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FINITE VOLUMES FOR THE STEFAN-MAXWELL
CROSS-DIFFUSION SYSTEM

CLEMENT CANCES, VIRGINIE EHRLACHER, AND LAURENT MONASSE

ABSTRACT. The aim of this work is to propose a provably convergent finite
volume scheme for the so-called Stefan-Maxwell model, which describes the
evolution of the composition of a multi-component mixture and reads as a
cross-diffusion system. The scheme proposed here relies on a two-point flux
approximation, and preserves at the discrete level some fundamental theo-
retical properties of the continuous models, namely the non-negativity of the
solutions, the conservation of mass and the preservation of the volume-filling
constraints. In addition, the scheme satisfies a discrete entropy-entropy dissi-
pation relation, very close to the relation which holds at the continuous level.
In this article, we present this scheme together with its numerical analysis,
and finally illustrate its behaviour with some numerical results.

1. THE STEFAN-MAXWELL MODEL

The aim of this section is to present the so-called Stefan-Maxwell model, which
is introduced in Section 1.1. Its key mathematical properties are summarized in
Section 1.2. In particular, an entropy-entropy dissipation inequality holds for this
system and is formally derived in Section 1.3.

1.1. Presentation of the model. The Maxwell-Stefan equations describe the
evolution of the composition of a multicomponent mixture via diffusive trans-
port [41, 45]. This model is used in various applications like sedimentation, dialysis,
electrolysis, ion exchange, ultrafiltration, and respiratory airways [49].

We are interested in the evolution of the composition of a mixture of n € N*
species, which is described by the volume fractions v = (uy,--- ,u,), where u;
denotes the volume fraction of the i** species for all 1 < i < n. The spatial
domain occupied by the mixture is represented by an open, connected, bounded,
and polyhedral subset Q of R%. Let T > 0 denote some arbitrary final time.

Forall 1 < i # j < m,let ¢;; = ¢j; > 0 be some positive real numbers. The
coefficient ¢;; can be interpreted as the inverse of the inter-species diffusion coefi-

cient between the i" and ;" species. For all v := (vy,--- ,v,) € R?, we denote by
A(v) := (Aij(v))1<i, j<n the matrix defined by
(1) A”(U) = Z CijVj, Am(’v) = —Cij ;.

1<j#i<n

In the Stefan-Maxwell model, the evolution of the composition of the mixture is
prescribed by the following system of partial differential equations:
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where the set of fluxes J := (J;)1<i<n is solution to the set of equations

(3) Vui+ Y Ag(u)J; =0, V1<i<n,
j=1
(4) > Ji=o.
i=1
For any vectors v := (v;)1<i<n,W = (W;)1<i<n € R", we denote by (v,w) :=

Z?:l v;w; the canonical scalar product of v,w in R™, while the canonical scalar
product of vectors F, G € R is denoted by F - G. Equations (3) and (4) can then
be rewritten in the more compact form

(5) Vu+ A(u)J =0,
(6) (1,J) =0,
where 1 := (1,1,---,1) € R™. We refer the reader to Appendix A of [37] and [11]

for the derivation of the model (2)-(3)-(4).
The system is complemented with no-flux boundary conditions

(7) Ji-n=00n0, foralll<i<n,
and a measurable initial condition u® = (u9,--- u?) which satisfies
(8) Vi<i<n, u)>0 and Zugzl on 0f).

In other words, denoting by
A= {’U eR}, (L,v)= 1},

we assume that u® € L>(£2;A). Let us also assume in addition that
(9) V1 <i<n, Mi::/u?>0,
Q

i.e. that each of the different species is initially present in the mixture. We denote
by M = (M;),.;-, € (R%) the vector of masses. Since uy € L>(2;.A), one has
(1, M) =mq where mq stands for the Lebesgue measure of .

The mathematical analysis of the Stefan-Maxwell model is quite recent [30, 9,
10, 37]. The first existence result of global weak solutions to the Stefan-Maxwell
problem for general initial data and number of chemical species was proved in [37].

Motivated by the results of [37], we introduce here the notion of weak solution
to the Stefan-Maxwell system of equations, which is used in our analysis. In what
follows, we denote by Q7 = (0,T) x €, and by

Zvi:(ﬂ,v):)\}, AeR

In particular, 4 =V, N (R)", J € V)4, and M € V,,,,,.

V,\Z{UZ(Ul,...,Un)

Definition 1.1. A weak solution (u,J) to (2)-(5)-(6) corresponding to the initial
profile u® € L*°(£; A) is a pair (u, J) such that u € L= (Q7; A)NL2((0,T); H(Q))"
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and Vy/u € L?(Q7)"*¢, such that J € L?(Qr; (Vo)?) satisfies (21), and such that,
for all ¢ € C°([0,T) x )™,

(10) [ oo+ [ o0+ ff S V=

T =1
1.2. Key mathematical properties of the model. In this section, we exhibit
some key mathematical properties of the model, which were proved in [37], and
that we wish to preserve at the discrete level in the numerical scheme.
First, the total mass of each specie is conserved, i.e, for all 1 <¢ <n and ¢t > 0,

(11) /Qui(t,:c)dx:/gu?(:c)dz.

This follows directly from the local conservation property (2) and the no-flux bound-
ary conditions across 0f).

Second, the volume fractions remain non-negative, i.e.,
(12) V1<i<mn, wu(t,z)>0, for almost all (t,z) € Qr.

Third, the condition (4) together with (2) implies that 0;(1,u) = 0, so that
condition (8) on the initial condition yields

(13) Zui(t,x) =1 for almost all (t,z) € Q7.
i=1

Therefore, u € L (Qr; A).
Lastly, an entropy-entropy dissipation relation, which is formally derived in Sec-
tion 1.3, holds for this system, so that the functional
5. { L>=(Q,A) — R
Tl owe= (U, un) = o 2o uglogug
is a Lyapunov function for the Stefan-Maxwell system. More precisely, it holds that

d o " 9 CF " 9
= = 124 12 <
(14) SE(u(®) + 2/Ql§_1:|v,ﬁuz| +3 /Q;_ljm <o,

for some positive constants a, ¢* > 0 whose definitions are made precise in the next
section.

1.3. Continuous entropy estimate. We formally derive here the entropy-entropy
dissipation inequality (14) which holds for the continuous system and was rigor-
ously proved in [37]. For the formal calculations to hold, we make the simplifying
assumption in this Section that the solution u to the Stefan-Maxwell model satisfies

(15) V1<i<m, uw(t,z) >0 and Zui(t,x) =1 a.e. inQr,
i=1

and that the solution enjoys enough regularity to justify the calculations.
To present the entropy-entropy dissipation inequality which holds for the Stefan-
Maxwell model, we need to introduce some additional notation. Denote by
¢ = min Cij > 0,
1<i#j<n
then for all 1 < i # j <n, we define

_ . _ _
Cii '=Ci; — C and ¢:= max ;.
R 1<izj<n
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Let us point out that ¢;; > 0 for all 1 <14 # j <n (and thus ¢ > 0).
Let I denote the n x n identity matrix. For all v € R, we introduce A(v) :=

(Aij(v)1<ij<n and C(v) = (Cy;(v))1<i,j<n the matrices respectively defined as
follows: for all 1 <i,5 < n,

(16) Z”(U) = Z Eijvja Zij(v) = 751']"[}1' and C’ij(v) = ;.
1<j#i<n

It then holds that for all v := (vy,--- ,v,) € (R4)™,

(17) A(v) = (1, v)I — ¢*C(v) + A(v),
In particular, if u € R7} satisfies (1, u) = 1, then

(18) A(u) = T - c*C(u) + A(u).

One easily deduces from particular form (16) of the matrix A(v) that

(19) Span{v} C Ker(A(v)), Ran(A(v)) C Vy, Yv e R™.

It has been established in [37] that equalities instead of mere inclusions hold in (19)
if one replaces A(v) by A(v) and one considers v with positive components, i.e.,

(20) Span{v} = Ker(A(v)), Ran(A(v)) = Vo, Yo e (R})".

This property is intensively used in the convergence study of [37]. Provided (15)
holds, (20) shows that there exists a unique solution J(¢, ) to (5)-(6) for almost
all (t,x) € (0,T) x €, since Vu € (Vp)?. Besides, using (18), it holds that J is a
solution to (5)-(6) if and only if it is the unique solution to

(21) Vu+c*J+Au)J =0, V1<i<n,
(22) (1,J)y =0,

since (1,u) = 1 and since the condition (1, J) = 0 implies that C(u)J = 0.

For all v := (v1,---,vn) € (RY)", we denote by M(v) := diag(vi,--- ,vy) the
n x n diagonal matrix whose " diagonal entry is given by v; for all 1 < i < n.
Then, the following lemma, which is central in our analysis, holds.

Lemma 1.2. Let v := (vy,--- ,v,) € (R})", such that for all 1 <i <n, v; <1.
Then, it holds that B(v) := M~ (v)A(v) is a symmetric semi-definite non-negative
matriz such that

(23) M~ (v)A(v) < 2eM~*(v),
in the sense of symmetric matrices.

Proof. Let v := (v1,-+-,v,) € (R})" and B(v) := M~*(v)A(v). Denoting by

(Eij(v))l <ij<n the different components of B(v), a direct calculation shows that
forall 1 <i,j <mn,

Eij(’l)) = _Eij if 4 75_] and Eu(v) = Z Eij%7

1<j#isn
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hence the symmetry of the matrix B(v). Let £ := (£;)1<i<n € R™. Using the fact
that ¢;; = ¢j; for all 1 <4 # j < n, it holds that

FBE= > @ (zjff —&fj)

1<j#i<n

1 _ (Uj 2 Vi .o
= Cij | =& + —& — 26§
2 Z J (] ’Uj J J

1<j#i<n
1 _ Uj (3 2
=3 Z G\ 55 /%) 20
1<j#i<n ! J

Hence the non-negativity of the matrix B(v). Using now the elementary inequality
(a —b)? < 2a? + 2b? together with the fact that v; < 1 for all 1 <14 < n, we obtain
that

2
eBue-3 ¥ (| /Pa-\[6)
i j

1<j#i<n

o (Yig2 Vi
2 c”(vigﬁng])

1<j#i<n

<e 3 (1g+og) sm e
i j

1<j#i<n

IN

Hence the desired result. O

We are now in position to write the (formal) entropy-entropy dissipation in-
equality which holds on the continuous level for the Stefan-Maxwell model. For all
1 <i<mn,let w; =D, &) :=logu; and w := (w;)1<i<n. Then, it holds that
Vu = M (u)Vw which implies that
(24) Vw =-M""(uw)A(u)J = — ("M~ (u) + M~ (u)A(u)) J.

Since M ~!(u) is symmetric definite positive while M ~!(u)A(u) is symmetric non-
negative, it holds that ¢*M~1(u) + M ~'(u)A(u) is an invertible matrix so that
J=—(c"M""(u)+ M‘%u)](u))f1 Vw. This yields that

d / S @) / — (7)/
25 —FE(u(t)) = Oruw; = — divJ; w; = J - Vuw.
@) B = [ > (> [

Using (24), the last term in the above equality can be rewritten of two different
manners:

(26) /QJ-sz —/QJ- (M (w) + M~ (u)A(w)) ]

(27) = - [ vu- ("M~ (u) + M~ (w)A(w) " V.

Define the matrix
(28) B(v) := (C*M_l(v) + M_l(v)Z(v)) , Yv = (vi)lgign € (Ry)™.

It follows from Lemma 1.2 that the two inequalities

1
2 > M) > 1 >
(29) B(w) ="M~ (v) >, Bw)™ > P

M (v), Yo € (0,1]",
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hold in the sense of symmetric matrices. Therefore, we obtain from (26)—(27) that

1 c*
: > M — 2,
(30) /QJ V> 2(e*+2c)/ﬂvw (w)Vw + & /Qm

The first term of the righthand side can be rewritten by noticing that

Vw - M(u Vw—ZuZVIOg u;) - Vlog(u; f4Z|V\/u7|

=

As a consequence, we finally deduce from (25) and (30) that

& B(u(r) —fa/Zme—fc R

with A
o= — > 0.
c* +2¢
This entropy-entropy dissipation inequality is similar to (14).

Remark 1.3. Since the entropy E is bounded on L (Qr; A) — it takes its values
in [—=mgqlog(n),0] — integrating (14) over t € (0, T) yields

Jho, 19 J],,

Moreover, since u is uniformly bounded between 0 and 1, one has

//QTW\/Ein//QTVuF,

so that one gets a control over the L?(0,T; H'(Q)) norm of u and on the L*(Qr)
norm of J. This motivates the weak formulation used in Definition 1.1.

1.4. Contributions and positionning of the paper. The goal of this paper is
to build and analyze a numerical scheme preserving the properties discussed in the
previous section, namely:

the non-negativity of the concentrations;

the conservation of mass;

the preservation of the volume filling constraint;
the entropy-entropy dissipation relation (14).

The scheme proposed here relies on two-point flux approximation (TPFA) finite
volumes [26, 25| and builds on similar ideas as the one introduced in [16] for another
family of cross-diffusion systems.

TPFA finite volumes is popular to approximate conservation laws. Unsurpris-
ingly, schemes entering this family of methods have been proposed for the Stefan-
Maxwell diffusion problem in [46, 10, 43]. Those schemes yield satisfactory numer-
ical outputs but there is no theoretical guarantee of their convergence. Besides, a
finite element scheme is proposed and analysed in [36] for the more complex case
where the chemical species are ions inducing a self-consistent electrical potential.
The analysis carried out in [36] relies on the very strong assumption that integrals
of non-polynomial functions can be computed exactly.

Convergence proofs for finite volume approximations of cross-diffusion systems
have been proposed in [3, 1, 19, 15, 38, 16, 21, 42, 29]. Most of the above con-
tributions rely on the entropy-stability of the schemes, which is exploited thanks
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to the so-called discrete entropy method [20]. This approach is a transposition
to the discrete setting of the boundedness-by-entropy method exposed in [34, 35].
The design of entropy stable numerical schemes for diffusion type equations has
received an important attention in the last years. Let us mention the contribu-
tions [6, 8, 7, 17, 18, 13, 39, 47, 2, 48, 44, 14], this list being non-exhaustive. We
mention in particular the recent work [33] where the authors propose an energy
stable and positivity-preserving scheme for the Maxwell-Stefan diffusion system,
but where no convergence analysis of the scheme is provided.

Let us also mention that finite element methods are also used for the simulation
of cross-diffusion systems. We refer the reader to [27, 5, 31] for more details. We
would like to highlight in particular the very recent work [12] where the authors
propose a space-time Galerkin method which preserves the entropy structure of
cross-diffusion systems, including the Stefan-Maxwell system under consideration.

The scheme is presented in Section 2. Our main results are gathered in Sec-
tion 2.3. Preliminary estimates and existence of a solution to the discretized scheme
are proved in Section 3. Convergence of the discretized solution to a weak solution
of the continuous model is proved in Section 4. Finally, numerical tests illustrating
the behaviour of the method are presented in Section 5.

2. THE FINITE-VOLUME SCHEME

2.1. Discretization of (0,7) x Q. As already mentioned, our scheme relies on
TPFA finite volumes. As explained in [23, 25, 28], this approach appears to be very
efficient as soon as the continuous problem to be solved numerically is isotropic and
one has the freedom to choose a suitable mesh fulfilling the so-called orthogonality
condition [32, 26]. We recall here the definition of such a mesh.

Definition 2.1. An admissible mesh of  is a triplet (T, &, (zx)ke7) such that
the following conditions are fulfilled.

(i) Each control volume (or cell) K € T is non-empty, open, polyhedral and
convex. We assume that

KNL=0if K,LeT with K#L, while | JK=0.
KeT

(i) Each face o € & is closed and is contained in a hyperplane of R?, with
positive (d — 1)-dimensional Hausdorff (or Lebesgue) measure denoted by
my = H4 (o) > 0. We assume that H4" (o No’) = 0 for 0,0’ € € unless
o =o0'. For all K € T, we assume that there exists a subset £x of £ such
that 0K = (J, ¢, 0. Moreover, we suppose that | Ex = €. Given two
distinct control volumes K, L € T, the intersection K N L either reduces to
a single face o € £ denoted by K|L, or its (d — 1)-dimensional Hausdorff
measure is 0.

(iii) The cell-centers (zx)xeT satisfy xx € K, and are such that, if K, L € T
share a face K|L, then the vector x; — 2k is orthogonal to K|L.

We denote by my the d-dimensional Lebesgue measure of the control volume
K. The set of the faces is partitioned into two subsets: the set & of the interior
faces defined by

Eny = {0 €& |0 =K]|L for some K,L € T},
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and the set Eoxt = & \ Eing of the exterior faces defined by Eexy = {0 € £ | 0 C 0N}
For a given control volume K € T, we also define Ex int = Ex N Eint (respectively
Ekext = Ex N Eext) the set of its faces that belong to &y, (respectively Eext). For
such a face 0 € Ek iny, we may write 0 = K|L, meaning that o = K N L, where
LeT.

Given o € £, we let

L |foCEL| ifU:K|L€8int7 _&
do T { |$K - xa' if o € gK,exta and To = do‘ ’
For internal edges 0 = K|L € &, we also define
drge =dist(zg,0) and 7Tk, = &.
dKo’

Moreover, for all K € T and all o € £k, we denote by

de;mK if0:K|L€5K7mt,
n = _” .
Ko Zo TR ifoe gK,exta

o

the unitary normal to o outward with respect to K. The half-diamond cell Ak,
associated to K and o is defined as the convex hull of xx and o, and we define the
diamond cells A, by

A — Ags UALs ifUZK‘LEgint,
7 | Ak if 0 € Exext-

Then it follows from the an elementary geometrical property that the (d- dimen-
sional) Lebesgue measures of A, (resp. Ak,) are given by
med mgdy
(31) ma, = (; 0’ MAgs = %7
We finally introduce the size hy and the regularity {7 (which is assumed to be
positive) of a discretization (7, &, (zx)kxer) of by setting

) ) . d(zk,0)
hr = d K d¢r= —
7= gy dlmlB) - and G = i ol T,

Concerning the time discretization of (0,7T), we consider Pr € N* and an increasing
infinite family of times 0 < tg < t; <--- <tp, =T. We denote by At, =t, —t,—1
for p € {1, ,PT}, by At = (Atp)lgpSpT, and by hp = maxj<p<Pr Atp. In
what follows, we will use boldface notation for mesh-indexed families, typically
for elements of R7, RE, (R7T)", (RE)", (RT)Pr, (RE)Pr or even (R7T)"*Fr and
(RE)™*Pr_ One naturally defines discrete L? scalar products on R7 and R%¥*¢ by
setting

<’LL7’U>T: ZmKquKa u:(uK)KET’v:(vK)KETERT
KeT

and

<F7G>£ = ZmAGFKU : GKO’; F = (FKU)G‘GE 7G = (GKO')O—Gg 6 Rdxg'
ocef
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2.2. Numerical scheme. The initial data u® € L>°(Q; A) is discretized into

0_ (.0 T\n _ (,0
u = (ui)lgign e ®R")" = <ui,K)KeT,1gign’
by setting
1
(32) u?K:—/u?(x)dx, VKeT,1<i<n.
; mr Jx

Assume that uP~! = (uf ;(1 is given for some p > 1, then we have to

) KeT,1<i<n

define how to compute the discrete volume fractions u? = (uf K) and
KeT,1<i<n

the discrete fluxes J? = (JPK(,)

€€ 1<i<n

First, we introduce some notation. Given any discrete scalar field v = (vk)ger €
R7, we define for all cell K € T and interface o € Ex the mirror value vg, of vk
across o by setting:

_f vy o=KL € Ep,
VKo = vg if 0 € Eaxt.

We also define the oriented and absolute jumps of v across any edge by
Dgov = vk, — Vg, and D,v = |DK,7’U‘7 VKGT, Vo € Ek.

Note that in the above definition, for all ¢ € £, the definition of D,v does not
depend on the choice of the element K € T such that o € Ek.

For all 1 < i < n, we also introduce some edge values u?  of the volume fraction
u; for all o € €. For any K € T such that o € g, the deﬁmtlon of uf’  makes use

of the values uf - and u} -, but is independent of the choice of K. As in [16], the

p

edge volume fl"aCthIlb u; , 1s defined through a logarithmic mean as follows

e D P
0 if min(ug g, u; ) <0,
p : p_ D
(33a) uf = U if0< U g = Wi Koo
’ uf,K_uf,Krr h .
Tog(u? ;) —Tog(u? 1, otherwise.
We also denote by uf := (up ) L<i<n This choice for the edge concentration

is crucial for the preservation at the dlscrete level of a discrete entropy-entropy
dissipation inequality similar to (14) on the continuous level.

The conservation laws are discretized in a conservative way with a time dis-
cretization relying on the backward Euler scheme:

(33b) mK”( 1K+Zm”m=o, VK €T, V1<i<n,
c€lK

The relation between the fluxes and the variations of the volume fractions across
the edges relies on formula (21) rather that on (5). This trick takes its inspiration
in [16], and appears to be crucial in what follows for the derivation of the discrete
counterpart of the entropy-entropy dissipation estimate (14). More precisely, the

discrete fluxes JE,_ := (Jf’ KU) are solution to the following set of equations:
1<i<n
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for all K € T and o € Ex int,
1

y Do) + ¢ J} gy + Z Zij(ug)Jf’KU =0, V1<i<n,

1<j<n

which rewrites in a more compact form as

1 _
33c —DgouP +c*J% + AWWP)J? =0.
d Ko oc/YKo

o

One readily checks that Formula (33c) yields conservative fluxes, i.e.,

(33d) Jhg+J7, =0, Yo=KI|L €&, 1 <p<Pr.

The discrete counterpart to the no-flux boundary condition (7) is naturally
(33e) Jho =0, Voe&kex, KT, 1<p<Pr.

Remark 2.2. We stress on the fact here that we do not impose the constraint
Jho €Vo forall K € T,o € Ek, and 1 < p < Pp. Indeed, (33¢) can be rewritten
equivalently as
Dot + (14 A(u)) T, =0,

and the matriz ¢*I + A(u2) differs in general from A(u2) since uP does not belong
to V1 in general. As a consequence, Ker (C*I —&—Z(u{})) may not be of dimension 1.
Actually, we will see in Lemma 3.1 and Lemma 3.2 that for any u?~' € AT, then
any solution uP to the scheme presented above belongs to AT and that there exists
a unique set of fluzes (J,) ket gee, Satisfying (33c)-(33d)-(33¢), and that Ji.,
necessarily belongs to V.

2.3. Main results and organisation. We gather the main results of our paper
in this section. Our first theorem concerns the existence of a discrete solution for a
given mesh, and the preservation of the structural properties listed in Section 1.2.

In order to obtain a discrete counterpart of the entropy-entropy dissipation in-
equality (14), we need to introduce the discrete entropy functional E : (]RI)” — R,
which is defined by

(34) ET(’U) = Z Z MKV K log(vLK), Yv = ('Ui)lgign S (RI)"
i=1 KeET

Note that the functional E7 is uniformly bounded on the set

AT = {v e RT)"

(03, ) icn € Aforall K €T}

More precisely, there holds

(35) —mgqlog(n) < Er(v) <0, vo e AT,
Denote by 17 = (1,...,1) € R, then the following theorem holds:

Theorem 2.3. Let (T,E, (zx)ker) be an admissible mesh and let u® be defined
by (52) from an initial condition u® € L>(Q;A) satisfying the nondegeneracy as-
sumption (9). Then, for all 1 < p < Pr, the nonlinear system of equations (33)
has (at least) a (strictly) positive solution u? € A7T. This solution uP satisfies
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(uP, 1) = M and the corresponding fluzes J* = (‘]%a)oes are uniquely deter-
mined by (33¢)-(33d)-(33e) and belong to (Vo)¢, i.e. 31, S e =0 foralloek.
Moreover, the following entropy-entropy dissipation estimate holds:

(36) Br(uw)+At, Y Gmadel IR, P+ 57
o=K|LEEn:

2
DKJ\/UP‘ ) < Er(uP™h).

The proof of Theorem 2.3 will be the purpose of Section 3.

From an iterated discrete solution (u,J) = (u?, J*)1<p<p, to the scheme (33),
we define for all 1 < ¢ < n, the piecewise constant approximate volume fractions
;A - Qr — (0,1) defined almost everywhere by

(37) upTac(t,r) =uly if (t,7) € (tp—1,t] X K.

Since u? € AT, then ur.At = (“iﬁT’Athgign belongs to L>(Qr;.A). We also

define approximate fluxes Je at = (Jig,Aat) <<, + QT — (Vo)? from the discrete
fluxes J? by setting

(38) Jeat(t,x) =dJy nke if (t,z) € (tp—1,tp] X Ay

We are now in position to present our second main result, which concerns the
convergence of the scheme as the discretisation parameters tend to 0. In what
follows, let (T, Em, (TK)KeT,, )m>1 and (At,,)m>1 be sequences of admissible dis-
cretisations of 2 and (0,7) respectively. We assume that

(39) hr, — 0, hrp, — 0, while lim>irllfC7—m =¢">0.

m— o0 m—00
Then, the following theorem holds:

Theorem 2.4. Let (T, Em, (k) KeT,)m>1 and (At,,)m>1 be sequences of ad-
missible discretisations of Q and (0,T) respectively fulfilling condition (39). Let

(U, Im),, = ((u”, IP) 1 <p<pr ) N be a corresponding sequence of discrete solu-
SPEETm >

tions to (33), from which a sequence of approzimate solutions (UT,, At,., Je,., Aty )m>1
is reconstructed thanks to (37)—(38). Then there exists a weak solution (u, J) to (2)-
(5)-(6) in the sense of Definition 1.1 such that, up to a upsequence,

U, .At, — U a.e. nQr,
m—+00

and

Je,. At e J weakly in L?((0,T) x Q)4m,

The proof of Theorem 2.4 is the purpose of Section 4. It is based on compactness
arguments that are deduced from the a priori estimates established in Theorem 2.3.

3. NUMERICAL ANALYSIS AT FIXED GRID

This section is devoted to the proof of Theorem 2.3.
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3.1. A priori estimates. The first lemma shows the non-negativity and the mass
conservation of the solution to (33), together with the uniqueness of associated
fluxes.

Lemma 3.1. Given uP~! € A7 satisfying
(40) <1Ta up*1>7_ =M e (Ri)n ’

then any solution uP to (33) satisfies (17,uP) = M and is positive in the sense
that u? ;- >0 for all K € T and all 1 < i < n. Besides, for any solution u? to (33),
there exists a unique set of flures J¥ satisfying (33¢)-(33d)-(35¢).

Proof. Let uP be a solution to (33) and let 1 < i < n. Let us first prove that
the total volume of each specie is conserved, so that (17,u?)7 = M. Summing
equation (33b) over K € T gives

() — (Lp, g = =At, > me (Jh, +J0,) = Aty Y meJh,

0=K|LEEnt 0EEext

Then it follows directly from the local conservativity of the scheme (33d) and from
the discrete no-flux boundary condtion (33e) that

<17’, up>7— = (17—,up_1>7— =M.

Let us now prove that uP is positive. Let 1 < i < n. We consider a cell K € T
where u? reaches its minimum, i.e. such that v} .- < ¥, for all L € T, and denote
P

— P = P ot p_ D
w; 1= Uy o = minper u; . Assume for contradiction that w; = u; ;r < 0. Let us

recall again equation (33b), which implies that

K K
(41) mwil == > meJly,.
c€EK

On the one hand, the term on the left-hand side is non-positive since ui}l >02>
uf’ x- On the other hand, the specific choice (33a) for the edge volume fractions
implies that uf , = 0 for all o € Ex. Therefore, Ajj(ub) = 0 for all 1 < j # i < n.

As a consequence, relation (33c¢) reduces to

1
d—DK,,up+ ¢+ Z Cij ?U sz =0.
1<j#i<n

Since uJ >0,¢; > 0and Dg,ul > 0forall1 <i,j < n, weobtain that Jp , <0
for all 0 € £k. Using (41), this yields that Jng = 7,Dgou? =0 for all & G k.
As a consequence, u} - = uj ; for all L € T such that 0 = K|L € k. Tterating
this argument and since €2 is connected, we thus obtain that ufy ., = w? <0 for
all L € T. This implies that (u,17)7 < 0 which yields a contradiction with the
property (17, u?)7 = M; > 0 we just established. Thus, u? is positive.

As a consequence, for all o € &yt and all 1 <4 < n, u! > 0. The fact that there
exists a unique J? associated to u” via (33c)-(33d)- (3‘3e) is then a consequence of
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Lemma 1.2. Indeed, for all K € 7 and all 0 € £k int, noticing that Dg,u? =
M (uy)Dg o log(uP), we can rewrite equivalently (33c) as

1 _
aM(u{,’)DKU log(u?) + (c*1+ A(ub)) Ji., = 0.
The positivity of u2 implies the inversibility of matrix M (u2). As a consequence,
it holds that
1 _
(42) - Dico log(u?) + ("M (ul)™ " + M(ub) "A(ub)) J%.,, = 0.
Moreover, thanks to Lemma 1.2, it holds that B(u2) = ¢* M (u2) = +M (ul) "L A(ub)

is a symmetric positive definite matrix, and the only solution J},_ to (42) is given
by

1
(43) Iy, = _de(ug)—lDK,, log(uP).

o

Hence the desired result. O

The next lemma shows that the total discrete flux vanishes across all edges and
that the volume filling constraint is automatically satisfied without being enforced.

Lemma 3.2. Given uP~' € A7 satisfying (40), any solution (uP,JP) to (33)
belongs to A7 x (Vy)E.

Proof. Since u?~! € A7 satisfies (40), uP~! is nonnegative, and using Lemma 3.1,
any corresponding solution u? to (33) is then positive.

Let us denote by w?~' = (W% ") ger = (1,u”), and let us denote by G? . :=
(1,J%,) for all K € T and o € k. Summing equations (33b) for i = 1,--- ,n, we
obtain that

D p—1
Wy — W
K K P
mg 7 = - g MG,
p c€EK

In addition, summing (33c) over i provides that for all o = K|L € &y,
1 _

= d—Dngp + G, + (1, A(uR) Iy, = y
g g
Thus, w is solution to the classical backward Euler TPFA scheme for the heat
equation with diffusion coefficient ci This scheme is well-posed and w? = wP~! =
17 is its unique solution, which implies that u € A7. Moreover, the fluxes G%.

are all equal to zero, so that Jr, € (Vo). O

(19 1

* D
Dgow? + G, .

The last statement of this section is devoted to the entropy entropy-dissipation
estimate (36).

Lemma 3.3. Given w?~' € A7, any solution (u?,J*) € A7 x (Vy)¢ to (33)

satisfies

c* «
(44) Er(u)+ A, >, Gmoeds| T, P+ 570
o=K|LEE;nt

2
DKU\/UP‘ ) < Er(uf™h).

Proof. Multiplying equation (33b) by At, log(ufy ) (which makes sense since u? is
positive owing to Lemma 3.1), and summing over all the cells and species leads to

(45) T +1T5 =0,
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where we have set

n

UEDIDD [“f,KlOg(“f,K) —uly 108‘(uf,;<)} M,
KeT i=1
n

T, =At, Z Z Z Mo J} gy 108(U )

i=1 KeT o€k

On the one hand, using the convexity of the function Ry >  — zlogz, it holds
that

uiK — uf}l + uﬁK 1og(uf,K) — uﬁ}l log(uny) > uf,K log(uﬁK) — uﬁ;{l log(ui}l),
which implies, together with Lemma 3.2, that
(46) T > Br(uf) — B (uP™?).

On the other hand, the conservativity of the fluxes (33d) and the discrete no-flux
boundary condition (33e) allow to reorganise the term T5 as

Ty=—-At, > mg(Jk,, Dkylog(u)).
o=K|LEEn:

Bearing in mind the expression (43) of the fluxes,

ds
- <J£J’DKU log(up» :? <J£a’ B(ug)J;;J)

+ % <DKU log(u?), B(u{,’)_lDKU log(up)> .

Then estimates (29) provide that
(Ticor B) Tico) 2 ¢ ol
and
(Dko log(uP), B(ul) ' Do log(u)) > % (Dgo log(uP), M(ul) Do log(uP)) .

Thanks to the particular choice (33a) for 2, the right-hand side rewrites

2

i

(Do log(u?), M(u?) Dicy log(u?)) = (Do log(uP), Dicyu?) > 4 ’DKU\/uP

the last inequality being a consequence of the elementary inequality

(a—b)(log(a) —log(b)) > 4(va — Vb)*
holding for any positive a,b. Summing up, we have

«

* 2
(47) T,>AL Y %mgdU|J§a|2 + 570 | DicoVu?

0=K|LEEint )

To conclude the proof, it only remains to incorporate (46) and (47) in (45). O
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3.2. Existence of discrete solutions. The purpose of this section is to prove the
existence of a solution to (33).

Proposition 3.4. Given u?~! € A7 satisfying (40), then there exists at least one
solution (uP, J?) € AT x (Vy)¢ to the scheme (33).

Proof. The proof relies on a topological degree argument [40, 22]. The idea is
to transform continuously our complex nonlinear system into a linear system while
guaranteeing that enough a priori estimates controlling the solution remain valid all
along the homotopy. We sketch the main ideas of the proof, making the homotopy
explicit.

For X € [0, 1], we look for (u(’\), J(A)) € R™*T x R"*€ solution to the algebraic
system (33) where the matrix A(uk) is replaced by )\Z(ug’\)). Our system (33)
corresponds to the case A = 1, whereas the case A = 0 corresponds to the usual
TPFA finite volume scheme n decoupled heat equations all with the same diffusion
coeflicient Ci Mimicking the calculations presented in Section 3.1, one shows that
whatever A € [0,1], any corresponding solution (u(/\),J(’\)) lies in A7 x (W)¢,
and u® is positive. Moreover, the entropy - entropy dissipation estimate and the
uniform bound (35) on the entropy ensure that
2mgq logn

=K.
c*At,

o <
=

w|° _ N2 s :
where ||J .= Yo K|LeEm, Modo| i, |°. Fixing 7 > 0, we define the relatively
compact open sets

AT {u € (RT)"

]

inf |lu—v| <
it fu vl <1}

and

<wﬁ{Jem%”

2 1/2 . N
12 <KV g and | int 17~ F] <nf.

The a priori estimates ensure that no solution (uo‘), J (/\)) of the modified scheme

can cross the boundary of the open set .AZ— X (Vo)‘f]. The topological degree asso-
ciated to the modified scheme and A;’]— X (Vo)fs is constant with respect to A, and
takes the value +1 for A = 0 since the system is linear and invertible with positive
determinant. So it is also equal to 1 for A = 1, ensuring the existence of a solution
to the nonlinear problem (33). O

The proof of Theorem 2.3 is now complete.

4. PROOF OF THEOREM 2.4

We consider here a sequence (T, Em, (TK)KeT,)m>, ©f admissible space dis-
cretizations with h7, going to 0 as m tends to +oo, while the regularity (7.
remains uniformly bounded from below by a positive constant (*. We also consider
a sequence (At,,)m>1 = ((Atnm)lSpSPT,m)mN of admissible time discretizations
such that hr,, goes to 0 as m goes to infinity.

From the discrete solutions (w,, J.), m > 1, the existence of which being guar-
anteed by Theorem 2.3, we reconstruct the piecewise constant functions ur, a¢,, €
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L>(Qr;A) and Jg,, at,, € L2(Q7; Vo) thanks to formulas (37) and (38). In the
convergence analysis, we also need the weakly consistent piecewise constant gradi-
ent reconstruction operators Ve, and Vg, a¢,, defined for m > 1 and v € R7=

(48) Ve, v(r) =dDgovmnis ifx €Ay, 0 €&y,
and, for v = (vp)0<p<PT € R+Pr,m)xTon
(49) vfm,Atmvm(t7 ) = ng’l}p ifte (tp—17 tp]: 1 < p < PT,7n~

4.1. Compactness on approximate reconstructions. The next proposition is
the main result of this section.

Proposition 4.1. There exists u € L®(Qr; A7) N L*(0,T; H'(Q))" with \/u €
L2(0,T; HX(Q))", and J € L*(Q7; (Vo)?) such that, up to a subsequence, the fol-
lowing convergence properties hold:

(50) ur, At,, — U ae. inQr,
m——+00
(51) Ve, At/ Um - Vvu  weakly in L*(Qr)™*,
m— o0
(52) Ve, At Um :: Vu weakly in LQ(QT)"Xd,
(53) e at,  —> J weakly in L2(Qr)™*.

Proof. Summing (36) over p € {1,...,Pr,,} and using the bound (35) on Er
provides
Prom *
(e} 2, C 2
(54) ; Aty JGSZ <27‘, | Do/ | + Emadg | kol ) < mgq logn.

Recalling the elementary geometrical relation dma, = m,d, and the definitions (38)
of Jg,, at,, and (48)-(49), one obtains that

(55) ||J8m,Atm HL2(QT)'rL><d + ||v£m,Atm vV um||L2(QT)n><d S C

for some C' not depending on m. As a straightforward consequence, there exists
J,F € L?(Qr)™*? such that (53) holds, as well as
(56) Ve, At,V/Um — F weakly in L*(Qr)"*%

m——+oo

The fact that J € L2(Qr;Vy)? results from the stability of linear space V, for the
weak convergence. Moreover, since 0 < uj% < 1, then Dyub, < 2D,/ ub, for all
0 € Ent,m and all 1 < p < Prp,,. Therefore, we deduce from (55) that

Hvé'm,Atmum||L2(QT)nxd < Cv
whence the existence of some G' € L?(Qr) such that

(57) Ve, At Um — G weakly in L*(Qr)"*%

m——+oo

On the other hand, u7,, at,, belongs to the bounded subset L™ (Qr;.A) of L= (Qr)™
for all m > 1. Therefore, up to a subsequence, ur, ag, converges in the L>(Qr)"-
weak star sense towards some u, which takes its values in A since both the positivity
and the sum to 1 property are stable when passing to the limit in this topology.
To conclude this proof, it remains to check that the convergence of ur, at,,
towards u holds point-wise, and to identify F' and G as V/u and Vu respectively.
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These properties are provided all at once by the nonlinear discrete Aubin-Simon
lemma [4, Theorem 3.9]. As already established in [4], this theorem applies natu-
rally in the TPFA finite volume context. The only point to be checked is a discrete
L2(0,T; H1(2)) estimate on the time increments of ur, at,, . More precisely, for

¢ € CX((0,T) x Q;R™), one defines ¢ = ( f,K) € R PromxTm Yoy

1 tr
P ,
LK At, mg /tp_l /quz(t,x)da:dt.

It follows from (33b)-(33d)-(33¢) that

Pr om Pr m
oD mue((u — i) ) = D At Y mo (Jk,s Drod?) -
p=1 KeTn, p=1 €& nt,m
Applying Cauchy-Schwarz inequality leads to
Pr m
> > m{(uf — i) o)
p=1 K€eTpm
PT,'m 1/2 PT,TVL 1/2
< (> ay, S med, |5, P At, > 1, |D,¢*f
p=1 0E€Ent,m p=1 Uegint,vn

The discrete L?(Q7)? estimate on the fluxes (54) shows that the first term in the
righthand side is bounded, whereas the second term is the discrete L2(0,T; H'(Q))
semi-norm of ¢. A straightforward generalisation of [26, Lemma 9.4] shows that

Prom

oAt > 1 |Da¢P < ClVlIia g,
p=1

0E€Eint,m

for some C only depending on the regularity factor (*. Therefore,

Pr om

S mr{(ule —ub), ¢h) < ClIVEllzaigrye < ClIVOl L@y,
p=1 KET,,

which is exactly the condition required to apply [4, Theorem 3.9], which pro-
vides (50)-(51)-(52) all at once, concluding the proof of Proposition 4.1. O

For all m > 1, we introduce the diamond cell based reconstruction ug,, a¢,, of
the volume fractions defined by

UEy, Aty (t7x) = ug if (t, m) € (tpflytp] X ANg,o0 €&y, 1< p< PT,ma

where the u?, are given by (33a). The following lemma shows that both reconstruc-
tions ug,, at,, and ut, a¢, share the same limit u. The proof is omitted there
since it is similar to the one of [16, Lemma 4.4].

Lemma 4.2. Let u be as in Proposition 4.1 then, up to a subsequence, ug,, At,,
converges in L"(Qr), 1 <r < +oo towards u as m tends to +oo.
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4.2. Convergence towards a weak solution. Our last statement to conclude
the proof of Theorem 2.4 consists in identifying the limit values (u,J) of the ap-
proximate solutions as weak solutions to the Stefan-Maxwell cross-diffusion system.

Proposition 4.1. Let (u,J) be as in Proposition 4.1 then (u,J) is a weak solution
to (2)-(5)-(6) in the sense of Definition 1.1.

Proof. One has already established in Proposition 4.1 that the limit values (u, J)
lie in the right functional spaces. It only remains to check that (2), (7) and (21)
hold in the distributional sense.

Equation (33c) implies that

(58) Ve, At,, Um + (C*I +Z(U€m,Atm)) Je,. at,, =0, VYm > 1.

Since v — A(v) is continuous, it follows from Lemma 4.2 that A(ug,, a¢,,) tends to
A(u) in L2(Qr)™*™. Then thanks to the convergence properties (52)-(53), one can
pass to the weak limit in (58) to recover that (21) holds in L'(Q7)"*¢, thus also
in LQ(QT)nxd_

Concerning equations (2) and (7), we establish them in the distributional sense (10).
Let ¢ € C°([0,T) x Q), then for m > 1, define ¢,, = (¢€<)K6Tm,1§p§PT,m by set-
ting ¢h = ¢(t,, xx). Multiplying (2) by At,¢h " for some 1 < i < N and summing
over K € T, and 1 < p < Pr,, gives after reorganisation that

59 // U; Tm At7n8t¢ +/ 0¢ // i gnnAtnz v¢

= Rim () + Ro,m(0) + R3.m (),

where we have set

Pr m
, ~ 1 tp
Rl,nL(¢) = Z Z mKuf’K ( I[)( - dﬁ( ' miK /tp_l /Kat¢> 5

p=1 KET,
1
Ran@) = 3 micile (6% - o [ 60.9).
KeTnm MK JK
Pr m
A Dgog? ! — .
R3 (¢ Z tp Uezg: MedyJ] KJ< Ko ®b i At / V- nKU>

It follows from the regularity of ¢ that

< CAty(ht, + hr,),

sh—oit = [7 [ oo

so that, using that 0 < ufK < 1, we obtain that

(60) [R1,m(9)| < C(hr,, + hr,,) — 0.

m——+oo

Similarly, one shows that

(61) [Rom(9)| < Chy,, — 0.
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Finally, the orthogonality condition on the mesh, namely point (iii) of Defini-
tion (2.1), ensures that

1 1 tp
-D p-l_ - . < .
4 Ko®h, AL AL /tp_l Vo -nks| < C(hr, +hr,)

Therefore,

[Ra(@)] < Clhr, + b)) i el priopys -~ 0

m—+00
since || Ji.g,,, Aty || 11 (Qq)s Can be controlled thanks to the Cauchy-Schwarz inequality

by Tl/Zm;Z/2 i, .At,, ||L2(QT)d which is bounded thanks to (55). Then in view of
the convergence in L'(Q7) of U; T, At,, towards u; and of the weak convergence in
L3(Qr)? of Jig,, at, towards J;, one can pass to the limit in (59) to recover that

//Tuiat¢+/g,u?¢(0")+/QTJi'V¢=O.

The weak formulation (10) is then recovered by summing over i. (]

5. NUMERICAL RESULTS

The aim of this section is to collect some numerical results obtained with the
numerical scheme presented in the preceding sections. The numerical scheme has
been implemented using Julia and the different codes used to produce the numer-
ical tests presented below can be found at [24] (10.5281/zenodo.3934286) . The
nonlinear system is solved thanks to a modified Newton algorithm with stopping
criterion ||[uP*+1 — uP*| s < 10712 where the superscript k refers to the iteration
of the Newton method. The obtained solution, denoted by w?~2/3 is then projected
onto A by setting:

p—1/3
U; Kk

n p—1/3"
D1 U; Kk

5.1. Convergence under grid refinement. We first present some numerical re-
sults obtained on a one-dimensional test case, in order to illustrate the rate of
convergence of the method with respect to the spatial discretization parameter.
Here, = (0,1), and we consider a system composed of three different species
(n = 3). Two different initial conditions wug are considered:

uP™1/3 = max(uP~%/310712) then v , =

e a smooth initial profile defined for = € (0,1) by

1 1
(62) ui(z) = up(z) = 7 + 7 cos(ma);
e a non-smooth initial profile defined for x € (0,1) by
(63) ud (@) = Lj3/8,5/8)(2),  ud(x) = Li1ys,3/8)(2) + Liss,7/8) (@),
where 15 denotes the characteristic function of the set E C [0,1], and where u§ is

deduced from u§ and uy by the relation uJ = 1 — u — u9. The time step is chosen

to be constant and equal to At = 107° and final time as 7" = 0.5. The spatial mesh
is chosen to be a uniform grid of the interval (0,1) containing N subintervals.
The value of the cross-diffusion coefficients are chosen to be

Cl1g — C21 — 02, C13 — C31 — 10, C23 — C392 — 0]., ¢ = 0.1.
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Figure 1 illustrates the evolution of the L' in time and space error of the ap-
proximate discrete solution as a function of N (which is computed in comparison
with an approximate solution computed on a very fine grid with Nyt = 10% cells).

TTTT T T T T T T T T T T T T
g —-— Smooth u" (62)
é 10-° |- | | —— Discontinuous u° (63)
™
s |,
Q10771 :
=
—
8 9
g 1077 b
v Ll L \\\1\\\\\ Lol L1
10t 102 103

number of cells

FIGURE 1. Evolution of the L' space time error of the approximate
solution as a function of the spatial discretization parameter.

We numerically observe that the error decays like O (ﬁ), in other words, show-
ing that the scheme is second order accurate in space.

5.2. Two-dimensional test case. We present here a two-dimensional test case.
The number of species is kept to be n = 3 and the values of the cross-diffusion
coefficients are now given by

(64) C12 = C21 = 0.1, C13 = C31 = 0.2, C23 = C32 = 27 ¢t =0.1.

The spatial domain = (0,1)? is discretized using a cartesian uniform grid con-
taining 70 cells in each direction. Time step is chosen to be At = 1075,

Figure 2 (respectively Figure 3 and Figure 4) shows the values of the concentra-
tion profiles uy, us, uz at time ¢t = 0 (respectively ¢; = 8.5 107> and t, = 1 1073).
Since the coefficients c12 and c13 are much smaller than cs3, the initial interfaces
between the different species are easily diffused for early times. Recall that c;; is
an inverse diffusion coefficient. On Figure 4, one clearly sees that the species 2 and
3 have difficulties to interdiffuse due to the high value of co3, so that the specie 2
remains essentially confined in a region where w3 is small.

Our last figure is there to highlight both the decay of the discrete entropy and
the exponential convergence towards equilibrium of the approximate solution. The
exponential convergence in the continuous case was established in [37] thanks to a
Logarithmic Sobolev inequality. A discrete counterpart of this inequality has been
proved in [§8], allowing to show the exponential convergence of the approximate
solution towards the constant in space equilibrium following the lines of [37]. We
omit the proof here and rather provide a numerical evidence.

Define m := (m; k), ;c € (R7)™ by

1
m; K M; Vi<i<n, VKeT,

toal
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FIGURE 2. Initial profiles of the volume fractions.
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FIGURE 3. Profiles of the volume fractions at t; = 8.5 107°.

and M; is defined by (9), and by

n uP
Hy(uP|lm) = E E myul - log ULLSH Er(u?)— Er(m) >0
: ’ miK
KeT i=1 ’

the relative entropy between the approximate solution u? at the p** time step and
the long-time limit of u. Figure 5 shows that our approximate solution converges
exponentially fast towards the right long-time limit. The exponential convergence
in L' can then be deduced from a Csiszar-Kullback inequality.
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FIGURE 5. Evolution of the relative entropy Hy(u?|m) as a func-
tion of time.
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