
HAL Id: hal-02902719
https://hal.science/hal-02902719v1

Submitted on 20 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preliminary Experience with OpenMP Memory
Management Implementation

Adrien Roussel, Patrick Carribault, Julien Jaeger

To cite this version:
Adrien Roussel, Patrick Carribault, Julien Jaeger. Preliminary Experience with OpenMP Mem-
ory Management Implementation. IWOMP 2020, Sep 2020, Austin, United States. pp.313-327,
�10.1007/978-3-030-58144-2_20�. �hal-02902719�

https://hal.science/hal-02902719v1
https://hal.archives-ouvertes.fr

Preliminary Experience with OpenMP Memory
Management Implementation

Adrien Roussel123, Patrick Carribault13, and Julien Jaeger123

1 CEA, DAM, DIF, F-91297 Arpajon, France
{adrien.roussel, patrick.carribault, julien.jaeger}@cea.fr

2 Exascale Computing Research Laboratory, Bruyères-le-châtel, France
3 Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance

pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France

Abstract. Because of the evolution of compute units, memory hetero-
geneity is becoming popular in HPC systems. But dealing with such
various memory levels often requires different approaches and interfaces.
For this purpose, OpenMP 5.0 defines memory-management constructs
to offer application developers the ability to tackle the issue of exploit-
ing multiple memory spaces in a portable way. This paper proposes an
overview of memory-management from applications to runtimes. Thus,
we describe a convenient way to tune an application to include memory
management constructs. We also detail a methodology to integrate them
into an OpenMP runtime supporting multiple memory types (DDR, MC-
DRAM and NVDIMM). We implement our design into the MPC frame-
work, while presenting some results on a realistic benchmark.

Keywords: OpenMP 5.0, Data Allocation, Memory Management

1 Introduction

For the past decades, the main trend has been to enhance the compute capa-
bilities of processors through frequency increase, functional unit extension (e.g.
SIMD) or core duplication. It leads to the current generation of supercomputer
nodes design with several multi-core processors linked together. But this large
spectrum of compute capabilities puts the stress on the memory part to keep
feeding such functional units. For example, SIMD operations may require more
memory bandwidth to enable issuing one instruction requiring a large number
of register inputs. However, proposing a new memory type with a larger band-
width, for the same overall cost, exposes a smaller storage. That is why various
kinds of memory appeared in the HPC community. For example, Intel launched
the Knights Landing many-core processor [26] which embeds a high bandwidth
stacked memory named MCDRAM. The next generation of such an approach
is called HBM and will be available in some processors like ARM-based Fu-
jitsu A64FX [30]. This approach improves the throughput of bandwidth-hungry
units, but there still is a need for a large storage with lower bandwidth but bet-
ter performance than regular disks. This is why the notion of persistent memory
appears in clusters like the flash memory NVDIMM technology [15].

2 A. Roussel et al.

While these new memory types may fulfill the requirements of many parallel
applications (HBM/MCDRAM for compute-intensive parts, NVDIMM for I/O
dedicated portions), allocating data in these target memory spaces in a portable
and easy way is tedious. Thus, memory management is becoming one major
concern for HPC application developers. Since version 5.0, OpenMP tackles this
issue by introducing memory management extensions [22]. It is now possible
to control data allocation and placement on specific memory spaces through
OpenMP constructs. For this purpose, OpenMP defines multiple memory spaces:
application developers have then to specify some parameters (traits) for a specific
allocator (e.g., data alignment, pool size, . . .).

This paper proposes a first experience of implementing these OpenMP mem-
ory management constructs. It makes the following contributions:

– Preliminary implementation of OpenMP memory management constructs
targeting DRAM, MCDRAM and NVDIMM into the MPC framework [7] 4

(a thread based MPI implementation with a OpenMP 3.0 runtime system)
– Port of a C++ mini-application with effort to support STL objects.
– Experiments on portability with various target architectures exposing dif-

ferent memory types.

This paper is organized as follows: Section 2 exposes an overview of the
OpenMP specification for memory management. Section 3 presents related work
in this area. Section 4 details our approach to implement these OpenMP con-
structs into the MPC framework and enable their support inside an application.
Finally, this papers illustrates experimental results in Section 5 before concluding
in Section 6.

� �
1 // Initialization

omp_memspace_handle_t mcdram = omp_high_bw_mem_space;
3 omp_alloctrait_t mcdram_traits[1] = {omp_atk_alignment, 64};

omp_allocator_handle_t mcdram_alloc;
5 mcdram_alloc = omp_init_allocator(mcdram, 1, mcdram_traits);

7 // Allocation
void* Allocate(size_t size, omp_allocator_handle_t allocator) {

9 return (void*)omp_alloc(size, allocator);
}

11

// Deallocation
13 void Release(void **ptr, omp_allocator_handle_t allocator) {

if (*ptr != NULL) {
15 omp_free(*ptr, allocator) ;

*ptr = NULL ;
17 }

}� �
Listing 1.1: Functions for OpenMP Memory Management

4 Available at https://mpc.hpcframework.com/

OpenMP Memory Management Implementation 3

2 Memory Management in OpenMP 5.0

OpenMP 5.0 introduces constructs and API routines to manage portable data
allocation in various memory banks. Thus it defines a set of memory spaces
(omp memspace handle t) and parameters (traits) that can affect the way data
are allocated in this target memory (omp alloctrait t). Even though each im-
plementation can propose its own spaces and traits, OpenMP 5.0 defines default
spaces (default, large capacity, constant, high bandwidth and low latency), and
allocator traits (such as alignment, pool size and fallback). Thus, the user has
to create an allocator handle (omp allocator handle t) by specifying a target
memory space and a set of traits. This operation is performed by calling the
initialization function named omp init allocator. Listing 1.1 highlights this
process at the top part.

After this setup, the application can allocate data with this new allocator.
The runtime will thus be responsible for allocating data into the target mem-
ory bank with the specified trait values. There are two ways to manage data
allocations with OpenMP: functions and directives. The first method is to call
the functions omp alloc and omp free. Both take an allocator handle as input
(which should be initialized first). Listing 1.1 shows this approach.

� �
float A[N], B[N];

2 #pragma omp allocate(A) allocator(omp_large_cap_mem_alloc)

4 #pragma omp parallel
{

6 #pragma omp task allocate(omp_const_mem_alloc: B)
{

8 /* ... */
}

10 }� �
Listing 1.2: Directives for OpenMP Memory Management

The second method relies on the allocate directive and clause (see List-
ing 1.2). The directive takes a list of data variables to allocate through the
handle specified in the allocator clause. This clause can be used in several
constructs such as task, taskloop and target. Users have to specify in this
clause the handle to use to allocate data, and the list of data variables. The
handle allocator can be defined by the user or a predefined allocator. There is
one allocator given by the OpenMP standard per memory space.

3 Related Work

This section details different approaches to deal with multiple memory levels
inside an HPC compute node: dedicated allocations, portable allocations and
OpenMP implementations.

4 A. Roussel et al.

Dedicated Memory Management. The first approach deals with dedicated inter-
faces to allocate data inside a specific target memory type. Even if some memory
kinds can be configured as a cache level to enable automatic hardware-driven
management (e.g. MCDRAM in Intel KNL [18, 21, 9]), fine-grain data allocation
can lead to better performance. Thus, some research papers set up this MC-
DRAM as flat mode meaning that a specific action is required to put data into
this target memory. This action may have a coarse-grain scope (e.g. relying on
the numactl library [8] or forcing the global memory-placement policy [19]), or
a more fine-grain approach (e.g. using memory allocators like memkind [6] to
deal with placement on a per-allocation basis [5]). Similar fine-grain initiatives
also exist for other types of memory e.g., persistent [16, 2, 25].

Portable Memory Management. Runtime systems are already able to deal with
memory management for performance portability concerns [12, 1, 4]. This list is
not exhaustive as multiple approaches exist in this domain, especially focusing
on heterogeneous systems. Some other initiatives also deal with high bandwidth
memory management like MCDRAM for KNL processors. These forms of mem-
ory management have been explored within domain specific languages in [24].

High level programming interfaces are widespread in the HPC community.
Previous works such as [10, 11] have to deal with memory allocation in a portable
way, but only for the GPGPU concerns now. These interfaces enable abstract
memory allocations through wrapper functions or objects.

OpenMP Memory Management. While some initiatives have been already pro-
posed for memory management in a portable way, there is no standard way to
do it. OpenMP now provides a way to standardize memory management for a
wide system spectrum. Based on directives and functions, software developers
are able to address memory allocations in an easy way: they do not need to deal
with the actual low-level allocation method into a specific memory. As far as
we know, LLVM [20] has the most up-to-date OpenMP runtime implementation
for the support of memory management constructs. Even if this runtime system
is well advanced, the front-end part of supported compilers (Clang and Intel)
does not support the full specification. Until now, it supports allocation in stan-
dard and high bandwidth memory banks only with few traits (e.g. pool size,
fallback and alignment). For the high bandwidth memory support, LLVM
forwards memory allocations to hbw malloc from the memkind library.

Paper positon: While our work is similar to the LLVM approach (design and
implementation of memory-management constructs inside an existing OpenMP
runtime), the objective of this paper is to give a preview our implementation of
multiple memory levels (DDR, MCDRAM/HBM and NVDIMM) its portabil-
ity aspects. Moreover, we have experimented how to integrate those OpenMP
functions in a portable solution with a C++ application.

OpenMP Memory Management Implementation 5

4 Application- and Runtime-Level OpenMP Memory
Management

This section presents the main contribution of this paper: the support of multiple
memory types inside an existing OpenMP implementation (4.1) and the port of
a C++ mini-app (Section 4.2).

4.1 Runtime System Design for Memory Management Integration

MPC [23] is a thread-based MPI implemention which proposes an OpenMP [7]
runtime system. It is compliant to OpenMP 3.1 and partially supports version
4.5. As MPC integrates its own NUMA aware allocator, we have decided to
design and implement the memory management constructs inside this frame-
work. MPC is compatible with GNU and Intel compilers for OpenMP lowering
and thread-based specific features. But these compilers have currently a lim-
ited support of the allocate directive and clause. Thus, our work focuses on
providing initialization functions and allocation/deallocation calls (omp alloc

and omp free) for multiple memory types: DDR, high bandwidth MCDRAM
and large-capacity NVDIMM. For this purpose, it is necessary to enhance the
existing implementation with an advanced hardware topology detection and an
approach for initializing and allocating data. This section details those steps.

Automatic memory banks discovery. OpenMP offers a set of predefined
memory spaces with a way to fallback if the application tries to allocate in non-
existing type. Thus, the first step is to discover available memory banks on the
target machine. For this purpose, a hardware detection tool has to be integrated
into the OpenMP runtime system to list available memory spaces on a system
at execution time. Most of the runtime systems already rely on the hwloc library
for hardware topology discovery and thread binding. Recent work [13] adds the
support of heterogeneous memory types such as high bandwidth memory (e.g.
MCDRAM from Intel’s KNL processor) or large capacity memory bank like
NVDIMM technology. On such machines, MCDRAM memory space is exposed
as a no-core NUMA node with a special attribute named MCDRAM. Checking the
presence of MCDRAM in a system is thus possible by browsing all the NUMA
nodes and searching for the one which has this defined hwloc attribute. Large
capacity memory spaces such as NVDIMM memory are viewed by hwloc as OS
devices, and tagged with a special attribute. So, it is possible to detect such
memory banks by listing all the OS devices and searching for large capacity
memory banks.

The basic block of our design relies on the hardware detection module based
on hwloc in the MPC framework. It is called at runtime initialization and for
every runtime entry point that is not in a parallel region to detect and save
available hardware components.

6 A. Roussel et al.

Memory Management Initialization. The allocation process is separated
into two parts: the initialization of allocators and the data allocation (as seen in
Listing 1.1).

First of all, the omp init allocator function initializes some user-defined
traits in a omp alloctrait t structure, and link them into a memory space in a
omp memspace handle t structure. From a runtime point of view, it is necessary
to save a dynamic collection of allocators. By default, in our implementation,
this structure contains pre-defined allocators only. Its size can then be enlarged
to allow users to create new allocators with some specific traits. This structure
maps an allocator handle (i.e. omp alloc handle t) to an allocator structure
(i.e. omp alloc t). This collection is only accessible from each thread in a read-
only access mode. Indeed, we do not ensure thread safety for this structure yet.
Thus, all the allocators have to be initialized outside a parallel region. We are
currently working on thread safety to enable the creation of allocators inside
parallel regions. In this way, concurrent threads may benefit from allocators
inside parallel regions within the omp alloc function.

Various traits are proposed in the specification, such as memory alignment as
illustrated in Listing 1.1. Traits have a default value, but the initialization process
may set them user-defined values. The MPC framework currently supports the
alignment and fallback traits. Future work is needed to support more traits
in the framework.

omp alloc call

Check allocation ability
(memspace,
pool size,. . .)

Fallback

return
NULL ;

Select Allocator

DRAM HBW NVRAM

No

Yes

m
al

lo
c

de
fa

ul
t

me
m

fb
?

null fb ?

malloc

hbw malloc

vm
em

m
alloc

Fig. 1: omp alloc call procedure

Data Allocation Process The final step is to implement the data-allocation
mechanisms. Figure 1 sketches this process. For this purpose, an allocator can
be retrieved from the collection based on the handle structure. Depending on
the trait values, the data allocation process is different. For example, we test
the value of the fallback trait if the runtime detects that the requested memory

OpenMP Memory Management Implementation 7

space is unavailable. Trait checking is quite similar no matter what the selected
memory space is. Once the traits values are set, we need to link a memspace to
an allocation function. Depending on the desired memory space, this function
differs. For example, malloc from glibc is the function used to allocate data in
DRAM memory space (denoted as omp default mem space) while hbw malloc

from the memkind library enables data allocation in the high bandwidth mem-
ory space (denoted as omp high bw mem space). To support all the set of the
specification defined memory spaces, runtime developers may have to integrate
various allocator library inside the OpenMP runtime. For example, data alloca-
tion in high bandwidth or in large capacity memory spaces are currently well
supported within the memkind library. 5 The MPC framework comes with its
own NUMA-aware allocator [28] based on kernel page reuse. For more conve-
nience, and to avoid multiple library integrations, we link our allocator to the
OpenMP runtime. Data allocations in DRAM (refered to as default memory
space) and in high bandwidth memory space are thus operated by our allocator.
As MCDRAM is currently detected as a no-core NUMA node, we redirect all the
dynamic allocations queries to this NUMA node. We also support data alloca-
tion in large capacity devices like NVDIMM. For this purpose, we have integrated
the nvmem 6 library inside the MPC framework.

The deallocation process is quite similar to the allocation one. When omp free

is called, we check the memory space specified in the allocator structure and then
call the appropriate data free function.� �
template <typename T>

2 class omp_allocator
{

4 public:
...

6 omp_allocator_handle_t& allocator;

8 omp_allocator(omp_allocator_handle_t& alloc) : allocator(alloc) {}

10 pointer allocate(size_type n, const T* hint = 0) {
return (T*)omp_alloc(sizeof(T) * n, allocator);

12 }

14 void deallocate(pointer p, size_type n) {
omp_free(p, allocator);

16 }
};

18 ...
std::vector<Real_t, omp_allocator<Real_t> > m_x(N, 0., omp_allocator<Real_t>(allocator);� �

Listing 1.3: Custom Allocator for STL Objects

4.2 Enabling Portable Application Memory Management

After implementing partial memory management support into the runtime, it is
necessary to modify the target application as presented in Listing 1.1. This sec-
tion illustrates the case of LULESH [17], an hydrodynamics application from the

5 See https://memkind.github.io/memkind for more information
6 Available at https://pmem.io

8 A. Roussel et al.

CORAL benchmark suite. This example provides some valuable experience on
how to port an existing C++ application to use OpenMP memory management
functions. While porting C codes leads to addtional codes as shown in Listing 1.1,
many C++ applications exploit STL objects [27] (e.g. vector, stack, list, . . .).
Such objects manage allocators through a template parameter Allocator. We
propose a custom allocator object (see Listing 1.3) that integrates the OpenMP
omp allocator handle t structure features. Thus, all the methods (e.g., con-
structor/destructor, resize or insert) use OpenMP allocation constructs. This
example also illustrates that the new allocator has to be passed as a template
parameter of the STL object and as input of the constructor (to indicate the
right memory spaces to the allocator).

5 Experimental Results

This section illustrates our implementation inside the MPC framework on one
benchmkark allocating data in various memory banks based on the OpenMP 5.0
memory-management functions. For this purpose, we modified the LULESH
benchmark (as previously explained in Section 4.2) by inserting calls to omp alloc

functions to allocate data in various memory spaces.

Experimental Environment. On the hardware side, the target platforms cover
the different memory kinds that our implementation supports. Thus we rely on
4 different systems. The first one is a compute node containing a 68-core Intel
Knights Landing processor [26], 16GB of MCDRAM and 96GB of regular DRAM
memory. This configuration will be used to evaluate the allocation inside a high
bandwidth memory. To test the large storage memory, we use a compute node
equipped with two NVDIMM technology storages (with a capacity of 1.5TB
each). This persistent-memory node is composed of two 24-core Intel Cascade
Lake processors (Xeon Platinum 8260L), each clocked at 2.40 GHz. Finally, two
systems are available to ensure portability by exposing only regular DDR: one
AMD ROME node (two 32-core AMD EPYC 7502 processors at 2.50 GHz with
128GB of DDR) and one Intel Skylake node (two 24-core Intel Xeon Platinium
8168 Skylake processor at 2.70 GHz with 96GB of DDR). On the software side, all
benchmark versions were compiled with -O3 and linked to the MPC framework
(configured with standard options) for the OpenMP runtime.

5.1 Coarse-Grain OpenMP Memory Allocation

This section describes the experiments conducted on the modified LULESH
benchmark targeting a single memory space. Thus, it aims at testing the ability
of our implementation to allocate data in a specified memory space following the
OpenMP 5 standard.

High-Bandwidth Memory. The first evaluation concerns the MCDRAM memory
on Intel KNL node with 64 threads. Figure 2 shows the Figure of Merit (FOM

OpenMP Memory Management Implementation 9

Fig. 2: Coarse-Grain Data Allocation Management in MCDRAM

- number of elements solved per microsecond) according to the mesh size on
different versions of LULESH (with a fixed total number of iterations: 100).
The first bar (standard) represents the regular run (everything is allocated in
DDR) while the second bar (numactl) is controled by the numactl command that
places all data into the MCDRAM. The third version (omp alloc) is modified
with OpenMP memory management constructs. All of the three executions were
compiled and run within the MPC OpenMP implementation. These results show
only a 5% difference in performance between the execution with numactl and the
application modified to use omp alloc, for problem sizes from 30 to 200. There
are no results for problem sizes greater than 200 for the numactl version because
all the data does not fit in MCDRAM and the application stops. From 200 to 350,
however, the omp alloc execution can execute even though the allocation does
not fit into MCDRAM, and the performance diminishes. This is due to the cache
memory mode, as data does not fit in MCDRAM, the application performance is
lead the DRAM bandwidth because some data are allocated in it. Performance
of the original application without the use of numactl are lower than the two
previous ones. In conclusion, we are able to allocate data in the MCDRAM high
bandwidth memory bank with the OpenMP memory management functions. The
performance difference between omp alloc and numactl charts is due to the fact
that numactl is much more agressive and allocates all the data in MCDRAM. In
our modified implementation, we only moved data dynamically allocated such
as arrays and vectors, so not all the data are moved to MCDRAM.

Large-Capacity Memory Space. Figure 3 presents the FOM running LULESH
on a dual-socket 24-core Skylake node (i.e., 48 OpenMP threads) equipped with
a NVDIMM device. While the two versions rely on OpenMP to allocate data, the

10 A. Roussel et al.

Fig. 3: Coarse-Grain Data Allocation Management in NVDIMM

first one (RAM) allocates all data in regular DDR (default allocator) while the
second one (NVDIMM) changes the OpenMP allocator to target the large capac-
ity space. With minor modifications, this graphic shows the ability to perform
data allocation in large capacity memory devices like NVDIMM technology. As
explained in [14], the NVDIMM memory can be configured in two modes. Our
results are similar for both selected memory spaces. We can conclude that the
node is configured in a 2LM mode (i.e. similar to KNL cache memory mode):
all the data allocation are thus directed to NVDIMM memory. Since no error
message are emitted from the vmem library, we are assured all allocated mem-
ory is in NVRAM. We do not have any error message when using vmem library,
which means that we are able to allocate memory in NVRAM.

5.2 Fine-Grain OpenMP Memory Allocation

An previous analysis [3] of the LULESH benchmark has already determined the
relevant data to be placed in high bandwidth memory bank. The purpose of this
work was to detect which functions are bandwidth bound. Application perfor-
mance can thus be improved if data operated in these functions are placed in
memory banks with a higher bandwidth. This analysis demonstrated that some
functions are sensitive to bandwidth, such as EvalEOSForElems, AllocateGradi-
ents and CalcForceNodes. We thus placed all the data relative to these function
in omp high bw mem space (i.e. MCDRAM here) while the other data are placed
in omp default mem space (i.e. DRAM memory).

The objective of this experiment is to illustrate the benefit of fine-grain
management for data allocation: i.e., choose in which memory bank to allocate
through the omp alloc function. Figure 4 presents the results of this approach
(data selection) compared to allocating everything inside the MCDRAM (full

OpenMP Memory Management Implementation 11

Fig. 4: Fine-Grain Data Allocation Management in MCDRAM

mcdram). For this experiment, we change the number of iterations performed to
250 from the previous experiment while still varying the problem size. We can
observe that allocating all data in MCDRAM is generally about 10% better be-
tween problem sizes of 75 and 250. Performance is about 50% less that the data
selection method beyond problem sizes of 250. Below a problem size of 75, then
are about the same. Performance decreases beyond and are worse than standard
allocation model. These results show that selecting MCDRAM may suffer a bit
in performance at small scale, it may be significantly important at large scale,
where many HPC applications run. For all the tested configurations, we observe
no performance decrease. However, performance seems to be bound to 6500.

In conclusion, as previously stated in several papers like [5], we show that allo-
cating all data in MCDRAM memory might not be the most relevant choice. In-
deed, when data do not fit inside this high bandwidth memory bank, application
performance is deteriorated, even more than without the use of MCDRAM. From
this experiment, we aim to warn developers about data allocation. OpenMP of-
fers ways to allocate easily, in a portable way, data in various memory banks.
However, the strategy to select which data to move from one memory bank to
another is still in charge of the developers. Currently, no runtime mechanism to
automatially move data from memory banks exists.

5.3 Portabilty Across Hardware Platforms

The design of OpenMP memory-management constructs enables portability of
applications whatever the available memory types on the target hardware. With
the help of the fallback trait, data can be allocated in a default memory space
(default mem fb) if the specified one does not exist. However, an application
can also terminate if the fallback property is set to abort fb. We propose here an

12 A. Roussel et al.

experiment that highlights the portability of our OpenMP memory-management
implementation. For this purpose, we ran the LULESH benchmark with the
fine-grain data allocation strategy as sketched in the previous section (selected
functions allocated in the high bandwidth memory space while the other ones
target a default allocator). We executed it on several platforms, without any code
modification. The selected machines are the ones composed of AMD EPYC, Intel
Skylake and Intel KNL processors previously described in 5. All the runs were
performed with 48 threads, and we fix the size problem to 350 for 100 iteration.
We set the fallback trait to default mem fb to forward data allocation to DRAM
memory space if high bandwidth memory is not found. Results are gathered in
Table 1.

System AMD ROME Intel Skylake Intel KNL

FOM (z/s) 4834.99 4416.18 5397.94

Time (s) 890 970 790

Table 1: FOM results

The execution on KNL achieve better performance than the two other ma-
chines. Indeed, as KNL platform benefits from MCDRAM, some selected data
allocation are directed to high bandwidth memory based on OpenMP constructs.
However, the two others do not have the MCDRAM memory type, so all data
allocations are forwarded to classical DRAM memory without any application
cancellation. We conclude that we are able to ensure portability with OpenMP
memory management constructs. The main advantage of this approach is to
achieve this result without any significant modification to the application, and
maintain portability

6 Conclusion & Future Work

This paper presents our experiences with the OpenMP memory management
constructs at the application-level and the runtime-level. From the applica-
tion side, developers should integrate data allocation calls with a standard like
OpenMP, to provide portability. Through the LULESH benchmark, we have il-
lustrated that these new constructs are easy to integrate. However, C++ STL
objects users have to change the default allocator and implement a new one
which encapsulates OpenMP function calls. We also have implemented these
constructs into the OpenMP runtime of the MPC framework. While we do not
support all the specification yet, we have implemented the major basic blocks
into an OpenMP runtime system targeting various memory levels (DDR, MC-
DRAM and NVDIMM). For this purpose, we detail our implementation from
hardware detection to data allocation process.

Our results show that this implementation is feasible and that there are
advantages that provide performance improvements for user applications. We

OpenMP Memory Management Implementation 13

illustrate that it is easy to make portable applications with slight modifications.
Our implementation is able to allocate data in default, high bandwidth and large
capacity memory spaces. Our experiments also show that data allocations should
be performed with care: the best strategy is not always to allocate all data in
the fastest memory.

As a future work, we plan to support all the features provided by the specifica-
tion, especially remaining traits. We also plan to work on coupling the OpenMP
memory management constructs with the affinity clause. Since the last version
of the OpenMP, 5.0, the specification introduces a new affinity clause in task

directives to give some hints at scheduling time in order to enhance data locality.
This clause has been already implemented and evaluated by others [29]. Infor-
mation from allocators will be needed from the runtime for the affinity clause.
Indeed, this information can assist the task scheduler to make smarter decisions
about affinity. In addition of that, it has a low memory footprint to keep this in-
formation and can significantly improve application performance. Thus we plan
to evaluate this coupling to enhance the task scheduler.

Acknowledgments: This work was performed under the Exascale Computing
Research collaboration, with the support of CEA, Intel and UVSQ.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. Con-
currency and Computation: Practice and Experience 23(2), 187–198 (2011),
https://hal.inria.fr/inria-00550877

2. Bhandari, K., Chakrabarti, D.R., Boehm, H.J.: Makalu: Fast recoverable allocation
of non-volatile memory. ACM SIGPLAN Notices 51(10), 677–694 (2016)

3. Brunie, H., Jaeger, J., Carribault, P., Barthou, D.: Profile-Guided Scope-Based
Data Allocation Method. In: MEMSYS 2018 - International Symposium on
Memory Systems. Alexandria, United States (Oct 2018), https://hal.inria.fr/hal-
01897917

4. Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguadé, E., Labarta,
J.: Productive programming of gpu clusters with ompss. In: 2012 IEEE 26th In-
ternational Parallel and Distributed Processing Symposium. pp. 557–568 (2012)

5. Butcher, N., Olivier, S.L., Berry, J., Hammond, S.D., Kogge, P.M.: Optimizing for
knl usage modes when data doesn’t fit in mcdram. In: Proceedings of the 47th Inter-
national Conference on Parallel Processing. ICPP 2018, Association for Computing
Machinery, New York, NY, USA (2018), https://doi.org/10.1145/3225058.3225116

6. Cantalupo, C., Venkatesan, V., Hammond, J., Czurlyo, K., Hammond, S.D.:
memkind: An extensible heap memory manager for heterogeneous memory plat-
forms and mixed memory policies. Tech. rep., Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States) (2015)

7. Carribault, P., Pérache, M., Jourdren, H.: Enabling low-overhead hybrid
mpi/openmp parallelism with mpc. In: Sato, M., Hanawa, T., Müller, M., Chap-
man, B., de Supinski, B. (eds.) Beyond Loop Level Parallelism in OpenMP: Ac-
celerators, Tasking and More, Proceedings of the 6th International Workshop on

14 A. Roussel et al.

OpenMP (IWOMP 2010), Lecture Notes in Computer Science, vol. 6132, pp. 1–14.
Springer Berlin Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-13217-9 1

8. Chandrasekar, K., Xiang Ni, Kale, L.V.: A memory heterogeneity-aware runtime
system for bandwidth-sensitive hpc applications. In: 2017 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW). pp. 1293–1300
(May 2017)

9. Demeshko, I., Salinger, A.G., Spotz, W.F., Tezaur, I.K., Guba, O., Heroux, M.A.:
Towards performance-portability of the albany finite element analysis code using
the kokkos library of trilinos. Tech. rep., Sandia National Lab.(SNL-NM), Albu-
querque, NM (United States); Sandia . . . (2016)

10. DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., Elsen,
E., Ham, F., Aiken, A., Duraisamy, K., Darve, E., Alonso, J., Hanrahan, P.: Liszt:
A domain specific language for building portable mesh-based pde solvers. In: Pro-
ceedings of 2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis. SC ’11, Association for Computing Machinery, New
York, NY, USA (2011), https://doi.org/10.1145/2063384.2063396

11. Edwards, H.C., Sunderland, D.: Kokkos array performance-portable manycore
programming model. In: Proceedings of the 2012 International Workshop on
Programming Models and Applications for Multicores and Manycores. p. 1–10.
PMAM ’12, Association for Computing Machinery, New York, NY, USA (2012),
https://doi.org/10.1145/2141702.2141703

12. Gautier, T., Ferreira Lima, J.V., Maillard, N., Raffin, B.: XKaapi: A Runtime
System for Data-Flow Task Programming on Heterogeneous Architectures. In:
27th IEEE International Parallel & Distributed Processing Symposium (IPDPS).
Boston, Massachusetts, United States (May 2013), https://hal.inria.fr/hal-
00799904

13. Goglin, B.: Exposing the locality of heterogeneous memory architectures to hpc
applications. In: Proceedings of the Second International Symposium on Mem-
ory Systems. p. 30–39. MEMSYS ’16, Association for Computing Machinery, New
York, NY, USA (2016), https://doi.org/10.1145/2989081.2989115

14. Goglin, B., Rubio Proaño, A.: Opportunities for Partitioning Non-Volatile Memory
DIMMs between Co-scheduled Jobs on HPC Nodes. In: Euro-Par 2019: Parallel
Processing Workshops. Göttingen, Germany (Aug 2019), https://hal.inria.fr/hal-
02173336

15. Huang, H.F., Jiang, T.: Design and implementation of flash based nvdimm. In: 2014
IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA). pp.
1–6. IEEE (2014)

16. Iwabuchi, K., Lebanoff, L., Gokhale, M., Pearce, R.: Metall: A persistent memory
allocator enabling graph processing. In: 2019 IEEE/ACM 9th Workshop on Irreg-
ular Applications: Architectures and Algorithms (IA3). pp. 39–44. IEEE (2019)

17. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Tech. Rep. LLNL-
TR-641973 (August 2013)

18. Kayraklioglu, E., Chang, W., El-Ghazawi, T.: Comparative performance and opti-
mization of chapel in modern manycore architectures. In: 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 1105–
1114 (May 2017)

19. Kirk, R.O., Mudalige, G.R., Reguly, I.Z., Wright, S.A., Martineau, M.J., Jarvis,
S.A.: Achieving performance portability for a heat conduction solver mini-
application on modern multi-core systems. In: 2017 IEEE International Conference
on Cluster Computing (CLUSTER). pp. 834–841 (Sep 2017)

OpenMP Memory Management Implementation 15

20. LLVM Foundation: LLVM Compiler Infrastucture, version 10.0.0 (2020),
https://llvm.org/releases/download.html#10.0.0

21. Nagasaka, Y., Matsuoka, S., Azad, A., Buluç, A.: High-performance sparse
matrix-matrix products on intel knl and multicore architectures. In: Proceed-
ings of the 47th International Conference on Parallel Processing Companion.
ICPP ’18, Association for Computing Machinery, New York, NY, USA (2018),
https://doi.org/10.1145/3229710.3229720

22. OpenMP Architecture Review Board: OpenMP application program interface
version 5.0 (2018), https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf

23. Pérache, M., Jourdren, H., Namyst, R.: Mpc: A unified parallel runtime for clusters
of numa machines. In: Proceedings of the 14th International Euro-Par Conference
on Parallel Processing. p. 78–88. Euro-Par ’08, Springer-Verlag, Berlin, Heidelberg
(2008), http://dx.doi.org/10.1007/978-3-540-85451-7 9

24. Reguly, I.Z., Mudalige, G.R., Giles, M.B.: Beyond 16gb: Out-of-core stencil com-
putations. In: Proceedings of the Workshop on Memory Centric Programming for
HPC. p. 20–29. MCHPC’17, Association for Computing Machinery, New York,
NY, USA (2017), https://doi.org/10.1145/3145617.3145619

25. Schwalb, D., Berning, T., Faust, M., Dreseler, M., Plattner, H.: nvm malloc: Mem-
ory allocation for nvram. ADMS@ VLDB 15, 61–72 (2015)

26. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hut-
sell, S., Agarwal, R., Liu, Y.C.: Knights landing: Second-generation intel xeon phi
product. Ieee micro 36(2), 34–46 (2016)

27. Standard C++ Foundation: ISO International Standard ISO/IEC 14882:2017(E)
– Programming Language C++ (2017), https://isocpp.org/std/the-standard

28. Valat, S., Pérache, M., Jalby, W.: Introducing kernel-level page reuse for high per-
formance computing. In: Proceedings of the ACM SIGPLAN Workshop on Mem-
ory Systems Performance and Correctness. MSPC ’13, Association for Computing
Machinery, New York, NY, USA (2013), https://doi.org/10.1145/2492408.2492414

29. Virouleau, P., Roussel, A., Broquedis, F., Gautier, T., Rastello, F., Gratien, J.M.:
Description, implementation and evaluation of an affinity clause for task directives.
In: Maruyama, N., de Supinski, B.R., Wahib, M. (eds.) OpenMP: Memory, Devices,
and Tasks. pp. 61–73. Springer International Publishing, Cham (2016)

30. Yoshida, T.: Fujitsu high performance cpu for the post-k computer. In: Hot Chips
30th Symposium (HCS) (August 2018)

