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This supplementary material document provides technical lemmas and the proofs of all
theoretical results in the main article as well as additional details on the construction of
confidence regions and further finite-sample results.

We denote by
d−→ and

P−→ weak convergence and convergence in probability of sequences
of random variables, respectively, and by 1{E} the indicator function of the event E.

A Proofs of main and auxiliary results

We begin this section by stating a couple of facts that will be used multiple times in our
proofs. If Z, a random variable having survival function F and tail quantile function U , is
heavy-tailed with tail index γ, and if τn ↑ 1 and zn →∞ as n→∞, then the convergences

F (zn)

1− τn
→ z ∈ (0,∞) and

zn
U((1− τn)−1)

→ z−γ as n→∞

are equivalent. Such a local inversion property is, for instance, a consequence of Defini-
tion B.1.8 and Proposition B.1.9.10 pp. 366–367 in de Haan and Ferreira (2006). In par-
ticular, if E|min(Z, 0)| < ∞ and γ < 1, then high expectiles ξτn of Z are well-defined and
satisfy

F (ξτn)

1− τn
→ γ−1 − 1 and

ξτn
U((1− τn)−1)

→ (γ−1 − 1)−γ as n→∞.

See for instance Proposition 1 in Daouia et al. (2019) in the case p = 2 (with the nota-
tion therein). In what follows, this will be referred to as the asymptotic proportionality of
expectiles and quantiles.
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We also recall that, for the heavy-tailed random variable Z with tail index γ, if a > 0 is such
that E|min(Z, 0)|a < ∞ and γ < 1/a, then E|Z|a < ∞. Finally, for any a ≥ 1, if γ < 1/a
then it is a corollary of Proposition B.1.10 p.369 in de Haan and Ferreira (2006) that

E([Z − t]a1{Z > t})
ataF (t)

=

∫ ∞
1

(v− 1)a−1
F (tv)

F (t)
dv →

∫ ∞
1

(v− 1)a−1v−1/γ dv as t→∞. (A.1)

We now state and prove some of the crucial auxiliary results we shall use to show our main
results. We first state several convergences related to the rescaled bivariate exceedance
probability (above high thresholds).

Lemma A.1. Assume that X and Y are heavy-tailed random variables with continuous
distribution functions FX and FY , tail quantile functions UX and UY and tail indices γX and
γY . Suppose that there is a function R on [0,∞]2 \ {(∞,∞)} such that

∀(x, y) ∈ [0,∞]2 \ {(∞,∞)}, lim
s→∞

sP
(
FX(X) ≤ x

s
, F Y (Y ) ≤ y

s

)
= R(x, y).

Let τn ↑ 1 and an, bn be two sequences such that an/UX((1 − τn)−1) → a ∈ (0,∞) and
bn/UY ((1− τn)−1)→ b ∈ (0,∞) as n→∞.

(i) For any x, y > 0, we have, as n→∞,

1

1− τn
P(X > anx, Y > bny)→ R

(
a−1/γXx−1/γX , b−1/γY y−1/γY

)
.

(ii) For any x > 0 and any β ∈ R such that 1/γY > 1− β, we have, as n→∞,

1

b1−βn

∫ ∞
bn

1

1− τn
P(X > anx, Y > t)

dt

tβ
→
∫ ∞
1

R
(
a−1/γXx−1/γX , b−1/γY y−1/γY

) dy

yβ
.

(iii) For any α, β ∈ R such that 1/γX > 2(1−β) and 1/γY > 2(1−β), we have, as n→∞,

1

a1−αn

1

b1−βn

∫ ∞
s=an

∫ ∞
t=bn

1

1− τn
P(X > s, Y > t)

ds

sα
dt

tβ

→
∫∫

[1,∞)2
R
(
a−1/γXx−1/γX , b−1/γY y−1/γY

) dx

xα
dy

yβ
.

Proof of Lemma A.1. (i) Pick x, y > 0. Since FX and FY are continuous,

lim
s→∞

sP(X > UX(s/x), Y > UY (s/y)) = R(x, y).

Pick an arbitrary ε ∈ (0, 1). Using the regular variation property of UX and UY , we find

anx

UX((1− ε)(ax)1/γX (1− τn)−1)
→ (1− ε)−γX > 1

and
bny

UY ((1− ε)(by)1/γY (1− τn)−1)
→ (1− ε)−γY > 1,
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as n→∞. By 1-homogeneity of R, this yields

lim sup
n→∞

1

1− τn
P(X > anx, Y > bny) ≤ (1− ε)−1R

(
a−1/γXx−1/γX , b−1/γY y−1/γY

)
.

An analogue lower bound for the limit inferior holds with ε replaced by −ε. Let ε ↓ 0 to
complete the proof.

(ii) A change of variables yields

1

b1−βn

∫ ∞
bn

1

1− τn
P(X > anx, Y > t)

dt

tβ
=

∫ ∞
1

1

1− τn
P(X > anx, Y > bny)

dy

yβ
.

Next, we apply (i) in the present Lemma and we swap limit and integral as follows. From
Potter bounds (see Proposition B.1.9.5 in de Haan and Ferreira, 2006), for any δ > 0, we
have for n large enough

1

1− τn
P(X > anx, Y > bny)

yβ
≤ 1

1− τn
P(Y > bny)

yβ
≤ Dy−1/γY −β+δ

for all y ≥ 1, where D is some unimportant positive constant. Since −1/γY − β < −1, the
right-hand side defines an integrable function on [1,∞) for δ > 0 small enough, and thus the
dominated convergence theorem yields (ii).

(iii) A change of variables yields

1

a1−αn

1

b1−βn

∫ ∞
s=an

∫ ∞
t=bn

1

1− τn
P(X > s, Y > t)

ds

sα
dt

tβ

=

∫∫
[1,∞)2

1

1− τn
P(X > anx, Y > bny)

dx

xα
dy

yβ
.

We apply again (i) in the present Lemma and we swap limit and integral as follows. Remark
that

P(X > anx, Y > bny) ≤
√

P(X > anx)
√

P(Y > bny).

It then follows from Potter bounds again that, for any δ > 0, we have for n large enough

1

1− τn
P(X > anx, Y > bny)

xαyβ
≤ Dx−1/[2γX ]−α+δy−1/[2γY ]−β+δ

for all x, y ≥ 1, where D is some unimportant positive constant. Since −1/[2γX ]− α < −1
and−1/[2γY ]−β < −1, the right-hand side defines an integrable function on [1,∞)2 for δ > 0
small enough, and we conclude once again using the dominated convergence theorem.

Our next auxiliary result is a general weak L1 law of large numbers for triangular arrays.
It is an extension of Theorem 1 p.356 in Chow and Teicher (1997).

Lemma A.2. Let (Zni)1≤i≤n be an infinite double array of random variables. Assume that
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� For any n ≥ 1, the Zni, 1 ≤ i ≤ n, are i.i.d. copies of an integrable random variable Zn;

� One has nP(|Zn| > 1)→ 0 as n→∞;

� One has nE(|Zn|1{|Zn| > 1})→ 0 as n→∞;

� One has nVar(Zn1{|Zn| ≤ 1})→ 0 as n→∞.

Then
∑n

i=1[Zni − E(Zn)]
P−→ 0.

Proof of Lemma A.2. That
∑n

i=1[Zni − E(Zn1{|Zn| ≤ 1})] P−→ 0 is a consequence of Theo-
rem 1 p.356 in Chow and Teicher (1997). Besides

n |E(Zn)− E(Zn1{|Zn| ≤ 1})| ≤ nE(|Zn|1{|Zn| > 1})→ 0 as n→∞,

which, combined with the above convergence in probability, concludes the proof.

Lemma A.3 is key for the calculation of the limiting covariance structure in Theorem 2.1
of the main paper and its estimation. This lemma is written in terms of the derivative ϕτ of
ητ/2, defined by ϕτ (y) = |τ − 1{y ≤ 0}|y.

Lemma A.3. Assume that Condition A is satisfied. Assume further that there is δ > 0 such
that E|min(Xj, 0)|2+δ <∞ and 0 < γj < 1/2 for any 1 ≤ j ≤ d. Let τn ↑ 1 as n→∞.

(i) For any j, ` ∈ {1, . . . , d} with j ≤ `, we have, as n→∞,

Cov (ϕτn(Xj − ξτn,j), ϕτn(X` − ξτn,`))
(1− τn)ξτn,jξτn,`

=
E (ϕτn(Xj − ξτn,j)ϕτn(X` − ξτn,`))

(1− τn)ξτn,jξτn,`

→


2γj

1− 2γj
if j = `,∫∫

[1,∞)2
Rj,`

(
(γ−1j − 1)x

−1/γj
j , (γ−1` − 1)x

−1/γ`
`

)
dxj dx` if j < `.

(ii) Suppose further that n(1 − τn) → ∞ as n → ∞. Then, for any j, ` ∈ {1, . . . , d} with
j ≤ `, we have

1

n

n∑
i=1

ϕτn(Xi,j − ξτn,j)ϕτn(Xi,` − ξτn,`)
(1− τn)ξτn,jξτn,`

P−→


2γj

1− 2γj
if j = `,∫∫

[1,∞)2
Rj,`

(
(γ−1j − 1)x

−1/γj
j , (γ−1` − 1)x

−1/γ`
`

)
dxj dx` if j < `.
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Proof of Lemma A.3. We work in the case j 6= `; the case j = ` is proved in the same way
by noting that (Xj, Xj) is perfectly dependent with (tail) copula Rj,j(s, t) = min(s, t).

We start by showing (i). Since ητ is continuously differentiable with derivative 2ϕτ , we
have E(ϕτn(Xj − ξτn,j)) = 0 for any j ∈ {1, . . . , d}, by definition of ξτn,j. Write then

Cov (ϕτn(Xj − ξτn,j), ϕτn(X` − ξτn,`))
= (1− τn)2E ((Xj − ξτn,j)(X` − ξτn,`)1{Xj ≤ ξτn,j}1{X` ≤ ξτn,`})
+ τn(1− τn)E ((Xj − ξτn,j)(X` − ξτn,`)1{Xj ≤ ξτn,j}1{X` > ξτn,`})
+ τn(1− τn)E ((Xj − ξτn,j)(X` − ξτn,`)1{Xj > ξτn,j}1{X` ≤ ξτn,`})
+ τ 2nE ((Xj − ξτn,j)(X` − ξτn,`)1{Xj > ξτn,j}1{X` > ξτn,`})
= u1,n + u2,n + u3,n + u4,n. (A.2)

We deal with each term separately. Clearly, by the Cauchy-Schwarz inequality and the
square-integrability of the Xj,

|u1,n| ≤ (1− τn)2
√

E ((Xj − ξτn,j)2)
√

E ((X` − ξτn,`)2) = O
(
(1− τn)2ξτn,jξτn,`

)
. (A.3)

Then, by the Cauchy-Schwarz inequality again,

|u2,n| ≤ (1− τn)
√

E ((Xj − ξτn,j)2)
√

E ((X` − ξτn,`)21{X` > ξτn,`})

= O((1− τn)3/2ξτn,jξτn,`) (A.4)

thanks to (A.1) with a = 2 and asymptotic proportionality of expectiles and quantiles.
Similarly

|u3,n| = O((1− τn)3/2ξτn,jξτn,`). (A.5)

We conclude by evaluating the limit of u4,n. By an integration by parts,

u4,n =

∫ ∞
s=ξτn,j

∫ ∞
t=ξτn,`

P(Xj > s, X` > t) ds dt (1 + o(1)).

Combine the asymptotic proportionality of expectiles and quantiles with Lemma A.1(iii) to
get, as n→∞,

1

1− τn
1

ξτn,jξτn,`
u4,n →

∫∫
[1,∞)2

Rj,`

(
(γ−1j − 1)x

−1/γj
j , (γ−1` − 1)x

−1/γ`
`

)
dxj dx`. (A.6)

Combine (A.2), (A.3), (A.4), (A.5) and (A.6) to conclude the proof of (i).

We now move on to the proof of (ii), for which, according to (i), it is enough to show that

1

n

n∑
i=1

ϕτn(Xi,j − ξτn,j)ϕτn(Xi,` − ξτn,`)− E (ϕτn(Xj − ξτn,j)ϕτn(X` − ξτn,`))
(1− τn)ξτn,jξτn,`

P−→ 0. (A.7)
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Similarly to the early stages of the proof of (i), we break ϕτn(Xi,j− ξτn,j)ϕτn(Xi,`− ξτn,`) into

ϕτn(Xi,j − ξτn,j)ϕτn(Xi,` − ξτn,`)
= (1− τn)2(Xi,j − ξτn,j)(Xi,` − ξτn,`)1{Xi,j ≤ ξτn,j}1{Xi,` ≤ ξτn,`}
+ τn(1− τn)(Xi,j − ξτn,j)(Xi,` − ξτn,`)1{Xi,j ≤ ξτn,j}1{Xi,` > ξτn,`}
+ τn(1− τn)(Xi,j − ξτn,j)(Xi,` − ξτn,`)1{Xi,j > ξτn,j}1{Xi,` ≤ ξτn,`}
+ τ 2n(Xi,j − ξτn,j)(Xi,` − ξτn,`)1{Xi,j > ξτn,j}1{Xi,` > ξτn,`}.

Now clearly, using (A.2), (A.3), (A.4), (A.5) and (A.6), we have, as n→∞,

E

(
1

n

n∑
i=1

(1− τn)2(Xi,j − ξτn,j)(Xi,` − ξτn,`)1{Xi,j ≤ ξτn,j}1{Xi,` ≤ ξτn,`}
(1− τn)ξτn,jξτn,`

)
→ 0,

E

(
− 1

n

n∑
i=1

τn(1− τn)(Xi,j − ξτn,j)(Xi,` − ξτn,`)1{Xi,j ≤ ξτn,j}1{Xi,` > ξτn,`}
(1− τn)ξτn,jξτn,`

)
→ 0,

E

(
− 1

n

n∑
i=1

τn(1− τn)(Xi,j − ξτn,j)(Xi,` − ξτn,`)1{Xi,j > ξτn,j}1{Xi,` ≤ ξτn,`}
(1− τn)ξτn,jξτn,`

)
→ 0,

and E

(
1

n

n∑
i=1

(1− τ 2n)(Xi,j − ξτn,j)(Xi,` − ξτn,`)1{Xi,j > ξτn,j}1{Xi,` > ξτn,`}
(1− τn)ξτn,jξτn,`

)
→ 0.

Furthermore, each of the integrands is a sequence of nonnegative random variables, so that
the above convergences ensure that the integrands themselves converge in probability to 0.
Use then the notation Z+ = max(Z, 0) so that to prove (A.7), it is enough to show the
convergence

1

n

n∑
i=1

(Xi,j − ξτn,j)+(Xi,` − ξτn,`)+ − E ((Xj − ξτn,j)+(X` − ξτn,`)+)

(1− τn)ξτn,jξτn,`

P−→ 0.

For this the key argument is Lemma A.2 applied to the random variables

Zni =
1

n

(Xi,j − ξτn,j)+(Xi,` − ξτn,`)+
(1− τn)ξτn,jξτn,`

(1 ≤ i ≤ n).

We check each of the assumptions of this Lemma. Clearly, for each n, the Zni, 1 ≤ i ≤ n
are independent copies of the random variable

Zn =
1

n

(Xj − ξτn,j)+(X` − ξτn,`)+
(1− τn)ξτn,jξτn,`

.

The variable Zn is integrable, by the Cauchy-Schwarz inequality. Note next that

{|Zn| > 1} ⊂

{
(Xj − ξτn,j)+
ξτn,j

√
n(1− τn)

> 1

}
∪

{
(X` − ξτn,`)+
ξτn,`

√
n(1− τn)

> 1

}
. (A.8)
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As a consequence of (A.8),

nP(|Zn| > 1) ≤ nF j

(
ξτn,j(1 +

√
n(1− τn))

)
+ nF `

(
ξτn,`(1 +

√
n(1− τn))

)
.

Let now ε > 0 be such that (1 + ε)2γj < 1, for any j ∈ {1, . . . , d}. By Potter bounds (see
Proposition B.1.9.5 in de Haan and Ferreira, 2006) and asymptotic proportionality of expec-
tiles and quantiles, we obtain that

nP(|Zn| > 1) = O
(
[n(1− τn)]1−1/2γj+ε + [n(1− τn)]1−1/2γ`+ε

)
→ 0 as n→∞. (A.9)

Next, we find, by combining (A.8) with the Cauchy-Schwarz inequality,

nE(|Zn|1{|Zn| > 1})

≤ 1

(1− τn)ξτn,jξτn,`

√
E((Xj − ξτn,j)2+1{Xj > ξτn,j(1 +

√
n(1− τn))})

√
E((X` − ξτn,`)2+)

+
1

(1− τn)ξτn,jξτn,`

√
E((X` − ξτn,`)2+1{X` > ξτn,`(1 +

√
n(1− τn))})

√
E((Xj − ξτn,j)2+).

Apply first convergence (A.1) with a = 2 to get, for n large enough,

nE(|Zn|1{|Zn| > 1})

= O

(
1

ξτn,j
√

1− τn

√
E((Xj − ξτn,j)2+1{Xj > ξτn,j(1 +

√
n(1− τn))})

+
1

ξτn,`
√

1− τn

√
E((X` − ξτn,`)2+1{X` > ξτn,`(1 +

√
n(1− τn))})

)
.

We use now the identity

E((Z − t)21{Z > t+ s})
= E((Z − t− s)21{Z > t+ s}) + 2sE((Z − t− s)1{Z > t+ s}) + s2P(Z > t+ s)

valid for any square-integrable random variable Z and any s, t > 0, along with conver-
gence (A.1) for a ∈ {1, 2}, to find, for any j ∈ {1, . . . , d},

E((Xj − ξτn,j)2+1{Xj > ξτn,j(1 +
√
n(1− τn))})

(1− τn)ξ2τn,j
= O

(
nF j

(
ξτn,j(1 +

√
n(1− τn))

))
.

This is part of the upper bound we obtained for the control of nP(|Zn| > 1), and therefore

E((Xj − ξτn,j)2+1{Xj > ξτn,j(1 +
√
n(1− τn))})

(1− τn)ξ2τn,j
= O

(
[n(1− τn)]1−1/2γj+ε

)
. (A.10)

Conclude that, as n→∞,

nE(|Zn|1{|Zn| > 1}) = O
(
[n(1− τn)]1−1/2γj+ε + [n(1− τn)]1−1/2γ`+ε

)
→ 0. (A.11)
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We finish the proof by controlling nVar(Zn1{|Zn| ≤ 1}) which, since Var(Zn1{|Zn| ≤ 1}) ≤
E(Z2

n1{|Zn| ≤ 1}), can be bounded from above as

nVar(Zn1{|Zn| ≤ 1})

≤
E((Xj − ξτn,j)2+(X` − ξτn,`)2+1{Xj ≤ ξτn,j(1 +

√
n(1− τn)), X` > ξτn,`(1 +

√
n(1− τn))})

n(1− τn)2ξ2τn,jξ
2
τn,`

+
E((Xj − ξτn,j)2+(X` − ξτn,`)2+1{Xj > ξτn,j(1 +

√
n(1− τn)), X` ≤ ξτn,`(1 +

√
n(1− τn))})

n(1− τn)2ξ2τn,jξ
2
τn,`

+
E((Xj − ξτn,j)2+(X` − ξτn,`)2+1{Xj ≤ ξτn,j(1 +

√
n(1− τn)), X` ≤ ξτn,`(1 +

√
n(1− τn))})

n(1− τn)2ξ2τn,jξ
2
τn,`

= v1,n + v2,n + v3,n.

We control each of these three terms separately. We first note that clearly

v1,n ≤
E((X` − ξτn,`)2+1{X` > ξτn,`(1 +

√
n(1− τn))})

(1− τn)ξ2τn,`

and thus v1,n → 0 as n → ∞ by (A.10). Similarly v2,n → 0 as n → ∞. To control v3,n, we
use again the Cauchy-Schwarz inequality to find

v3,n ≤
1√

n(1− τn)

√
E((Xj − ξτn,j)4+1{Xj ≤ ξτn,j(1 +

√
n(1− τn))})

(1− τn)ξ4τn,j

× 1√
n(1− τn)

√
E((X` − ξτn,`)4+1{X` ≤ ξτn,`(1 +

√
n(1− τn))})

(1− τn)ξ4τn,`
.

The key now is to notice that for any heavy-tailed random variable Z with tail index γ and
any ε > 0,

E((Z − t)41{Z > t, Z ≤ t+ s}) = 4t4
∫ 1+s/t

1

(v − 1)3P(Z > tv, Z ≤ t+ s) dv

≤ Dt4
∫ 1+s/t

1

v3P(Z > tv) dv

≤ Dt4P(Z > t)

∫ 1+s/t

1

v3−1/γ+ε dv (by Potter bounds)

= Dt4P(Z > t)× (1 + s/t)4−1/γ+ε − 1

4− 1/γ + ε

for t large enough, whatever s > 0 is (here D is an unimportant positive constant). This
implies, by asymptotic proportionality of expectiles and quantiles and taking into account
that γj < 1/2,√

E((Xj − ξτn,j)4+1{Xj ≤ ξτn,j(1 +
√
n(1− τn))})

(1− τn)ξ4τn,j
= o

(√
n(1− τn)

)
.
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Conclude from the above inequality on v3,n that v3,n → 0 as n→∞. It follows that

nVar(Zn1{|Zn| ≤ 1}) ≤ v1,n + v2,n + v3,n → 0 as n→∞. (A.12)

Combine finally (A.9), (A.11), (A.12) with Lemma A.2 to obtain (ii) and conclude the
proof.

Proof of Theorem 2.1. Note first that for any j ∈ {1, . . . , d}, the minimisation criterion

defining ξ̃τn,j can be equivalently rewritten as

√
n(1− τn)

(
ξ̃τn,j
ξτn,j

− 1

)
= arg min

u∈R
ψ(j)
n (u)

with ψ(j)
n (u) =

1

2ξ2τn,j

n∑
i=1

[
ητn

(
Xi,j − ξτn,j −

u ξτn,j√
n(1− τn)

)
− ητn(Xi,j − ξτn,j)

]
.

By (B.12) in the proof of Theorem 2 in Daouia et al. (2018), we obtain

ψ(j)
n (u) = −uT (j)

1,n + T
(j)
2,n(u)

with T
(j)
1,n =

1√
n(1− τn)

n∑
i=1

1

ξτn,j
ϕτn(Xi,j − ξτn,j)

and T
(j)
2,n(u) = − 1

ξ2τn,j

n∑
i=1

∫ uξτn,j/
√
n(1−τn)

0

(ϕτn(Xi,j − ξτn,j − z)− ϕτn(Xi,j − ξτn,j)) dz.

It follows that

√
n(1− τn)

(
ξ̃τn,j
ξτn,j

− 1

)
1≤j≤d

= arg min
u∈Rd

{
−

d∑
j=1

ujT
(j)
1,n +

d∑
j=1

T
(j)
2,n(uj)

}
.

We concentrate on the asymptotic behaviour of the first sum in the right-hand side above.
Write

d∑
j=1

ujT
(j)
1,n =

n∑
i=1

1√
n(1− τn)

d∑
j=1

uj
ξτn,j

ϕτn(Xi,j − ξτn,j) =
n∑
i=1

Sn,i.

The random variables Sn,i (1 ≤ i ≤ n) thus defined are i.i.d. and have expectation 0. We
shall then use Lyapunov’s criterion, for which it is sufficient to show that for some δ > 0,

nE|Sn,1|2+δ

[nVar(Sn,1)]1+δ/2
→ 0 as n→∞.

Choose δ > 0 so small that γj < 1/(2 + δ) and E|min(Xj, 0)|2+δ <∞ for any j. It is a direct
consequence of the Hölder inequality and Lemma 4 in Daouia et al. (2018) that

nE|Sn,1|2+δ = O
(
[n(1− τn)]−δ/2

)
→ 0 as n→∞.

9



Besides, by Lemma A.3(i),

nVar(Sn,1) =
1

1− τn

d∑
j=1

u2j
1

ξ2τn,j
Var (ϕτn(Xj − ξτn,j))

+
1

1− τn

∑
1≤j<`≤d

2uju`
1

ξτn,jξτn,`
Cov (ϕτn(Xj − ξτn,j), ϕτn(X` − ξτn,`))

→ Var

(
d∑
j=1

uj
Zj
γj

)

as n→∞, where (Z1, . . . , Zd) is a centred Gaussian random vector with covariance matrix
V LAWS(γ,R). If the above limit is 0, then(

E

(
d∑
j=1

ujT
(j)
1,n

)
= 0 and lim

n→∞
Var

(
d∑
j=1

ujT
(j)
1,n

)
= 0

)
⇒

d∑
j=1

ujT
(j)
1,n

P−→ 0 =
d∑
j=1

uj
Zj
γj
.

Otherwise, Lyapunov’s criterion is satisfied, and this entails

d∑
j=1

ujT
(j)
1,n

d−→
d∑
j=1

uj
Zj
γj
.

In other words, (T
(1)
1,n , . . . , T

(d)
1,n)

d−→ (Z1/γ1, . . . , Zd/γd). We can now repeat the second part
of the proof of Theorem 2 in Daouia et al. (2018) to find

ψn(u) =
d∑
j=1

ψ(j)
n (uj) = −

d∑
j=1

ujT
(j)
1,n +

d∑
j=1

T
(j)
2,n(uj)

d−→ −
d∑
j=1

uj
Zj
γj

+
d∑
j=1

u2j
2γj

= ψ∞(u)

in the sense of finite-dimensional convergence in distribution (i.e. (ψn(u1), . . . , ψn(up))
d−→

(ψ∞(u1), . . . , ψ∞(up)) for all choices of p and u1, . . . ,up). Conclude by applying Theorem 5
in Knight (1999) to the convex and continuous random function u 7→ ψn(u):

√
n(1− τn)

(
ξ̃τn,j
ξτn,j

− 1

)
1≤j≤d

d−→ arg min
u∈Rd

{
−

d∑
j=1

uj
Zj
γj

+
d∑
j=1

u2j
2γj

}
= (Z1, . . . , Zd).

This completes the proof.

Proof of Theorem 2.2. Let k = bn(1 − τn)c and set Qτn,j = Uj(n/k) = q1−bn(1−τn)c/n,j. The
quantities Qτn,j and qτn,j are not necessarily equal, but they are asymptotically equivalent,
and in fact √

n(1− τn)

(
Qτn,j

qτn,j
− 1

)
= o(1)
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by condition
√
n(1− τn)Aj((1 − τn)−1) → λj ∈ R and local uniformity of Condition A(i)

(see Theorem 2.3.9 in de Haan and Ferreira (2006)). The key idea is then to apply both
Corollary 1 and Lemma 1 in Stupfler (2019), to obtain, for any j ∈ {1, . . . , d},

γ̂τn,j − γj =

∑n
i=1[logXi,j − logQτn,j]1{Xi,j > Qτn,j}∑n

i=1 1{Xi,j > Qτn,j}
− γj + oP

(
1√

n(1− τn)

)

and
q̂τn,j
qτn,j

− 1 = γj

(
1

bn(1− τn)c

n∑
i=1

1{Xi,j > Qτn,j} − 1

)
+ oP

(
1√

n(1− τn)

)
.

[The above asymptotic connection between Qτn,j and qτn,j is used for the second equality.]
By Lemma 3 in Stupfler (2019) with f = log, we find

E([logXj − logQτn,j]1{Xj > Qτn,j})
P(Xj > Qτn,j)

= γj +
1√

n(1− τn)

λj
1− ρj

+ o

(
1√

n(1− τn)

)
.

Besides, by Lemma 4 in Stupfler (2019) with f = log, we obtain

n−1
∑n

i=1[logXi,j − logQτn,j]1{Xi,j > Qτn,j}
E([logXj − logQτn,j]1{Xj > Qτn,j})

= 1 + OP

(
1√

n(1− τn)

)

and
n−1

∑n
i=1 1{Xi,j > Qτn,j}
P(Xj > Qτn,j)

= 1 + OP

(
1√

n(1− τn)

)
.

These three expansions along with the identity P(Xj > Qτn,j) = bn(1− τn)c/n result in

γ̂τn,j − γj = γj

(
n−1

∑n
i=1[logXi,j − logQτn,j]1{Xi,j > Qτn,j}

E([logXj − logQτn,j]1{Xj > Qτn,j})
− 1

)

− γj
(
n−1

∑n
i=1 1{Xi,j > Qτn,j}
P(Xj > Qτn,j)

− 1

)
+

1√
n(1− τn)

λj
1− ρj

+ oP

(
1√

n(1− τn)

)
,

q̂τn,j
qτn,j

− 1 = γj

(
n−1

∑n
i=1 1{Xi,j > Qτn,j}
P(Xj > Qτn,j)

− 1

)
+ oP

(
1√

n(1− τn)

)
.

Each of the quantities of interest can therefore be asymptotically viewed as a sum of inde-
pendent and identically distributed random variables. To obtain the desired result on their
joint convergence, we use Lyapunov’s CLT combined with the Cramér-Wold device. Let
a1, b1, . . . , ad, bd be real constants and consider

√
n(1− τn)

d∑
j=1

[
aj(γ̂τn,j − γj) + bj

(
q̂τn,j
qτn,j

− 1

)]
=

d∑
j=1

aj
λj

1− ρj
+

n∑
i=1

Sn,i + oP(1)
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with

Sn,i =
d∑
j=1

ajγj

√
n(1− τn)

n

(
[logXi,j − logQτn,j]1{Xi,j > Qτn,j}
E([logXj − logQτn,j]1{Xj > Qτn,j})

− 1

)

+
d∑
j=1

(bj − aj)γj
√
n(1− τn)

n

(
1{Xi,j > Qτn,j}
P(Xj > Qτn,j)

− 1

)
.

The Sn,i, 1 ≤ i ≤ n, are independent, identically distributed and centred random variables.
By Lemma 4 in Stupfler (2019) with f = log combined with Hölder’s inequality, there is
δ > 0 such that nE|Sn,i|2+δ = o(1). To complete the proof, it is enough to show that

lim
n→∞

nVar(Sn,1) = (a1 b1 · · · ad bd)ΣQ(γ,R)(a1 b1 · · · ad bd)>.

This last convergence is a straightforward consequence of Lemmas 4 and 6 in Stupfler (2019)
combined with the identity∫ 1

0

∫ 1

0

Rj,`(u, v)

uv
du dv =

∫ 1

0

Rj,`(u, 1)

u
du+

∫ 1

0

Rj,`(1, v)

v
dv

(true because of the 1-homogeneity of Rj,`) and direct but tedious calculations which we
omit for the sake of brevity.

Proof of Corollary 2.3. Clearly

ξ̂τn,j
ξτn,j

=
(γ̂−1τn,j − 1)−γ̂τn,j

(γ−1j − 1)−γj
× q̂τn,j
qτn,j

×
qτn,j(γ

−1
j − 1)−γj

ξτn,j
.

All three terms on the right-hand side converge to 1 as n → ∞, at the rate 1/
√
n(1− τn),

by Theorem 2.2 and Proposition 1(i) in Daouia et al. (2020). Linearising thus yields

ξ̂τn,j
ξτn,j

− 1 =

(
(γ̂−1τn,j − 1)−γ̂τn,j

(γ−1j − 1)−γj
− 1

)
+

(
q̂τn,j
qτn,j

− 1

)

+

(
qτn,j(γ

−1
j − 1)−γj

ξτn,j
− 1

)
+ oP

(
1√

n(1− τn)

)
. (A.13)

The delta-method and a straightforward calculation entail

(γ̂−1τn,j − 1)−γ̂τn,j

(γ−1j − 1)−γj
− 1 = m(γj)(γ̂τn,j − γj) + oP

(
1√

n(1− τn)

)
. (A.14)
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Besides, using Proposition 1(i) in Daouia et al. (2020) together with
√
n(1− τn)q−1τn,j → µj

and
√
n(1− τn)Aj((1− τn)−1)→ λj (as n→∞), we get

√
n(1− τn)

(
qτn,j(γ

−1
j − 1)−γj

ξτn,j
− 1

)

= −γj(γ−1j − 1)γjE(Xj)µj −

(
(γ−1j − 1)−ρj

1− γj − ρj
+

(γ−1j − 1)−ρj − 1

ρj

)
λj + o(1). (A.15)

Combining (A.13), (A.14) and (A.15) with Theorem 2.2 of the main paper completes the
proof.

Proof of Theorem 2.4. The idea is to write, for any j,

log

(
ξ
?

τ ′n,j

ξτ ′n,j

)
= (γ̂τn,j − γj) log

(
1− τn
1− τ ′n

)
+ log

(
ξτn,j
ξτn,j

)
− log

([
1− τ ′n
1− τn

]γj ξτ ′n,j
ξτn,j

)

where ξ
?

τ ′n,j
(resp. ξτn,j) can be either ξ̃?τ ′n,j (resp. ξ̃τn,j) or ξ̂?τ ′n,j (resp. ξ̂τn,j). Then (see e.g.

the proof of Theorem 5 in Daouia et al., 2020)

log

(
ξ
?

τ ′n,j

ξτ ′n,j

)
= (γ̂τn,j − γj) log

(
1− τn
1− τ ′n

)
+ log

(
ξτn,j
ξτn,j

)
+ O

(
1√

n(1− τn)

)
.

To show (i) (resp. (ii)), apply now Theorem 2.1 (resp. Corollary 2.3) of the main paper to
find

log

(
ξ
?

τ ′n,j

ξτ ′n,j

)
= (γ̂τn,j − γj) log

(
1− τn
1− τ ′n

)
+ OP

(
1√

n(1− τn)

)
.

The conclusion follows from applying Theorem 2.2 of the main paper.

Proposition A.4 is key to showing that the LAWS-based confidence region Eτn,α for an
intermediate expectile ξτn has asymptotic coverage probability 1− α.

Proposition A.4. Under the conditions of Theorem 2.1, we have

V̂ LAWS
n (γ,R)

P−→ V LAWS(γ,R).

Proof of Proposition A.4. Write

F̂ n,j(ξ̃τn,j)

1− τn
=
F̂ n,j(ξ̃τn,j)

F̂ n,j(ξτn,j)
× F̂ n,j(ξτn,j)

F j(ξτn,j)
× F j(ξτn,j)

1− τn
.

Clearly F̂ n,j(ξτn,j)/F j(ξτn,j) has expectation 1 and a variance which is a O(1/[n(1− τn)]), by
straightforward calculations and the asymptotic proportionality of quantiles and expectiles.
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Thus F̂ n,j(ξτn,j)/F j(ξτn,j)
P−→ 1. Using the asymptotic proportionality of quantiles and

expectiles again, we find

F̂ n,j(ξ̃τn,j)

1− τn
=
F̂ n,j(ξ̃τn,j)

F̂ n,j(ξτn,j)
(γ−1j − 1 + oP(1)). (A.16)

Denote by ε̃n,j = ξ̃τn,j/ξτn,j − 1. By Theorem 2.1, ε̃n,j
P−→ 0, and∣∣∣∣∣ F̂ n,j(ξ̃τn,j)

F̂ n,j(ξτn,j)
− 1

∣∣∣∣∣ = OP

(
|F̂ n,j(ξτn,j(1 + ε̃n,j))− F̂ n,j(ξτn,j)|

F j(ξτn,j)

)
. (A.17)

A straightforward calculation shows

|F̂ n,j(ξτn,j(1 + ε̃n,j))− F̂ n,j(ξτn,j)|
F j(ξτn,j)

≤ 1

nF j(ξτn,j)

n∑
i=1

1{Xi,j ∈ [ξτn,j(1−|ε̃n,j|), ξτn,j(1+|ε̃n,j|)]}.

This entails, for any ε > 0, that with arbitrarily large probability as n→∞,

|F̂ n,j(ξτn,j(1 + ε̃n,j))− F̂ n,j(ξτn,j)|
F j(ξτn,j)

≤ 1

nF j(ξτn,j)

n∑
i=1

1{Xi,j ∈ [ξτn,j(1− ε), ξτn,j(1 + ε)]}.

The expectation of the random upper bound is

F j(ξτn,j(1− ε))− F j(ξτn,j(1 + ε))

F j(ξτn,j)
→ (1− ε)−1/γj − (1 + ε)−1/γj as n→∞,

and its variance is bounded above by

F j(ξτn,j(1− ε))− F j(ξτn,j(1 + ε))

nF
2

j(ξτn,j)
= O

(
1

nF j(ξτn,j)

)
= O

(
1

n(1− τn)

)
→ 0.

Conclude that, for any ε > 0 and with arbitrarily large probability as n→∞,

|F̂ n,j(ξτn,j(1 + ε̃n,j))− F̂ n,j(ξτn,j)|
F j(ξτn,j)

≤ 2[(1− ε)−1/γj − (1 + ε)−1/γj ].

Since the upper bound is arbitrarily small as ε ↓ 0, we find that the left-hand side in (A.17)

converges in probability to 0. Note that for any j, γ̂τn,j
P−→ γj (see e.g. Theorem 3.2.2 p.70

of de Haan and Ferreira, 2006); combine this with (A.16) and (A.17) to get, for any j,

V̂ LAWS
n,j,j (γ,R)

P−→ V LAWS
j,j (γ,R).
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We now concentrate on the convergence of V̂ LAWS
n,j,` (γ,R), for j < `, for which it is enough

to focus on the mn,j,` term. We start by noting that, by Theorem 2.1 of the main paper,

mn,j,`

(1− τn)ξ̃τn,j ξ̃τn,`
=

mn,j,`

(1− τn)ξτn,jξτn,`
(1 + oP(1)).

Recall now Lemma 3 in Daouia et al. (2018), which implies that for any x, h ∈ R and any
τ ∈ (0, 1),

|ϕτ (x− h)− ϕτ (x)| ≤ |h|(1− τ + 21{x > min(h, 0)}) ≤ 3|h|.

Straightforward calculations then yield∣∣∣ϕτn(Xi,j − ξ̃τn,j)ϕτn(Xi,` − ξ̃τn,`)− ϕτn(Xi,j − ξτn,j)ϕτn(Xi,` − ξτn,`)
∣∣∣

≤ 3
∣∣∣ξ̃τn,j − ξτn,j∣∣∣ ∣∣∣ϕτn(Xi,` − ξ̃τn,`)

∣∣∣+ 3
∣∣∣ξ̃τn,` − ξτn,`∣∣∣ |ϕτn(Xi,j − ξτn,j)|

≤ 3
∣∣∣ξ̃τn,j − ξτn,j∣∣∣ |ϕτn(Xi,` − ξτn,`)|+ 3

∣∣∣ξ̃τn,` − ξτn,`∣∣∣ |ϕτn(Xi,j − ξτn,j)|

+ 3
∣∣∣ξ̃τn,j − ξτn,j∣∣∣ ∣∣∣ξ̃τn,` − ξτn,`∣∣∣ (1− τn + 21{Xi,` − ξτn,` > min(ξ̃τn,` − ξτn,`, 0)}).

Set mn,j,` = n−1
∑n

i=1 ϕτn(Xi,j− ξτn,j)ϕτn(Xi,`− ξτn,`) and combine the above inequality with
Theorem 2.1 to get

|mn,j,` −mn,j,`|
(1− τn)ξτn,jξτn,`

= oP

(
1

n

n∑
i=1

|ϕτn(Xi,` − ξτn,`)|
(1− τn)ξτn,`

+
1

n

n∑
i=1

|ϕτn(Xi,j − ξτn,j)|
(1− τn)ξτn,j

)

+ oP

(
1 +

1

n(1− τn)

n∑
i=1

1{Xi,` − ξτn,` > min(ξ̃τn,` − ξτn,`, 0)}

)
. (A.18)

We control each term on the right-hand side of (A.18). Note first that for any x ∈ R and
τ ∈ (0, 1),

|ϕτ (x)|
1− τ

≤ |x|
(

1 +
1{x > 0}

1− τ

)
.

Hence the bound

1

n

n∑
i=1

|ϕτn(Xi,j − ξτn,j)|
(1− τn)ξτn,j

≤ 1

n

n∑
i=1

∣∣∣∣Xi,j

ξτn,j
− 1

∣∣∣∣ (1 +
1{Xi,j > ξτn,j}

1− τn

)
.

The upper bound has expectation

E
(∣∣∣∣ Xj

ξτn,j
− 1

∣∣∣∣ (1 +
1{Xj > ξτn,j}

1− τn

))
= 1 +

γj
1− γj

F j(ξτn,j)

1− τn
+ o(1)→ 2 <∞
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by the dominated convergence theorem, asymptotic proportionality of quantiles and expec-
tiles, and (A.1) with a = 1. Meanwhile

Var

(
1

n

n∑
i=1

∣∣∣∣Xi,j

ξτn,j
− 1

∣∣∣∣ [1 +
1{Xi,j > ξτn,j}

1− τn

])

≤ 1

n
E

(∣∣∣∣ Xj

ξτn,j
− 1

∣∣∣∣2(1 +
1{Xj > ξτn,j}

1− τn

)2
)

= O

(
1

n
E

(∣∣∣∣ Xj

ξτn,j
− 1

∣∣∣∣2
)

+
1

n(1− τn)
E

(∣∣∣∣ Xj

ξτn,j
− 1

∣∣∣∣2 1{Xj > ξτn,j}
1− τn

))

= O

(
1

n(1− τn)

)
= o(1)

by the dominated convergence theorem, asymptotic proportionality of quantiles and expec-
tiles, and convergence (A.1) for a = 2. Conclude that for any j ∈ {1, . . . , d},

1

n

n∑
i=1

|ϕτn(Xi,j − ξτn,j)|
(1− τn)ξτn,j

= OP(1). (A.19)

To control the second term in (A.18), recall that ξ̃τn,`/ξτn,`
P−→ 1 by Theorem 2.1. In

particular ξ̃τn,` > ξτn,`/2 with arbitrarily large probability, and thus

1

n(1− τn)

n∑
i=1

1{Xi,` − ξτn,` > min(ξ̃τn,` − ξτn,`, 0)} ≤ 1

n(1− τn)

n∑
i=1

1{Xi,` > ξτn,`/2}

with arbitrarily large probability. By asymptotic proportionality of expectiles and quantiles,
the upper bound has expectation F `(ξτn,`/2)/(1− τn)→ 21/γ`(γ−1` − 1) <∞ as n→∞, and

Var

(
1

n(1− τn)

n∑
i=1

1{Xi,` > ξτn,`/2}

)
=
F`(ξτn,`/2)F `(ξτn,`/2)

n(1− τn)2
= O

(
1

n(1− τn)

)
= o(1).

It follows that

1

n(1− τn)

n∑
i=1

1{Xi,` − ξτn,` > min(ξ̃τn,` − ξτn,`, 0)} = OP(1). (A.20)

Combining (A.18), (A.19) and (A.20), we find

|mn,j,` −mn,j,`|
(1− τn)ξτn,jξτn,`

P−→ 0.

We conclude the proof by noting that

mn,j,`

(1− τn)ξτn,jξτn,`

P−→
∫∫

[1,∞)2
Rj,`

(
(γ−1j − 1)x

−1/γj
j , (γ−1` − 1)x

−1/γ`
`

)
dxj dx`
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as a consequence of Lemma A.3(ii). The proof of the convergence of V̂ LAWS
n,j,` (γ,R) is now

complete since γ̂τn,j
P−→ γj for any j.

Proof of Proposition 3.1. Rewrite the conclusion of Theorem 2.1 as√
n(1− τn)[V LAWS(γ,R)]−1/2

(
ξτn

ξ̃τn
− 1d

)
d−→ Nd(0d, Id).

Use then Proposition A.4 to obtain the consistency of V̂ LAWS
n (γ,R), apply Slutsky’s lemma,

and take the d−dimensional Euclidean norm on both sides (which is allowed by the contin-
uous mapping theorem).

Proof of Proposition 3.2. The diagonal elements of the matrix V̂ QB
n (γ,R) are obviously

consistent estimators of the corresponding diagonal elements of V QB(γ,R). The consis-
tency of its off-diagonal elements can be shown as follows. By a straightforward modifi-
cation of Lemma 7 in Stupfler (2019), R̂τn,j,`(u, v) is a pointwise consistent estimator of

Rj,`(u, v) on (0,∞)2. It is then sufficient to show the consistency of
∫ 1

0
R̂τn,j,`(u, 1)du/u and∫ 1

0
R̂τn,j,`(1, u)du/u as estimators of

∫ 1

0
Rj,`(u, 1)du/u and

∫ 1

0
Rj,`(1, u)du/u. We only treat

the example of
∫ 1

0
R̂τn,j,`(u, 1)du/u, the other being similar. For any ε > 0,∣∣∣∣∫ 1

0

R̂τn,j,`(u, 1)
du

u
−
∫ 1

0

Rj,`(u, 1)
du

u

∣∣∣∣ ≤ ∫ 1

ε/4

∣∣∣R̂τn,j,`(u, 1)−Rj,`(u, 1)
∣∣∣ du

u

+

∫ ε/4

0

(
R̂τn,j,`(u, 1) +Rj,`(u, 1)

) du

u
.

Now Rj,`(u, 1) ≤ u for any u ∈ [0, 1], so∫ ε/4

0

Rj,`(u, 1)
du

u
≤ ε

4
.

Set k = k(n) = n(1− τn), so that k →∞. It is readily checked that R̂τn,j,`(u, 1) = 0 for any
u ≤ 1/(2k) as soon as n ≥ 2, and thus, for n large enough,∫ ε/4

0

R̂τn,j,`(u, 1)
du

u
=

∫ ε/4

1/(2k)

R̂τn,j,`(u, 1)
du

u
.

It is also readily checked that, for n large enough, R̂τn,j,`(u, 1) ≤ dkue/k for any u ∈ [0, 1]
with probability 1. Therefore∫ ε/4

0

R̂τn,j,`(u, 1)
du

u
≤ 1

k

∫ 1/k

1/(2k)

du

u
+

1

k

∫ ε/4

1/k

dkuedu
u
≤ log 2

k
+ 2

∫ ε/4

1/k

du ≤ 5ε

8

for n large enough. Conclude that for n large enough,∣∣∣∣∫ 1

0

R̂τn,j,`(u, 1)
du

u
−
∫ 1

0

Rj,`(u, 1)
du

u

∣∣∣∣ ≤ 7ε

8
+

4

ε

∫ 1

ε/4

∣∣∣R̂τn,j,`(u, 1)−Rj,`(u, 1)
∣∣∣ du. (A.21)
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Construct a finite regular grid of points up (1 ≤ p ≤ P ) in [ε/4, 1] such that u1 = ε/4, uP = 1,
and |up+1 − up| ≤ h for any 1 ≤ p ≤ P − 1 (where h will be chosen later). Pick an arbitrary

u ∈ [ε/4, 1] and let uq ≤ u ≤ uq+1 be its closest grid points. By monotonicity of R̂τn,j,`

and Rj,` and 1-Lipschitz continuity of Rj,` (see Theorem 1(iii) in Schmidt and Stadtmüller
(2006)), one finds∣∣∣R̂τn,j,`(u, 1)−Rj,`(u, 1)

∣∣∣
≤ max

(
R̂τn,j,`(uq+1, 1)−Rj,`(uq+1, 1), Rj,`(uq, 1)− R̂τn,j,`(uq, 1)

)
+ h

≤ h+ max
1≤p≤P

∣∣∣R̂τn,j,`(up, 1)−Rj,`(up, 1)
∣∣∣ .

Conclude, by consistency of R̂τn,j,`(u, 1) at the (finite) set of grid points (up), that whatever
h > 0 is, ∫ 1

ε/4

∣∣∣R̂τn,j,`(u, 1)−Rj,`(u, 1)
∣∣∣ du ≤ 2h (A.22)

with arbitrarily high probability as n → ∞. Choosing h = ε2/64 and combining (A.21)

and (A.22) yields the consistency of
∫ 1

0
R̂τn,j,`(u, 1)du/u. Combine then Corollary 2.3 and

Slutsky’s lemma.

Proof of Theorem 3.3. We examine the joint convergence of the γ̂τn,j and ξ̃τn,j by putting
them in a common (artificial) minimisation framework:

√
n(1− τn)

(
γ̂τn,j − γj,

ξ̃τn,j
ξτn,j

− 1

)
1≤j≤d

= arg min
(u,v)∈Rd×Rd

{
d∑
j=1

1

2

(
uj −

√
n(1− τn)(γ̂τn,j − γj)

)2
+ ψ(j)

n (vj)

}

= arg min
(u,v)∈Rd×Rd

{
d∑
j=1

−uj
√
n(1− τn)(γ̂τn,j − γj) +

u2j
2
− vjT (j)

1,n + T
(j)
2,n(vj)

}

with the notation of the proof of Theorem 2.1. The above random cost function is obvi-
ously convex and continuous, and we analyse its convergence. It was shown in the proof of
Theorem 2.2 (using the notation therein) that√

n(1− τn)(γ̂τn,j − γj)

= γj ×
√
n(1− τn)

(
n−1

∑n
i=1[logXi,j − logQτn,j]1{Xi,j > Qτn,j}

E([logXj − logQτn,j]1{Xj > Qτn,j})
− 1

)
− γj ×

√
n(1− τn)

(
n−1

∑n
i=1 1{Xi,j > Qτn,j}
P(Xj > Qτn,j)

− 1

)
+

λj
1− ρj

+ oP(1)
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and that the two random sums on the right-hand side above satisfy Lyapunov’s CLT. Besides,
as shown in the proof of Theorem 2.1,

−
d∑
j=1

vjT
(j)
1,n +

d∑
j=1

T
(j)
2,n(vj) = −

d∑
j=1

1√
n(1− τn)

n∑
i=1

vj
ξτn,j

ϕτn(Xi,j − ξτn,j) +
d∑
j=1

v2j
2γj

+ oP(1)

with the random sum on the right-hand side satisfying again Lyapunov’s CLT. To show the
desired result, by Theorem 5 in Knight (1999), it is enough to show that(√

n(1− τn)(γ̂τn,j − γj)
γj

, T
(j)
1,n

)
1≤j≤d

d−→
(
Wj

γj
,
Zj
γj

)
1≤j≤d

where the vector (Wj, Zj)1≤j≤d has covariance matrix ΣLAWS. Since each of the elements of
this vector can be represented as a linear combination of sums of independent and identically
distributed random variables having expectation 0 that satisfy Lyapunov’s CLT, we only
need to evaluate the asymptotic covariance structure of these sums. Taking into account the
part of the asymptotic covariance structure already calculated in Theorem 2.1 (between the√
n(1− τn)(γ̂τn,j−γj)) and Theorem 2.2 (between the T

(j)
1,n) of the main paper, and recalling

that ϕτn(X` − ξτn,`) has expectation 0, it is sufficient to show that for any j, ` ∈ {1, . . . , d}
with j ≤ `,

E (1{Xj > Qτn,j}ϕτn(X` − ξτn,`))
P(Xj > Qτn,j)ξτn,`

→
∫ ∞
1

Rj,`

(
1, (γ−1` − 1)x

−1/γ`
`

)
dx`

and
E ([logXj − logQτn,j]1{Xj > Qτn,j}ϕτn(X` − ξτn,`))

E([logXj − logQτn,j]1{Xj > Qτn,j})ξτn,`

→ 1

γj

∫∫
[1,∞)2

Rj,`

(
x
−1/γj
j , (γ−1` − 1)x

−1/γ`
`

) dxj
xj

dx`

as n→∞, where Rj,`(s, t) = min(s, t) if j = ` (recall that (Xj, Xj) is a perfectly dependent
pair) and Rj,`(s, t) otherwise. To show these two convergences we first recall that

ϕτn(X` − ξτn,`) = (1− τn)(X` − ξτn,`)1{X` ≤ ξτn,`}+ τn(X` − ξτn,`)1{X` > ξτn,`}.

Consequently

E (1{Xj > Qτn,j}ϕτn(X` − ξτn,`)) = (1− τn)E ((X` − ξτn,`)1{Xj > Qτn,j, X` ≤ ξτn,`})
+ τnE ((X` − ξτn,`)1{Xj > Qτn,j, X` > ξτn,`}) .

Recalling that P(Xj > Qτn,j) = (1− τn)(1 + o(1)), and using the Cauchy-Schwarz inequality,
the first term on the right-hand side is bounded by

(1− τn)
√

P(Xj > Qτn,j)
√

E((X` − ξτn,`)2) = O((1− τn)3/2ξτn,`).

19



Then, by an integration by parts,

E (1{Xj > Qτn,j}ϕτn(X` − ξτn,`))
P(Xj > Qτn,j)ξτn,`

=
1

(1− τn)ξτn,`
E ((X` − ξτn,`)1{Xj > Qτn,j, X` > ξτn,`}) (1 + o(1)) + o(1)

=
1

(1− τn)ξτn,`

∫ ∞
ξτn,`

P (Xj > Qτn,j, X` > t) dt (1 + o(1)) + o(1).

Applying Lemma A.1(ii) and using the asymptotic proportionality of quantiles and expec-
tiles, we find

E (1{Xj > Qτn,j}ϕτn(X` − ξτn,`))
P(Xj > Qτn,j)ξτn,`

→
∫ ∞
1

Rj,`

(
1, (γ−1` − 1)x

−1/γ`
`

)
dx` as n→∞.

Similarly

E ([logXj − logQτn,j]1{Xj > Qτn,j}ϕτn(X` − ξτn,`))
= (1− τn)E ([logXj − logQτn,j](X` − ξτn,`)1{Xj > Qτn,j, X` ≤ ξτn,`})
+ τnE ([logXj − logQτn,j](X` − ξτn,`)1{Xj > Qτn,j, X` > ξτn,`}) .

Recall the well-known inequality log x ≤ x − 1 for any x ≥ 1 to bound the first term from
above by

(1− τn)E
([

Xj

Qτn,j

− 1

]
|X` − ξτn,`|1{Xj > Qτn,j}

)

≤ (1− τn)

√√√√E

([
Xj

Qτn,j

− 1

]2
1{Xj > Qτn,j}

)√
E((X` − ξτn,`)2)

= O((1− τn)3/2ξτn,`).

Here (A.1) with a = 2 and the dominated convergence theorem were also used. Recall also
Lemma 3 in Stupfler (2019) with f = log to find, as n→∞,

E([logXj − logQτn,j]1{Xj > Qτn,j})
1− τn

=
E([logXj − logQτn,j]1{Xj > Qτn,j})

P(Xj > Qτn,j)(1 + o(1))
→ γj.

By an integration by parts then,

γj
E ([logXj − logQτn,j]1{Xj > Qτn,j}ϕτn(X` − ξτn,`))

E([logXj − logQτn,j]1{Xj > Qτn,j})ξτn,`

=
1 + o(1)

(1− τn)ξτn,`
E ([logXj − logQτn,j](X` − ξτn,`)1{Xj > Qτn,j, X` > ξτn,`}) + o(1)

=
1 + o(1)

(1− τn)ξτn,`

∫ ∞
s=Qτn,j

∫ ∞
t=ξτn,`

P (Xj > s,X` > t)
ds

s
dt+ o(1).
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Applying Lemma A.1(iii) and using the asymptotic proportionality of quantiles and expec-
tiles, we find

γj
E ([logXj − logQτn,j]1{Xj > Qτn,j}ϕτn(X` − ξτn,`))

E([logXj − logQτn,j]1{Xj > Qτn,j})ξτn,`

→
∫∫

[1,∞)2
Rj,`

(
x
−1/γj
j , (γ−1` − 1)x

−1/γ`
`

) dxj
xj

dx` as n→∞.

The proof is complete.

Proof of Theorem 3.4. The quantities Σ̂LAWS
n,j,` (γ,R)(1, 1) and V̂ LAWS

n,j,` (γ,R) are consistent

estimators of ΣLAWS
j,` (γ,R)(1, 1) and V LAWS

j,` (γ,R) = ΣLAWS
j,` (γ,R)(2, 2), by Proposition A.4

and the consistency of R̂τn,j,` observed in the proof of Proposition 3.2 of the main paper.
A proof similar to that of Proposition A.4 shows that the estimator Σ̂LAWS

n,j,` (γ,R)(1, 2) is

a consistent estimator of ΣLAWS
j,` (γ,R)(1, 2); the idea is to use the consistency of the inter-

mediate quantile Xn−bn(1−τn)c,n,j and the intermediate LAWS expectile ξ̃τn,` to bound them
from above and below by quantities arbitrarily close to qτn,j and ξτn,`, and then to use a law
of large numbers. Conclude that Σ̂LAWS

n,j,` (γ,R) is a consistent estimator of ΣLAWS
j,` (γ,R), and

combine this consistency with the convergence 1/ log dn → 0 and Theorem 2.4(i) of the main
paper to conclude.

Proof of Theorem 3.5. We showed in the proof of Proposition 3.2 of the main paper the
consistency of R̂τn,j,`,

∫ 1

0
R̂τn,j,`(u, 1)du/u and

∫ 1

0
R̂τn,j,`(1, u)du/u. Using this along with the

consistency of the Hill estimators and the convergence 1/ log dn → 0 (as n→∞) shows the
consistency of V̂ ?,QB

n (γ,R) as an estimator of V ?(γ,R). Applying Theorem 2.4(ii) of the
main paper concludes the proof.

Proposition A.5 and Lemma A.6 below are the key to the proof of Theorem 3.6 of the
main paper. We start with Proposition A.5, which is a general result about a likelihood
ratio-type test statistic.

Proposition A.5. Assume that (Zn) is a sequence of d−dimensional random vectors such
that

vn(Zn −mn)
d−→ Nd(0d,Σ),

where vn →∞, (mn = (mn,1, . . . ,mn,d)
>) is a sequence of nonrandom vectors with positive

entries that stays bounded away from 0d, and Σ is a positive definite symmetric matrix. Let

(Σ̂n) be a random sequence of positive semidefinite matrices such that Σ̂n
P−→ Σ. Set

Dn = vnΣ̂
−1/2
n

(
Zn −

Z>n Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

)
which is a sequence of d−dimensional random vectors that is well-defined with arbitrarily
high probability as n→∞. Let ‖ · ‖∞ denote the supremum norm.
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(i) If vn(mn − ‖mn‖∞1d)→ 0d then D>nDn
d−→ χ2

d−1.

(ii) If (‖mn‖−1∞mn − 1d) stays bounded away from 0d then D>nDn
P−→∞.

Proof of Proposition A.5. Write ‖ · ‖ = ‖ · ‖∞ for notational convenience. Let η > 0 be such
that ‖M−Σ‖ ≤ η ⇒ (1>dM

−11d ∈ (0,∞) and det(M) > 0), and let An = {‖Σ̂n−Σ‖ ≤ η}.
Then P(An)→ 1 as n→∞ and on An, the quantity Dn is well-defined and can be written
as

Dn = vnΣ̂
−1/2
n

(
Zn −mn −

(Zn −mn)>Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

)
+ vnΣ̂

−1/2
n

(
mn −

m>n Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

)
= vnΣ̂

−1/2
n

(
Zn −mn −

(Zn −mn)>Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

)
+ vnΣ̂

−1/2
n

(
mn − ‖mn‖1d −

(mn − ‖mn‖1d)>Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

)
.

Let Z have the Nd(0d,Σ) distribution. If vn(mn − ‖mn‖1d)→ 0d, then clearly

Dn
d−→ Σ−1/2

(
Z − Z

>Σ−11d

1>d Σ−11d
1d

)
= Y − Y

>u

u>u
u

where Y = Σ−1/2Z is standard Gaussian and u = Σ−1/21d. The right-hand side corresponds
to the Euclidean projection of Y onto the orthogonal complement of the line spanned by u.
Statement (i) then follows by Cochran’s theorem.

To show (ii), let Sd−1 = {x ∈ Rd|‖x‖ = 1} denote the d−dimensional hypersphere, S++
d (R)

be the set of positive definite matrices in dimension d, and consider the mapping

φ : (x,M ) ∈ Sd−1 × S++
d (R) 7→M−1/2

(
x− x

>M−11d

1>dM
−11d

1d

)
∈ Rd.

This mapping is continuous on Sd−1 × S++
d (R), and on the event An,

Dn = OP(1) + vn‖mn‖φ(‖mn‖−1mn, Σ̂n).

Let δ > 0 be such that ‖‖mn‖−1mn − 1d‖ ≥ δ for any n. On An,

‖φ(‖mn‖−1mn, Σ̂n)‖ ≥ inf{‖φ(x,M )‖,x ∈ [0,∞)d, ‖x‖ = 1, ‖x− 1d‖ ≥ δ, ‖M −Σ‖ ≤ η}.

The right-hand side is not zero. Indeed the continuous function ‖φ‖ must attain its minimum
on the compact set defined by (x,M ) satisfying the conditions (x ∈ [0,∞)d, ‖x‖ = 1, ‖x−
1d‖ ≥ δ, ‖M −Σ‖ ≤ η), and at any such point the function ‖φ‖ is nonzero, because

φ(x,M) = 0⇒ x− x
>M−11d

1>dM
−11d

1d = 0d ⇒ x ∈ R1d,
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which cannot happen when x ∈ [0,∞)d, ‖x‖ = 1 = ‖1d‖ and ‖x− 1d‖ ≥ δ. Conclude that
on An and for all n, φ(‖mn‖−1mn, Σ̂n)‖ ≥ κ for a certain constant κ > 0 and finally

D>nDn ≥ ‖Dn‖2 ≥
(
vn‖mn‖‖φ(‖mn‖−1mn, Σ̂n)‖+ OP(1)

)2 P−→∞

because (‖mn‖) is bounded from below by a nonzero constant. The proof is complete.

Lemma A.6 analyses the possible asymptotic behaviour of ratios of extreme expectiles
and quantiles pertaining to different marginal distributions. A particular consequence of
this result is that the testing problem of Section 3.3 of the main paper is indeed well-defined
and is nothing but testing whether extreme quantiles of the marginal distributions of X are
asymptotically equivalent.

Lemma A.6. Assume that Condition B is satisfied, with ρj < 0 for any 1 ≤ j ≤ d.
Assume also that E|min(Xj, 0)| < ∞ and 0 < γj < 1 for any 1 ≤ j ≤ d. Pick arbitrary
j, ` ∈ {1, . . . , d} with j 6= `.

(i) The ratios ξτ,j/ξτ,` and qτ,j/qτ,` have well-defined, possibly infinite, limits as τ ↑ 1, and
these limits are equal.

(ii) One has limτ↑1 ξτ,j/ξτ,` = 1 if and only if limτ↑1 qτ,j/qτ,` = 1, in which case γj = γ` and

ξτ,j
ξτ,`

= 1 + O(q−1τ,j ) + O(|Aj((1− τ)−1)|) + O(|A`((1− τ)−1)|) as τ ↑ 1.

Proof of Lemma A.6. Use the asymptotic proportionality relationship (4) in the main paper
to write

ξτ,j
ξτ,`

=
ξτ,j
qτ,j
× qτ,j
qτ,`
× qτ,`
ξτ,`

=
(γ−1j − 1)−γj

(γ−1` − 1)−γ`
× qτ,j
qτ,`

(1 + o(1)) as τ ↑ 1.

To show (i), note that if γj < γ` then qτ,j/qτ,` = Uj((1 − τ)−1)/U`((1 − τ)−1) → 0 as τ ↑ 1.
Similarly, if γ` < γj then qτ,j/qτ,` → ∞ as τ ↑ 1. If now γj = γ`, we use the remark below
Example 2.3.11 in de Haan and Ferreira (2006) to find that Uj(t) = cjt

γj(1 + o(1)) and
U`(t) = c`t

γ`(1 + o(1)) as t → ∞, where cj, c` ∈ (0,∞) (this follows from the assumption
ρj, ρ` < 0). Therefore

qτ,j
qτ,`

=
Uj((1− τ)−1)

U`((1− τ)−1)
→ cj

c`
∈ (0,∞) as τ ↑ 1.

Conclude that

lim
τ↑1

qτ,j
qτ,`

=


0 if γj < γ`,

∞ if γj > γ`,

cj/c` if γj = γ`

and thus lim
τ↑1

ξτ,j
ξτ,`

=


0 if γj < γ`,

∞ if γj > γ`,

cj/c` if γj = γ`.
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This proves (i). To prove (ii) we note that for either ratio to have a finite limit it is necessary
that γj = γ` = γ, and the limit being 1 imposes that cj = c` = c. It is then a consequence
of the equation below Formula (2.3.23) in de Haan and Ferreira (2006) that

Uj(t) = ctγ
(

1 +
Aj(t)

ρj
+ o(|Aj(t)|)

)
and U`(t) = ctγ

(
1 +

A`(t)

ρ`
+ o(|A`(t)|)

)
as t→∞. [A similar result, obtained by different means, appears in the proof of Corollary 2
in Hoga (2018).] Conclude that

qτ,j
qτ,`

= 1 + O(|Aj((1− τ)−1)|) + O(|A`((1− τ)−1)|)

as τ ↑ 1. Apply then Proposition 1(i) in Daouia et al. (2020) to get

ξτ,j
ξτ,`

= 1 + O(q−1τ,j ) + O(q−1τ,` ) + O(|Aj((1− τ)−1)|) + O(|A`((1− τ)−1)|)

= 1 + O(q−1τ,j ) + O(|Aj((1− τ)−1)|) + O(|A`((1− τ)−1)|) because lim
τ↑1

qτ,j
qτ,`

= 1.

The proof is complete.

Proof of Theorem 3.6. Define vn =

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
and mn = log ξτ ′n . Under H0 we

have, by Lemma A.6(ii),

sup
1≤i,j≤d

∣∣∣∣log
ξτ,j
ξτ,`

∣∣∣∣ ≤ ∑
1≤i,j≤d

∣∣∣∣log
ξτ,j
ξτ,`

∣∣∣∣ = O

(
q−1τ,1 +

d∑
j=1

|Aj((1− τ)−1)|

)
.

Consequently, if ‖ · ‖∞ denotes the supremum norm,

‖vn(mn − ‖mn‖∞1d)‖∞ = O

(
vnq
−1
τ ′n,1

+
d∑
j=1

vn|Aj((1− τ ′n)−1)|

)

= o

(
vnq
−1
τn,1 +

d∑
j=1

vn|Aj((1− τn)−1)|

)
= o(1).

In other words, under H0, vn(mn − ‖mn‖∞1d)→ 0d as n→∞.

Under H1, use Lemma A.6(i) to find that there is at least a pair of indices (j, `) for which
ξτ,j/ξτ,` → Cj,` < 1 as τ ↑ 1. Therefore

lim sup
n→∞

|‖mn‖−1∞mn,j − 1| ≥ 1− Cj,` > 0,

meaning that the sequence of vectors (‖mn‖−1∞mn − 1d) stays bounded away from 0d.
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(i) Set Zn = log ξ̃?τ ′n + b̂/
√
n(1− τn), Σ̂n = V̂ ?,LAWS

n (γ,R) and Σ = V ?(γ,R). The test
statistic is

ΛLAWS
n = v2n

(
Zn −

Z>n Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

)>
Σ̂−1n

(
Zn −

Z>n Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

)
=

(
vnΣ̂

−1/2
n

(
Zn −

Z>n Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

))>(
vnΣ̂

−1/2
n

(
Zn −

Z>n Σ̂−1n 1d

1>d Σ̂−1n 1d
1d

))
.

Combine Theorem 2.4 of the main paper, Proposition A.5 and our discussion above to
conclude.

(ii) Repeat the proof of (i) with Zn = log ξ̂?τ ′n and Σ̂n = V̂ ?,QB
n (γ,R).

B Detailed construction of confidence regions at the

intermediate level

We provide here a more detailed discussion of the construction of our joint asymptotic
confidence regions for intermediate expectiles. This expands on its corresponding synthesised
version in Section 3.1.

Using LAWS estimation Let us first show why constructing confidence regions for
intermediate expectiles is a delicate task, even in the univariate case. In Table I, we have
reported the (non-)coverage probability of a standard Gaussian 95% asymptotic confidence
interval, based on a random sample of size n = 1,000, for the intermediate expectile ξτn
of level τn = 1 − 1/

√
n ≈ 0.968, for the Fréchet, Pareto and Student-t distributions with

tail index γ = 1/3, using the LAWS intermediate expectile estimator. In other words,
the asymptotic 95% confidence interval we consider, which is directly deduced from the
convergence of a single LAWS estimator in Theorem 2.1, is

J̃τn =

[
ξ̃τn

(
1−

√
2γ̂3τn

1− 2γ̂τn

1.96√
n(1− τn)

)
, ξ̃τn

(
1 +

√
2γ̂3τn

1− 2γ̂τn

1.96√
n(1− τn)

)]
.

Here γ̂τn denotes the Hill estimator for the Xi based on the top k = bn(1− τn)c data points.
It can be seen that the coverage probability of this interval is in general in the neighbourhood
of twice the nominal level.

In our multivariate case, and at the intermediate level, our main instrument for the
construction of asymptotic confidence regions based on LAWS estimators is Theorem 2.1 of
the main paper, namely√

n(1− τn)

(
ξ̃τn
ξτn
− 1d

)
d−→ Nd(0d,V LAWS(γ,R)). (B.23)

Constructing a consistent estimator of the matrix V LAWS(γ,R) that accurately reflects the
uncertainty of LAWS estimators present in finite samples is of course key to the use of this
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MSE NCP

Estimator Univariate Fréchet Model (η = 3)

LAWS Standard 9.870 9.29
Variance-adjusted 5.09

QB Standard 17.095 56.02
Bias-adjusted 10.747 4.97

Univariate Pareto Model (ζ = 3)

LAWS Standard 8.520 9.46
Variance-adjusted 5.01

QB Standard 18.666 63.22
Bias-adjusted 10.945 5.11

Univariate Student-t Model (ν = 3)

LAWS Standard 11.449 8.64
Variance-adjusted 7.27

QB Standard 13.019 4.84
Bias-adjusted 13.659 5.82

Table I: Monte Carlo relative Mean Squared Error (MSE, in
√
·×100) of the LAWS and QB

point estimators, and actual Non-Coverage Probability (NCP, in %) for LAWS and QB con-
fidence interval estimators at the intermediate level τn = 1−1/

√
n. For the LAWS estimator,

“Standard” refers to the Gaussian confidence interval J̃τn , while “Variance-adjusted” refers
to the marginal interval deduced from Ẽτn,0.05. For the QB estimator, “Standard” refers to

the Gaussian confidence interval Ĵτn , while “Bias-adjusted” refers to its version calculated
using the bias correction, namely, the marginal interval deduced from Êτn,0.05.

convergence for the design of asymptotic confidence regions. We investigate here an estimator
of V LAWS(γ,R) based on a careful examination of the proof of Theorem 2.1. Recall from
this proof that, if ϕτ (y) = |τ − 1{y ≤ 0}|y is the derivative of ητ/2, one has

√
n(1− τn)

(
ξ̃τn
ξτn
− 1d

)
= arg min

u∈Rd

{
−

d∑
j=1

ujT
(j)
1,n +

d∑
j=1

T
(j)
2,n(uj)

}

where T
(j)
1,n =

1√
n(1− τn)

n∑
i=1

1

ξτn,j
ϕτn(Xi,j − ξτn,j)

and T
(j)
2,n(u) = − 1

ξ2τn,j

n∑
i=1

∫ uξτn,j/
√
n(1−τn)

0

(ϕτn(Xi,j − ξτn,j − z)− ϕτn(Xi,j − ξτn,j)) dz.

We find in the proof that (T
(1)
1,n , . . . , T

(d)
1,n) is asymptotically Gaussian with expectation zero.
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Meanwhile, for any j, an application of the law of large numbers and a Taylor expansion of
the function ϕτn heuristically suggest that, as n→∞,

T
(j)
2,n(u) ≈ − n

ξ2τn,j

∫ uξτn,j/
√
n(1−τn)

0

(E(ϕτn(Xj − ξτn,j − z))− E(ϕτn(Xj − ξτn,j))) dz

≈ n

ξ2τn,j

∫ uξτn,j/
√
n(1−τn)

0

E(|τn − 1{Xj ≤ ξτn,j|) z dz =
u2

2

(
1 +

2τn − 1

1− τn
F j(ξτn,j)

)
.

It therefore follows from classical results on minimisers of convex random functions (see
e.g. Theorem 5 in Knight, 1999) that, when n is large, we have the approximation (valid in
distribution)√

n(1− τn)

(
ξ̃τn
ξτn
− 1d

)
≈

(
1√

n(1− τn)

n∑
i=1

1

ξτn,j

ϕτn(Xi,j − ξτn,j)
1 + (2τn − 1)F j(ξτn,j)/(1− τn)

)>
1≤j≤d

.

Since each ϕτn(Xj−ξτn,j) has expectation 0 (by definition of the expectile ξτn,j), this suggests
the following nonparametric approximation of V LAWS

j,` (γ,R) for large n:

V LAWS
j,` (γ,R)

≈ 1

(1− τn)ξτn,jξτn,`
× E(ϕτn(Xj − ξτn,j)ϕτn(X` − ξτn,`))

[1 + (2τn − 1)F j(ξτn,j)/(1− τn)][1 + (2τn − 1)F `(ξτn,`)/(1− τn)]
.

This approximation is our starting point for the construction of an estimator of V LAWS
j,` (γ,R).

It is of course consistent with the expression of V LAWS
j,` (γ,R) in Theorem 2.1, in the sense

that when n→∞,

1

(1− τn)ξτn,jξτn,`
× E(ϕτn(Xj − ξτn,j)ϕτn(X` − ξτn,`))

[1 + (2τn − 1)F j(ξτn,j)/(1− τn)][1 + (2τn − 1)F `(ξτn,`)/(1− τn)]

→ V LAWS
j,` (γ,R) =


2γ3j

1− 2γj
if j = `,

γjγ`

∫∫
[1,∞)2

Rj,`

(
(γ−1j − 1)x

−1/γj
j , (γ−1` − 1)x

−1/γ`
`

)
dxj dx` if j < `.

[See (4) in the main paper and Lemma A.3.] One could estimate each term in this nonpara-
metric approximation of V LAWS

j,` (γ,R) directly; this turns out not to be the best-performing
solution in practice because it tends to provide an underestimation of the marginal uncer-
tainty on expectiles. Our proposed solution, suggested by the results of extensive Monte-
Carlo simulations, is the following. For a diagonal entry V LAWS

j,j (γ,R) of V LAWS(γ,R), note
that Lemma A.3(i) entails

V LAWS
j,j (γ,R) ≈

E(ϕ2
τn(Xj − ξτn,j))

(1− τn)ξ2τn,j
× 1

[1 + (2τn − 1)F j(ξτn,j)/(1− τn)]2

≈ 2γj
1− 2γj

× 1

[1 + (2τn − 1)F j(ξτn,j)/(1− τn)]2
for large n.
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A further improvement in finite samples is found by noting that 1+F j(ξτn,j)/(1−τn)→ γ−1j
as n→∞, and therefore

V LAWS
j,j (γ,R) ≈

2γ2j
1− 2γj

× 1 + F j(ξτn,j)/(1− τn)

[1 + (2τn − 1)F j(ξτn,j)/(1− τn)]2
for large n.

For off-diagonal elements, the covariance Cov(ϕτn(Xj − ξτn,j), ϕτn(X` − ξτn,`)) is in practice
found to be a good approximation of the direction of dependence within the data; a finite-
sample improvement on the estimation of the strength of this dependence is found by writing

V LAWS
j,` (γ,R) ≈ γjγ`

E(ϕτn(Xj − ξτn,j)ϕτn(X` − ξτn,`))
(1− τn)ξτn,jξτn,`

for large n.

Our estimator of V LAWS(γ,R) is now constructed by plugging in the LAWS and Hill esti-
mators, the empirical survival functions

F̂ n,j(x) = 1− F̂n,j(x) =
1

n

n∑
i=1

1{Xi,j > x},

and the empirical covariances

mn,j,` =
1

n

n∑
i=1

ϕτn(Xi,j − ξ̃τn,j)ϕτn(Xi,` − ξ̃τn,`).

This results in the estimator V̂ LAWS
n (γ,R) of V LAWS(γ,R) given elementwise by

V̂ LAWS
n,j,j (γ,R) =

2γ̂2τn,j
1− 2γ̂τn,j

× 1 + F̂ n,j(ξ̃τn,j)/(1− τn)[
1 + (2τn − 1)F̂ n,j(ξ̃τn,j)/(1− τn)

]2 for j = `

and V̂ LAWS
n,j,` (γ,R) = γ̂τn,j γ̂τn,`

mn,j,`

(1− τn)ξ̃τn,j ξ̃τn,`
for j 6= `.

Under the assumptions of Theorem 2.1 of the main paper, this is indeed a consistent estimator
of V LAWS(γ,R), as Proposition A.4 shows.

When V LAWS(γ,R) is symmetric positive definite (in particular, no perfect asymptotic
dependence between any two components ofX can be present), multiplying the left-hand side
in (B.23) by the positive definite inverse square root [V LAWS(γ,R)]−1/2 of V LAWS(γ,R) and
then plugging in our estimator V̂ LAWS

n (γ,R) produces an asymptotically Gaussian random
vector with independent standard Gaussian components. Therefore, if ‖ · ‖2 denotes the
Euclidean norm on Rd and χ2

d,1−α denotes the (1−α)−quantile of the chi-square distribution
with d degrees of freedom, one has

P

∥∥∥∥∥√n(1− τn)
[
V̂ LAWS

n (γ,R)
]−1/2( ξ̃τn

ξτn
− 1d

)∥∥∥∥∥
2

2

≤ χ2
d,1−α

→ 1− α as n→∞.
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Denoting by Bd(0d, r) the closed Euclidean ball in Rd whose centre is the origin 0d and radius
is r, we find the corresponding (1 − α)−asymptotic LAWS-based confidence region for ξτn
as the random ellipsoid

Ẽτn,α = ξ̃τn

[
1d +

[
V̂ LAWS

n (γ,R)
]1/2

Bd

(
0d,
√
χ2
d,1−α/n(1− τn)

)]
=
{

z ∈ Rd | ∃u ∈ Bd

(
0d,
√
χ2
d,1−α/n(1− τn)

)
, z = ξ̃τn

[
1d +

[
V̂ LAWS

n (γ,R)
]1/2

u
]}

.

Using QB estimation Like in the LAWS case, the correct use of the QB estimator to
construct confidence regions for intermediate expectile estimators is not as straightforward
as one could expect. Table I reports the coverage probability of the standard Gaussian 95%
asymptotic confidence interval

Ĵτn =

[
ξ̂τn

(
1− γ̂τn

√
1 + (m(γ̂τn))2

1.96√
n(1− τn)

)
,

ξ̂τn

(
1 + γ̂τn

√
1 + (m(γ̂τn))2

1.96√
n(1− τn)

)]
,

constructed by ignoring the bias component and plugging in the Hill estimator to estimate
the asymptotic variance. We keep the same setup as in the LAWS case: random samples of
size n = 1,000 from the Pareto, Fréchet and Student distributions with tail index γ = 1/3,
and the intermediate level τn = 1 − 1/

√
n ≈ 0.968. This is often a very poor confidence

interval whose coverage probability is very far from the nominal level.
In our multivariate intermediate case, with the QB estimator, our main tool is Corol-

lary 2.3: √
n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ Nd

(
b,V QB(γ,R)

)
.

Contrary to the LAWS estimator, the QB estimator is asymptotically biased due to its
reliance on the asymptotic proportionality relationship (4) in the main paper. The jth
component of this bias is essentially

bj ≈ −γj(γ−1j − 1)γjE(Xj)

√
n(1− τn)

qτn,j

+

(
m(γj)

1− ρj
−

(γ−1j − 1)−ρj

1− γj − ρj
−

(γ−1j − 1)−ρj − 1

ρj

)√
n(1− τn)Aj((1− τn)−1).

Two sources of bias therefore arise when using the QB estimator, one proportional to 1/qτn,j,
the other linked to the second-order framework. The correction of the latter source of bias
involves estimating accurately the second-order parameter ρj, which is a notoriously difficult
problem (see e.g. the Introduction of Cai et al., 2013), especially from the practical point
of view since consistent estimators of ρj typically suffer from low rates of convergence, see
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e.g. Goegebeur et al. (2010, p.2638) and Gomes et al. (2009, p.298). As such, correcting
second-order bias tends to increase finite-sample variability substantially, resulting in confi-
dence regions that may be too conservative. By contrast, the simple expression of the bias
component proportional to 1/qτn,j makes its correction a straightforward task, with all esti-

mators involved converging at the rate
√
n(1− τn) or more. This constitutes our rationale

for concentrating specifically on the first source of bias with the estimator

b̂j = −γ̂τn,j(γ̂−1τn,j − 1)γ̂τn,jXn,j

√
n(1− τn)

q̂τn,j
, where Xn,j =

1

n

n∑
i=1

Xi,j.

The covariance matrix V QB(γ,R), meanwhile, may be estimated as follows:

V̂ QB
n,j,j(γ,R) = γ̂2τn,j(1 + (m(γ̂τn,j))

2) (with m(x) = (1− x)−1 − log(x−1 − 1))

and V̂ QB
n,j,`(γ,R) = γ̂τn,j γ̂τn,`

(
R̂τn,j,`(1, 1)(m(γ̂τn,j)− 1)(m(γ̂τn,`)− 1)

+m(γ̂τn,j)

∫ 1

0

R̂τn,j,`(u, 1)
du

u
+m(γ̂τn,`)

∫ 1

0

R̂τn,j,`(1, u)
du

u

)
where the estimator of the tail copula Rj,` is defined as

R̂τn,j,`(u, v) =
1

n(1− τn)

n∑
i=1

1

{
n+ 1− rn,i,j

(n+ 1)(1− τn)
≤ u,

n+ 1− rn,i,`
(n+ 1)(1− τn)

≤ v

}
.

[Here rn,i,j = nF̂n,j(Xi,j) denotes the marginal rank of observation Xi,j among the observa-
tions X1,j, X2,j, . . . , Xn,j.] This estimator is a slightly modified version of the estimator of
the empirical upper tail copula estimator given in Equation (13) in Schmidt and Stadtmüller
(2006). Using the quantity n+1 in the above formula, rather than the more obvious n, allows
one to compute V̂ QB

n,j,`(γ,R) in a very efficient way by noting that∫ 1

0

R̂τn,j,`(u, 1)
du

u

= − 1

n(1− τn)

n∑
i=1

log

(
n+ 1− rn,i,j

(n+ 1)(1− τn)

)
1

{
n+ 1− rn,i,j

(n+ 1)(1− τn)
≤ 1,

n+ 1− rn,i,`
(n+ 1)(1− τn)

≤ 1

}
.

This estimator V̂ QB
n (γ,R) is a consistent estimator of V QB(γ,R).

A calculation entirely similar to the one carried out with the LAWS estimator now yields an
(1− α)−asymptotic QB confidence region for ξτn as the random ellipsoid

Êτn,α = ξ̂τn

[
1d −

b̂√
n(1− τn)

+
[
V̂ QB

n (γ,R)
]1/2

Bd

(
0d,
√
χ2
d,1−α/n(1− τn)

)]
.

This construction is illustrated in the top panel of Figure I, where it is seen that the QB
region tends to have a lower volume than the LAWS region.

30



●

●
●

●

●
●

●
●

●

● ●

●
●

●

●

●●

●

●

● ●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●
●

●

●

●
●●●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●
●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●●

● ●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●
● ●

●

●●

●

●

●

●

●
●

●
● ●

●

●

●●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●●

●

●●
●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●●●

● ●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●●
●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
● ●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●
●●

●●

●

●
●●

●● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●
●

●●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●●
●

●

●

●

●●

●
●●

●

●

●
●●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●●●
●
●

●
●

●

●

●●

●

●

●

●●●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●
● ●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●
●●
●

●
●●

●
●

●
●

●

●

●
● ●

●●

●

●

●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●●
● ●

● ●
●●

● ●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●
●

●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●

●
●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

● ●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●
●

●

● ●

●

●
●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

0 2 4 6 8 10

0

2

4

6

8

10
Bivariate Expectile Estimation −  τn =  0.98

ξ0.98, 1

ξ 0
.9

8,
 2

●●

●

●

ξ0.98

E0.98 , 0.05

ξ0.98 ( 1 +
b

50
 ) −1

E0.98 , 0.05

●
● ●●
●●●

●
●

●●
●●●

●

●●

●
●

● ●
●

●
●●●

●

●●●

●●
●●●●
●

●
●

●●●
●●

●●
●

●

●
●

●
●

●●

●

●

●

●●
●
●●●●

●

●
● ●●

●

●●●●
●●●

●●●
●

●
●

●
●
●●

●

●
●●

●

●
●●

● ●●

● ●●

●
●

●

●

●
●

●

●

●
●●●
●

●
●●

●

●●●
●
●●●● ●

●●

●

●
●

●

●●

●
●

●
●●●● ●
●

●

●●●

●
●

●
●
●

●

●
●
●
●
●

●

●
●

●

●

●●

●

●●
●●

●●
●

●●●
●

●

●●●
●●●●

●

●
●●

●
●●●

●
●●●

●●
●● ●

●

●

●
● ●

●
●

●

●

●●●●●●●

●
●

●

●

●●●
●

●

●●●●●
●●

●●●●●

●

●
●

●

●
●

●
●●

●
●

●

●●

●

●

●
●●

●

●
●

●
●●

●
●
●

●

●●
●
●

●●● ●●
●●●
●

●●●●

●
●

●

●

●
●

●

●

●

●
●

●
● ●

●
●

●
●

●

●●

●

●●
●

●

●
●

●

●● ●
●●

●

●●●

●
● ●

●
●

●●
●●

●

●

●●

● ●

●

●
●●

●●●

●
●●●●

●●
●
●●

●●

●

●

●●

●

●

●

●●●●●
●

●●●●●
● ●

●

●

●

●

●

●
●●●

●
●

●●●
●

● ●
●

●●

●●

●●●●●
●

●

●● ●●●
●●●

●
●●

●

●
●●
●

●
●●

●

●●●

●

●●
●

●

●

●●●●●●
● ●

●●●
●

●●

●

●●●●●

●
●●

●

●●

●●

●●
●

●

●
●

●
●●●●●●

●
●

●

●
●●

● ●
●●●●●●

●
●●●
●●
●

●
●

●●●
●

●
●

●

●

●
●●
●
●●●●

●
●●●●●●●

●

●
●

●

●

●
●●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●
●

●
●●●

●●●●
●

●
●●
●●
●
●

●
●
●●●

●

●
●● ●

●●
●

●

●
●

●
●

●

●●
●

●
●●
●

●●●●
●●●●

●
●

●

●

●
●●●

●●
●●

●

●

●
●
●● ●

●●●●●
●

●

●
●

●
●
●●

●●

●●
●

●●●

●

●●

●

●
●

●

●

●●
●

●●●●
●●●●

●●

●
●

●
●●●

●

●

●●
●●●●●

●
●

●●

●

●
●

●

●●●
●

●
●

●●

●●●

●

●

●
●●●

●

●

●
●●
●

●
● ●●

●

●
● ●●●●

●

●●
●
●

●

●●
● ●

●

●

●●●●●●
●●

●

●●
●●●●

●●
●
●●
●

●●

●

●
●

●
●

●

●

●
●

●●●
●●●
●●

●
●●

●

●
●
●

●●

●

●

●
●●●●●

●
●

●●
●

●●●
● ●

●

●

●
●

●

●●●●●●●

●
●

●●●

●
●●

●

●
●
●
●

●
●

●●
●●●●●●●
●

●
●●

●

●●●
●●●●

●●
●

●● ●●●
●

●

●●
●●●

●
●

●

●

●

●

●

●

●●

●●

●●●●●●●

●
●
●●●

●
●

●

●

●

●
●

●
●
●●●●

●

●●●● ●

●

●●
●

●
●

●●
●●●●●●
●●●

●

●●
●

●

●
●

●
●
●

●●
●
●

●●
●
●
●●

●
●

●
●

●
●

●

●
●●●●

●●
●●

●

●●●●●

●

●
●
●

●

●
●●

●

●●
●
●●

●●
●●
●●

●●

●
●

●●●●
●
●

●
●●●●

●

●●●
●

●

●
●●●●●●●●●●

●

●●●●●●
●

●
●
●●

●

●

●

●●●●

●

●
●

●●●●
●

●
●●●

●

●

●

●●
●●

●●●●
●

●

●●●●
● ●●

●

●

●●

●

●●
●

●●●
●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

● ●

●

●
●

●●

●

●●
●

●●
●

●

●

●

●

●
●

●●●
●

●

●

●

●

●●●
●
●

● ●

●●●●
●●
●
●●●

●
●●●

●
●●●● ●
●●
●●

●

●

●
●

●

●●

●
●●

●●
●●●

●

●
●

●●
●●

●●●●

●

●
●

●

●

●

●

● ●

●●

●

●●
●

●●
●●●

●●
●● ●●

●

●
●

●●●
●

●

●●
●●

●
●

●

●●●●●●

●
●

●

●

●
●●

●
●●

●

●

●● ●●
●

●
●

●●

●

●
●

●●● ●●● ●●●
●●

●

●●

●●

●

●●●●●
● ●●

●

●

●
●
●

●
●

●
●●●

●

●

●

●●●
●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●●●
●

●●●
●●

●
●

●
●

●
●
●●

●●●

●
●

●

●●●

●
●

●
●●

●

●●
●

●
●

●●

●
●● ●

●
●
●

●●
●

●●●●●

●
●

●●

●

●●●
●● ●

●●●
●●

●

●

●●
●●

●

●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●●
●●

●

●●●● ●●●
●

●●

●
●

●
●

●●
●●●●●●● ●
● ●●

●●
●

●●

●
●

●●●●
●●

●
●

●●
●

●

●●
●

●●
●

●
●

●

●
●
●
●

●●●
●●●●

●●
●

●

●
●●
●●

●
●●

●

●

●

●

●
●

●● ●

●

●●
●●●●●●●●●●●

●
●●●●

●
● ●●

●

●●
●●●

●
●

●
●

●
● ●

●●●
●

●

●●●●●●
●

●
●

●

●
●●●

●

●
●●
● ●

●
●

●

●
●●●●●●●●

●

●●
●

●●●●●

●

●●●●
●

●

●●
●

●●●●
●

●

●
●
● ●

●●
●●

●
●

●
●●

●

●

●

●●
●

●

●
●

●
●

●
●

●●●●●●
●

●
●

●

●

●●
●

●

●

●
●

●

● ●

●●

●

●●

●
●

●
●●

●

●

●●●●●

●

●●●●●●●
●●

●

●
●

●●●●
●

●
●

●
●

●●●●●●●●
●●● ●

●
●●●●●●●

●
●●●

●

●●
●

●

●

●●●
●
●

●
●

●
●

●
●●●●

●

●
●

●●

●

●

●
●
●●●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●
●●●
●●●

●
●

●●●

●

●
●

●● ●

●

●
●

● ●●
●

●●
●●

●●●
● ●

●

●
●

●●
●●

●

●

●

●

●●

●

●

●

●● ●
●

●

●

●●●
●●●

●
●

●
●

●●
●

●

●

●
●●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●
● ●

●
●

●
●●

●●
●

●
●●

● ●●
●

●●●
●

●

●●

●
●● ●
●●●

●
●

●●

●
●●● ●●
●●●●●●●●●
●

●
●●●

●

●

●
● ●●

●

●

●

●●●●●●●
●
●

●

●
●●●●
●

●●●●●●●●
●●●

●

●●
● ●

●

●●●●●
●●●

●
●

●●

●●●●
●
●

●

●
●

●
●
●

●●
●●
●

●

●
●

●

●

●●

●●

●

●●
●

●●
●●

●●

●●
●●

●
●

●

●●

●●
●
●

●

●

●

●

●
●●
●

●
●

●●●●

●

●

●

●
●

●

●
●

●

●● ●
●●

●●

●●

●

●

●
●
●
●●
●●●
●

●

●
●
●

●●●●●●●●●●●
●

●

●●

●

●
●

●●●
●●●

●

●

●●
●●

●
●

●
●

●
●

●

●●●●

●

●

●
●

●

●●

●●
●●●●

●

●
●●●●●●●

●

●●
●

●
●●●

●
●

●
●

●

●
●

●

●
●
●●

●

●●●
●

●
●

●

●

●●●
●

●
●●

●●
●●

●

●

●
●

●●●●
●

●●
●

●●
●●●

●●●
●

●
●

●●
●

●

●●
●●

●●●●●

●

●
●

●●

●●●

●

●●
●
●

●

●
●●

●
●

●
●

●

●

●

●●
●

●
●

●●

●

●

●
●

●●●
●
●

●●

●

●● ●●●
●

●

●●
●●●

●

●
●

●

●
●

●●
●●

●

●

●
●

●

●
●●●● ●●

●

●

●

●

●●●
●

●●●
●

●●

●

●
● ●

●
●

●●●
●●●

●

●●
●

●●●●●●●●●●●●
●

●
●●

●
●●●●

●● ●

●●●
●●

●●
●●

●

●●

●

●●●●

●

●●

●●
●

●

●●

●
●●

●●●●●●●

●

●
●●

●●
●

●●●
●●●

●
●
●
●

●
●●●

●●●●
●

●
●●●
●

●

●

●
●

●

●
●

●
●●
●

●

●

●
●●

●
●

●

●●

●

●●●●●●

●

●
●

●●
●

●

●●●●

●●

●●●●

●

●
●

●

●

●

●

●
● ●

●
●●●

●●

●

●

●

●

●

●

●

●● ●
●

●●●●
●●

●
●● ●

●

●
●

●●

●

●●●
●

●●
●

●●●
●

● ●●
●
●

●●

0 5 10 15 20 25 30 35

0

10

20

30

40

Bivariate Expectile Estimation −  τn ' =  0.9996

ξ0.9996, 1

ξ 0
.9

99
6,

 2

●

●

●

●

ξ*
0.9996 e

b
50

E0.9996 , 0.05

*

ξ*
0.9996

E0.9996 , 0.05
*

Figure I: Expectile point estimates from the LAWS and QB estimators and associated 95%
confidence regions, obtained with one sample of size n = 2,500 generated from a Gumbel-
Fréchet bivariate distribution with equal marginal tail index γ = 1/3 and dependence pa-

rameter ϑ = 3. Top: Intermediate level, regions Ẽτn,α and Êτn,α with τn = 1− 1/
√
n = 0.98,

bottom: extreme level, regions Ẽ?τ ′n,α and Ê?τ ′n,α with τ ′n = 1 − 1/n = 0.9996 and τn =

1− 1/
√
n = 0.98. The Gumbel-Fréchet model is model (iii) in our simulations Section 4.1.
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Let us conclude this section by elaborating why correcting for the bias proportional to 1/qτn,j
is important regardless of whether second-order bias dominates or not. The key point is that
even though the asymptotics in our results will suggest that one component of our vector of
expectile estimators is asymptotically biased and the others are not (the biased component
will be the one pertaining to the distribution with the lowest γj, provided |ρj| > γj for any
1 ≤ j ≤ d), this does not mean that these other components should be considered unbiased
in finite samples. We illustrate this on the following simple examples. Suppose first that
X = (X1, X2)

> has Fréchet marginal distributions, that is,

∀x > 0, P(X1 > x) = 1− exp(−x−1/γ1) and P(X2 > x) = 1− exp(−x−1/γ2)

and assume that γ1 = 1/3 ≈ 0.33 and γ2 = 2/5 = 0.4. This corresponds to random variables
X1 and X2 having a finite variance but no third moment, which is a fairly typical case when
considering heavy-tailed models. For the vector X = (X1, X2)

>, one has ρ1 = ρ2 = −1.
Strictly speaking, if we only take the asymptotics into account, only the source of bias due
to 1/qτn,1 in the first marginal dominates, because ρ1 = ρ2 < −γ2 < −γ1. One could then
think that only the bias due to 1/qτn,1 should be corrected, and everything else left ignored.
However, according to Proposition 1(i) in Daouia et al. (2020), one has, as n→∞,

ξτ,j
qτ,j
≈ (γ−1j − 1)−γj

[
1 +

γj(γ
−1
j − 1)γjE(Xj)

qτ,j

+

(
(γ−1j − 1)−ρj

1− γj − ρj
+

(γ−1j − 1)−ρj − 1

ρj

)
Aj((1− τ)−1).

]
It is readily checked that E(X1) ≈ 1.35, E(X2) ≈ 1.49 and Aj(t) = γjt

ρj/2. Consequently, if
we fix τ = 0.95, corresponding to τ = τn = 1 − k/n for n = 1,000 and k = 50 (close to the
setup we consider in our simulation studies), we find qτ,1 ≈ 2.69 and qτ,2 ≈ 3.28, and so

γ1(γ
−1
1 − 1)γ1E(X1)

qτn,1
≈ 0.211 and

γ2(γ
−1
2 − 1)γ2E(X2)

qτn,2
≈ 0.214,

while (
(γ−11 − 1)−ρ1

1− γ1 − ρ1
+

(γ−11 − 1)−ρ1 − 1

ρ1

)
A1((1− τn)−1) ≈ 0.00167

and

(
(γ−12 − 1)−ρ2

1− γ2 − ρ2
+

(γ−12 − 1)−ρ2 − 1

ρ2

)
A2((1− τn)−1) ≈ 0.00438.

This calculation means that the error in the approximation ξτn,j/qτn,j ≈ (γ−1j − 1)−γj due
to the 1/qτn,j term exceeds 20% in both marginals, while the error due to the second-order
source of bias is two degrees of magnitude smaller. This is important when using the QB
estimator, of course, but also when using the extrapolating LAWS-based estimator, since
(see Formula (11) in the main paper)[

1− τ ′n
1− τn

]γj ξτ ′n,j
ξτn,j

= 1−
γj(γ

−1
j − 1)γjE(Xj)

qτn,j
+ o(q−1τn,j) + O(Aj((1− τn)−1)).
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This approximation error translates into bias at the finite-sample level and, if left uncor-
rected, incorrect coverage for confidence intervals. Here, even though the asymptotics sug-
gest that only the bias due to 1/qτn,1 should be corrected and everything else left ignored,
in a finite sample of this size this would result in a very substantial error.

Interestingly this also tends to happen in cases when the second-order bias, controlled by the
value of the parameter ρj, is theoretically of the same order as the bias due to the reciprocal
of the jth quantile function. Suppose indeed that now the first marginal distribution is a
Burr distribution, that is,

∀x > 0, P(X1 > x) = (1 + x−ρ1/γ1)1/ρ1 , but as before P(X2 > x) = 1− exp(−x−1/γ2),

and assume that γ1 = −ρ1 = 1/3 and γ2 = 2/5. In this case, according to the asymptotics,
the sources of bias coming from 1/qτn,1 and A1((1 − τn)−1) in the first marginal should
dominate, because ρ2 < −γ2 < −γ1 = ρ1. It is besides readily checked that E(X1) ≈ 0.5 and
A1(t) = γ1t

ρ1 . Consequently, with τ = τn = 0.95, we find qτ,1 ≈ 1.71, and so

γ1(γ
−1
1 − 1)γ1E(X1)

qτn,1
≈ 0.122 and

γ2(γ
−1
2 − 1)γ2E(X2)

qτn,2
≈ 0.214 (the latter as before),

while (
(γ−11 − 1)−ρ1

1− γ1 − ρ1
+

(γ−11 − 1)−ρ1 − 1

ρ1

)
A1((1− τn)−1) ≈ 0.0590

and

(
(γ−12 − 1)−ρ2

1− γ2 − ρ2
+

(γ−12 − 1)−ρ2 − 1

ρ2

)
A2((1− τn)−1) ≈ 0.00438 (the latter as before).

In this case the error due to 1/qτn,2 actually exceeds both errors coming from the first
marginal distribution, and the error due to 1/qτn,1 is twice as high as the error originating
from A1((1− τn)−1). This is despite these latter two sources of bias theoretically having the
same importance and dominating the biases coming from the second marginal distribution.
Our argument therefore is that in typical cases, one should correct for the bias due to the
1/qτ,j terms in all marginals, as not to do so would negatively affect finite-sample results
even if one knew which marginal had the lightest tail (which itself is a seriously unrealistic
assumption).
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C Additional finite-sample results

This section contains additional results linked to our simulation study and real data analysis
in Sections 4 and 5 of the main paper. We start by studying the marginal finite-sample
uncertainty about tail expectiles. One can easily deduce from the construction of the LAWS-
based confidence region Ẽ?τ ′n,α an asymptotic (1−α)−confidence interval for the jth marginal
extreme expectile ξτ ′n,j:

Ĩ?τ ′n,j,α =

[
ξ̃?τ ′n,j exp

(
b̂j√

n(1− τn)
− log dn√

n(1− τn)

√
V̂ ?,LAWS

n,j,j (γ,R)z1−α/2

)
,

ξ̃?τ ′n,j exp

(
b̂j√

n(1− τn)
+

log dn√
n(1− τn)

√
V̂ ?,LAWS

n,j,j (γ,R)z1−α/2

)]

where z1−α/2 is the quantile of the standard Gaussian distribution at level 1−α/2. This can
be seen as an adjusted version of the confidence interval based on the LAWS estimator that
is considered in Daouia et al. (2018). One may also construct from the QB confidence region

Ê?τ ′n,α a QB asymptotic (1−α)−confidence interval for the jth marginal extreme expectile at
level τ ′n:

Î?τ ′n,j,α =

[
ξ̂?τ ′n,j exp

(
− log dn√

n(1− τn)

√
V̂ ?,QB

n,j,j (γ,R)z1−α/2

)
,

ξ̂?τ ′n,j exp

(
log dn√
n(1− τn)

√
V̂ ?,QB

n,j,j (γ,R)z1−α/2

)]
.

This is an adjusted version of the confidence interval based on the so-called indirect estimator
in Daouia et al. (2018).

C.1 Marginal uncertainty about tail expectiles

Here we simulate M = 10,000 samples of n = 1,000 independent observations from the
Fréchet distribution, having distribution function F (x) = exp(−x−1/γ) for x > 0; the Pareto
distribution, having distribution function F (x) = 1 − x−1/γ for x > 1; and the Student-t
distribution with 1/γ degrees of freedom. The tail index is chosen to be γ = 1/3 in each
case. For each simulated sample we estimate the (univariate) expectile at the extreme level

τ ′n = 0.999 = 1 − 1/n and we compute the associated confidence intervals Ĩ?τ ′n,α and Î?τ ′n,α
defined in Section 3.2 (there is no dependence on the label of the marginal in this univariate
case) with 95% nominal coverage probability. As in the main paper, in the bias correction
terms and estimated variances, the Hill estimators γ̂τn are replaced by their versions γ̂1−k/n
with k ∈ [6, 300], and the results will described as a function of this value of k. Then, we
compute the actual coverage probability of the corresponding confidence interval estimators.
Results are collected in Figure II.
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Figure II: Actual non-coverage probabilities (in %) of the confidence intervals of ξτ ′n , with
n = 1,000, τ ′n = 0.999 and 95% nominal level (top: LAWS method, bottom: QB method),
where in each case the dashed line stands for the naive interval and the solid line for its
adjusted counterpart. The horizontal dotted red line represents the 5% nominal non-coverage
probability.

The adjusted interval estimators perform comparably in each case, and in fact the LAWS
confidence interval has slightly better and more stable coverage, as the top panels show. Our
adjusted intervals provide visibly improved results compared to their unadjusted versions for
all three distributions, with a remarkable improvement in the LAWS case for the Fréchet
and Pareto distributions. By contrast, the actual non-coverage probability of the unadjusted
versions is typically in the range of 15-20%. As a conclusion, it appears that in terms of
marginal inference at the extreme level, the LAWS and QB extrapolating estimators are
comparable, with an advantage for the former once our adjustment to the confidence interval
has been applied.

C.2 Joint inference about intermediate and extreme expectiles

We study the finite-sample behaviour of the intermediate LAWS and QB expectile estimators
in models (i)-(iv) described in the main paper in Section 4. In each model, we simulate M =
104 samples of size n = m · 103, with m ∈ {1, 1.5, 2, 2.5, 5, 10} and dimension d ∈ {2, 3, 4, 5}.
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We estimate and infer the d-dimensional expectile ξτn , with τn = 1−1/
√
n, using the LAWS

and QB expectile point estimators and the confidence regions Ẽτn,α and Êτn,α, with α = 0.05
(95% nominal coverage probability), described in Section 3.1 of the main paper. Then, we
compute a Monte Carlo approximation of the relative MSE of the LAWS and QB point
estimators across all components and we report the actual (non-)coverage probabilities of
the associated confidence regions (see Tables II, III and IV).

With every model except the Gumbel-Fréchet model, the actual coverage probability of
the LAWS confidence region estimator is close to the nominal level. With the Gumbel-
Fréchet model, permissive confidence regions are generally obtained. This seems to be due
to the strong dependence structure of the Gumbel-Fréchet model which is somewhat diffi-
cult to estimate accurately. The conclusions for the QB confidence region are similar. By
contrast, the naive confidence regions obtained assuming that the margins are independent
(and thus ignoring the question of the estimation of the asymptotic dependence between
components) provide unsuitable regions whose actual non-coverage probabilities are either
substantially higher than desired (for the LAWS estimator) or virtually equal to one (for the
QB estimator). Our proposal therefore allows to obtain considerably more accurate confi-
dence regions than existing methods; results do not seem to deteriorate significantly with
increasing dimension (at least up to d = 5).

C.3 Additional results concerning the real data application

Figures III and IV give additional results on tail index and extreme expectile estimates
related to our real data analysis in Section 5, as well as certain bivariate and trivariate
confidence regions for extreme expectiles.
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m d = 2 d = 3 d = 4 d = 5
LAWS QB LAWS QB LAWS QB LAWS QB

Clayton-Fréchet Model (η = 3)
1.0 9.713 10.816 9.244 10.915 10.230 10.864 9.822 10.936
1.5 8.596 9.479 8.739 9.551 8.623 9.488 8.554 9.425
2.0 8.131 8.509 8.075 8.381 7.972 8.460 7.934 8.530
2.5 7.556 7.707 7.578 7.699 7.470 7.760 7.443 7.761
5.0 6.018 6.327 6.410 6.376 6.257 6.263 6.275 6.437
10.0 5.161 4.995 5.098 4.815 5.112 4.729 5.650 4.076

Gaussian-Student-t Model (ν = 3)
1.0 11.459 13.472 12.313 13.611 11.994 13.611 11.759 13.536
1.5 9.976 11.164 10.115 11.348 10.224 11.272 10.231 11.185
2.0 9.157 10.045 8.949 10.012 9.280 9.991 9.230 9.946
2.5 9.035 8.912 8.679 9.063 8.911 9.018 8.713 9.032
5.0 6.629 6.886 6.702 6.859 6.982 6.902 6.804 6.877
10.0 5.573 5.446 5.998 5.426 5.474 5.416 6.683 5.387

Gumbel-Fréchet Model (η = 3)
1.0 9.269 10.922 9.487 10.829 9.888 10.953 9.510 10.783
1.5 8.829 9.582 8.675 9.443 9.883 9.570 8.792 9.520
2.0 7.729 8.520 7.769 8.503 8.012 8.545 7.900 8.428
2.5 7.835 7.732 7.298 7.934 7.499 7.704 7.587 7.879
5.0 6.260 6.230 6.222 6.307 6.057 6.308 6.126 6.276
10.0 5.238 4.953 5.033 5.002 5.558 5.059 5.092 5.049

Multivariate Student-t Model (ν = 3)
1.0 12.835 13.469 12.438 13.394 12.841 13.365 11.571 13.424
1.5 9.855 11.163 10.206 11.185 10.986 11.270 10.126 11.376
2.0 9.325 9.914 9.227 9.903 9.046 9.913 9.927 9.836
2.5 8.339 9.077 11.012 8.884 8.609 9.111 8.479 9.024
5.0 6.752 6.961 7.523 6.856 6.704 6.895 7.963 6.997
10.0 5.453 5.385 5.497 5.390 8.474 5.414 5.379 5.423

Table II: Monte Carlo relative MSE (averaged across marginals and reported in
√
· × 100)

of the LAWS and QB intermediate estimators at level τn, with n = m ·103 (left column) and
τn = 1− 1/

√
n.
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m d = 2 d = 3 d = 4 d = 5
Clayton-Fréchet Model (η = 3)

1.0 4.86(11.59) 5.02(13.55) 5.50(15.33) 5.85(17.40)
1.5 4.74(10.66) 4.98(12.87) 5.12(14.12) 5.14(15.22)
2.0 5.01(10.78) 5.03(12.22) 4.95(13.15) 5.12(14.79)
2.5 4.64( 9.69) 4.77(11.20) 4.90(12.90) 4.67(13.64)
5.0 4.16( 8.78) 4.47(10.65) 4.59(11.07) 4.52(11.72)
10.0 4.01( 8.14) 4.75( 9.50) 4.34(10.06) 4.46(10.37)

Gaussian-Student-t Model (ν = 3)
1.0 6.18( 8.85) 6.02( 9.42) 6.83(11.03) 6.30(11.24)
1.5 4.85( 7.20) 5.61( 8.52) 6.36( 9.37) 5.98( 9.50)
2.0 4.86( 6.81) 5.28( 7.73) 5.70( 8.55) 5.95( 9.19)
2.5 4.95( 6.84) 5.24( 7.78) 5.70( 8.57) 5.82( 9.23)
5.0 4.74( 6.47) 5.20( 7.11) 5.06( 7.06) 5.30( 7.74)
10.0 4.58( 5.86) 5.45( 6.90) 5.49( 7.09) 5.17( 6.95)

Gumbel-Fréchet Model (η = 3)
1.0 5.02(11.47) 4.81(13.64) 4.80(14.22) 4.44(16.24)
1.5 4.30(11.01) 4.44(12.47) 3.90(13.79) 3.73(15.34)
2.0 3.85( 9.91) 4.06(12.25) 3.41(13.73) 3.76(15.20)
2.5 3.95(10.73) 3.97(12.60) 3.63(14.13) 3.15(14.81)
5.0 3.69(10.09) 3.34(11.57) 2.87(12.87) 2.51(14.23)
10.0 3.47( 9.48) 2.69(11.10) 2.20(12.76) 2.03(13.98)

Multivariate Student-t Model (ν = 3)
1.0 5.18( 8.37) 5.56( 9.95) 6.33(11.10) 6.32(11.79)
1.5 4.93( 8.11) 5.66( 9.42) 5.14( 9.75) 5.72(10.91)
2.0 4.47( 7.26) 5.16( 8.76) 5.33( 9.37) 5.79(10.41)
2.5 4.56( 7.32) 4.76( 7.96) 5.51( 9.21) 5.39( 9.90)
5.0 4.62( 7.16) 4.49( 7.51) 4.35( 7.81) 4.65( 8.66)
10.0 3.99( 6.41) 4.28( 7.83) 4.67( 8.79) 4.76( 8.43)

Table III: Monte Carlo actual non-coverage probability (in %) for the LAWS confidence

region estimator Ẽτn,α at the intermediate level, with n = m · 103 (left column), τn = 1 −
1/
√
n and 95% nominal level. Between brackets we report the coverage probability obtained

assuming independence between the margins.
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m d = 2 d = 3 d = 4 d = 5
Clayton-Fréchet Model (η = 3)

1.0 6.43(88.81) 7.06(95.11) 7.60(98.06) 7.89(98.95)
1.5 5.80(91.20) 6.60(96.80) 7.18(98.54) 7.19(99.28)
2.0 5.25(92.56) 6.08(97.35) 6.13(99.01) 7.15(99.64)
2.5 5.50(93.25) 5.82(98.03) 6.16(99.30) 6.81(99.83)
5.0 4.84(95.58) 5.11(96.58) 5.88(99.10) 5.79(99.32)
10.0 4.55(97.55) 5.16(97.15) 5.26(99.60) 5.07(99.61)

Gaussian-Student-t Model (ν = 3)
1.0 6.60(29.32) 6.99(36.66) 7.21(42.65) 7.56(48.00)
1.5 5.54(27.47) 6.44(34.09) 6.47(39.79 7.28(45.34)
2.0 5.60(27.47) 5.99(32.15) 6.84(37.79) 7.10(42.88)
2.5 5.42(25.02) 5.90(31.79) 6.58(38.16) 6.73(42.78)
5.0 5.27(23.82) 5.06(28.30) 5.99(34.23) 5.83(37.68)
10.0 5.30(22.31) 5.30(26.85) 5.46(30.74) 6.11(35.64)

Gumbel-Fréchet Model (η = 3)
1.0 4.21(78.44) 3.82(81.39) 3.35(83.29) 3.47(83.92)
1.5 3.68(81.11) 3.27(82.98) 3.48(84.74) 2.86(86.26)
2.0 3.40(83.02) 3.18(85.36) 3.31(86.99) 3.16(86.94)
2.5 3.54(84.48) 3.22(86.78) 3.55(87.77) 2.86(89.16)
5.0 3.36(87.23) 2.94(89.47) 2.92(91.07) 2.46(91.62)
10.0 3.38(91.34) 2.76(92.97) 2.74(93.17) 2.53(94.42)

Multivariate Student-t Model (ν = 3)
1.0 5.24(28.66) 5.44(33.16) 6.46(37.84) 6.54(41.79)
1.5 4.75(26.44) 5.34(31.38) 5.66(35.85) 6.37(38.60)
2.0 4.72(25.37) 5.49(30.50) 5.54(34.44) 6.15(37.42)
2.5 4.50(25.26) 5.26(28.73) 5.52(33.72) 5.86(37.96)
5.0 4.73(22.98) 4.36(26.17) 5.05(30.85) 5.24(33.65)
10.0 4.95(22.66) 4.76(25.43) 5.35(29.83) 4.53(32.53)

Table IV: Monte Carlo actual non-coverage probability (in %) for the QB confidence region

estimator Êτn,α at the intermediate level, with n = m · 103 (left column), τn = 1− 1/
√
n and

95% nominal level. Between brackets we report the coverage probability obtained assuming
independence between the margins.
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Figure IV: Two- and three-dimensional 95% confidence region estimates for some pairs and
triplets of exchange rate returns, obtained with τ ′n = 0.9995312 and τn = 1 − k/n with
k = 150. In the three-dimensional case we only report LAWS-based confidence regions.
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