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In this paper, we consider the normal form problem of a commutative family of germs of diffeomorphisms at a fixed point, say the origin, of

We define a notion of integrability of such a family. We give sufficient conditions which ensure that such an integrable family can be transformed into a normal form by an analytic (resp. a smooth) transformation if the initial diffeomorphisms are analytic (resp. smooth).

Introduction

When studying dynamical systems with continuous time (i.e. systems of differential equations) or discrete time (i.e. diffeomorphisms), special solutions, such as fixed points also called equilibrium points, attract a lot of attention. In particular, one needs to understand the behavior of nearby solutions. This usually requires some deep analysis involving normal forms [START_REF] Arnold | Geometrical methods in the theory of ordinary differential equations[END_REF], which are models supposed to capture the very nature of the dynamics to which the initial dynamical system is conjugate.When considering analytic or smooth dynamical systems, one needs extra assumptions in order to really obtain dynamical and geometrical information on the initial dynamical system via its normal form. These assumptions can sometimes be understood as having a lot of symmetries. This led to the concept of integrability.

In the framework of differential equations or vector fields, a first attempt to define such a notion for Hamiltonian systems is due to Liouville [START_REF] Liouville | Note sur l'intégration des équations différentielles de la Dynamique, présentée au Bureau des Longitudes le 29 juin 1853[END_REF]. This led, much later, to the now classic Liouville-Mineur-Arnold theorem [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF] which provides action-angle coordinates by a canonical transformation. For a general concept of action-angle coordinates we refer to [START_REF] Zung | A conceptual approach to the problem of action-angle variables[END_REF]. In 1978, J. Vey studied in the groundbreaking work [START_REF] Vey | Sur certains systemes dynamiques séparables[END_REF], a family of n Poisson commuting analytic Hamiltonian functions in a neighborhood of a common critical point. Under a generic condition on their Hessians, he proved that the family can be simultaneously transformed into a (Birkhoff) normal form. This system of Hamiltonian has to be understood as "completely integrable system". Later, H. Elliason, H. Ito, L. Stolovitch, N.T.Zung to name a few, generalized or improved J. Vey's theorem in different aspects including non-Hamiltonian setting [START_REF] Eliasson | Hamiltonian systems with Poisson commuting integrals[END_REF][START_REF] Eliasson | Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case[END_REF][START_REF] Ito | Convergence of Birkhoff normal forms for integrable systems[END_REF][START_REF] Ito | Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case[END_REF][START_REF] Stolovitch | Singular complete integrability[END_REF][START_REF] Stolovitch | Normalisation holomorphe d'algèbres de type Cartan de champs de vecteurs holomorphes singuliers[END_REF][START_REF] Zung | Convergence versus integrability in Birkhoff normal form[END_REF]. This has been recently developed in the context of PDE's as infinite dimensional dynamical systems [START_REF] Kappeler | of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF][START_REF] Kuksin | Vey theorem in infinite dimensions and its application to KdV[END_REF][START_REF] Bambusi | Convergence to normal forms of integrable PDEs[END_REF]. In a different context of global dynamics, a notion of "integrable maps" has been devised relative to long-time behaviour of their orbits and their complexity [START_REF] Veselov | Integrable mappings[END_REF][START_REF] Veselov | Growth and integrability in the dynamics of mappings[END_REF].

In [START_REF] Bogoyavlenskij | Extended integrability and bi-Hamiltonian systems[END_REF], a new integrability condition for non-Hamiltonian vector fields was established, which involves commuting vector fields and common first integrals. Concretely, such an integrable system on an n-dimensional manifold consists of p independent commuting vector fields and np functionally independent common first integrals. For a local integrable system near a common equilibrium point of the vector fields, the p vector fields (resp. np first integrals) may be not always independent (resp. functionally independent), so they are required to be independent (resp. functionally independent) almost everywhere.Then one can seek for a simultaneous Poincaré-Dulac normal form (named "normal form" for short) of the vector fields. Such a transformation can be obtained under certain non-degeneracy conditions [START_REF] Stolovitch | Singular complete integrability[END_REF][START_REF] Zung | Non-degenerate singularities of integrable dynamical systems[END_REF][START_REF] Jiang | Local normal forms of smooth weakly hyperbolic integrable systems[END_REF].

We aim at considering, in the same spirit, discrete dynamical systems given by a family of germs of commuting diffeomorphisms at a fixed. On the one hand, the simultaneous linearization of such holomorphic family under an appropriate "small divisors" condition has been treated by the second author [START_REF]Stolovitch Family of intersecting totally real manifolds of (C n , 0) and germs of holomorphic diffeomorphisms[END_REF]. On the other hand and to the best of our knowledge, the only known result in this spririt, related to "integrability of diffeomeorphisms" is due to X. Zhang [START_REF] Zhang | Analytic integrable systems: Analytic normalization and embedding flows[END_REF] who considered a single diffeomorphism near a fixed point. On the other hand, In this article, we propose an analogue notion of integrability of a family of commuting diffeomorphisms near a common fixed point, then we explore their local behavior and study their normal forms.

In this paper, we consider local diffeomorphisms on (K n , 0) having the form (1.1) Φ(x) = Ax + higher order terms such that the coefficient matrix A of the linear part at the origin has a (real or complex) logarithm, i.e., there exists a matrix B such that A = e B . It is known that a complex matrix has a logarithm if and only if it is invertible [START_REF] Gantmakher | The theory of matrices[END_REF]; a real matrix has a real logarithm if and only if it is invertible and each Jordan block belonging to a negative eigenvalue occurs an even number of times [START_REF] Culver | On the existence and uniqueness of the real logarithm of a matrix[END_REF].

Let Φ be a germ of diffeomorphism near a fixed point, say the origin. Then, for any integer k 1, Φ (k) denotes the homogeneous polynomial of degree k of the Taylor expansion at the origin of Φ. Definition 1.1 (Integrability, local version). Let Φ be a local diffeomorphism on K n (K = C or R) having the origin 0 as its isolated fixed point. If there exists p 1 pairwise commuting (germs of) diffeomorphisms Φ 1 = Φ, Φ 2 , . . . , Φ p of the form (1.1) with DΦ i (0) = A i and q = np common first integrals F 1 , . . . , F q of the diffeomorphisms such that

• the diffeomorphisms are independent in the following sense: the matrices {ln A i } i=1,...,p are linearly independent over K; if K = C then ln A i are not unique and we require the independence of families of all possible logarithms;

• the first integrals are functionally independent almost everywhere, i.e., the wedge of differentials of the first integrals satisfies dF 1 ∧ • • • ∧ dF q = 0 almost everywhere, then Φ is called a completely integrable diffeomorphism and we say (Φ 1 = Φ, Φ 2 , . . . , Φ p , F 1 , . . . , F q ) is a (discrete) completely integrable system of type (p, q).

We remark that analytic integrable systems in n-dimensional Euclidean spaces containing a single diffeomorphism and n -1 functionally independent first integrals were studied [START_REF] Zhang | Analytic normalization of analytic integrable systems and the embedding flows[END_REF][START_REF] Zhang | Analytic integrable systems: Analytic normalization and embedding flows[END_REF] and a local normal form was obtained under a mild generic condition.

We now introduce the notion of non-degeneracy of integrable diffeomorphisms.

Definition 1.2 (non-degeneracy). We say that a local discrete integrable system (Φ 1 , . . . , Φ p , F 1 , . . . , F q ) of type (p, q) is non-degenerate, if for all i = 1, . . . , p,

• the linear part Φ

(1) i of the diffeomorphism Φ i at the origin is semi-simple, i.e., write Φ

(1) i (x) = A i x, then the coefficient matrix A i is diagonalizable over C; • there exist q functionally independent homogeneous polynomials P 1 , . . . , P q such that (Φ

1 , . . . , Φ

p , P 1 , . . . , P q ) is a linear (discrete) completely integrable system of type (p, q); The notion of the non-degeneracy of commuting diffeomorphisms follows that of nondegeneracy of commuting vector fields defined in [START_REF] Zung | Non-degenerate singularities of integrable dynamical systems[END_REF]. The first condition is generic in the sense that almost all matrices are diagonalizable over C; and the second condition is automatically satisfied for formal or analytic integrable systems by Ziglin's lemma [START_REF] Ziglin | Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics[END_REF].

If there exist logarithms ln A i of A i such that any common first integral of Φ

1 , . . . , Φ

is also a common first integral of the linear vector fields X i defined by ln A i , then X 1 , . . . , X p together with P 1 , . . . , P q form a linear non-degenerate integrable system of type (p, q). In such a case, the family of (linear) integrable diffeomorphisms is said to be infinitesimally integrable and X 1 , . . . , X p are called infinitesimal (linear) generators in the sense Φ

(1) i = e X i , and we pick and fix one such family of vector fields if the logarithms are not unique.

The following example shows that not all linear integrable diffeomorphisms is infinitesimally integrable.

Example 1.3. The integrable system Φ(x, y) = (-2x, 1 2 y), F = x 2 y 2 on C 2 of type (1, 1). The corresponding vector field X = (ln 2 + (2K

1 + 1) √ -1π)x ∂ ∂x -(ln 2 + 2K 2 √ -1π
)y ∂ ∂y does not admit any homogeneous first integral for all integers K 1 , K 2 . Indeed, if X(x p y q ) = 0 for some natural integers p, q, then we would have (ln 2

)(p - q) + 2 √ -1π[(K 1 + 1 2 )p -K 2 q] = 0.
Then vanishing of the real part leads to p = q so that the vanishing of the imaginary part reads (K 1 -K 2 + 1

2 )p = 0; this is not possible.

Preliminaries and formal normal forms

In this section, we introduce some notions and lemmas in order to well organize the proof of the main theorem. The first lemma is analogue to the Poincaré-Dulac normal form for commuting vector fields. It requests neither integrability nor non-degeneracy.

Lemma 2.1 (Théorème 4.3.2 in [START_REF]Géométrie différentielle et singularités de systèmes dynamiques[END_REF]). Let Φ 1 , Φ 2 , . . . , Φ p be p commuting diffeomorphisms in K n around 0. Let Φ ss j be the semi-simple part of the Jordan decomposition of the linear part of Φ i at the origin. There exists a formal transformation Ψ such that, Φi • Φ ss j = Φ ss j • Φi for all i, j = 1, 2, . . . , p, where Φi := Ψ-1

• Φ i • Ψ.
We say the diffeomorphisms are in Poincaré-Dulac normal form. Moreover, when K = C, let ρ be an anti-holomorphic involution. Assume that Φ i ρ = ρΦ i for all i, then Ψ can be well chosen such that Ψρ = ρ Ψ as well, and we call it ρ-equivariant normalization.

Though the result can be obtained by direct computation, it is easier to understand [START_REF]Géométrie différentielle et singularités de systèmes dynamiques[END_REF] via the Jordan decomposition theorem. For completeness, we provide a proof (in particular, of the ρ-equivariant case used in section 5) here.

Idea of a proof. For each positive integer ℓ, let E (ℓ) denote the K algebra of ℓ-th order jets (Taylor expansions) j ℓ 0 f at 0 of smooth K functions f on K n and let D (ℓ) be the group of ℓ-th order jets j ℓ 0 Φ at 0 of smooth diffeomorphisms Φ vanishing at 0 ∈ K n ; then, the map which sends ℓ) onto the group aut(E (ℓ) ) of automorphisms of E (ℓ) . We may sometimes abuse notations of jets as its representative for simplicity.

j ℓ 0 Φ ∈ D (ℓ) to (j ℓ 0 Φ) * : j ℓ 0 f → j ℓ 0 (f • Φ) is an isomorphism of D (
Thus, (j ℓ 0 Φ 1 ) * , . . . , (j ℓ 0 Φ p ) * are commuting elements of aut(E (ℓ) ); it follows that their semi-simple parts , as endomorphisms of the K vector space E (ℓ) , commute pairwise. Now, it is easy to see that the semi-simple part of an element of aut(E (ℓ) ) lies in aut(E (ℓ) ) by the Jordan-Chevalley theorem; therefore, there exist pairwise commuting elements j ℓ 0 S i of D (ℓ) such that (j ℓ 0 S i ) * is the semi-simple part of (j ℓ 0 Φ i ) * for 1 ≤ i ≤ p. Then, the following two facts are not difficult to establish:

• one has j 1 0 S i = Φ ss i for 1 ≤ i ≤ p • as the (j ℓ 0 S i ) * 's are commuting elements of aut(E (ℓ) ), their semi-simplicity implies, essentially by definition, that the j ℓ 0 S i 's can be simultaneously linearized by a formal diffeomorphism j ℓ 0 Ψ of order ℓ. Indeed, the diffeomorphism j ℓ 0 Ψ can be defined through the transformation (j ℓ 0 Ψ) * that normalizes the commuting family {(j ℓ 0 S 1 ) * , . . . , (j ℓ 0 S p ) * }: (after complexification if necessary,) let us take n common eigenvectors j ℓ 0 f 1 , . . . , j ℓ 0 f n of (j ℓ 0 S 1 ) * , . . . , (j ℓ 0 S p ) * such that j 1 0 f 1 , . . . , j 1 0 f n form a basis of E (1) and let us set (j ℓ

0 S i ) * (j ℓ 0 f m ) = λ im j ℓ 0 f m . Let us define (j ℓ 0 Ψ) * by sending (j ℓ 0 Ψ) * (j ℓ 0 (f (1) 
m )) = j ℓ 0 f m for m = 1, . . . , n where f

(1) m denotes the linear part of f m . It follows from the equations (j ℓ 0 S i ) * (j ℓ 0 Ψ) * j ℓ 0 (f

(1) m ) = λ im (j ℓ 0 Ψ) * j ℓ 0 (f (1) 
m ) that (j ℓ 0 Ψ) * normalizes (that is, diagonalizes or block-diagonalizes) (j ℓ 0 S i ) * 's and therefore j ℓ 0 Ψ linearizes j ℓ 0 S i 's.

This change of coordinates simultaneously transforms the diffeomorphisms Φ i 's into a Poincaré-Dulac normal form to order ℓ, that is, for all i, j ∈ {1, . . . , p}, Φ ss i • j ℓ 0 Φ j = j ℓ 0 Φ j • Φ ss i . Take the inverse limit ℓ tends to ∞ and we get a formal transformation Ψ := j ∞ 0 Ψ = lim ←- ℓ→∞ j ℓ 0 Ψ after which the above equations hold for all natural number ℓ, i.e., Φ i • Φ ss j = Φ ss j • Φ i in the formal sense. Now assume that K = C and that the anti-holomorphic involution ρ commutes with all Φ i 's. As ρ Φi ρ = Φi , we have ρ(j ℓ 0 Φi )ρ := j ℓ 0 (ρ Φi ρ) = j ℓ 0 Φi and then ρ(j ℓ 0 Φi )ρ * = (j ℓ 0 Φi ) * . It follows from the uniqueness of Jordan-Chevalley decomposition that (ρ Si ρ) * = ( Si ) * where Si ∈ D (ℓ) and S * i is the semi-simple part of (j ℓ 0 Φi ) * in Aut(E (ℓ) ). Therefore, for any common eigenvector j ℓ 0 f of the S * i 's, we set S * i j ℓ 0 f = λ i j ℓ 0 f . Let c denote the conjugate of complex vectors. Hence, j ℓ 0 (cf ρ) =: c(j ℓ 0 f )ρ is also a common eigenvector of the S * i 's with respect to the eigenvalue λi . Indeed, on the one hand, we have

S * i j ℓ 0 (cf ρ) = (ρ Si ρ) * j ℓ 0 (cf ρ) = j ℓ 0 (cf ρρ Si ρ) = j ℓ 0 (cf Si ρ), on the other hand, we have λi j ℓ 0 (cf ρ) = j ℓ 0 (cλ i f ρ) = c λ i (j ℓ 0 f ) ρ = c( S * i j ℓ 0 f )ρ = cj ℓ 0 (f Si )ρ = j ℓ 0 (cf Si ρ).
Recall that (j ℓ 0 Ψ) * is defined with the help of eigenvectors j ℓ 0 f 1 , . . . , j ℓ 0 f n such that j 1 0 f 1 , . . . , j 1 0 f n are independent. Then one can verify j ℓ 0 (ρΨρ) = j ℓ 0 Ψ directly since (j ℓ 0 (ρΨρ)) * also sends j ℓ 0 f

(1) m to j ℓ 0 f m for m = 1, . . . , n as (j ℓ 0 Ψ) * does: as j ℓ 0 (cf (1) m ρΨ) = (j ℓ 0 Ψ) * j ℓ 0 (cf (1) m ρ) = j ℓ 0 (cf m ρ) = cj ℓ 0 f m ρ, we have

(j ℓ 0 (ρΨρ)) * j ℓ 0 f (1) m = j ℓ 0 (f (1) m ρΨρ) = j ℓ 0 (ccf (1) m ρΨρ) = cj ℓ 0 (cf (1) m ρΨ)ρ = c(cj ℓ 0 f m ρ)ρ = j ℓ 0 f m .
Hence we have ρΨρ = Ψ by the inverse limit.

Assuming that the semi-simple linear part Φ ss i of Φ i is diagonal, we set

Φ ss i (x 1 , . . . , x n ) = (µ i1 x 1 , . . . , µ in x n ). Let us write the homogeneous part of order ℓ of Φ j as Φ (ℓ) j = (φ (ℓ) j1 , . . . , φ (ℓ) jn ), then we can express Φ (ℓ) j • Φ ss i = Φ ss i • Φ (ℓ) j in local coordinates, that is, for any m ∈ {1, . . . , n}, we have φ ℓ jm (µ i1 x 1 , . . . , µ in x n ) = µ im φ ℓ jm (x 1 , . . . , x n ). It follows that for any j, the indices (γ 1 , . . . , γ n ) of every monomial term x γ 1 1 • • • x γn n
in the m-th component φ jm of Φ j satisfies the following resonant equations with respect to the m-th component (2.1)

µ im = n k=1 µ γ k ik , i = 1, . . . , p.
We denote by R m the set of solutions (γ 1 , . . . , γ n ) with γ k natural numbers and

n k=1 γ k 2.
Conversely, it is easy to see that the commuting diffeomorphisms Φ i = (φ i1 , . . . , φ in ) are formally in the Poincaré-Dulac normal form if the Taylor expansion of φ im contains only resonant terms with respect to the m-th component, i.e., the indices of every monomial term lie in R m .

We now turn to first integrals of a diffeomorphism already in the Poincaré-Dulac normal form. The second lemma is also a parallel version from the result for vector fields: A first integral of a vector field in the Poincaré-Dulac normal form is also a formal first integral of the semi-simple linear part of the vector field [START_REF] Walcher | On differential equations in normal form[END_REF].

Let us recall first integral relations for linear diffeomorphisms before stating our lemma. Given a semi-simple linear diffeomorphism Φ(x 1 , . . . ,

x n ) = (µ 1 x 1 , . . . , µ n x n ), the equation (2.2) µ ℓ 1 1 • • • µ ℓn n = 1
with respect to the non-negative integers ℓ 1 , . . . , ℓ n is called the first integral equation for Φ. We denoted by Ω the set of the solutions of the first integral equation :

(2.3) Ω := (ℓ 1 , . . . , ℓ n ) ∈ N n : µ ℓ 1 1 • • • µ ℓn n = 1 . Hence, {x ℓ 1 1 • • • x ℓn n : (ℓ 1 , . . . , ℓ n ) ∈
Ω} is the set of all monomial first integrals of Φ up to multiplication by constant coefficients. For p commuting linear diffeomorphisms, we will consider p first integral equations simultaneously and the set of their common solutions is still denoted by Ω. Proof. Write the semi-simple part of Φ i as

Φ ss i (x 1 , . . . , x n ) = (µ i1 x 1 , . . . , µ in x n
), then the lemma to prove is that if we consider the Taylor expansion of a first integral of the diffeomorphisms, then the indices of every monomial term lie in Ω provided that the diffeomorphisms are in the Poincaré-Dulac normal form.

Assume F is a common first integral of the diffeomorphisms and let F (low) be the homogeneous part of lowest degree of F . Consider the homogeneous part of lowest degree of both sides of the equations F •Φ j = F , we have obviously

F (low) •Φ (1) j = F (low) . View Φ (1)
j as a linear operator on the space of homogeneous polynomials of degree low mapping f to f • Φ (1) j , then F (low) is in the eigenspace belonging to eigenvalue 1, and therefore it is in the eigenspace belonging to the eigenvalue 1 of the semi-simple part Φ ss j , i.e., F (low) • Φ ss j = F (low) . We claim that the homogeneous part of any degree of F is also a common first integral of Φ ss j . Now assume the claim is true for homogeneous parts of degree less than ℓ, which means that any monomial term cx

ℓ 1 1 • • • x ℓn n in F with ℓ 1 + • • • + ℓ n < ℓ has indices (ℓ 1 , . . . , ℓ n ) in Ω. Consider the homogeneous part of degree ℓ of both sides of F • Φ j = F , we have (2.4) F (ℓ) • Φ (1) j + (F (<ℓ) • Φ j ) (ℓ) = F (ℓ)
, where F (<ℓ) denotes the part of F with degree less than ℓ. By our inductive hypothesis, (

F (<ℓ) • Φ j ) (ℓ) is a common first integral of Φ ss i since (F (<ℓ) • Φ j ) (ℓ) • Φ ss i = (F (<ℓ) • Φ j • Φ ss i ) (ℓ) = (F (<ℓ) • Φ ss i • Φ j ) (ℓ) = (F (<ℓ) • Φ j ) (ℓ)
. Therefore, by (2.4) we have

(F (ℓ) -F (ℓ) • Φ (1) j ) • Φ ss i = F (ℓ) -F (ℓ) • Φ (1) j , equivalently, (F ℓ -F (ℓ) • Φ ss i ) • Φ (1) j = F ℓ -F (ℓ) • Φ ss i .

Considering composition by Φ

(1) j on the right as a linear operator on the space of homogeneous polynomials of degree ℓ, we have that F (ℓ) -F (ℓ) •Φ ss i lies in the eigenspace belonging to the eigenvalue 1 of Φ (1) j and then of Φ ss j . For any i, j ∈ {1, . . . , p}, we have

(2.5) (F (ℓ) -F (ℓ) • Φ ss i ) • Φ ss j = F (ℓ) -F (ℓ)
• Φ ss i , and it implies that F (ℓ) is also a first integral of Φ ss i for i = 1, . . . , p. Indeed, assume on the contrary that a monomial term cx

ℓ 1 1 • • • x ℓn n in F (ℓ) is not a first integral of Φ ss i , then F (ℓ) -F (ℓ) • Φ ss i contains a non-vanishing term c(1 -n k=1 µ ℓ k ik ) n k=1 x ℓ k k , and then (F (ℓ) -F (ℓ) • Φ ss i ) -(F (ℓ) -F (ℓ) • Φ ss i ) • Φ ss i contains a non-vanishing term c(1 - n k=1 µ ℓ k ik ) 2 n k=1 x ℓ k k ,
which contradicts with equation (2.5).

Definition 2.3. Given a family of p commuting linear vector fields X 1 , . . . , X p on (K n , 0) and assume their semi-simple liner parts read X ss i = n m=1 λ im x m ∂ ∂xm , we say it is weakly resonant with respect to first integrals if there exists integers k 1 , . . . , k n such that

( n m=1 k m λ 1m , . . . , n m=1 k m λ pm ) ∈ 2 √ -1πZ p -{0}.
We say the family of commuting linear vector fields to be weakly non-resonant if there do not exist such integers k 1 , . . . , k n .

Given a family of p commuting diffeomorphisms on (K n , 0), we say it is weakly resonant (resp. weakly non-resonant) if the family of infinitesimal generators of their semi-simple liner parts is (resp. is not).

We emphasize that the family of X 1 , . . . , X p can be weakly non-resonant and resonant as well since we could have ( n m=1 k m λ 1m , . . . , n m=1 k m λ pm ) = 0. We also remark that our notion of weak resonance with respect to first integrals is slightly different from that with respect to vector fields: the latter requires the existence of integers k 1 , . . . , k n such that they are no less than -1 and there is at most one integer equal to -1, see [START_REF] Li | Extension of Floquet's Theory to Nonlinear Periodic Differential Systems and Embedding Diffeomorphisms in Differential Flows[END_REF] for example. Definition 2.4. Let Φ 1 , . . . , Φ p be p commuting linear diffeomorphisms on (K n , 0) and assume the eigenvalues of the semi-simple linear part Φ ss i of Φ i are µ i1 , . . . , µ in . We say the family of diffeomorphisms is projectively hyperbolic if the p real vectors (ln |µ i1 |, . . . , ln |µ in |) are R-linearly independent.

We recall that the family {Φ i } is said to be hyperbolic if any p of the n covectors (ln |µ 1j |, • • • , ln |µ pj |) are linearly independent (which coincides with the usual meaning if p = 1). By definition, the projection of a projectively hyperbolic family of p linear diffeomorphisms onto some p-dimensional subspace is hyperbolic : the p by n real matrix (ln |µ im |) has full rank and therefore there exist p columns, say the (m 1 , . . . , m p )th columns, which are linearly independent, then the projection of the diffeomorphisms onto the subspace of (x m 1 , . . . , x mp ) form a hyperbolic family of diffeomorphisms in the sense of definition 4.5. Particularly, for a single (linear) diffeomorphism, it is projectively hyperbolic if and only if there exists at least one eigenvalue that does not lie on the unit circle.

Example 2.5. The diffeomorphism (Φ(x, y) = (e

√ -1 x, e - √ -1 y) is not projectively hy- perbolic.
With the notions above, we can now state our theorem. Theorem 2.6. Let (Φ 1 = Φ, Φ 2 , . . . , Φ p , F 1 , . . . , F q ) be a formal non-degenerate discrete integrable system of type (p, q) on K n at a common fixed point, say the origin 0. Assume that the linear part of Φ i , at the origin reads Φ i } is either projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family of generators, then there is formal diffeomorphism, tangent to Identity, which conjugates each diffeomorphisms Φ i , i = 1, . . . , p to

(2.6) Φi = (µ i1 x 1 (1 + φi1 ), . . . , µ in x n (1 + φin )).
Here, the φik 's are not only common first integrals of Φ ss i (this turns Φi into a Poincaré-Dulac normal form) but also they satisfy

(2.7) n k=1 (1 + φik ) γ k = 1
for all (γ 1 , . . . , γ n ) in the set Ω (defined by (2.3)).

We give a remark that the diffeomorphism in example 1.3 is projectively hyperbolic but has no infinitesimally integrable generator; example 2.5 provides an example of a diffeomorphism which is not projectively hyperbolic but which is infinitesimally integrable with a weakly non-resonant generator X = √ -1x ∂ ∂x -√ -1y ∂ ∂y ; and the system in example 3.4 in the next section satisfies none of the two conditions.

Proof of the theorem

Lemma 3.1. Let (Φ 1 , Φ 2 , . . . , Φ p , F 1 , . . . , F q ) be a non-degenerate integrable system in which the diffeomorphisms are in the Poincaré-Dulac normal form and their linear parts read Φ

(1) i (x 1 , . . . , x n ) = (µ i1 x 1 , . . . , µ in x n ) for i = 1, . . . , p. Let Vect K Ω be the vector space spanned by Ω over K. We have the dimension of Vect K Ω is no less than q; if the family {Φ [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF] i } is either projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family of generators, then the dimension is equal to q.

Proof. By the non-degeneracy condition, we have homogeneous polynomials P 1 , . . . , P q which are common first integrals of Φ ss i and the corresponding vector fields. Then every monomial term is a common first integral with indices in Ω. As P 1 , . . . , P q are functionally independent almost everywhere, i.e., dP 1 ∧ • • • ∧ dP q = 0, there exist monomial terms

G j = x ℓ j1 1 • • • x ℓ jn n (ignore coefficient) of P j such that dG 1 ∧• • •∧dG q = 0, equivalently, 1 k 1 <...<kq n det     ∂G 1 ∂x k 1 • • • ∂G 1 ∂x kq . . . . . . ∂Gq ∂x k 1 • • • ∂Gq ∂x kq     dx k 1 ∧ • • • dx kq = 0.
It implies at least one determinant (as coefficient) in the above inequality is nonzero, that is, there exist

k 1 < . . . < k q such that G 1 • • • G q x k 1 • • • x kq det   ℓ 1k 1 • • • ℓ 1kq . . . . . . ℓ qk 1 • • • ℓ qkq   = 0. It
follows directly that the q elements (ℓ j1 , . . . , ℓ jn ) ∈ Ω are independent, and therefore the dimension of Vect K Ω is no less than q. Suppose (ℓ 1 , . . . , ℓ n ) ∈ Ω, then it satisfies the first integral equations (2.2). We have integers K 1 , . . . , K p such that (3.1)

n m=1 ℓ m ln µ im = 2K i √ -1π, i = 1, . . . , p.
If the system is infinitesimally integrable and the family of the infinitesimal gener-

ators X i = n m=1 ln µ im x m ∂ ∂x m
is weakly non-resonant, then all K i in equation (3.1) vanish and we get linear equations

(3.2) n m=1 ℓ m ln µ im = 0, i = 1, . . . , p.
It means that Ω is contained in the space of solutions of equations (3.2). By the definition of integrability, we have the p vectors (ln µ i1 , . . . , ln µ in ) are independent and therefore the space of solutions of (3.2) is of dimension np = q and therefore the dimension of Vect K Ω is no more than q. Hence, under the assumption of weak non-resonance, the vector space Vect K Ω is exactly the space of solutions of (3.2) over K.

If the system is projectively hyperbolic, we consider the real parts on both sides of equation (3.1) and get

(3.3) n m=1 ℓ m ln |µ im | = 0, i = 1, . . . , p.
It means that Ω is contained in the space of solutions of equations (3.3). By the very definition of projective hyperbolicity, the dimension of the space of solutions of (3.3) is np = q and therefore the dimension of Vect K Ω is no more than q. Hence, under the assumption of projective hyperbolicity, the vector space Vect K Ω is exactly the space of solutions of (3.3) over K.

We remark that the dimension of Vect K Ω could be bigger than q without weak nonresonance. for example, the linear diffeomorphism Φ(x, y) = ( √ -1x, -√ -1y) on C 2 have monomial first integrals x 4 , y 4 , xy and therefore the dimension of Vect K Ω is 2. In this case, the diffeomorphism is obviously weakly resonant. Proposition 3.2. Let (Φ 1 , Φ 2 , . . . , Φ p , F 1 , . . . , F q ) be a formal non-degenerate integrable system in which the diffeomorphisms are in the Poincaré-Dulac normal form. If the family of the linear parts of the diffeomorphisms is either projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family of generators, then the common first integrals of the semi-simple parts of the diffeomorphisms are also first integrals of the (nonlinear) diffeomorphisms.

Proof. According to Lemma 2.2, formal or analytic first integrals of Φ 1 , Φ 2 , . . . , Φ p are formal or analytic first integrals of the semi-simple parts of the diffeomorphisms provided that the diffeomorphisms are in the Poincaré-Dulac normal form. Then any first integral is a series of finitely many monomial generators G 1 , . . . , G r which have exponents in Ω. And the Lemma 3.1 shows that Ω lies in the q-dimensional vector space Vect K Ω if the family of the linear parts of the diffeomorphisms is either projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family of generators Now we turn to formal integrable system ( Φ1 , Φ2 , . . . , Φp , F1 , . . . , Fq ). We assume by Ziglin's lemma [START_REF] Ziglin | Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics[END_REF] that the homogeneous parts F where LCM denotes the least common multiple of low 1 , . . . , low q so that their lowest degree are all the same. In the following, the new first integrals are still denoted by F1 , . . . , Fq and their homogeneous parts of lowest degree are denoted by

F (low) 1 , . . . , F (low) q . Let H k = x ℓ k1 1 • • • x ℓ kn n
for k = 1, . . . , τ be all monomial first integrals of Φ

(1) i such that the coefficients are 1 and ℓ k1 + • • • + ℓ kn = low. Now write

F (low) j = c j1 H 1 + • • • + c jτ H τ ,
where c jk are constants and the rank of the q by τ matrix C = (c jk ) is q τ by the functional independence.

As Φ i = (φ i1 , . . . , φ in ) is in the normal form, then for any monomial first integral

G = x ℓ 1 1 • • • x ℓn n of Φ (1) i (x) = (µ i1 x 1 , . . . , µ in x n ), we have G = (µ i1 x 1 ) ℓ 1 • • • (µ in x n ) ℓn and then (3.4) G • Φ i = φ ℓ 1 i1 • • • φ ℓn in = G 1 + φ ( 2) i1 µ i1 x 1 ℓ 1 • • • 1 + φ ( 2) in µ in x n ℓn ,
where φ

im denotes the nonlinear part of φ im . It is easy to see that the homogeneous part of degree

ℓ 1 + • • • + ℓ n of G • Φ i is G and the homogeneous part of degree ℓ 1 + • • • + ℓ n + 1 is (3.5) (G • Φ i ) (ℓ 1 +•••+ℓn+1) = G ℓ 1 φ (2) i1 µ i1 x 1 + • • • + ℓ n φ (2) in µ in x n .
As Fj • Φ i = Fj , their homogeneous parts of degree low + 1 must be the same, i.e., ( Fj

• Φ i ) (low+1) = F (low+1) j
. On the other hand, we have (2) im µ im x m = 0, j = 1, . . . , q.

( Fj • Φ i ) (low+1) = (F (low) j • Φ i ) (low+1) + (F (low+1) j • Φ i ) (low+1) = (F (low) j • Φ i ) (low+1) + (F (low+1) j • Φ (1) i ) = (F (low) j • Φ i ) (low+1) + F (low+1) j . Then we get (F (low) j • Φ i ) (low+1) = 0.
Using matrices, the equations above are equivalent to

(3.6)   c 11 H 1 • • • c 1τ H τ . . . . . . c q1 H 1 • • • c qτ H τ   q×τ   ℓ 11 • • • ℓ 1n . . . . . . ℓ τ 1 • • • ℓ τ n   τ ×n     φ (2) i1 µ i1 x 1 . . . φ (2) in µ in xn     n×1 = 0.
Assume that H 1 , . . . , H q are functionally independent almost everywhere and then for any k in {1, . . . , τ } we can write

H k = H α k1 1 • • • H α kq q .
Equivalently, the q vectors (ℓ 11 , . . . , ℓ 1n ), . . . , (ℓ q1 , . . . , ℓ qn ) are linearly independent and for any k in {1, . . . , τ } we have (ℓ k1 , . . . , ℓ kn ) = q j=1 α kj (ℓ j1 , . . . , ℓ jn ). Write the τ by q matrix (α kj ) =

Id q B

with B the submatrix consisting of the last τq rows, then we have

  c 11 H 1 • • • c 1τ H τ . . . . . . c q1 H 1 • • • c qτ H τ   q×τ Id q 0 B Id τ -q Id q 0 -B Id τ -q   ℓ 11 • • • ℓ 1n . . . . . . ℓ τ 1 • • • ℓ τ n   τ ×n =         τ k=1 α k1 c 1k H k • • • τ k=1 α kq c 1k H k c 1 q+1 H q+1 • • • c 1τ H τ . . . . . . . . . . . . τ k=1 α k1 c qk H k • • • τ k=1 α kq c qk H k c q q+1 H q+1 • • • c qτ H τ         q×τ          ℓ 11 • • • ℓ 1n . . . . . . ℓ q1 • • • ℓ qn 0 • • • 0 . . . . . . 0 • • • 0          τ ×n
and we get from equation (3.6) that

(3.7)         τ k=1 α k1 c 1k H k • • • τ k=1 α kq c 1k H k . . . . . . τ k=1 α k1 c qk H k • • • τ k=1 α kq c qk H k         q×q   ℓ 11 • • • ℓ 1n . . . . . . ℓ q1 • • • ℓ qn   q×n        φ (2) i1 µ i1 x 1 . . . φ (2) in µ in x n        n×1 = 0.

Now let us compute the explicit expression of dF

(low) q ∧ • • • ∧ dF (low) q . dF (low) q ∧ • • • ∧ dF (low) q = 1 k 1 <•••<kq τ det   c 1 k 1 • • • c 1 kq . . . . . . c q k 1 • • • c q kq   dH k 1 ∧ • • • ∧ dH kq = 1 k 1 <•••<kq τ det   c 1 k 1 • • • c 1 kq . . . . . . c q k 1 • • • c q kq   1 m 1 <•••<mq n det   ℓ k 1 m 1 • • • ℓ k 1 mq . . . . . . ℓ kqm 1 • • • ℓ kqmq   H k 1 • • • H kq x m 1 • • • x mq dx m 1 ∧ • • • ∧ dx mq = 1 m 1 <•••<mq n 1 k 1 <•••<kq τ det{   c 1 k 1 H k 1 • • • c 1 kq H kq . . . . . . c q k 1 H k 1 • • • c q kq H kq     ℓ k 1 m 1 • • • ℓ k 1 mq . . . . . . ℓ kqm 1 • • • ℓ kqmq   } dx m 1 ∧ • • • ∧ dx mq x m 1 • • • x mq
Remember (ℓ k m 1 , . . . , ℓ k mq ) = q j=1 α kj (ℓ j m 1 , . . . , ℓ j mq ), we have

  ℓ k 1 m 1 • • • ℓ k 1 mq . . . . . . ℓ kqm 1 • • • ℓ kqmq   =   α k 1 1 • • • α k 1 q . . . . . . α kq 1 • • • α kq q     ℓ 1 m 1 • • • ℓ 1 mq . . . . . . ℓ q m 1 • • • ℓ q mq   ,
and therefore we can split the two summations on 1

m 1 < • • • < m q n and 1 k 1 < • • • < k q τ in the expression of dF (low) q ∧ • • • ∧ dF (low) q . Concretely, dF (low) q ∧ • • • ∧ dF (low) q
is the product of

1 m 1 <•••<mq n 1 x m 1 • • • x mq det   ℓ 1 m 1 • • • ℓ 1 mq . . . . . . ℓ q m 1 • • • ℓ q mq   dx m 1 ∧ • • • ∧ dx mq
and the homogeneous polynomial function

1 k 1 <•••<kq τ det{   c 1 k 1 H k 1 • • • c 1 kq H kq . . . . . . c q k 1 H k 1 • • • c q kq H kq     α k 1 1 • • • α k 1 q . . . . . . α kq 1 • • • α kq q   }.
This polynomial function cannot be zero since dF

(low) q ∧• • •∧dF (low) q
= 0, and it equals to the determinant of the leftmost matrix M(H 1 , . . . , H τ ) in equation (3.7). In fact, as the determinant is a linear function of each column, we write det M(H 1 , . . . , H τ ) as a sum over all k 1 , . . . , k q from 1 to τ of τ q determinants det  

α k 1 1 c 1 k 1 H k 1 • • • α kqq c 1 kq H kq . . . . . . α k 1 1 c q k 1 H k 1 • • • α kqq c q kq H kq   = α k 1 1 • • • α kqq det   c 1 k 1 • • • c 1 kq . . . . . . c q k 1 • • • c q kq   H k 1 • • • H kq
which must vanish if two indices k j and k j ′ happen to be equal; fix q pairwise distinct indices {k 1 , . . . , k q } in {1, . . . , τ } and suppose k 1 < • • • < k q , then there are q! terms similar to H k 1 • • • H kq and the sum of them is just

P (H k 1 , . . . , H kq ) := {k ′ 1 ,...,k ′ q } ={k 1 ,...,kq} α k ′ 1 1 • • • α k ′ q q det    c 1 k ′ 1 • • • c 1 k ′ q . . . . . . c q k ′ 1 • • • c q k ′ q    H k 1 • • • H kq = {k ′ 1 ,...,k ′ q } ={k 1 ,...,kq} α k ′ 1 1 • • • α k ′ q q ǫ(k ′ 1 , . . . , k ′ q ) det   c 1 k 1 • • • c 1 kq . . . . . . c q k 1 • • • c q kq   H k 1 • • • H kq = det   α k 1 1 • • • α k 1 q . . . . . . α kq 1 • • • α kq q   det   c 1 k 1 • • • c 1 kq . . . . . . c q k 1 • • • c q kq   H k 1 • • • H kq , in which ǫ(k ′ 1 , . . . , k ′ q ) = ±1 is the sign of the permutation (k ′ 1 , . . . , k ′ q ) → (k 1 , . . . , k q ). Hence det M(H 1 , . . . , H τ ) = 1 k 1 <•••<kq τ P (H k 1 , . . . , H kq ).
Back to equation (3.7), as the matrix M(H 1 , . . . , H τ ) is invertible almost everywhere, it follows that, almost everywhere, we have

  ℓ 11 • • • ℓ 1n . . . . . . ℓ q1 • • • ℓ qn   q×n     φ (2) i1 µ i1 x 1 . . . φ (2) in µ in xn     n×1 = 0.
We recall that, by 2.2, F (low+s) j is a common homogeneous polynomial first integral of the Φ (1) j 's. By our inductive hypothesis, the σ terms (F (low+s) j

• Φ i ) (low+σ+1) in the middle of equation (3.10) vanish; the last term (F

(low+σ+1) j • Φ i ) (low+σ+1) is just (F (low+σ+1) j • Φ (1) i ) = F (low+σ+1) j
. Hence we get from ( Fj

• Φ i ) (low+σ+1) = F (low+σ+1) j
that the first term in equation (3.10) vanishes, i.e., (F

(low) j • Φ i ) (low+σ+1) = 0. Substitute F (low) j by c j1 H 1 + • • • + c jτ H τ
and use equation (3.9), we have

c j1 (H 1 • Φ i ) (low+σ+1) + • • • + c jτ (H τ • Φ i ) (low+σ+1) = c j1 H 1 (ℓ 11 ξ (σ+1) 1 + • • • + ℓ 1n ξ (σ+1) n ) + • • • + c jτ H τ (ℓ τ 1 ξ (σ+1) 1 + • • • + ℓ τ n ξ (σ+1) n ) = 0, that is, n m=1 τ k=1 c jk ℓ km H k ξ (σ+1) m = 0, j = 1, . . . , q.
Using matrix and similar to equation (3.6), the above equations 

(3.11)   c 11 H 1 • • • c 1τ H τ . . . . . . c q1 H 1 • • • c qτ H τ   q×τ   ℓ 11 • • • ℓ 1n . . . . . . ℓ τ 1 • • • ℓ τ n   τ ×n    ξ (σ+1) 1 . . . ξ (σ+1) n   
+ • • • + ℓ n ξ (σ+1) n = 0, for all (ℓ 1 , . . . , ℓ n ) ∈ Ω.
Take equation (3.12) back to equation (3.9), we get that the homogeneous part of degree

ℓ 1 + • • • + ℓ n + σ + 1 of G • Φ i vanishes.
We finish our inductive step.

Lemma 3.3 (Division Lemma). Let (Φ 1 , Φ 2 , . . . , Φ p , F 1 , . . . , F q ) be a non-degenerate integrable system of type (p, q) such that the diffeomorphisms are in Poincaré-Dulac normal form. Write Φ i = (φ i1 , . . . , φ in ) for i = 1, . . . , p. If the family {Φ

i } is either projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family of generators, then we have φ im is divisible by x m for m = 1, . . . , n.

Proof. There are two cases according to different positions of the vector space Vect K Ω.

Case 1: the vector space Vect K Ω is not contained in any hyperplane. In this case, for any m, there exists an element (ℓ 1 , . . . , ℓ n ) ∈ Ω such that ℓ m = 0. The equation

n k=1 φ ℓ k ik = x ℓ 1 1 • • • x ℓn n implies that n k=1 φ ℓ k ik is divisible by x ℓm m .
On the other hand, as the linear part of φ ik is µ ik x k , we get k =m φ ik is not divisible by x m since its homogeneous part of lowest degree is k =m µ ik x k . Hence, k =m φ ℓ k ik is not divisible by x m neither. Hence φ im is divisible by x m .

Case 2: the vector space Vect K Ω is contained in a hyperplane. Assume for any (ℓ 1 , . . . , ℓ n ) ∈ Ω we have ℓ m = 0 and and x γ 1 1 • • • x γn n is a term of φ im with γ m = 0. we have the indices (γ 1 , . . . , γ n ) lie in R m which satisfy the resonant equations (2.1). Then We have integers K 1 , . . . , K n such that

(3.13) ln µ im = n k=1 γ k ln µ ik + 2K i π √ -1, i = 1, . . . , p.
If the system is infinitesimally integrable and the family of the infinitesimal generators X i = n m=1 ln µ im x m ∂ ∂xm is weakly non-resonant, then we have K i = 0 for all i and (γ 1 , . . . , γ m-1 , -1, γ m+1 , . . . , γ n ) is an integer solution of the equations

(3.14) n k=1 γ k ln µ ik = 0, i = 1, . . . , p.
As its m-th component is nonzero and therefore it cannot be expressed by a linear combination of elements in Ω, then we can get q + 1 independent solutions of (3.14) which contradicts with that the dimension of Vect K Ω equals to q.

If the system is projectively hyperbolic, then we consider the real parts on both sides of equation (3.13)

ln |µ im | - n k=1 γ k ln |µ ik | = 0, i = 1, . . . , p.
We can see that (γ 1 , . . . , γ m-1 , -1, γ m+1 , . . . , γ n ) is an integer solution of the equations Then the dimension of solutions of (3.15) is larger than q and so is that of Vect K Ω, which contradicts with that the dimension of Vect K Ω equals to q.

Hence, under the assumption of weak non-resonance or projective hyperbolicity, we have for every term x γ 1 1 • • • x γn n of φ im , its m-th exponent γ m > 0. We point out that our hypothesis is necessary.

Example 3.4. Consider two commuting diffeomorphisms on (C 2 , 0) Φ 1 (x, y) = (2x, 4y + x 2 ) and Φ 2 (x, y) = (-3x, 9y).
The commuting diffeomorphisms are in the Poincaré-Dulac normal forms but they can not be put into normal forms stated in theorem 2.6. In this case, the integrable system without common first integrals is neither weakly non-resonant nor projectively hyperbolic.

We also note that if Ω admits, say, only the first p ′ entries are nonzero, which means the last np ′ elements ℓ p ′ +1 , . . . , ℓ n must be zero, then the first integrals are independent of x p ′ +1 , . . . , x n by lemma 2.2. Moreover, we have all φ im with m p ′ are independent of x p ′ +1 , . . . , x n . In fact, we just proved that such φ im is divisible by x m , then by equation (2.1), the indices of the quotients of monomial terms in φ im and x m also lie in Ω, hence, the last np ′ indices of every monomial term in φ im must be zero. Hence, consider projections of Φ 1 , . . . , Φ n to the plane of first p ′ coordinates, then any p ′ independent of them as diffeomorphisms on the coordinate plane together with the q first integrals as functions on the coordinate plane form an integrable system of type (p ′ , q). End of the proof of theorem 2.6

By the division lemma 3.3, there exist functions ϕ im such that φ im = µ im x m (1 + φim ) for all i and all m. By proposition 3.2, we have (x

γ 1 1 • • • x γn n ) • Φ i = x γ 1 1 • • •
x γn n for every (γ 1 , . . . , γ n ) in Ω, and after substitutions of φ im and a reduction, we get n k=1 (1 + ϕ ik ) γ k = 1.

Notice the relation between R m and Ω given by (2.1) and (2.2) respectively, every term of φ im whose indices lie in R m is a product of x m and a term of ϕ im whose indices lie in Ω, so ϕ im are first integrals of Φ ss j .

Cases in analytic and smooth category

Analytic case. For analytic integrable diffeomorphisms, we pay attention to the systems of the Poincaré type. 

(i ′ , (s ′ 1 , . . . , s ′ n )) ∈ {1, . . . , p}×N n such that µ s ′ 1 i1 • • • µ s ′ n in = µ s 1 i1 • • • µ sn in for all 1 ≤ i ≤ p, µ s ′ 1 i1 • • • µ s ′ n in -µ i ′ m = 0, and max µ s ′ 1 i ′ 1 • • • µ s ′ n i ′ n , µ s ′ 1 i ′ 1 • • • µ s ′ n i ′ n -1 > c -1 d s ′ 1 +•••+s ′ n , (s ′ 1 -s 1 , . . . , s ′ n -s n ) ∈ N n ∪(-N n ) .
By a theorem of X. Gong and L. Stolovitch [START_REF] Gong | Real submanifolds of maximum complex tangent space at a CR singular point, I[END_REF][Theorem 4.13], which says that if a commutative family of finitely many germs of biholomorphisms of the Poincaré type is formally conjugate to the normal form (2.6) satisfying (2.7), then it is holomorphically conjugate to the normal form, we get the following theorem. Theorem 4.2. Let (Φ 1 , . . . , Φ p , F 1 , . . . , F q ) be a non-degenerate analytic integrable system of type (p, q) on K n around 0 satisfying the condition in theorem 2.6. If the family of diffeomorphisms is of Poincaré type, then the system is analytically conjugate to the normal form 2.6 together with 2.7 as in theorem 2.6., i.e., the normalization is convergent.

We remark that for integrable systems of type (1, n -1), any diffeomorphism satisfying the assumption that at least one eigenvalue does not lie on the unit circle in [START_REF] Zhang | Analytic integrable systems: Analytic normalization and embedding flows[END_REF] is projectively hyperbolic and of the Poincaré type : Proposition 4.3. Let Φ be an integrable diffeomorphism on K n in the Poincaré-Dulac normal form formally. Suppose its linear part is diagonal written as Φ (1) (x) = (µ 1 x 1 , . . . , µ n x n ) and at least one of its eigenvalues does not lie on the unit circle, then Φ is of the Poincaré type.

Proof. Suppose x

ℓ j1 1 • • • x ℓ jn
n , j = 1, . . . , n -1 are n -1 independent first integrals of Φ (1) . Then then equation (3.3) in this particular case becomes 

ℓ n-1 1 • • • ℓ n-1 n     ln |µ 1 | . . . ln |µ n |   = 0.
As the n -1 by n matrix L has rank n -1 by independence, the dimension of the space of its solutions is one. Then the hypothesis that there exists at least one of the eigenvalues does not lie on the unit circle implies that (ln |µ 

• • • µ ℓ jn n = 1, there exist integers K 1 , . . . , K n-1 such that (4.2) ℓ j1 Arg µ 1 + • • • + ℓ jn Arg µ n = 2K j π, j = 1, . . . , n -1.
This is a (non-homogeneous if K j = 0) linear system and its real solutions form a one dimensional affine space: the difference of any two solutions is a solution of (4.1). Then, by the same argument as above, we can take a special solution 2π(θ 1 , . . . , θ n ) such that θ i 's are rational numbers and therefore there exists a real number c ′ such that (Arg µ 1 , . . . , Arg µ n ) = 2π(θ 1 , . . . , θ n ) + c ′ (k 1 , . . . , k n ).

µ i = e ck i e √ -1 2πθ i e √ -1 c ′ k i = e (c+ √ -1c ′ )k i e √ -1 2πθ i = d k i e √ -1 2πθ i , in which d = e c+ √ -1c ′ with |d| = e c > 1.
For any µ i with |µ i | = 1 or equivalently k i = 0, µ i = e √ -1 2πθ i . Then there exists a natural number α i such that µ α i i = 1 since θ i is rational and therefore x α i i is a first integral of Φ ss . For any pair µ i and µ j with |µ i | < 1 and |µ j | > 1, we have k i < 0 < k j and therefore there exist a pair of natural numbers β i and β j such that β i k i + β j k j = 0 and β i θ i + β j θ j ∈ Z. Then µ β i i µ β j j = 1 and therefore x β i i x β j j is a first integral of Φ ss . We now claim that for any (s 1 , . . . , s n ) ∈ N n , there exists (s

′ 1 , . . . , s ′ n ) ∈ N n such that • µ s ′ 1 1 • • • µ s ′ n n = µ s 1 1 • • • µ sn n ; • either {s ′ i : i satisfies |µ i | 1} or {s ′ j : j satisfies |µ j | 1} is bounded.
In fact, let M be a natural number bigger than all possible α i , β i , β j , then for s i with i satisfies |µ i | = 1, set s ′ i to be the remainder of s i divided by α i . In the same spirit, for s i > M and s j > M with i ∈ I := {i : |µ i | < 1} and j ∈ J := {j : |µ j | > 1}, we take the maximal integer m such that (s i , s j )m(β j , β j ) is nonnegative and take this vector to replace (s i , s j ), then the new s i and s j satisfy s i < β i < M or s j < β j < M; continue the operation for the other (s i , s j )'s with i ∈ I, j ∈ J and s i > M, s j > M and obviously the operation will stop in finite steps; set s ′ i with i ∈ I ∪ J to be the final s i after reductions. Then (s ′ 1 , . . . , s ′ n ) satisfies the second request. It satisfies the first request since each operation holds the property. formally conjugate to the family of Ψ 1 , . . . , Ψ p , and it follows by Chaperon's theorem that they are smoothly conjugate.

Observe that hyperbolic systems are projectively hyperbolic and weakly hyperbolic, it follows naturally that Corollary 4.7. Let (Φ 1 = Φ, Φ 2 , . . . , Φ p , F 1 , . . . , F q ) be a non-degenerate smooth integrable system of type (p, q) on K n around 0. If the system is hyperbolic, then the diffeomorphisms are smoothly conjugate to a smooth normal form of the form (2.6) together with (2.7) as in theorem 2.6.

Real case

In this section, we consider families of real commuting diffeomorphisms Φ 1 , . . . , Φ p on (R n , 0). The coefficients of the Taylor expansion of Φ i (x)'s at the origin are real numbers. If the linear parts Φ

(1) i is diagonalizable over R, then all preceding results hold true with the same proof.

Here we are concerned with cases where Φ

i = A i are not diagonalizable over R but merely C. By the commutativity, one can decompose

R n = ⊕ l j=1 V j ⊕ R n-2l
where each V j is a real plane left invariant by all A i 's and such that at least one of the A i | V j 's is diagonalizable over C but not over R. Under a basis of vectors from eigenspaces, each A i becomes a block diagonal matrix consisting of l two by two blocks and n -2l real numbers. Suppose the eigenvalues of

A i | V j are µ ij = u ij + √ -1v ij , μij = u ij - √ -1v ij , then the j-th block of A i can be of the form u ij -v ij v ij u ij if the basis is well chosen.
Denote by E j := V j ⊕ √ -1V j the complexification of V j , it is natural to get a canonical linear map A i | E j . The complex vector e = ( 1 2 , -1 2 √ -1) in E j is a common eigenvector belonging to µ ij of A i | E j , i.e., A i | E j e = µ ij e for i = 1, . . . , p. Then ē = ( 1 2 , 1 2 √ -1) is a common eigenvector of μij and E j is isomorphic to the C-vector space generated by e, ē. Define D ij := µ ij 0 0 μij and P j :=

1 2 1 2 -1 2 √ -1 1 2 √ -1
. Then for i = 1, . . . , p and j = 1, . . . , l, we have A i | E j P j = P j D ij . Let P be the linear transformation on C n given by the block diagonal matrix consisting of l copies of Now let us consider the family { Φi (z) := P -1 Φ i (P (z))} i of transformations of C n . Obviously, Φi (z)'s commute pairwise. If the family of Φ i (z)'s is non-degenerate, weakly non-resonant, (projectively, weakly) hyperbolic, then the family of Φi (z)'s keeps these properties defined according to the eigenvalues which are the same of Φi 's and Φ i 's.

If Φ i 's have q = np first integrals F 1 , . . . , F q functionally independent almost everywhere, then Fj (z) := F j (P z)'s are first integrals of the Φi 's since Fj ( Φi (z)) = F j (P P -1 Φ i (P z)) = F j (P z) = Fj (z).

We also have F1 , . . . , Fq are functionally independent almost everywhere since P is invertible.

Hence, we get an integrable system ( Φ1 , . . . , Φp , F1 , . . . , Fq ) on C n of type (p, q). Notice the coefficients of the Taylor series at the origin of Φ i 's are real, we have c • Φ i • c = Φ i formally. With the help of the equations (5.1) and its equivalent equation P -1 c = ρ -1 P -1 = ρP -1 , we have formally Φi

• ρ = P -1 Φ i (P ρ) = P -1 • c • c • Φ i (cP ) = P -1 • (c • Φ i ) • P = ρ • P -1 • Φ i • P = ρ • Φi .
This is the formal ρ-equivariant normal form theory (see lemma 2.1): there exists a formal transformation Ψ(z), tangent to identity at the origin, such that (1) Ψ • ρ = ρ • Ψ (2) Φi := Ψ -1 • Φi • Ψ is in the Poincaré-Dulac normal form, i.e., Φi • D j = D j Φi . Now the proof of theorem 2.6 works and we get the complexified integrable diffeomorphisms Φi 's deduced from a real integrable system (Φ 1 , . . . , Φ p , F 1 , . . . , F q ) are formally conjugated by Ψ to Φi 's which are of the form (2.6) together with (2.7) as in theorem 2.6 if the family is either projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family of generators.

Lemma 5.1. The formal transformation P ΨP -1 is real in the sense that its coefficients are all real.

Proof. The equation cP ΨP -1 c = P ρΨρP -1 = P Ψρ 2 P -1 = P ΨP -1 holds.

Observe that P Φi P -1 = P Ψ -1 • Φi • ΨP -1 = (P ΨP -1 ) -1 • Φ i • (P • ΨP -1 ), we have a version of theorem 2.6 for real diffeomorphisms having a linear part which is diagonal over C but not necessarily over R. Theorem 5.2. Let (Φ 1 = Φ, Φ 2 , . . . , Φ p , F 1 , . . . , F q ) be a formal non-degenerate discrete integrable system of type (p, q) on R n at a common fixed point, say the origin 0. If the family {Φ [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF] i } is either projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family of generators, then the family of real diffeomorphisms {Φ i } is formally conjugated by the real formal transformation P ΨP -1 tangent to Identity to a real normal form {P Φi P -1 } which is of the form where Φim denotes the m-th component of Φi which is the complex normal form of Φ i as in theorem 2.6 and z = (z 1 , . . . , z n ) is defined as z 2j-1 = x 2j-1 + x 2j √ -1, z 2j = x 2j-1x 2j √ -1 for j = 1, . . . , l and z j = x j for j > 2l.

Lemma 2 . 2 .

 22 Assume Φ 1 , Φ 2 , . . . , Φ p are in the Poincaré-Dulac normal form, then formal first integrals of the diffeomorphisms are formal first integrals of the semi-simple parts of the diffeomorphisms.

( 1 )

 1 i (x 1 , . . . , x n ) = (µ i1 x 1 , . . . , µ in x n ), for all i = 1, . . . , p. If the family {Φ[START_REF] Arnold | Mathematical methods of classical mechanics[END_REF] 

(low 1 ) 1 ,

 1 . . . , F (lowq) q of lowest degree of F1 , . . . , Fq are functionally independent almost everywhere. For convenience, we use

  j by c j1 H 1 + • • • + c jτ H τ and use the equation (3.5), we get n m=1 τ k=1 c jk ℓ km H k φ

 n×1 = 0 .

 0 Apply the same argument from equation (3.6) to equation (3.8), we can get by equation (

γ

  k ln |µ ik | = 0, i = 1, . . . , p.

Definition 4 . 1 .

 41 ([11][Definition 4.11]) Let Φ 1 , . . . , Φ p be p commuting diffeomorphisms and (µ i1 , . . . , µ in ) be the eigenvalues of the linear part of Φ i . We say that the family of the diffeomorphisms (or their linear part) is of the Poincaré type if there exist d > 1 and c > 0 such that, for each (s 1 , . . . , s n ) ∈ R m , there exists

1 and

 1 Identity of size n -2l and D i be the linear transformation on C n given by the block diagonal matrix consisting of blocks D i1 , . . . , D il and Identity of size n -2l. Define ρ to be the following involution ρ(z 1 , z 2 , . . . , z 2l-1 , z 2l , z 2l+1 , . . . , z n ) := (z 2 , z1 , . . . , z2l , z2l-1 , z2l+1 , . . . , zn ), and denote by c the complex conjugate c(z 1 , . . . , z n ) := (z 1 , . . . , zn ). We easily have D i • ρ = ρ • D i for i = 1, . . . , p and (5.1) P ρ = cP.

1 ,

 1 Φi(2l+1) , . . . , Φin )(z),

  1 |, . . . , ln |µ n |) is a nonzero solution of equation (4.1); on the other hand, as L := (ℓ ji ) (n-1)×n is an integer matrix, equation (4.1) has integer solutions. Thus there exists an integer solution (k 1 , . . . , k n ) and a real number c > 0 such that (ln |µ 1 |, . . . , ln |µ n |) = c(k 1 , . . . , k n ). Then we get ln |µ i | = ck i and then |µ i | = (e c ) k i = e ck i . Now write µ i = e ck i e Arg µ i where 0 Arg µ i < 2π denotes the principal value of the argument of µ i , then by the property µ

	ℓ j1
	1

√ -1
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It follows by Lemma 3.1 that, as polynomial functions, (3.8) G ℓ 1 φ

(2) i1

In other words, the homogeneous part of degree

(1) i by equation (3.5). We will show by induction that the homogeneous part of G • Φ i with degree larger than ℓ 1 + • • • + ℓ n also vanishes for G = x ℓ 1 1 • • • x ℓn n , then we can say that any monomial first integral of Φ [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF] i is a first integral of Φ i . Assume the statement is true up to degree ℓ 1 + • • • + ℓ n + σ, σ > 0; it follows naturally that for any homogeneous polynomial first integral F (ℓ) , the homogeneous parts up to degree ℓ + σ of F (ℓ) • Φ i all vanish.

Let ξ m = ln(1+ φ

( 2) im

Use the convention that the degree with respect to x of φ

denotes the homogeneous part of degree s with respect to x. Rewrite equation (3.4) as

that is when x does not belong to the union of hyperplane coordinates.By our assumption, we get that every homogeneous part of degree no more than σ in (η

, in which c s 1 •••st are constants; and therefore the degree of the first possibly nonvanishing homogeneous part of (η + 1 2 η 2 + • • • ) must larger than σ. For degree σ + 1, we have

We get that the homogeneous part of degree

Now consider the homogeneous part ( Fj

Hence Φ is of the Poincaré type. One can get the same conclusion by a similar estimate on µ

With the help of a lemma (Lemma 2.5 in [START_REF] Zhang | Analytic integrable systems: Analytic normalization and embedding flows[END_REF]) which claim that the linear part of the integrable diffeomorphism on (C n , 0) of type (1, n -1) is diagonalizable, it follows that Corollary 4.4. [START_REF] Zhang | Analytic integrable systems: Analytic normalization and embedding flows[END_REF] An analytic integrable diffeomorphism of type (1, n -1) on (C n , 0) such that at least one of its eigenvalues does not lie on the unit circle is analytically conjugate to the normal form 2.6 together with 2.7 as in theorem 2.6.

Smooth case. In the smooth category, we only consider the weakly hyperbolic systems, which were firstly introduced and studied by M. Chaperon. Definition 4.5. ([section1.2] in [START_REF] Chaperon | A Forgotten Theorem on Z k × R m -action Germs and Related Questions[END_REF]) Let Φ 1 , . . . , Φ p be p commuting diffeomorphisms on (K n , 0). Suppose the eigenvalues of the semi-simple part Φ ss i of the linear part of Φ i are µ i1 , . . . , µ in . For any k ∈ {1, . . . , n}, we can get a linear form c k in (R p ) * defined by mapping (t 1 , . . . , t p ) ∈ R p to p i=1 ln |µ ik |t i . The Z p -action generated by the diffeomorphisms is called

• hyperbolic if any p linear forms in {c 1 , . . . , c n } are linearly independent in (R p ) * ; • weakly hyperbolic if the convex hull of any p linear forms in {c 1 , . . . , c n } does not contain the origin of (R p ) * . Obviously, hyperbolicity implies weak hyperbolicity.

We remark if K = C and the diffeomorphisms are viewed as real diffeomorphisms from (R 2 ) n to itself, then the eigenvalues of Φ ss i are µ i1 , μi1 , . . . , µ in , μin . Then we can get 2n linear forms c k , k = 1, 2, . . . , 2n with c 2k = c 2k-1 , k = 1, . . . , n, and therefore the property that the convex hull of any p linear forms in {c 1 , . . . , c 2n } does not contain the origin of (R p ) * coincides with the previous one.

Theorem 4.6. Let (Φ 1 = Φ, Φ 2 , . . . , Φ p , F 1 , . . . , F q ) be a non-degenerate smooth integrable system of type (p, q) on K n around 0 satisfying the condition of theorem 2.6. If the system is weakly hyperbolic, then the diffeomorphisms are smoothly conjugate to a smooth normal form of the form 2.6 together with 2.7 as in theorem 2.6.

Proof. The idea of the proof is to construct another smooth integrable system which is formally conjugate to the original system and then we can apply Chaperon's theorem [START_REF] Chaperon | A Forgotten Theorem on Z k × R m -action Germs and Related Questions[END_REF], which asserts that two weakly hyperbolic smooth Z k × R m -action germs are smoothly conjugate if and only if they are formally conjugate.

By theorem 2.6, the system is formally conjugate to Φi = (µ i1 x 1 (1 + φi1 ), . . . , µ in x n (1 + φin )), i = 1, . . . , p, where φik 's are formal series of finitely many generators, say G 1 , G 2 , . . . , G r , which are monomial first integrals of Φ ss i 's. Moreover, these formal series satisfy the first integral relations n k=1 (1 + φik ) γ k = 1 in the formal sense for all (γ 1 , . . . , γ n ) in the set Ω of common solutions of resonance equations (2.2).

By the Borel's theorem, there exist smooth functions φik 's which are indeed smooth functions of G 1 , G 2 , . . . , G r whose formal Taylor power series expansion at the origin are just φik 's respectively. Define Φi = (µ i1 x 1 (1 + φi1 ), . . . , µ in x n (1 + φin )), i = 1, . . . , p, A priori, this new family of smooth dffeomorphisms do not commute any longer. In order to retrieve the commutativity property, it is sufficient to replace functions φik 's by smooth functions ϕ ik 's such that ϕ ik 's satisfy n k=1 (1 + ϕ ik ) γ k = 1 for (γ 1 , . . . , γ n ) ∈ Ω. This replacement can by realized by only adjusting the flat parts of φik 's as follows.

Take q = n-p Q-linearly independent elements in Ω, denoted by ω j := (ω j1 , . . . , ω jn ), j = 1, 2, . . . , q. Fix i and assume n k=1 (1 + φik ) ω jk = 1 + f lat ij for j = 1, . . . , q in which f lat ij 's are flat functions i.e., their infinite jets at 0 are zero. Take logarithm of the equations, we get Remember the functions ϕ ik we are searching for satisfy (4.4)

Assume without loss of generality the first q columns of the matrix (ω jk ) are independent and let ϕ ik = φik for k = q + 1, . . . , n. For k = 1, . . . , q, let ϕ ik be the unique solution the linear equations obtained by (4.3) minus (4.4)

We get immediately that n k=1 (1 + ϕ ik ) ω jk = 1 for j = 1, . . . , q, and it is also easy to verify ϕ iℓ -φiℓ is flat since ln 1 + φiℓ 1 + ϕ iℓ is flat. By Lemma 3.1, any element (γ 1 , . . . , γ n )

in Ω is a Q-linear combination of ω 1 , . . . , ω q . Hence, we get n k=1 (1 + ϕ ik ) γ k = 1 for all (γ 1 , . . . , γ n ) in Ω.

Let us define the family of diffeomorphisms

Due to the property n k=1 (1 + ϕ ik ) ω jk = 1, it is commutative. As the infinite jets at 0 of φik and ϕ ik are the same, the original family of diffeomorphisms Φ 1 , . . . , Φ p is still Proof. From the expression above, we can see Φi(2j-1) (z) and Φi(2j) (z) have conjugate values. Indeed, according to the properties of Ψ and Φi above, we have

Therefore, by composition by P on the left and by P -1 on the right of the previous equation and by using (5.1), we obtain P ρ Φi ρP -1 = cP Φi P -1 c = P Φi P -1 , so that P Φi P -1 is real. Let σ be the permutation mapping 2j -1 to 2j and vice versa for j l and fixing all integers from 2l + 1 to n. 

Let (Φ 1 = Φ, Φ 2 , . . . , Φ p , F 1 , . . . , F q ) be a formal non-degenerate discrete integrable system of type (p, q) on R n at a common fixed point, say the origin 0. We assume that the family of its linear parts {A j x} is either projectively hyperbolic or infinitesimally integrable with a weakly non-resonant family of generators. Assume furthermore that the commuting family of real diffeomorphisms {Φ i } satisfies A j Φ i = Φ i A j , for all i, j. Here we assume that the matrices A j = P D j P -1 are simultaneously diagonalizable over C but not necessarily over R. Then, we have (P -1 A j P )(P -1 Φ i P ) = (P -1 Φ i P )(P -1 A j P ). Hence, the family {P -1 Φ i P } is in Poincaré-Dulac normal form as it commutes with the family of its linear part {D j }Since the family (P -1 Φ 1 P, . . . , P -1 Φ p P, F 1 • P, . . . , F q • P ) satisfies assumption of Theorem 2.6, then P -1 Φ i P is of the form (2.6) with (2.7), for all i. Therefore, Φ i is of the form (5.2) in which Φi have to be replaced by P -1 Φ i P .