N
N

N

HAL

open science

Seq-to-NSeq model for multi-summary generation

Guillaume Le Berre, Christophe Cerisara

» To cite this version:

Guillaume Le Berre, Christophe Cerisara. Seq-to-NSeq model for multi-summary generation. ESANN
2020, Oct 2020, Bruges, Belgium. hal-02902734

HAL Id: hal-02902734
https://hal.science/hal-02902734
Submitted on 20 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02902734
https://hal.archives-ouvertes.fr

Seq-to-NSeq model for multi-summary
generation

Guillaume Le Berre! and Christophe Cerisara?
1- University of Lorraine - LORIA - France
guillaume.le-berre@loria.fr
2- University of Lorraine - LORIA - France
Address of Second Author’s school - Country of Second Author’s school

Abstract. Summaries of texts and documents written by people present
a high variability, depending on the information they want to focus on
and their writing style. Despite recent progress in generative models and
controllable text generation, automatic summarization systems are still
relatively limited in their capacity to both generate various types of sum-
maries and capture this variability from a corpus. We propose to address
this challenge with a multi-decoder model for abstractive sentence summa-
rization that generates several summaries from a single input text. This
model is an extension of a sequence-to-sequence model in which multiple
concurrent decoders with shared attention and embeddings are trained to
generate different summaries that capture the variability of styles present
in the corpus. The full model is trained jointly with an Expectation-
Maximization algorithm. A first qualitative analysis of the resulting de-
coders reveals clusters that tend to be consistent with respect to a given
style, e.g., passive vs. active voice. The code and experimental setup are
released as open source.

1 Introduction

Two main types of approaches are commonly used to automatically summa-
rize text: extractive summarization generates summaries using a subset of the
words from the original sentence while abstractive summarization rewrites parts
of the original text with new words and syntactic structures. Abstractive sum-
marization more closely mimics the way people actually write summaries, with
paraphrasing and by exploiting the richness of natural language. Hence, in a
summary, only a few proper nouns are entirely determined by the original sen-
tence, while the rest of the words, as well as the chosen syntactic structures,
strongly depend on the writing style of the person who writes the summary.
Traditional sequence-to-sequence systems fail at capturing this variability and
typically produce a unique summary that minimizes the average loss over all
possible writing styles in the training corpus.

A popular way to bring variability in the system outputs consists in sampling
from intermediate representations modelled as probability distributions, such as
with Variational Auto-Encoders (VAE) [1]. However, random sampling does not
enable to control the properties of the resulting summaries and our experiments
show that, in practice, vanilla VAEs generate only a few real variations and that
most differences concern only a few words.



We propose a different approach to capture and reproduce this variability,
by enabling our network to directly output multiple summaries simultaneously.
Intuitively, our model is based on a standard sequence-to-sequence network with
attention and multiple concurrent recurrent decoders that are controlled by a
discrete random variable. The whole model is trained using the Expectation-
Maximization (EM) algorithm so that each decoder gets specialized by capturing
a different writing style from the training corpus.

2 Related work

Sentence compression/summarization is a core task in Natural Language Pro-
cessing (NLP) related to headline generation. Some previous works focused on
syntactic structure and rewriting rules as in [2] or statistical machine translation
techniques [3].

[4] introduced a new dataset for sentence compression extracted from the
Annotated English Gigaword [5] They further proposed a model composed of a
convolutional encoder and an attentive language model decoder inspired by [6].
Later works by [7] showed that replacing the basic language model by a Recurrent
Neural Network improves the performance of the network. [8] further improved
the model, finalizing its transformation into a full sequence-to-sequence network
with LSTM encoder and decoder. Several additional improvements of these
models have been proposed: among others, [9] exploited Minimal Risk Training
and [10] proposed a selective encoding mechanism to control the flow of informa-
tion sent to the decoder. Recently, [11] introduced a fully convolutional model
with attention that obtains good performances for sentence summarization. [12]
also proposed an EM-based generative model, closely related to our proposal.
However, their algorithm uses an explicit clustering, while our model implicitly
clusters the training data one example after another.

3 Owur models

3.1 Baseline

Our baseline model is a sequence-to-sequence model with attention mechanism.
Each word w; of the input sequence (w;)i<i<r is fed to an embedding layer
x¢ = emb(w;) and then into a bidirectional LSTM encoder [13] that produces a
sequence of hidden states (h§")1<;j<7.

The last state of this sequence h'¢ is given as the initial hidden state to a
second unidirectional LSTM decoder, which produces a new sequence of hidden
states (h°)1<j<- along with a summary (@;)1<;j<-

During training, the j** input to the decoder is the previous target word

(teacher forcing) x?ec = emb(y;_1). At test time, it is the previous generated
word x?ec = emb(w;_1), and the length of the summary 7 is determined at
runtime when the special token w; = EndOfS is generated. At each decoding
step j, a fixed size attention vector ¢; is computed as follow [14]:



exp(score(h$™e, h;-iec))

a;(7) = >, exp(score(hge, h?ec)

score(h§™, h{*°) = (heneyT . e @)

T
¢j =Y aj(i) x h™ 3)
i=1

Then the attention vector c; is concatenated to h?“ and fed into a linear
layer to output w;.

3.2 Proposed seq-to-Nseq model

The proposed model improves this baseline by generating diverse summaries
with multiple concurrent decoders:
wf”n = decy (h7') --- Wy, = decy(h7)

The model can be seen as multiple parallel sequence-to-sequence models
with shared weights for the encoder, embedding and attention. Joint training
of the encoder and decoders is done with an adaptation of the Expectation-
Maximization algorithm, where, during training, a single decoder is sampled
with a latent random variable z ~ Categorical(n). This corresponds to a hard
version of the EM algorithm, where the posterior distribution of z is approxi-
mated by a Dirac. Hence, assuming all decoders equiprobable:

p(2|w1:T7yl:r) 0<p(91:7|27w1:T)P(Z|w1:T)
Z= arngXP(ZWLT,yl:T) = argmzin - 10gp(y1:7'|zawlzT) (4)

which is the negative log-likelihood loss computed at the output of each decoder
during training. The algorithm thus iterates through:

e Expectation: Make a forward pass and select Z as in Eq-4;
e Maximization: Backpropagate from decoder dec; and update parameters.

After training, each decoder is specialized to generate a specific type of sum-
mary. The key aspect is that this criterion is not defined a priori, but is rather
automatically chosen to be representative of the variety of styles that occur in
the training corpus. When applied to real use cases, the types of summaries
learnt may be analyzed (see Section 5.2), and personalized summaries may be
generated by choosing a decoder according to user preferences. We implement
our model with a basic sequence-to-sequence network but the method is appli-
cable to more complex encoder-decoder architectures.

In order to increase the difference between the summaries, we also experi-
mented with a penalty cost for summaries that are too close from one another:



penalty = Z max(a — CE(w;“n,w{_iﬂ), 0)
i#]

where « is a hyper-parameter and CE() is the cross-entropy loss. This system is
referred to as “PEN”. Another approach tested to increase this difference, named
“NRI”, consists in initializing the decoders parameters from distant points in the
parameter space. Hence, our NRI model is initialized by splitting the training
sentences into two groups: the shortest and longest sentences, each of the two
decoders being pretrained on one group.

4 Experiments

4.1 Dataset

These models are validated on the English Gigaword 5th edition, which contains
news articles from different sources. We use the sentence summarization version
described in [4] (Extracted from the annotated version of Gigaword proposed
in [5]). This dataset is built by pairing the first sentence of the articles in
Gigaword with their headlines. The pairs first sentence/headline are then used
as sentence/summary pairs. The train set is composed of 3.8M pairs. We use the
test set provided by [4] (2000 samples) and a development set of 2000 samples.

4.2 Evaluation

The evaluation metric is the standard ROUGE [15] widely used in text sum-
marization. We report the results for ROUGE1 (unigrams overlap), ROUGE2
(bigrams overlap) and ROUGE-L (longest common substring overlap). In addi-
tion, since our objective is to increase the variability of the generated summaries,
we also report the average sentence difference and the edit distance between sum-
maries, and perform qualitative analysis.

4.3 Hyper-parameters & Training

Our encoder is a bidirectional LSTM network with 2 layers and 250 hidden
dimensions (500 after concatenation). All decoders are 2 layers unidirectional
LSTMs with hidden size 500. The 50, 000 most frequent words of the vocabulary
are encoded into 500-dimensional embedding vectors. The model is trained with
15 epochs of stochastic gradient descent with an initial learning rate of 1 divided
by 2 at every epoch after the 8" one. The mini-batch size is 64.

5 Evaluations

5.1 Quantitative evaluation

Table 1 compares the ROUGE scores of our models with related works on the
Gigaword test set. Each individual decoder of the seq-to-Nseq model performs



RI (F) R2 (F) RL (F)

ABS [4] 29.55 11.32 26.42
ABS+ [4] 29.76 11.88 26.96
RNN MLE [9] 32.67 15.23 30.56
RNN MRT [9] 36.54 16.59 33.44
ConvS2S [11] 35.88 17.48 33.29
Var. Enc-Dec (VED) 35.29 16.77 32.83
seq-to-seq (baseline) 35.04 16.47 32.59
seq-to-2seq - output 1 34.90 15.81 32.27
seq-to-2seq - output 2 34.80 15.59 32.18

seq-to-3seq - output 1 32.51 13.65 29.37
seq-to-3seq - output 2 34.47 15.35 31.80
seq-to-3seq - output 3 34.93 15.77 32.56

Table 1: ROUGE F-measures on the Gigaword corpus.

slightly worse than the baseline seq2seq, which is expected since each decoder
in the seq-to-Nseq model is trained to capture only a fraction of the training
corpus. We thus also report the ROUGE in Table 2 where an oracle chooses,
for every sentence, the best solution among N = 2,3 proposals. These proposals
correspond either to all decoder outputs, or to successive outputs of the baseline
system after retraining. Of course, such ROUGE scores are not comparable to
the state-of-the-art on this corpus, but they show that the variability in writing
styles is better covered with the seq-to-Nseq model than with the baseline.

RL (F) R2(F) RL (F)
Baseline (2x training) | 38.58 18.97 35.84

seq-to-2seq (best) 39.48 19.49 36.68
Baseline (3x training) | 40.26 20.15 37.28
seq-to-3seq (best) 41.26 20.77 38.09

Table 2: ROUGE-1 (F), ROUGE-2 (F) and ROUGE-L (F) on Gigaword when
an oracle chooses the best among 2 and 3 candidate outputs.

Table 3 reports the percentage of pairs of summaries that differ by at least
one word (diff), and their average edit distance. As in Table 2, each element of
a pair is obtained either with retraining of the baseline, resampling (Variational
Encoder-Decoder (VED)) or is the output of one of our decoders. Although
the VED can generate many summaries through re-sampling, our results show
that the resulting variability is much smaller than when retraining the baseline
model. Conversely, our model’s decoders generate the most diverse summaries.

5.2 Qualitative analysis

The following two examples illustrate typical differences between the outputs of
each decoder of our model:



diff (%) edit distance
Baseline (2x training) | 79.86 15.97
VED (2x sampling) 16.15 2.95
seq-to-2seq 89.44 21.77
seq-to-2seq+PEN 94.11 24.34
seq-to-2seq+NRI 96.26 26.48

Table 3: Variability of the generated summaries: the larger, the more diverse.

Input: Police arrested five anti-nuclear protesters Thursday after they sought to disrupt
loading of French antarctic research and supply vessel, a spokesman for the protesters said

Target: Protesters target French research ship

Baseline: Five arrested in anti-nuclear protest
seq-to-2seq Output 1: Five arrested in anti-nuclear protest
seq-to-2seq Output 2: French police arrest five anti-nuclear protesters

Input: The head of the Russian-installed government in the breakaway republic of Chech-
nya narrowly survived a bomb attack Monday, the third assassination attempt against top
Russian officials in two months.

Target: Head of UNK Chechen government survives bomb attack

Baseline: Chechen government survives bomb attack
seq-to-2seq Output 1: Chechen leader survives bomb attack
seq-to-2seq Output 2: Third assassination attempt in Chechnya

The following three examples illustrate the differences in passive vs. active
voice. In the majority of the cases, when such differences occur, each decoder
choice is consistent, i.e., the same decoder generates active voice while the other
focuses on passive. More generally, the assignment of each training sentence to
one or the other decoder is relatively stable after epoch 13, since about 80% of
training examples stay assigned to the same decoder between epochs.

Output 1: Chinese pro-democracy activist arrested in Shanghai
Output 2: Chinese police arrest pro-democracy activist

Output 1: Sudanese convicted of drug trafficking beheaded
Output 2: Saudi Arabia beheads Sudanese convicted of drug trafficking

Output 1: Chinese fishing boat hijacked off east Africa
Output 2: pirates hijack Chinese fishing boat in Somalia

6 Conclusion

An extension of the standard seq-to-seq model with attention is proposed to
generate more diverse summaries than the current state-of-the-art text summa-
rization systems. Conversely to related works, the diversity in writing styles is
neither defined nor controlled a priori, but is rather automatically extracted from
the training corpus. Multiple decoders/writers are thus trained, each one spe-
cialized in its preferred style. Both quantitative and qualitative analysis of the
generated summaries on the Gigaword corpus confirm that a greater diversity
may be achieved thank to the proposed model.
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