in 176 

a well-supported subclade of Henneguya parasites of callichthyids fish, including 177 

Henneguya loretoensis, and Henneguya guanduensis Abdallah, Azevedo, Luque and 178 

Bomfim 2007 (Fig. 3). This subclade, was close to a lineage formed by Henneguya 179 

species described from Amazonian cichlids. 18S rDNA pairwise comparisons between 180 

H. multiradiatus n. sp. described and the closest relatives resulted in 1.8% to H. 181 

loretoensis, 5.3% to H. guanduensis, 6.1% to Henneguya peruviensis Mathews, 182 

Mertins, Pereira, Maia and Adriano 2018, 7.6% to Hennguya jariensis, 9.5% to 183 

Henneguya tapajoensis, 7.2% to Henneguya tucunarei Zatti, Atkinson, Maia, 184 

Bartholomew and Adriano 2018 and 8.6% to Henneguya paraensis Velasco, Videira, 185 

Nascimento, Matos, Gonçalves and Matos 2016.       186 

4. Discussion  187 

The Peruvian Amazon is the second largest portion of the Amazon rainforest 188 

concentrating a high aquatic biodiversity, with several commercially exploited fish 189 

species for human consumption and global aquarium trade [26,27]. However, little is 190 

known about the diversity of myxozoans in this region, with only three species 191 
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described to date: Henneguya loretoensis, Henneguya peruviensis and Myxidium 192 

peruviensis [28–30]. In contrast, over 40 myxozoan species have been described in the 193 

Brazilian Amazon region [31–33], indicating that there are likely many more myxozoan 194 

parasites to be identified in Peruvian Amazon, considering the recognized high 195 

diversity. This study reports, for the first time, a myxozoan species infecting a fish from 196 

the genus Brochis in the Amazon basin.  197 

For robust identification and description of new myxosporeans taxa, it has been 198 

recommended, that the studies integrate multiple characters, including morphology, 199 

biological traits, host ecology factors and molecular data [34]. Following these 200 

delineated criteria for classifying myxozoans, we described a novel Henneguya species, 201 

Henneguya multiradiatus n. sp. from an important Amazonian ornamental fish. In the 202 

morphological comparison, considering the twenty-two Henneguya species previously 203 

described to infect fishes from Amazon basin, the most morphologically similar species 204 

to the new species were Henneguya torpedo Azevedo, Casal, Matos, Alves and Matos, 205 

2011 and Henneguya testicularis Azevedo, Corral and Matos, 1997. Nevertheless, these 206 

differ from H. multiradiatus n. sp. in myxospore body length (28.5 ± 0.3 μm in length 207 

for H. torpedo, 14.0 μm for H. testicularis and 18.7 ± 0.9 μm to the new species), 208 

number of coils of the polar tubule (12 to 13 in H. torpedo, six to seven in H. 209 

testicularis and ten in the new species) and in the length of the caudal appendage, which 210 

is substantially larger in the new species (19.6 ± 0.4 μm in H. torpedo, 13.5 μm in H. 211 

testicularis, and 25.8 ± 0.6 μm in H. multiradiatus n. sp.). Plasmodia of H. 212 

multiradiatus n. sp. were located in the serous membrane of the visceral cavity, while 213 

H. torpedo and H. testicularis were described infecting brain, spinal cord, and testis 214 

respectively [35,36]. On the same premise, host species and locality of collection are 215 

indispensable traits for accurately distinguishing new histozoic platysporines species, 216 
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since host-specificity and geography may play an important role in speciation [37]. 217 

Accordingly, differences were observed in the infected host, e.g., H. multiradiatus n. sp. 218 

infecting B. multiradiatus, a Siluriform fish; H. torpedo infecting Brachyhypopomus 219 

pinnicaudatus (Hopkins 1991), a Gymnotiform fish; and H. testicularis infecting 220 

Moenkhausia oligolepis (Günther 1864), a Characiform fish. Besides, differences in the 221 

locality of these species were noted, with H. multiradiatus n. sp. found in the Napo 222 

River, a tributary of the upper Amazon River, near the village of Cabo Pantoja in 223 

Department of Loreto, Peru, and H. torpedo and H. testicularis found in the lower 224 

Amazon River, both near Belém city in Pará state, Brazil. In addition to the large 225 

geographic distance between these species (2, 965 km in straight line), the nonmigratory 226 

behavior of their hosts is an important ecological character for the separation of these 227 

species, taking in account that host behavior may drive both parasite endemism and the 228 

radiation within the Amazon basin [32]. Unfortunately, there is no molecular data 229 

available for H. torpedo and H. testicularis in GenBank, so it is not possible to compare 230 

them with H. multiradiatus n. sp. However, differences observed in the integrative 231 

comparison, including morphology, geography, biological traits in conjunction with the 232 

ecological characters of their hosts, are sufficient arguments to conclude that H. 233 

multiradiatus n. sp. is a separate species.        234 

In our phylogenetic analysis, Henneguya spp. showed tendency to cluster, largely based 235 

on vertebrate host fish family, and this corroborates the results pointed out by other 236 

authors who evidenced that host group is a strong evolutionary signal within the 237 

Myxobolidae [32,38,39]. Henneguya multiradiatus n. sp. was placed in a well-238 

supported subclade of parasites of callichthyids fishes, with H. loretoensis as the closet 239 

related species (Fig. 3). This close phylogenetic relationship was corroborated by the 240 

pairwise analysis, which showed a slight genetic divergence of 1.8% on their 18S rDNA 241 
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sequences. Nevertheless, there is no exact value for determining the level of genetic 242 

variation in 18S rDNA that equates to species differentiation within this enigmatic 243 

group of parasites [38,40]. In this context, species differentiation should be assessed for 244 

each individual case and always with the aid of biology and/or ecology traits of the 245 

organisms, such as their morphology, tissue and/or organ tropism, host species, 246 

geography, and host ecological aspects such as endemic character, migratory behavior 247 

and distribution [16,40]. In our study, remarkable morphometrical differences can be 248 

observed between these two corydoradines Henneguya parasites, with myxospores 249 

substantially larger in total length and width in the newly identified species (44.5 ± 0.6 250 

μm × 7.1 ± 0.2 μm vs 36.2 μm × 5.1 μm for H. loretoensis), larger body length (18.7 ± 251 

0.9 μm vs 14.3 ± 0.1 μm for H. loretoensis), longer polar capsules (9.1 ± 0.1 μm vs 5.1 252 

± 0.1 μm in H. loretoensis), higher number of coils in the polar tubule (ten to eleven 253 

coils  vs five coils in H. loretoensis) and the caudal appendage which is substantially 254 

longer (25.8 ± 0.6 μm vs 21.9 ± 0.1 in H. loretoensis). Furthermore, H. multiradiatus n. 255 

sp. the caudal appendage is not bifurcated, as occurs in H. loretoensis. Differences can 256 

also be outlined concerning the host-, tissue- and organ infected, with the new species 257 

proposed found in the serosa layer of the visceral cavity of B. multiradiatus n. sp. 258 

whereas H. loretoensis is found in gill filaments of Corydoras leucomelas Eigenmann 259 

and Allen, 1942, a host of a different genus. While these two corydoradines parasites 260 

inhabit the Amazon biome of Peru (H. multiradiatus n. sp. in Napo River and H. 261 

loretoensis Nanay River), they are separated by 381 km from each other. Another 262 

important point to consider in establishing H. multiradiatus n. sp. as a new species, is in 263 

regards to the endemic character and the absence of migratory reproduction, 264 

characteristics which are highly recognized to corydoradines fish [33].  265 
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In the present study, an integrative taxonomy approach was employed in the description 266 

of an unknown myxosporean. Given that these criteria are compelling evidence for the 267 

characterization of new species [16,40], we confidently considered that this isolate is a 268 

new species, H. multiradiatus n. sp. Hence, this new data contributes to increase the 269 

knowledge of the myxosporean diversity from the Amazon biome, as well to clarify the 270 

relationships of myxozoan parasites of corydoradines, an economic important 271 

assemblage of catfishes in the lucrative global aquarium industry.        272 
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Legends 463 

Table 1. Primers used in the amplification and sequencing of the 18S rDNA gene of 464 

Henneguya multiradiatus n. sp.  465 

Table 2.  Comparative data of Henneguya multiradiatus n. sp. with other Henneguya 466 

species parasites of Amazon fish. Spore dimensions, infection sites, and fish host are 467 

given. TL: total length; BL: body length; APCL: caudal appendage length; SW: spore 468 

width; ST: spore thickness; PCL: polar capsule length; PCW: polar capsule width; 469 

NCT: number of coils of polar tubules; −: no data. All measurements are range in μm 470 

and/or means ± SD.  471 

Fig. 1. Plasmodium and myxospores of Henneguya multiradiatus n. sp. from Brochis 472 

multiradiatus. A- Whitish plasmodium macroscopically visible (black arrow) in the 473 

serosa of the visceral cavity (S). Scale bar= 3 mm. B- Mature myxospore stained with 474 
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Ziehl-Neelsen showing two elongated equal polar capsules (black large arrow) and 475 

caudal appendage not bifurcated (black small arrow). Scale bar= 10 µm. C: Myxospore 476 

showing polar coiled tubules (black arrow) perpendicular to the long axis of the polar 477 

capsule. Scale bar= 3 µm.  478 

Fig. 2. Schematic representation of myxospore of Henneguya multiradiatus n. sp. from 479 

Brochis multiradiatus. Scale bar= 7 µm. 480 

Fig. 3. Maximum likelihood phylogenetic tree based on partial 18S rDNA sequences 481 

containing Henneguya multiradiatus n. sp. and closely related myxozoans based on 482 

BLAST. GenBank accession numbers and host family are given in front of species. 483 

Bootstrap values above 50 are indicated at the nodes. 484 
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Primers              Sequences (5′-3′)                                            References 

ACT1r                AATTTCACCTCTCGCTGCCA                    Hallett and Diamant [20] 

ERIB1                ACCTGGTTGATCCTGCCAG                      Barta et al. [19]                         

ERIB10              CTTCCGCAGGTTCACCTACGG                 Barta et al. [19] 

Myxgen4F          GTGCCTTGAATAAATCAGAG                  Diamant et al. [21] 

MC5                   CCTGAGAAACGGCTACCACATCCA        Molnár et al. [22] 

MC3                   GATTAGCCTGACAGATCACTCCACGA   Molnár et al. [22]         



          Species                                   TL                   BL               APCL                SW               ST               PCL             PCW           NCT               Site of infection                           Fish species     

Henneguya multiradiatus n. sp.  

          [This study] 

Henneguya peruviensis 

              [30] 

Henneguya loretoensis 

              [29] 

Henneguya tucunarei 

 44.5 ± 0.6 

(43.9–45.1) 

 24.2 ± 1.3 

(22.9–25.5) 

36. 2 ± 0.2 

(36.1–36.3) 

 43.8 ± 4.1 

 18.7 ± 0.9 

(16.8–19.6) 

 13.4 ± 0.9 

(12.5–14.3) 

14.3 ± 0.1 

(14.2–14.4)  

   14 ± 0.8 

  25.8 ± 0.6 

 (24.7–26.5) 

 10.7 ± 1.2 

 (9.5–11.9) 

  21.9 ± 0.1 

 (21.8–22) 

  28.1 ± 4.3 

7.1 ± 0.2 

(6.6–7.4) 

3.9 ± 0.1 

(3.8–4.0) 

5.1 ± 0.2 

(4.9–5.3) 

6.1 ± 0.7 

5.5 ± 0.3  

(4.9–5.6) 

    – 

 

    – 

      

    – 

 9.1 ± 0.1 

(8.8–9.4) 

3.3 ± 0.2 

(3.1–3.5) 

5.1 ± 0.2       

(4.9–5.3) 

3.4 ± 0.5 

 1.7 ± 0.1 

(1.6–1.8) 

1.6 ± 0.2 

  (1.4–1.8) 

   2.4 ± 0.3 

  (2.1–2.7) 

 1.98 ± 0.3 

 10-11        Abdominal cavity serosa             Brochis multiradiatus 

 

   4-5                  Gill filaments                  Hyphessobrycon loretoensis 

 

  5                    Gill filaments                         Corydoras leucomelas 

 

 3–4                 Gill filaments                            Cichla monoculus 
              [32] (36.1–49.6)  (12.1–15.7)  (19.6–35.6) (4.9–7.8)   (2.5–4.6)   (1.3–2.6)  
Henneguya tapajoensis  54.6 ± 3.9  16.4 ± 1.2    39 ± 3.9 7 ± 0.4   5± 0.1   4.2 ± 0.5    2.1 ± 0.4  4–5                  Gill filaments                         Cichla pinima  
              [32] (47.2–62.2) (14.5–19.1) (31.7–46.5) (5.7–9.3) (4.8–5.1)  (2.9–5.0)   (1.5–2.8)  
Henneguya jariensis  46.7 ± 1.5   13.4 ± 0.7   33.1 ± 1.7 6.5 ± 0.5      –    4± 0.3     2 ± 0.1    4                            Fins                                  Cichla monoculus 
              [32] (43.9–49.2) (11.9–14.6) (30.2–37.0) (4.9–7.3)   (3.4–4.3)   (1.7–2.4)  
Henneguya paraensis   42.3 ± 0.3  12.8 ± 0.42  29.5 ± 0.73 8.6 ± 0.32      –   7.4±0.16     2.6 ± 0.1  5–7                   Gill filaments                          Cichla temensis 
              [41] (41.6–42.9) (12.3–13.2) (28.7–30.2) (8.18-8.92)   (6.67-7.5)   (2.52–2.68)  
Henneguya melini   40.8 ± 0.3  15.5 ± 0.2   25.3 ± 0.1 4.7 ± 0.1      –   4.8 ± 0.5    1.7 ± 0.3  5–6                   Gill filaments                          Corydoras melini 
              [42]           (40.3–41.1) (15.3–15.7) (25.2–25.4) (4.6–4.8)   (4.3–5.3)     (1.4–2)  
Henneguya aequidens   41 ± 1.5   15 ± 0.9   27 ± 0.6  6 ± 0.8      –   3 ± 0.3     3 ± 0.3  4–6                   Gill filaments                    Aequidens plagiozonatus 
              [43]         
Henneguya torpedo 48.62 ± 0.51 28.53 ± 0.36 19.64 ± 0.44 7.25 ± 0.31 3.06 ± 0.2 6.41 ± 0.26  1.84 ± 0.19  5–6              Brain and spinal cord           Brachyhypopomus pinnicaudatus 
              [36] (48.3–48.9) (28.3–30.1) (19.2.–19.9)   (7–7.5) (2.9–3.1)  (6.3–6.6)   (1.7–1.9)  
Henneguya arapaima 51.6 ± 3.4 14.2 ± 0.8 38.3 ± 2.9 5.7 ± 0.5 4.9 ± 0.2 6.5 ± 0.2   6.3 ± 0.1    5                        Gill arch                                 Arapaima gigas  
              [44] (48.4–53.1) (13.5–15.2) (38–41.2) (5.1–6.1) (4.7–5.3) (6.3–6.8)    (6.3–6.8)  
Henneguya rondoni      17.7        7      10.7    3.6      2.5      2.5       0.85  6–7                    Lateral nerves                 Gymnorhamphichthys rondoni 
              [45] (16.9–18.1)  (6.8–7.3) (10.3–11) (3–3.9) (2.2–2.8) (2.2–2.8)  (0.79–0.88)  
Henneguya rhamdia  50 ± 1.8 13.1 ± 1.1 36.9 ± 1.6 5.2 ± 0.5     – 4.7 ± 0.4    1.1 ± 0.2    10–11                  Gill filaments       Rhamdia quelen 
              [46]         
Henneguya schtzodon    28.9    13.1    16.3   3.3     –     5.4       1.3     8–10                         Kidney                      Schtzodon fasciatum 
              [47] (27–30) (12–14) (15–17) (3–4)    (5–6)    (1–1.5)  
Henneguya friderici    33.8    10.4    23.3   5.7    4.9     4.9       2.1  7–8              Gut, gill, kidney and liver          Leporinus friderici 
              [48] (28.7–39.3) (9.6–11.8) (19.1–28.7) (4.8–6.6)  (4.25–5.9) (1.59–2.62)  
Henneguya astyanax 47.8 ± 0.71 15.2 ± 0.77 32.6 ± 1.11 5.7 ± 0.71 4.2 ± 0.31 5.0 ± 0.13 1.5 ± 0.07  8–9                      Gill filaments                  Astyanax bimaculatus 
              [49]         
Henneguya curimata     35.4    16.6      19.1    6.2      – 3.3 ± 0.02 1.5 ± 0.04 10–11                        Kidney                     Curimata inormata 
              [50] .(4.2–36) (16–17.4) (18.3–19.9) (5.8–6.6)  (2.7–3.6)  (1.1–1.9)  
Henneguya testicularis    27.5      14      13.5    6.5      –        9       2 12–13                        Testicle                    Moenkhausia oligolepis 
              [35] (27–28.5) (14–14.5) (13–14.5) (6–6.5)  (8.5–9.5)   (2–2.5)  
Henneguya malabarica     28.3     12.6      17.1    4.8       –       3.7     1.8   6–7                    Gill filaments                 Hoplias malabaricus 
              [51] (26.6–29.8) (11.8–13.1) (16.2–18.9)   (3.0–4.3) (1.6–2.2)  
                                                



 

 
 
 

Henneguya adherens      32.3       12.4     20.5     5.8     –      3.1    1.2      3–4                     Gill filaments          Acestrorhynchus falcatus 
            [52] (30.7–35.1) (10.5–13.8) (18–21.7) (5.1–6.5)  (2.8–3.5) (1–1.6)  
Henneguya amazonica 59.3 ± 0.56 13.9 ± 0.16 45.4 ± 0.61 5.7 ± 0.06     – 3.3 ± 0.02 1.5 ± 0.04      6                        Gill lamellae             Crenlcichla lepldota 
            [53] 
 

(55–65.9) (11.5–14.9) (41.7–52.1) (5.2–6.3) (2.7–3.6) (1.1–1.9)  
 






