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Fokker-Planck equations with terminal condition and related

McKean probabilistic representation

Lucas IZYDORCZYK *, NaDIA OUDJANE f, FRANCESCO RUSSO, ¥
AND GIANMARIO TESSITORE §

September 5th 2021

Abstract

Usually Fokker-Planck type partial differential equations (PDEs) are well-posed if the initial condition
is specified. In this paper, alternatively, we consider the inverse problem which consists in prescribing
final data: in particular we give sufficient conditions for uniqueness. In the second part of the paper we
provide a probabilistic representation of those PDEs in the form of a solution of a McKean type equation
corresponding to the time-reversal dynamics of a diffusion process.

Key words and phrases. Inverse problem; McKean stochastic differential equation; probabilistic represen-
tation of PDEs; time-reversed diffusion; Fokker Planck equation.
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1 Introduction

The main objective of the paper consists in studying well-posedness and probabilistic representation of the
Fokker-Planck PDE with terminal condition
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d
>0 (0 )i j(t, x)u) — div (b(t, z)u)

4,j=1

uTl) = pu,

(1.1)

where o : [0,7] x R? — My(R), b : [0,T] x RY — R? and y is a prescribed finite Borel (most often non-
negative) measure on R?. When u(t) admits a density for some ¢ € [0, 7] we write u(t) = u(t, z)dz. This
equation is motivated by applications in various domains of physical sciences and engineering, as heat con-
duction [3], material science or hydrology [2]. In particular, hydraulic inversion is interested in inverting
a diffusion process representing the concentration of a pollutant to identify the pollution source location
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when the final concentration profile is observed. Those models give often rise to ill-posed problems be-
cause, either the solution is not unique or it is not stable. In this specific case, the existence is ensured by
the fact that the observed contaminant is necessarily originated at a given time (as soon as the model is
correct). Several authors have handled the lack of uniqueness by introducing regularization methods and
approaching the problem using well-posed PDEs, see typically and [17]. In particular for the PDE (L.I)
there are very few results even concerning existence and uniqueness. The first objective of the paper is
precisely to investigate uniqueness for (L.1).

The second objective is to propose a probabilistic representation of PDE (L1)). Our approach relies on the
existence and uniqueness for that PDE. Although it is beyond the scope of this paper, it is important to em-
phasize the interests of probabilistic representation in possibly bringing new insights in stability analysis
or numerical approximation of PDE ([LT). For instance, based on probabilistic representation of nonlin-
ear PDEs have developed stochastic particle methods in the spirit of McKean to provide original
Monte Carlo approximation schemes approaching several class of PDEs. For recent contributions in that
direction, one can refer to 21, 20] and the survey paper [13]. In the same spirit, one may develop
Monte Carlo approximation schemes for PDE (LI) based on the probabilistic representation provided in
the present paper, which will be the object of future works. Besides, the probabilistic representation of PDE
(LI has already been exploited in [12], in the specific setting of Gaussian diffusions to propose an original
approximation scheme for solving semi-linear PDEs with applications to stochastic control.

To realize the probabilistic representation of the PDE (L), when y is non-negative, we consider the

renormalized PDE
d

o = 1Y% ((o0")i;(t,x)n) — div (b(t, x))

i,j=1
ur) = g

where i = @ is a probability measure. We remark that the PDEs (L2) and (L) are equivalent in the

(1.2)

sense that a solution to ([L2) (resp. (L.I)) provides a solution to the other one. The program consists in
considering the McKean type stochastic differential equation (SDE)

t t . ) . t
Yi=Yo- [ @ -rYar+ [ {‘“”“ENT T’”)pr(”))} ar+ [ o(T-rY,)ds,
0 0 pr (Yr) i€[1,d] 0

p; density of py = law of Yy, t €]0, T,
Yo ~ i1,

(1.3)
where §3 is a d-dimensional Brownian motion and ¥ = oo, whose solution is the couple (Y, p). Indeed
an application of Itd formula (see Proposition .3) shows that whenever (Y, p) is a solution of the SDE (L.3)
then t — pr_; is a solution of (.2).

The idea of considering (I.3) comes from the SDE verified by time-reversal of a diffusion. Time-reversal
of Markov processes was explored by several authors: see for instance [11] for the diffusion case in finite
dimension, [9] for the diffusion case in infinite dimension and [14] for the jump case. We also mention the
two very interesting recent preprints [6] [7] in relation with entropy.

Consider a forward diffusion process X solution of
t t
X = Xo +/ b(s,XS)ds—i—/ o(s, Xs)dWy, t €[0,T], (1.4)
0 0

where o and b are Lipschitz coefficients with linear growth and W is a standard Brownian motion on R?. X



is a probabilistic representation of

ou = 3 Z 61-2]- ((O'O'T)i7j (t,z)u) — div (b(t, z)u)

u(0) = v,

(1.5)

where X ~ v. Indeed, whenever X is a solution of the SDE (L.4) then the function ¢ — u(t), where u(t) is
the law of X} is a solution in the sense of distributions of the PDE (L5). We remark also that ¢ — u(t) solves
the PDE (L), p being the law of Xr. Let us now denote X, := Xp_4,t € [0,T] the time-reversal process
of the solution X of (L.4). In [T1] the authors gave sufficient general conditions on o, b and on the marginal
laws p; of X, so that Y := X is a solution (in law) of the SDE

¢ Lo o ¢
Ve X [o@-rvyars {d”y(WT ’"’Y’““’“(Y’“”} ar+ [ a(T=nY,)d5. (10
0 0 ie[1,d] 0

PT—r (Y;‘)

This constitutes an essential tool that we will exploit to prove existence of the McKean SDE (1.3).

As far as uniqueness for (I.3) is concerned, we repeat that the key idea relies on uniqueness for the
PDE (1.2) (or (LI)). First of all Proposition states the following. If (Y,p) is a solution of (L.3), then
p (T — ) is a solution of the PDE (L.I), with ¢ = p(0). This fact justifies the terminology that (L.3) con-
stitutes a probabilistic representation of (IT). Now, if the PDE (L.T) admits at most one solution then p is
completely identified, so (I.3) reduces to an ordinary SDE for which uniqueness in law (resp. pathwise) can
be established whenever the coefficients are shown to be locally bounded (resp. locally Lipschitz).

As we have mentioned earlier, there are not many articles analyzing uniqueness for Fokker-Planck PDEs
with terminal condition. For introductory purposes, we present two simple situations when this problem
can be easily tackled: one by analytical means and one by probabilistic techniques.

a) The heat equation with terminal condition admits uniqueness. Suppose indeed that u : [0, 7] — &’ (R?)

solves
ou = Au
(1.7)
u(T) = p.
Then, the Fourier transform of u, v (,-) := Fu(t,-),t € [0,T] solves the ODE (for fixed ¢ € R%)
d — _ g2 d
do(t,€) = — €20 (1,€), (1,€) € [0,T] x R .

v(T,-) = Fp.
This admits at most one solution, since setting 7 = 0 the unique solution of (I.8) is the null function.

b) Another relatively simple situation is described below to study uniqueness among the solutions of the
PDE (LJ) whose initial value belongs to the class of Dirac measures. Consider the example when o
is continuous bounded non-degenerate and the drift b is affine i.e. b(s,y) = bo (s) + b1 (s)y, (s,y) €
[0,T] x RY, by (resp. b1) being mappings from [0, 7] to R (resp. to M, (R)). Suppose for a moment
that the PDE in the first line of (L), but with initial condition (see (3.2)) is well-posed. Sufficient
conditions for this will be provided in Remark[B.3]

Let 2 € R? and u be a solution of the PDE (1)) such that «(0, -) = §,.. If X* is the solution of (I4) with
initial condition z, it is well-known that the family of laws of X[, ¢ € [0,77, is a solution of (II). So
this coincides with u(¢, -) and in particular y is the law of X7. To conclude we only need to determine



x. Taking the expectation in the SDE fulfilled by X*, we show that the function t — E*(t) := E(X})
is solution of

T
() = [ (i) = [ 0o(s) + () B () ds
d t
Previous linear ODE has clearly a unique solution. At this point z = E(0) is uniquely determined.

Those examples give a flavor of how to tackle the uniqueness issue for the PDE (LI). However, gener-
alizing those approaches is far more complicated and constitutes the first part of the present work. The

contributions of the paper are twofold.

1. We investigate uniqueness for the Fokker-Planck PDE with terminal condition (LI). This is done in
Section Blin two different situations: the case when the coefficients are bounded and the situation of
a PDE associated with an inhomogeneous Ornstein-Uhlenbeck (OU) semigroup. In Section [3.2 we
show uniqueness for bounded continuous coefficients when solutions start in the class C of multiples
of Dirac measures. In Proposition[3.9we discuss dimension d = 1. Theorem[B.10lis devoted to the case
d > 2. We distinguish the non-degenerate case from the possibly degenerate case but with smooth
coefficients proving uniqueness for small time horizon 7. In SectionB.3 we show uniqueness when the
coefficients are stepwise time-homogeneous. In Theorem [B.13]the coefficients are time-homogeneous,
bounded and Holder, with non-degenerate diffusion. Corollary [3.16 extends previous results to the
case of stepwise time-inhomogeneous coefficients. In Section 3.4 Theorem [B.19 treats the Ornstein-
Uhlenbeck case.

2. We study existence and uniqueness in law for the McKean SDE (L.3), with some specific remarks con-
cerning strong existence and pathwise uniqueness. After some preliminary considerations in Section
K1) Proposition @10 and Theorem .12 discuss the case of bounded coefficients. Theorem .15 is de-
voted to the case of Ornstein-Uhlenbeck (with not necessarily Gaussian terminal condition), where

strong existence and pathwise uniqueness are established.

2 Notations and preliminaries

Let us fix d € N*, T > 0. C (R?) is the linear space of smooth functions with compact support. For
a given p € N¥, [1,p] denotes the set of all integers between 1 and p included. Mg (R) stands for the
set of d x d matrices. (,) denotes the usual scalar product on R¢, with associated norm |.|. For a given
A € My (R), Tr(A) (resp. AT) symbolizes the trace (resp. the transpose) of the matrix A. ||A|| denotes
the usual Frobenius norm. We also introduce the function Jf from R? to M, (R) such that Jf : z —
031" ()6 pep.axnay

Let o €]0,1[,n € N. Cy(R?) (resp. C*(R?)) indicates the space of bounded continuous functions (resp.
bounded functions of class C" such that all the derivatives are bounded). C%(R%),0 < « < 1, is the Banach

space of bounded a-Holder functions R? — R equipped with the norm |.| , := |||, + [.],, , where
[f]a = sup M < o0
z,yERL xy |x - 1/|
and || - || is the sup-norm. If n is some integer C**"(R?) is the Banach space of bounded functions f :

R? — R such that all its derivatives up to order n are bounded and such that the derivatives of order n are
a-Holder continuous. This is equipped with the norm obtained as the sum of the C}'(R?)-norm plus the



sum of the quantities [g], where g is an n-order derivative of f. For more details, see Section 0.2 of [22]]. If E
is a linear Banach space, we denote by ||.|| ; the associated operator norm and by £ (E) the space of linear
bounded operators E — E. Often in the sequel we will have E = C2*(R%).

P (R?) (resp. M4 (R?) , M (R?)) denotes the set of probability (resp. non-negative finite valued, finite
signed) measures on (R?, B (R?)). We also denote by S (R?) the space of Schwartz functions and by §” (R¢)
the space of tempered distributions. For all ¢ € S (R?) and . € M (R?), we set the notations

Fo:&m [ e () de, Fu:és | e &%y (dr).
R4 R4

Given a mapping u : [0,7] — M (R?), we convene that when for ¢ € [0,7], u(t) has a density, this is

denoted by u (t,-). Recalling ¥ = oo ', let us introduce, for a given ¢ in [0, T, the differential operator,
1
Lif = 5”2231 S (t, )0 f + Zb N8 f, (2.1)
f € C?(R?%) and denote by L} its formal adjoint, which means that for a given signed measure 7

Lin = Z S (t, 2)n) — div (b(t, x)n) . (2.2)

7]1

With this notation, the PDE (1) rewrites
{&u = Liu 2.3)
u(T) = p.
In the sequel we will often make use of the following assumptions.

Assumption 1. b, o are Lipschitz in space uniformly in time, with linear growth.
Assumption 2. band X are bounded.
Assumption 3. X is continuous.
Assumption 4. There exists € > 0 such that forall t € [0,T), ¢ € R?, z € R?

(S(t2)€,€) > e e (24)

For a given random variable X on a probability space (£, F,P), Lp (X) denotes its law under P and
Ep (X) its expectation under P. When self-explanatory, the subscript will be omitted in the sequel.

3 A Fokker-Planck PDE with terminal condition

3.1 Preliminary results on uniqueness

In this section, we consider a Fokker-Planck type PDE with terminal condition for which the notion of

solution is clarified in the following definition.

Definition 3.1. Fix pn € My (R?). We say that a mapping u from [0, T] to M (R?) solves the PDE (1), if for all
¢ €C® (R andallt € 0,7

T
[owuw@n = [ swutn- [ [ Lowue) @) @)

5



We consider the following property related to a given class C € M (R?). Later we will establish
uniqueness results for (II) provided that the solution starts in C.

Property 1. Forall v € C, the PDE

{(’“)tu = Lju
(3.2)
u(0)=v

admits at most one solution u : [0,T] — M, (R?).

We recall that, for a given v € My (R?), u : [0,T] — M (R?) is a solution of the PDE (3.2) if for all
¢ €€ (R?) and allt € [0,7],

swu )= [ owra+ [ [ Lowue s 63

Rd

Suppose there is an M. (R?)-valued solution u of (3.2) such that u(0) € C for some class C. We also suppose
that Property [l holds with respect to C. Then this unique solution will be denoted by u” in the sequel. We
remark that, whenever Property [l holds with respect to a given C C P (R?), then the PDE (3.2) admits at

most one My (R?)-valued solution with any initial value belonging to R’.C := (/) ., cc-

We start with a simple but fundamental observation.

Proposition 3.2. Let us suppose o,b to be locally bounded, v be a Borel probability on R%, a > 0, & be a r.v.
distributed according to v. Suppose that there is a solution X of SDE

t t
X, =€ —|—/ b(r, X,)dr —|—/ o(r,X,)dW,, t €[0,T], P—a.s., (3.4)
0 0

where W is a d-dimensional standard Brownian motion. Then the M (R%)-valued function t — oL (Xy) is a
solution of the PDE (3.2) with initial value aw.

Proof. One first applies Itd formula to ¢(X;), where ¢ is a smooth function with compact support and then
one takes the expectation. O

Remark 3.3. 1. Suppose that the coefficients b, > are bounded. Property[Tlholds with respect to C := M (R?)
as soon as the martingale problem associated with b, ¥ admits uniqueness for all initial condition of the type
8z, € R Indeed, this is a consequence of Lemma 2.3 in [8].

2. Suppose b and o with linear growth. Let v € M. (R?) not trivially null (resp. v € P (R?)). By Proposition
the existence of an My (R?)-valued (resp. P (R%)-valued) solution for the PDE B.2) (even on t > 0)
is ensured when the martingale problem associated to b and ¥ admits existence (and consequently when the
SDE (B.4) admits weak existence) with initial condition mon- We remark that, for example, this happens when
the coefficients b, o are continuous with linear growth: see Theorem 12.2.3 in for the case of bounded
coefficients, the unbounded case can be easily obtained by truncation.

3. The martingale problem associated to b and ¥ is well-posed for all deterministic initial condition, for instance
in the following cases.

® When X, b have linear growth and ¥ is continuous and non-degenerate (i.e. Assumptions 2land @ hold),
see [27] Corollary 7.1.7 and Theorem 10.2.2.



® Suppose d = 1 and o is bounded. When o is lower bounded by a positive constant on each compact set,
see [271, Exercise 7.3.3.

e When d = 2, ¥ is non-degenerate and o and b are time-homogeneous and bounded, see [27], Exercise
7.3.4.

e When o,b are Lipschitz with linear growth (with respect to the space variable); in this case one obtains
even strong solutions of the corresponding stochastic differential equation.

The lemma below provides in particular sufficient conditions for the validity of Property([Il

Lemma3.4. 1. Letv € P (R?). We suppose Assumptions 2l Bland @ Then there is a unique M. (R?)-valued
solution u to the PDE (3.2) with u(0) = v. Moreover u” takes values in P(R®). In particular Property[Il
related to the class C = P(R?) is verified.

2. Under AssumptionsQand[2} Propertyis fulfilled for C = M, (R?).
Proof.

1. Existence follows by items 2. and 3. of Remark[3.3] Uniqueness is a consequence of items 1. and 3. of
the same Remark.

2. Since b and ¢ are Lipschitz, Property[Ilis fulfilled, see items 1. and 3. of Remark[3.3]

In Propositions B.5and B.6 below we give two equivalent formulations for uniqueness of PDE (L.1).

Proposition 3.5. Suppose Property [l holds with respect to a given C C M (R®). Suppose that for all v € C there
exists an M (R?)-valued solution of (8:2) with initial value v. Then, the following properties are equivalent.

1. The mapping from C to M4 (R?) v — u”(T) is injective.

2. Forall p € M4 (R?), the PDE (L) with terminal value y admits at most a solution in the sense of Definition
B among all M, (R?)-valued solutions starting in the class C.

Proof. Concerning the converse implication, suppose that uniqueness holds for equation (L)) in the sense of
Definition[3.J] among non-negative measure-valued solutions starting in the class C. Consider v, € C such
that u”(T) = u” (T'). We remark that u”, u”" are such solutions of PDE (L.I) with same terminal condition.
Uniqueness gives u” = u”’ and in particular v = v/ and the injectivity stated in item 1. holds.

Concerning the direct implication, consider u!, u? two non-negative measure-valued solutions of equa-
tion (L) in the sense of Definition[3.1] with the same terminal value in M. (R?), such that u’ (0) ,i € {1,2},
belong to C and suppose that v — u” (T) is injective from C to M (R?). Setting v’ := u’ (0), we remark
that for a given i € {1,2} we have

(’“),g.uZ =L’ (3.5)
u' (0) = v,
in the sense of equation (33). Then, the fact u! (T') = u? (T) gives u* (7)) = u*2 (T) . By injectivity v = v
and the statement 2. follows by Property[Il O

Proceeding in the same way as for the proof of Proposition for the case of signed measures, we

obtain the following.



Proposition 3.6. Suppose that for all v € My (R?), there exists a unique solution u” : [0,T] — My (R?) of the
PDE (B.2) with initial value v. Then, the following properties are equivalent.

1. The function v — u”(T) is injective.

2. Forall p € My (R?), the PDE (L) with terminal value ;i admits at most a solution in the sense of Definition
GBI

Remark 3.7. 1. Suppose that the coefficients 3, b are bounded. Then, any measure-valued solution u : [0,T] —
M4 (R?) of the PDE (3.2) such that u(0) € P(RY) takes values in P(R?). Indeed, this can be shown approach-
ing the function ¢ = 1 from below by smooth functions with compact support.

2. Replacing M (R®) with P(R?) in Property[d) item 2. in Proposition[B.Blcan be stated also replacing M (R?)
with P(RY).

3.2 Uniqueness: the case of Dirac initial conditions

In this section we will make use of a probabilistic technique for discussing uniqueness of the PDE (L)

among M (R%)-valued solutions starting in C := (ad,) We will make use of a probabilistic

a>0,zcRa*
technique. Given a solution u of (LI), we associate a process X being a solution of the SDE (L.4) whose
(marginal) law is u(t). The idea consists in identifying uniquely the law of X. That approach only works

with multiple Dirac initial conditions.

Remark 3.8. Let o > 0 and x € R%. Suppose that there is a solution X® of SDE B4) with £ = x.

1. By Proposition B2} the My (R)-valued mapping t — oL (X[) is a solution of the PDE (B.2) with initial
value od,.

2. Under Property[Dl (with respect to C), t — aL (XF) can be identified with u®= and in particular
/ a® (1) (dy) = a, Vi € [0, T.
R4

In the sequel, whenever Assumption [I] holds, X* denotes the unique solution of the SDE (3.4) with
initial value z € R?.
We start with the case of dimension d = m = 1.

Proposition 3.9. (Uniqueness: Dirac initial conditions, one-dimensional case).
We set C = (6z) y50.2er-
validity of one of the two hypotheses below.

Suppose the validity of Assumption[lwith d = m = 1. We moreover suppose the

1. Assumption[2
2. Property [l holds with respect to C.

Then, for all p € M (R), the PDE ([L1) with terminal value 1 admits at most one solution in the sense of Definition
B.lamong the M (R)-valued solutions starting in C.

Proof. By Lemma[B4litem 2. Property [lis fulfilled with respect to C.
Fix (z,y) € R? and «, 8 > 0 such that
u® (T) = u (T). (3.6)



Thanks to Proposition B.5] to conclude, it suffices to show that « =  and = = y. By item 2. of Remark[3.8
we have o = § and consequently £ (X%) = £ (X%). In particular E (X#) = E (X%). Since b, o are Lipschitz
in space, they have bounded derivatives in the sense of distributions that we denote by 9,b and 0,0.

Set Z%Y := XY — X*. We have

t t
75 = (y—x)—i—/ b§=yZ§=yds+/ o™V ZBVAW,, Vit € [0, T), (3.7)
0 0

where for a given s € [0, 7]
1 1
S / 0:b(s,aX? + (1 —a)X3)da, oY = / 0.0 (8,aX? 4+ (1 —a)X7) da.
0 0

The unique solution of (8.7) is well-known to be

77 — exp (/ b?’yds) £ (/ a;des> (y — ),
0 0

where £ () denotes the Doléans exponential. Finally, we have

E (exp (/OT bg%) £ (/0 ag’ydWs>T> (y— ) = 0.

Since the quantity appearing in the expectation is strictly positive, we conclude = = y. O

We continue now with a discussion concerning the multidimensional case d > 2. The uniqueness result be-
low only holds when the time-horizon is small enough. Theorem [3.10 distinguishes two cases: the first one
with regular, possibly degenerate, coefficients, the second one with non-degenerate, possibly irregular, co-
efficients. Later, in Section[3.3] we will present in a framework of piecewise time-homogeneous coefficients

results which are valid for any time-horizon.

Theorem 3.10. (Uniqueness: Dirac initial conditions, multi-dimensional case).
We set C = (dz) 50 pera- We suppose the validity of either item (a) or (b) below.

(a) Assumptions[Dland Property [l (for instance if Assumption 2 holds) with respect to C.
(b) Assumptions[2) [Bland

There is T > 0 small enough such that the following holds. For all u € M. (R?), the PDE (L) admits at most one
solution in the sense of DefinitionBIlamong the M. (R?)-valued solutions starting in C.

The proof of Theorem [3.10in case (a) relies on a basic lemma of moments estimates.
Lemma 3.11. We suppose Assumption[l} Let (x,y) € R? x R%. Then, sup;c (o 1) E (|X§C - Xf|2) <y — z|* KT,

with K := 2K° + Z?Zl (K"vj)z, where

K= sup || 1Jb(s,")

s€lo,

oo

and for all j € [1,d]

K% := sup ||||Jo;(s,")]| lloo »
s€[0,T]

where || - || stands for the sup-norm.



Proof (of Theorem3.10).
Taking into account Property Mlwe fix (z1,22) € R? x R a, 8 > 0 such that

u®1 (T) = uP%: (T). (3.8)
To conclude, by Proposition[3.3] it suffices again to show o = § and z1 = z.

1. We write the proof in the case (a), in particular under Assumption[Il Once again, item 2. of Remark
B8 gives o« =  and
E(X3) = E(X3). (3.9)

Adopting the same notations as in the proof of Lemma[B.1I1] a similar argument as in (5.12), together
with (5.I0) (in the Appendix) allows to show that the local martingale part of Z*:%2 = X%2 — X1
defined in (5.8) is a true martingale. So, taking the expectation in (5.12) with « = 1,y = z, by Lemma
BITlwe obtain

T
IE (X2 — X2) — (22 — 01)| < K / E|X? — X71|dr
0

T
< Kb/ VE(X22 - X2 dr
0
K
2

K
2

< —Te T|a:2—:171|.

Remembering (3.9), this implies
K
(1 - ETe%T) |z — 21| < 0.

Taking 7T such that 57 < M with MeM < 1, we have 1 — %TegT > 0, which implies |zo — 1| = 0.

2. We discuss the case (b), i.e. we suppose Assumptions[2) B} and@ Firstly, point 1. of Theorem 1. in
ensures the existence of probability spaces (Q°, F*,P'), i € {1,2} on which are defined respectively
two m-dimensional Brownian motions W', W? and two processes X', X? such that

t t
X =+ / b(s, X!)ds+ / o (s, X%)dW!, P'—as.,t € [0,T].
0 0
Again item 2. of Remark[B.8implies a; = a2 and
Lp1 (XT) = Lp2 (X7). (3.10)
Secondly, point b. of Theorem 3 in [29] shows that for every given bounded D C R?, forall ¢ : [0, 7] x
R? — R belonging to W2 ([0, T] x D) (see Definition of that space in [29]) for a given p > d + 2, for

allt € [0,77,i € {1,2}, we have

t t
¢ (t,X}) :¢(o,xi)+/0 (0 + L) ¢ (s, X2) ds+/0 J¢ (s, X1) o (s, X1) dW!, P'—as. (3.11)

where the application of 9; + L., ¢ € [0, T] has to be understood componentwise.
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Thirdly, Theorem 2. in shows that if 7 is sufficiently small, then the system of d PDEs

V(t.x) € [0.7] x Re, 4 0 B@) T Lo (t,2) =0, (3.12)
(T, x) =z,

admits a solution ¢ in W} ([0, T] x D) for all p > 1 and all bounded D C R?. Moreover the partial
derivatives of ¢ in space are bounded (in particular J¢ is bounded) and ¢ (¢, -) is injective for all
t€0,T].

Combining now (3.12) with identity (3.11), we observe that ¢ (., X*) ,i € {1, 2}, are local martingales.
Using additionally the fact that .J¢ and ¢ are bounded, it is easy to show that they are true martingales.
Taking the expectation in (31T with respect to P, i = 1,2, gives

In parallel, identity (3.10) gives
Ep: (¢ (T, X7)) = Ep2 (¢ (T, X7)).

So, ¢ (0,21) = ¢ (0, z2). We conclude that z1 = x5 since ¢ (0, -) is injective.

3.3 Uniqueness: the case of bounded non-degenerate coefficients

In this section we consider the case of (possibly piecewise) time-homogeneous coefficients in dimension
d > 1. We make use of an analytic technique based on semigroups which requires bounded coefficients
(Assumption ), non-degeneracy (Assumption ) and an additional Holder regularity assumption of the
coefficients.

We start with the time-homogeneouse case stating the following.

Assumption 5. 1. b, ¥ are time-homogeneous.

2. Forall (i,5) € [1,d]?, b;, Xi; € C** (R?), for a given o €]0, 3.

We refer to the differential operator L; introduced in 1) and we simply set here L = L;.
Remark 3.12. Suppose the validity of Assumptions 21 4]

1. Let T > 0. Proposition 4.2 in [8] implies that, for every v € My (R?), there exists a unique My (R*)-valued
solution of the PDE B.2) with initial value v, which will be again denoted by u”. We notice in particular that
Property [T holds.

In the sequel T will be omitted.
2. We remark that the uniqueness result mentioned in item 1. is unknown in the case of general bounded coeffi-

cients. In the general framework, only a uniqueness result for non-negative solutions is available, see Remark
point 1.

3. Since L is time-homogeneous, taking into account Assumptionsd) Bl operating a shift, uniqueness for the PDE
(B:2) also holds replacing the initial time O by any other initial time, for every initial value in My (R?), with
any other maturity T.

11



It is significant to remark that the uniqueness theorem below holds in the class finite signed measures
valued functions.

Theorem 3.13. (Uniqueness: the case of non-degenerate time-homogeneous coefficients).
Suppose the validity of Assumptions 2l Mand B Then, for all p € My (R?), the PDE (L1) with terminal value
1 admits at most one My (R?)-valued solution in the sense of Definition[3.]

By Theorems 3.1.12, 3.1.14 and Corollary 3.1.16 in [22] the differential operator L suitably extends as a
map D(L) = C**T2(R?) c C?**(R?) — C>* (R?) and that extension is sectorial, see Definition 2.0.1 in [22].
We set E := C?* (R?). By the considerations below that Definition, in (2.0.2) and (2.0.3) therein, one defines
P :=e¢l P E— E,t>0. By Proposition 2.1.1in [22]], (P;):>0 is a semigroup and ¢ — P; is analytical on
10, +o00[ with values in £ (E), with respect to ||.|| ;.

Before proving the theorem, we provide two lemmata.

Lemma 3.14. Suppose the validity of Assumptions Q) Fland Bl Then, for all ¢ € E and all v € My (R?), the
function from R to R

t— Pi¢ (x) v (dx)
Rd

is analytic.

Proof. The result can be easily established using the fact that ¢ — P,¢ with values in £(F) is analytic and
the fact that the map ¢ — [, ¢ (2)v(dz) is linear and bounded.
O

Lemma 3.15. Suppose the validity of Assumptions 2l HlandBl Let T > 0. Then for all v € My (R%), t € [0, T] and
¢ € E we have the identity
P (x)v(de) = | ¢ (x)u”(t)(dr), (3.13)
R4 Re
where u” was defined in point 1. of Remark[3.12]

Proof. Letv € My (R?). We denote by v” the mapping from [0, 7] to M (R?) such thatVt € [0,T],V¢ € E
S (1) (dr) = | Puple)w(de). (314)
R4 R4

Previous expression defines the measure v (¢,-) since ¢ — [, Pid(x)v(dx) is continuous with respect to
the sup-norm, using || P;¢||oc < ||¢||oc, and Lebesgue’s dominated convergence theorem. By approximating
the elements of £ with elements of C° (R?), it will be enough to prove 3.I3) for ¢ € C2° (R?).

Our idea is to show that v is an M (R?)-valued solution of (3.2) with initial value v, so that v = u”
via point 1. of RemarkB.I2 This will prove B.I3) for ¢ € C° (RY). Let ¢ € [0,7] and ¢ € C° (R?). On the
one hand, point (i) of Proposition 2.1.1 in [22] gives

LP¢ = P,Lé, (3.15)
since C2° (R?) € D (L) = €?**2 (R4, R). On the other hand, for all s € [0, ], we have

|LP5¢|E - |PSL¢|2a

<|1Psllg L4l g
< Moe*” [ Lol ,
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with My, w the real parameters appearing in Definition 2.0.1 in and using point (iii) of Proposition 2.1.1
in the same reference. Then the mapping s — LP;¢ belongs obviously to L'([0,]; E) and point (ii) of
Proposition 2.1.4 in [22] combined with identity (3.I5) gives

t
P = ¢+/0 P,Léds.

Back to our main goal, using in particular Fubini’s theorem, we have
t
/ P (z)v(dx) = o (z) v (dx) + / / P;Lo (x) dsv (dx)
Rd Rd Rre Jo
t
= ¢ (z) v (dz) + / / P,Lo (z) v (dx)ds
0 Jrd

Rd
t
= ¢ (x)v(de) + / / Lo (x) v (s) (dx) ds.
R 0 JRrd
This shows that v” is a solution of the PDE (3.2). O

Proof (of Theorem[3.13).
Letv,v" € My (R?) such that

’

pr:=u’ (T)=u" (T).

Thanks to Proposition3.6] it suffices to show that v = v/ i.e.

Vo € C (RY), qus(x)u(dx) = quﬁ(x) V' (dx) .

’ . .
2T and u”" 2T, defined as the corresponding u”

Since T' > 0 is arbitrary, by Remark[B.I2]we can consider u
and u”’ functions obtained replacing the horizon T with 27". They are defined on [0, 27| and by Remark
1. (uniqueness on [0, T), they constitute extensions of the initial u” and u*’.

By Remark[B.1213., the uniqueness of an M (R?)-valued solution of the PDE 3.2) (for ¢ € [T, 27, with T

as initial time) holds for

opu(r) = L*u(r), T <7 <2T (3.16)
u(T) = ur.
Now, the functions u*27 and u”’27 solve 3.16) on [T, 2T]. This gives in particular
Vr>T, ¥ eC® (RY), [ ¢@)u? (7)(de) = [ o (x)u’? (r)(dz). (3.17)
R4 R4
Fix ¢ € C2° (R?). Combining now the results of LemmataB.I4and B.15, we obtain that the function
T [ @@ u (7) (dx) = | ¢ (x)u T (7) (do), (3.18)
Rd R

defined on [0, 277, is zero on [T, 27| and analytic on ]0, 27]. Hence it is zero on ]0, 27]. By (3.13) we obtain
/ Pro(z) (v — V') (dz) = 0, V7 €]0,2T. (3.19)
R4

Separating v and v/ in positive and negative components, we can finally apply dominated convergence
theorem in (3.I8) to send 7 to 0+. This is possible thanks to points (i) of Proposition 2.1.4 and (iii) of
Proposition 2.1.1 in [22] together with the representation 3.13). Indeed P,¢ (z) — ¢ (x) for every ¢ €
E,z € R when 7 — 0+. This shows v = v/ and ends the proof.

O
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For the sake of applications it is useful to formulate a piecewise time-homogeneous version of Theorem
3.13

Corollary 3.16. (Uniqueness: the case of non-degenerate piecewise time-homogeneous coefficients).
Letn € N*. Let 0 = tg < ... < t,, = T be a partition. For k € [2,n] (resp. k = 1) we denote I}, =|t;_1,1)]
(resp. [to,t1]). Suppose that the following holds.

1. Forall k € [1,n], the restriction of o (resp. b) to I, x R% is a time-homogeneous function o* : RY — My(R)
(resp. b : RY — RY).
2. Assumptiond

3. AssumptionsQland Blare verified for each o, b* and $%, where we have set S* = gk o* .

Then, for all i € My (R?), the PDE (L) with terminal value ;1 admits at most one My (R?)-valued solution in the
sense of Definition[3.]

Proof. For each given k € [1,n], we introduce the PDE operator L* defined by
1 d
LF = 5 > SEoy+ Y bho.. (3.20)
ij=1 i=1

Let now u', u? be two solutions of (II) with same terminal value .
The measure-valued functions v’ := u’ (- + t,_1) ,i € {1,2} defined on [0, T’ — t,,_1] are solutions of

v =(L")'v

V(T —ty-1,") = p,

(3.21)

in the sense of Definition Blreplacing T by T' — t,,_1 and L by L". Then, Theorem B3 gives v! = v* and

2

consequently u' = u? on [t,,_1, T]. To conclude, we proceed by backward induction.

O

3.4 Uniqueness: the case of Ornstein-Uhlenbeck semigroup

In this section, we consider the case b := (s,2) — C(s)z with C continuous from [0, 7] to My (R) and o
continuous from [0, 7] to M, (R). Here we perform an analytic approach based on Fourier analysis.
We recall that ¥ := o0 ". In that setting, the classical Fokker-Planck PDE (LF) for finite measures reads

d d
1
du(t)=5 > B(t)ydyu(t) =Y 8 (C(t)),u(b)
2 ij=1 i=1 (3.22)
u(0) =v e My (RY).
In the sequel we will denote by D (¢), ¢ € [0, 7], the unique solution of
t
D(t)=1— / C(s)"D(s)ds, t €[0,T). (3.23)
0
We recall that for every ¢ € [0, T, D(t) is invertible and
t
Dt) = I+/ D (s)C(s)"ds, t €[0,T]. (3.24)
0

For previous and similar properties, see Chapter 8 of [5].
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Proposition 3.17. For all v € My (R?), the PDE (3.22) with initial value v admits at most one My (R?)-valued
solution. In particular Property M holds for C = M, (R?).

Proof.
1. Let v € My (R?) and u be a solution of the PDE (3.2) with initial value v. Identity (3.3) can be
extended to S (R?) since for all ¢ € [0, 7], u (t) belongs to My (R?). Then, ¢ — Fu (t) verifies

Fu(t) (&) = Fu(&)+ /0 (C() & VFuls))ds—g /0 (£ (5)€,€) Fu(s)ds, (t,€) € [0, T]xR% (3.25)

In fact, the integrand inside the first integral has to be understood as a Schwartz distribution: in
particular the symbol V is understood in the sense of distributions and for each given s € [0,7],
<C (s)" €, VFu (s)> denotes the tempered distribution

T i@fu(s) (6= (¢ 7€) v©)-

Indeed, even though for any ¢, Fu (¢) is a function, the equation (3:25) has to be understood in &’ (R?).
Hence, for all ¢ € S (R?), this gives

[ @ Fu@©de- [ 606 Fr(© ol .26
=i [ 06 [ aFo©uts) @) ds - 6.6 Fu(s) (©) () deds
Efeofn | L
__,;1/ kl/df(am)( yagyds -3 [ [ 6.6 Fu) @ deds

1
= [ [ (a0 () 60(0) + 5 261 6.960)) Pus)erdeas,
where ¢y, : £ — ¢ (§) for a given k € [1,d].

2. Letnow v : [0,T] — My (R?) be defined by

= T r|ua X .
[ o@vn = [ oD@ 2)u) ). 627)
€[0,T],¢ € Cp(R?). For every ¢ € R, we set ¢(z) = exp(—i(¢, z)) in (3:27) to obtain

Fv (t) (§) = Fu(t) (D (1)), (3.28)
forall ¢ € RY, forallt € [0, 7.

3. We want now to show that, for each &, ¢ — Fv (¢) fulfills an ODE. To achieve this, suppose for a
moment that (¢,§) — Fu (t) (§) is differentiable with respect to the variable . Then, on the one hand,
for all (t,&) € [0,T] x R%, we have

1

Fa)(© = Fr©+ [ (COTeVFu ©)ds—5 [ (B06OFu()©ds (329

thanks to identity (325). This means in particular that, for each given ¢ € R?, ¢t — Fu(t)(¢) is
differentiable almost everywhere on [0, 7.
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On the other hand, for almost every ¢ € [0, T] and all £ € R, we have

d
0Fv (1)) =7 (P09 + 3 (P09 aFa® @9,

P dt
d
=aFa(®) (P& - Y (CO DWE) aFu®) (D),
=1
= S BODHED ) Fv (1) (©). (3.30)

where from line 1 to line 2, we have used the fact & (D (¢) ) = —C ()" D (t) ¢ forall (t,€) € [0,T] x RY
and from line 2 to line 3, the identity (3:29). Since ¢ — Fv (t) (€) is absolutely continuous by (3.28),
(3.30) implies
t
Fv(t)(§) =Frv(§) - —/ (E(5)D(5)&,D (s)€) Fv (s) (€) ds, & € RY, (3.31)
0
forallt € [0,T].

4. Now, if (¢,&) — Fu(t) (§) is not necessarily differentiable in the variable £, we will be able to prove
(3.31) still holds by making use of calculus in the sense of distributions.

5. Suppose that (3:31) holds. This gives

Fu(t)(€) =e o= BF, (D (1)€) (3.32)
and so u is completely determined.

6. The proof is now concluded after we have established (3.31). Since both sides of it are continuous in
(t,€), it will be enough to show the equality as &’ (R%)-valued. This can be done differentiating (3.25)
considered as an equality in S'(R?). For this we will apply Lemma B.I8 below setting ® := Fu (¢
for every fixed ¢t € [0, 7] and differentiating in time. We set ®,(¢) = Fv(t)(£), ¢ € R? and ®,(¢)
Jra ()P ()dE, ¢ € S(R?). (B3]) follows from Lemma B.18 below remarking that ®; is compatible

~

~—

with the one defined in (333).
O
Lemma3.18. Let ® € S’ (RY) ¢ € [0,T]. We denote by @, the element of S’ (R) such that for all ¢ € S (R?)
P, () :=det (D' (1)) @ (¢ (D' (1)) (3.33)
Then, forall t € [0,T]
d t
JORLCEDY | @), (e (¢ D)) o)) as. (3.3

Proof. We begin with the case ® € S (R?) (or only C* (R?)). In this case,

() =& (D (t)x), = € Rt €[0,T).
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Hence, for every t € [0, T

d

G0 @0 = (40, Ve D 0))

_ <c ) D (t)z, VO (D (1) :c)>
- zd: (c )" D(t) :v)l (8;®), (x),
=1

Now, coming back to the general case, let ® € S’ (R?) and (¢.),-,
converging to the Dirac measure. Then for all ¢ > 0, the function ® * ¢, : * — @ (¢ (z — -)) belongs to
S’ (RY) N> (R?). By the first part of the proof, (3:34) holds replacing ® with ® * ¢.. Now, this converges
to ® in S’ (R?) when e tends to 0+. (8:34) follows sending € to 0+. Indeed, for all p € S (R?), t € [0,T],
setting ¢ : y — ¢.(—y), we have

be a sequence of mollifiers in S (R?),

P (p) = lim [ o(z) (P *¢c), (z)dx

e—0+ Rd
o _ T -1 _
= 61_1%1_‘_ » o(2)D * ¢ (z) dx 51—1>%1+ Z/ det (D /Rd (C’ (s) x)z ¢ (D71 (s)x) ;@ * e (x)dads

o —emz/ w000 (€07 o0 91) 6
Z/ det (D (’“)CD((C( )" -)icp(D_l (s))) ds

— E/o (0;®), (x — (C (s)T D (s) x) © (:v)) ds.

%

To conclude, it remains to justify the commutation between the limit in € and the integral in time from line
3 to line 4 using Lebesgue’s dominated convergence theorem. On the one hand, for a given i € [1,d], the
fact 9;® belongs to S’ (R?) implies that there exists C' > 0, N € N such that for all p € S (R?)

2 N fe
9:® ()] < C sup_sup (1+ o) 05 ()]
|a|<N zeR?
see Chapter 1, Exercise 8 in [26]. On the other hand, the quantities
N 5
sup (14 Jof”) " (02 (2;0(D " (5) ) * &
rcRa

are bounded uniformly in the couple (s,¢), for all j € [1,d], @ € N taking also into account that the
function s + D~!(s) is continuous and therefore bounded. Since C is also continuous on [0, 7], we are
justified to use Lebesgue’s dominated convergence theorem.

O

We state now the main result of this section.

Theorem 3.19. (Uniqueness: the case of OU semigroup).
For all p € My (R?), the PDE (L) with terminal value j admits at most one My (R?)-valued solution in the
sense of Definition[3.]
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Proof. Let pn € My (R?) and u be a solution of (LI) with terminal value . Then, u solves the PDE (3.2) with
initial value u (0). As a consequence, by (3:32) appearing at the end of the proof of Proposition B.17] for all
§ERY,

e

Fu(@) =elo = ®Fu(0) (D71 (T)¢),

so that :
e Te
Fu(0)(§) = el = Fu(D(T)€).
Hence, u (0) is entirely determined by p and Proposition B.I7 gives the result. O

4 McKean SDE related to the PDE with terminal condition

In this section, we concentrate on the analysis of the well-posedness of the McKean SDE (L.3) that we
relate to the PDE (.J). The existence results for the SDE (L.3) will be based on two pillars: the reachability
condition constituted by the existence of a solution of the Fokker-Planck PDE with terminal condition and
the time-reversal techniques of [11]. They follow from general statements of Section5.1] in the Appendix.
The uniqueness results for the SDE (L.3) will be a consequence of results stated in Section[5.2]

4.1 Preliminary considerations

Regarding b : [0, 7] x R = R%, 0 [0,T] x R? v+ My (R), weseth:=b(T —.,-),6 :=0 (T —.,-),5:=5 0.
Given a probability-valued function p : [0,7] — P(R?), we denote by p; the density of p (), for t € [0, 7],
whenever it exists. In this section p will denote the terminal condition of the PDE (LI} supposed to be a
probability. For the McKean type SDE (L.3), remarking that © = ji, we consider the following notion of
solution.

Definition 4.1. On a given filtered probability space (Q, F (Fe)eepo,m) » ]P’) equipped with an d-dimensional (Fy),¢ (o 1~
Brownian motion 3, a solution of the SDE (L.3) is a couple (Y, p) fulfilling (L.3), such that Y is (Fy), ¢ o r-adapted
and such that for all i € [1,d], all compact K C R allT <T

I

Remark 4.2. For a given solution (Y, p) of equation [L3), identity @I) appearing in Definition L1 implies in
particular that, for all i € [1,d], all T < T

i (/0 div, (i (rY,) pr (m) dr) .

div, (iz (r,y) pr (y)) ‘ dydr < oo. 4.1)

pr (Y2)

The terminology stating that the SDE (L.3) constitutes a probabilistic representation of the PDE (LT) is
justified by the result below.

Proposition 4.3. Suppose b, o locally bounded. If (Y, p) is a solution of (L3) in the sense of Definition then
p (T — -) is a solution of (I1)), with u = p(0) in the sense of Definition B}
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Proof. Let (Y, p) be a solution of (L.3) in the sense of Definition £.T]with a Brownian motion symbolized by
B. Let ¢ € C® (R?) and ¢ €]0, T]. It6’s formula gives

Tt 1 N T—t .

60 =000+ [ (e Vei). Vo (7)) #3577 (B30 Vo)) st [ To ¥ 0 (5. V) 5.
4.2)

with

dz’vy ij, S, s ~
b (s, i ps) i CAUIAD) “Bsry)s (1) €0, TR
ps (y) _

We now want to take the expectation in identity (.2). On the one hand, Remark 2] implies that, for all

i €[1,d] and s €]0, T a.e.
E ( ) < 00.

/O ' {17 (S(s,7) V20 (1)) } ds = Mil /0 ' /R S5 (5,9) 0436 () s (y) dyds.

divy (S (5,Y2) e (V2)
ps (V)

2i¢ (Ys)

On the other hand

Previous expression is finite since ¥ is bounded on compact sets and the partial derivatives of ¢ have
compact supports. With similar arguments we prove that fOT dsE ‘<g(s, Ys), Vo (Ys)>‘ < 00, s €]0,T7.
Moreover, fixing s €]0, T'[ a.e., integrating by parts we have

E{(b(s,Ysip.), Vo (¥)) } = S Lo Ginm ) ooy [ (50,0 0)) p. )y
k,j=1
4.3)

= /R Tr (35,9 V*0 0) s () dy / (b(5,9), Vo (v)) ps (v) dy.

Rd

Now, the quadratic variation of the local martingale M := [/ V¢ (Ys)" o (s,Ys)dBs yields

[MY] = /0 Vo (V) B (s,Ys) Vo (Ys) ds.

We remark in particular that E ([MY],) < oo since ¥ is bounded on compact sets and ¢ has compact
support. This shows MY is a true (even square integrable) martingale and all terms involved in 2) are
integrable.

At this point we evaluate the expectation in (£.2) taking the considerations above together with .I) and
(@.3) into account. We obtain

T—t
B0 = [ o@ut = [ [ L@ w s

Applying the change of variable ¢t — T — t, we finally obtain the identity

T
[e@piwar=[ swntn- [ [ Lot s

which means that p (T — -) solves the PDE () in the sense of Definition B-Ilwith terminal value y. O
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4.2 Notion of existence and uniqueness for the McKean SDE in a given class

We provide the different notions of existence and uniqueness for (I.3) we will use in the sequel.
Definition 4.4. Let A be a class of measure-valued functions from [0,T] to P (R?).

1. We say that the SDE ([L.3) admits existence in law in A, if there exists a complete filtered probability space
(Q, F (Fo)eepo,r) ,]P’) equipped with an m-dimensional (F),¢ (o \-Brownian motion 3 and a couple (Y, p)
solution of (I.3) in the sense of Definitiond.1]such that p belongs to A.

2. Let (Y*,p'), (Y2, p?) be two solutions of (L3) in the sense of Definition @1l associated to some complete
filtered probability spaces (Ql, F, (‘Ftl)te[o,T] ,]P’l), (QQ, F2, (]—"f)te[O’T] ,]P’Q) respectively, equipped with
Brownian motions 31, B2 respectively and such that p*, p2 belong to A. We say that (L3) admits uniqueness
inlaw in A, if Y, Y have the same law implies that Y, Y? have the same law.

3. We say that (L3) admits strong existence in A if for any complete filtered probability space (2, F, (Ft),c (0,17 » P)
equipped with an m-dimensional (Fy),¢ (o 7)-Brownian motion j3, there exists a solution (Y, p) of equation @3
in the sense of Definition 1] such that p belongs to A.

4. We say that (L3) admits pathwise uniqueness in A of if for any complete filtered probability space (0, F, (F¢),¢ 0,77+ P)
equipped with an m-dimensional (F;), ¢, -Brownian motion B, for any solutions (Y, p*), (Y?,p?) of (L3)
in the sense of Definitionddlsuch that Y, = Y, P—a.s. and p*, p? belong to A, we have Y! = Y2, P—a.s..

5. If the mention to a specific class A is omitted as far as uniqueness (in law or pathwise), the class A is the one of
all possible probability valued functions verifying @I).

We finally define the sets in which we will formulate existence and uniqueness results in the sequel.

Notation1. 1. Foragiven C C P (R?), Ac denotes the set of measure-valued functions p from [0,T] to P (R?)
such that p (T)) belongs to C. Furthermore, for a given measure-valued function p : [0,T] — P (R?), we will

write R
divy (let)
b(t,pe) = § ———— : (4.4)
Y2
i€[1,d]
for almost all t € [0,T) whenever p; exists and the right-hand side quantity of @.4) is well-defined. The

function (t,z) ~ b(t, z; ;) is defined on [0, T] x R with values in R<.

2. Let Ay (resp. Asz) denote the set of measure-valued functions from [0, T] to P (R?) p such that, for all t € [0, T},
p (t) admits a density p, with respect to the Lebesgue measure on R and such that (t,z) — b(t, z; p;) is locally
bounded (resp. is locally Lipschitz in space with linear growth) on [0, T[xR%.

4.3 Well-posedness for the McKean SDE: the bounded coefficients case

In this section, we state a significant result about existence and uniqueness in law together with pathwise
uniqueness for the SDE (.3). We exploit here in particular the uniqueness results related to the PDE (1.1}
obtained in Section3.2land Section[3.3] As far as uniqueness is concerned, given a solution (Y, p) of ([L3),
we insist that the basic idea consists in showing that p solves (1), see Proposition At this point
Y solves an ordinary SDE and we only need to show that the coefficients fulfill the assumptions which
guarantee uniqueness, see e.g. Lemma On the other hand, the existence results for (I.3) are based on
the techniques of of determining the dynamics of the time-reversal of a diffusion.
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We formulate the following hypothesis for the couple (b, %), where we recall that > = oo '.

Assumption 6. X : [0, 7] x R? — My(R), b: [0,T] x R? — R?) are Borel functions such that the following holds.

* Foreacht € [0,T], (Vabi(t,");cp.ap (VaZis(t,-)) exist and they are continuous;

i,5€[1,d]

e Foreacht € |0,T], V2X(t,-) exists and V2 is Holder continuous in space with some exponent o €]0,1]
uniformly in time.

* VX and Vb are uniformly bounded.

Assumption 7. X is supposed to be Holder continuous in time.

The first step consists in proving existence and uniqueness in law for the SDE (L3) in the class .A;. For
this we will state a fundamental lemma whose proof will appear in the Appendix.

Lemma 4.5. Suppose the validity of Assumptions 2} d 6land[Z Then, for all v € P (R?), u” (t) admits a density
u” (t,-) € C*(R?) forall t €]0,T]. Furthermore, for each compact K of 10,T] x R%, there are strictly positive
constants CF, CK  CX, also depending on v such that

Cff <w” (t,) Cy' (4.5)
|8iuy (tv $)| < O?f(a (S [[15 d]]a (46)

IN

forall (t,x) € K.

Remark 4.6. Under Assumptions 2} Bl (which is a consequence of Assumptions[6land [) together withd for every
v € P(R?), by Lemma[3.4, there exists a unique P (R®)-valued solution u” of the PDE (3.2).

Lemma 4.7. Let p be the probability measure introduced at the beginning of Section 1] Suppose that p = u” (T')
for some v € P (R?). We assume the following.

1. Assumptions[I) 2} B and

2. u” (t) admits a density u” (t,-) € WL (R?), for all t €]0,T).

loc

3. For each compact K of |0, T] x RY, there are strictly positive constants CK, CK CX, also depending on v such
that @5) and @.8) hold V(t,z) € K.

Then the SDE (1.3)) admits existence in law in A;.

A consequence of the two lemmata above is the proposition below, which states in particular existence
inlaw in A;.

Proposition 4.8. We suppose the validity of Assumptions[I} 21 @} [6land 7

1. Suppose the existence of v € P(R?) such that u*(T) = . Then, the SDE (I.3) admits existence in law in A;.
Moreover, if v is a Dirac mass, existence in law occurs in A((;I)IER , NAL

2. Otherwise [I3) does not admit existence in law.

Remark 4.9. For a class of coefficients b, %, an interesting problem would be to determine the reachability set of
possible i, i.e. of the set of ju for which there exists v such that . = u”. This however goes beyond the scope of our

papetr.
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Proof (of Proposition [4.8).

1. The first part is a direct consequence of Lemma .5 Lemma .7 and expression @.4). If in addition,
v is a Dirac mass, then u” (0) belongs to C := (d.) s, hence existence in law occurs in A¢ N A; by
Proposition 5.2]in the Appendix.

2. Otherwise suppose ab absurdo that (Y, p) is a solution of the SDE(L.3). By Proposition@3lp (T — -) isa
solution of the PDE (L.T). We set vy = p(T) so that p(T — ) verifies also the PDE (3.2) with initial value
vp. Since, by Lemma 3.4 uniqueness holds for (3.2), it follows that p(T — -) = u*® which concludes the
proof of item 2.

O

Proof (of LemmaZ7). Suppose i = u” (T) for some v € P (R?). We recall that Property M holds with
respect to C := P (R?) by Lemma 3.4l In view of applying again Proposition 5.2 stated in the Appendix,
we need to check the validity of Property 2l with respect to C and Property 8l Property 2 is verified by
u = u”. Indeed the function u” is a P (R%)-valued solution of the PDE (LI) with terminal value x and
such that u” (0) belongs to C. Condition (5.I) appearing in Property 2lis satisfied with u = u” thanks to the
right-hand side of inequalities (5) and (@.6) and the fact that 3 is bounded. Hence Property 2 holds with
respect to C. It remains to show Property[Blholds i.e. that

div, (f]l (t, z)u” (T —t, x))

(t2) = uw’(T —t,x)

is locally bounded on [0, T[xR®. To achieve this, we fix i € [1,d] and a bounded open subset O of [0, T[xR.
For (t,z) € O we have

|Vu (T —t, )]
uw” (T —t,x)

div, (il (t,x)u” (T —t, x))
w” (T —t,x)

<

div, (iz (t, a:))’ + ‘iz (t, :1:)‘

The latter quantity is locally bounded in ¢,z thanks to the boundedness of 3, div, (il) and inequalities
(4.5) and [@.6). Hence, Property Blholds. The application of Proposition[5.2ends the proof.

Proposition 4.10. (The McKean SDE: well-posedness in the case of Dirac initial conditions.)
Suppose the validity of Assumptions[I} 2[4 [6land[Z] The following results hold.

1. Let us suppose d = 1. Suppose ju equals u’+o (T') for some z¢ € R. Then (L3) admits existence and uniqueness

inlawin Ags,) ., N A1, pathwise uniqueness in Ags,) N As.

z€R4

2. Let d > 2. There is a maturity T sufficiently small (only depending on the Lipschitz constant of b, o) such
that the following result holds. Suppose p equals u®=o (T') for some zg € R%. Then (L3) admits existence and
uniqueness in law in A,y ., N Ay, pathwise uniqueness in A,y ., N0 As.

Proof. By Assumptions [T} 2] @] [l and [7] Proposition implies that the SDE (I.3) admits existence in law
in the two cases in the specific classes. To check the uniqueness in law and pathwise uniqueness results,
we wish to apply Corollary 5.5 stated in the Appendix. It suffices now to check Property B with respect to
(02)zcr, for the separate two cases.

1. Fix zo € R?. This will follow from Proposition B9 that holds under Assumption[I]
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2. We proceed as for previous case but applying Theorem .10 instead of Proposition 3.9
O

Previous Proposition [£.10] provides uniqueness in law only among the solutions (Y, p) such p belongs to
a subclass of A4;. We state now the two most important results of the section which in particular provide

uniqueness in law for the SDE (.3) among all possible solutions.

Theorem 4.11. (The McKean SDE: well-posedness in the case of non-degenerate time-homogeneous
coefficients.)

Suppose b, o are time-homogeneous, Assumptions[I) 2 B [Gland suppose there is v € P (R?) (a priori not known)
such that p = u” (T).

1. The SDE [I3) admits existence and uniqueness in law. Moreover existence in law holds in Aj;.
2. ([L.3) admits pathwise uniqueness in As.

Proof. 1. (a) First, Assumption [] trivially holds since b, o are time-homogeneous. Then, point 1. of
Proposition .8 implies that the SDE (I.3) admits existence in law (in A;).

(b) Let (Y, p) be a solution of (L3). Proceeding as in the proof of item 2. of Proposition 4.8 we obtain
that p(T' — ) = u” with vy = p (7). Then, Lemma [4.5 shows that p belongs to 4;, see (£.4) in
Notation[dl

(c) To conclude it remains to show uniqueness in law in A4;. For this we wish to apply point 1. of
Corollary 5.5 in the Appendix. To achieve this, we check Property Bl with respect to P(R%). This
is a consequence of Assumptions [2] B @ and Bl and Theorem B.13] This concludes the proof of
item 1.

2. Concerning pathwise uniqueness in A3, we proceed as for uniqueness in law but applying point 2. of
Corollary B.5]in the Appendix. This is valid since o are bounded and Lipschitz by Assumptions[]
and

O

In the result below we extend Theorem A.11] to the case when the coefficients b, o are piecewise time-
homogeneous.

Theorem 4.12. (The McKean SDE: well-posedness with non-degenerate piecewise time-homogeneous
coefficients.)

Letn € N*. Let 0 = tg < ... < t,, = T be a partition. For k € [2,n] (resp. k = 1) we denote I}, =|t;_1,1)]
(resp. [to,t1]). Suppose that the following holds.

1. Forall k € [1,n] the restriction of o (resp. b) to I, x R? is a time-homogeneous function o* : R? — My(R)
(resp. b : RY — R9).

2. AssumptionsQand
3. o is Lipschitz (in space uniformly in time).

4. Assumption[@holds for the couples (b*, 32F).
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Suppose i equals u” (T') for some v € P (R?). Then SDE ([L.3) admits existence and uniqueness in law. Moreover,
existence in law holds in Aj.

Remark 4.13. A similar remark as in Proposition L8 holds for the Theorems I Tland 12 If there is no v € P(R?)
such that w” (T) = p, then (I3) does not admit existence in law.

Proof (of TheoremE.12). We recall that by Lemma[B4] u™ is well-defined for all 1y € P (R?).

1. We first show that u verifies (@5) and .8). Indeed, fix k € [1,n]. The restriction uy of u* to Iy is
a solution v of the first line of the PDE (3.2) replacing [0, 7] with I, L by L* defined in (3:20), with
initial condition v(tx—1) = u"®(tx—1). That restriction is even the unique solution, using Lemma [3.4]
replacing [0, 7’| with I;,. We apply Lemma[.Blreplacing [0, 7] with I}, taking into account Assumption
[Zl which holds trivially with respect to £*. This implies that u*° verifies (£5) and {.8) replacing [0, T
with I, and therefore on the whole [0, T7.

2. Existence in law in A;, follows now by Lemma@&.7l

3. It remains to show uniqueness in law. Let (Y, p) be a solution of the SDE (L.3). We set v := p (7).
Since u** and p(7 —-) solve the PDE (8.2), Lemma[3.4limplies that p is uniquely determined. Similarly
as in item 1.(b) of the proof of Theorem[.T1] item 1. of the present proof and Lemma.5]allow to show
that p belongs to A;.

4. It remains to show uniqueness in law in A;. For this, Corollary implies Property Bl in the Ap-
pendix with C = P(R?). Uniqueness of (IL3) in the class A; follows now by Corollary 55 in the
Appendix, which ends the proof.

O

4.4 Well-posedness for the McKean SDE: the OU semigroup

In this section we investigate existence and uniqueness for the SDE (L.3) in the context of an OU semigroup.
As for Section.3] the uniqueness statement for the related PDE (L) (see Section[B.4), appears to be crucial.
The only limitation here is that the matrix function ¥ has to be invertible, otherwise the additive drift in
(I:3) would not be defined.

Suppose that b is of the form (s,z) + C (s)z with C continuous from [0,7] to R? and o continuous
from [0,7] to M, (R). We also suppose that for all t € [0,7], £ (¢) is invertible. We denote by C(t) :=
(D(t)~1)T,t € [0,T] where D is the unique solution of (3.23). Evaluating the transposed matrix on both
sides of (3.24), we remark that C is solution of the matrix-valued ODE,

Clt) = I—I—/tC(S)C(S)dS, te[0,T].
0

For a given 2y € R? and a given t €]0,T], we denote by p;° the density of a Gaussian random vector
with mean m}° = C(t)zo and covariance matrix Q; = C(t) fot C~(s)S(s)C (s)" ds C(t)T. Note that for
all ¢ €]0,T], Q, is strictly positive definite, in particular it is invertible. Indeed, for every ¢t € [0,T], X(¢)
is strictly positive definite. By continuity in ¢, f(f C~1(s)%(s)C" (s) " ds is also strictly positive definite and
finally the same holds for Q;. For a given v € P (R%), ¢ €]0, T], we set the notation

Py x> y pi° (z) v (dxo) . 4.7)

At this level, we need a lemma.
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Lemma 4.14. Let v € P (R%). The measure-valued function t — p{ (x)da is the unique solution of the PDE (B.2)
with initial value v. Consequently it coincides with u”. Furthermore, u” (T — -) belongs to As.

Proof. 1. By Chapter 5, Section 5.6 in [16], for every ¢ €]0,T], p;° is the density of the random variable
X0, where X is the unique strong solution of (3.4) with initial value zo. The mapping ¢ — p;°(z)dz
is a solution of (3.2) by Proposition with initial condition d,,. Consequently, by superposition,
t — p¥(z)dz is a solution of the PDE (8.2) with initial value v.

2. By PropositionB.17] Property [lwith respect to C = P(R?) is verified so that ¢ — pY (z)dz is the unique
solution of (3.2) so that it coincides with u”.

3. It remains to show that u” (T — -) belongs to As, namely that for all i € [1,d]

div, (S (T — 1), py_, (2))
p%,t (I)

(t,z) —

)

is locally Lipschitz with linear growth in space on [0, T[xR.
Fix i € [1,d], t € [0,T[ and # € R?. Remembering the fact that p7° , is a Gaussian law with mean

m7’_, and covariance matrix Q7 for a given zy € R4, we have

dive (B (T 1), (2)) 1
P (z) Py (%)

[ @ =0,.G7 o= i ) st (2)v (deo). (48
Let K be a compact subset of 0, 7] x R?; then there is My > 0 such that for all (¢, z) € K, 2y € R,

’<E (T —1),. vQ;it (x - mfro—t»pﬁ}o—t (‘T)} SIET-1), HQ:FL:H ]:v - m?ro—t}p;o—t (z) < M.

This follows because ¢ +— %(T —t) and ¢ + Q. , are continuous on [0, 7' and, setting

2
cx = inf{t|(t,x) € K}, mg :=suplalexp (—CK%) ,
a€R

we have
|I - m;07t|p§’07t('r) S mKa V(t, I) € K

To show that left-hand side of (38) is locally bounded on [0, T[xR? it remains to show that (¢,z)
Jga P72, (z)v(dxo) is lower bounded on K. Indeed, let I be a compact of R?. Since (¢, z, z¢) — p7°_,(z)
is strictly positive and continuous is lower bounded by a constant ¢( X, I'). The result follows choosing
I such that v(I) > 0.

di”m(z(z;—szél;?—t(w))v i € [1,d] defined on

[0, T[xR? has locally bounded spatial derivatives, which implies that they are Lipschitz with linear

To conclude, it remains to show that the functions (¢, z) —

growth on each compact of [0, 7[xR¢. By technical but easy computations, the result follows using
the fact the real functions a — |a|™ exp (—%), m = 1,2, are bounded.
O

We give now a global well-posedness result for the SDE (L.3).
Theorem 4.15. (The McKean SDE: well-posedness in the Ornstein-Uhlenbeck case.)

1. Suppose the initial condition p equals u” (T) for some v € P (R?). Then, equation (L3) admits existence in
law, strong existence, uniqueness in law and pathwise uniqueness.
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2. Otherwise [L3) does not admit any solution.

Proof. Item 2. can be proved using similar arguments as for the proof of Proposition Let (Y,p) be a
solution of (L.3) and set vy = p(T). By Proposition p (T — ) is a solution of the PDE (1)), so that
p(T — ) verifies also the PDE (8.2) with initial value 1. Since, by Proposition B.17] uniqueness holds for
(B2, it follows that p(T — -) = u*® which concludes the proof of item 2.

We prove now item 1. For this, taking into account Proposition 5.4] Yamada-Watanabe theorem and
related results for classical SDEs, it suffices to show strong existence and pathwise uniqueness. We set
C:=P(R?).

a) Concerning the strong existence statement, we want to apply Proposition 5.2 stated in the Appendix.
Since b, o are affine, Assumption [l trivially holds; Property [[l with respect to C thanks to Proposition
It remains to verify Property 2 with respect to C and Property @ (in the Appendix).

By Lemma for all ¢ €]0,7], u”(t) admits p} (see @.7)) for density. Then, relation (5.I) below
holds since, by &7) and the considerations above, (¢,z) — p(z) is locally bounded with locally
bounded spatial derivatives. Hence, Property Rl holds with respect to C. Finally, Lemma T4 implies
that u” (T — -) belongs to A,. Hence, Propertydholds with respect to C and so Proposition5.2limplies
existence in law.

b) Let (Y, p) be a solution of equation (.3). Proposition implies that p (7' — -) solves (LI). Then,
Proposition B.171gives p (T — -) = u*® with vy = p (T'). Lemma4.I4implies p belongs to As,.

¢) It remains to show pathwise uniqueness in A, for which we will make use of Corollary 5.5 lying on
Property B both stated in the Appendix. Indeed we check that Property Bl holds with respect to C
thanks to Theorem Now, point 2 of Corollary B.5implies pathwise uniqueness in A, since b, o
are locally Lipschitz with linear growth in space.

5 Appendix

For ease of reading the paper, we have postponed some technical results in this appendix. Sections 5.IJand
B2 link the well-posedness of the PDE (I.1)) to the well-posedness of the McKean SDE (L.3). In particular
Proposition 5.2 (resp. Corollary B.5) links the existence (resp. uniqueness) of the PDE (L.2) with the SDE
(L.3). Sections[5.3]land 5.4 give the proofs of two technical Lemma (Lemma[3.ITland 4.5).

5.1 PDE with terminal condition and existence for the McKean SDE

We suppose that Property [lis in force for a fixed C € P (R?) and consider the Property Dl with respect
to C and Propertiesand @ related to a given function u : [0, 7] — M. (R%).

Property 2.

1. u (0) belongs to C.
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2. ¥t €]0,T], u(t) admits a density with respect to the Lebesgue measure on R (denoted by u (t,-)) and for all
to > 0 and all compact K C R¢

T d d
/ /|ML@F+§:ZJQNL@&u@doML<m. (5.1)
to JK i=1 j=1

Remark 5.1. Suppose Assumption [l holds and let u be a measure-valued function verifying Property 2l Then (5.)
implies that the family of densities u (T — t,-) ,t €]0, T'[ verifies condition @) appearing in Definition[d1] To show
this, it suffices to check that for all to > 0, all compact K C R and all (i, j, k) € [1,d]? x [1,d]

/tDT /K 10; (oi (s,y) ojk (s, y) u (s, y))| dyds < . (5.2)
The integrand appearing in (5.2) is well-defined. Indeed, in the sense of distributions we have
0; (ikojru) = 000U + u (0505045 + 000k ; (5.3)
moreover the components of o are Lipschitz, so they are (together with their space derivatives) locally bounded. Also
wand o, 0ju are square integrable by (B.1), which implies (5.2).
We introduce two other properties possibly fulfilled by a function u : [0, 7] — M. (R9).
Property 3. u(T') admits a density and u (T — -) || p(xpa belongs to Ay.
Property 4. u(T') admits a density and u (T — -) | p(xga belongs to As.
We remark that Property @ implies

Proposition 5.2. Suppose the validity of Assumptions[Il We also suppose that the backward PDE (L) with terminal
condition p admits at least an M. (R®)-valued solution  in the sense of Definition B} fulfilling Property [l and
PropertyRlwith respect to C. Then [L3) admits existence in law in Ac.

Moreover, if u fulfills Property 3 (resp. @) then (L3) admits existence in law in Ac N Ay (resp. strong existence
in Ac N Aa).

Proof. Let u the function of the statement such that fulfilling Property 2] i.e. u (0) belongs to C We consider
now a filtered probability space (Q, F, (F)iepo,m ,IP’) equipped with an (F¢),¢( 7y-Brownian motion W
Let X, be a r.v. distributed according to u(0). Under Assumption[]] it is well-known that there is a solution
Xto

t t
X, = Xo —I—/ b(s,Xs) ds—i—/ o (s, Xs)dWs, t €10,T]. (5.4)
0 0

Now, by Proposition[32 ¢ — £ (X;) is a P (R?)-valued solution of the PDE (3.2) in the sense of (3.3) with
initial value u (0) € C. Then Property [{lfor u implies

L(X)=u(t), telo,T), (5.5)

since u solves also the PDE (8.2) with initial value u (0) € C. This implies in particular that u is probability
valued and that for all ¢ €]0, T'[, X, has u (¢, -) as a density fulfilling condition (G.).

Combining this observation with Assumption [I} Theorem 2.1 in [I1] states that there exists a filtered
probability space (€2, G, (Gi)iejo,r), Q) equipped with some Brownian motion 3 and a copy of X (still de-
noted by the same letter) such that X fulfills the first line of the SDE (@I3) with 8 and

p(t)i=u(T —1), t €0, T]. (5.6)
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Finally, existence in law for the SDE (L.3) in the sense of Definition&.Ilholds since (X,u(T —-))is a solution
of (L3) on the same filtered probability space and the same Brownian motion above. This occurs in A¢ since
L ()A(T) € C thanks to equality (5.5) for ¢t = T'.

We discuss rapidly the moreover point.

* Suppose that u fulfills Property Bl Then u (T — -) belongs to A¢ N A; and we also have existence in
law in Ac N A;.

¢ Suppose that u fulfills Property @ Then, taking into account (5.6), strong existence and pathwise
uniqueness for the first line of (I.3) holds by classical arguments since the coefficients are locally
Lipschitz with linear growth, see [24] Exercise (2.10), and Chapter IX.2 and [24], Th. 12. section V.12.
of [25]. By Yamada-Watanabe theorem this implies uniqueness in law, which shows that u (7 —-)
constitutes the marginal laws of the considered strong solutions. This concludes the proof of strong
existence in A¢ N A, since u (T — ) belongs to Ac N A, by Property @

Remark 5.3. By (5.6), the second component p of the solution of [L3) is given by u (T — -).

5.2 PDE with terminal condition and uniqueness for the McKean SDE

In this subsection we discuss some questions related to uniqueness for the PDE (I.3). We consider the
following Property related to a given subset C of P (R?).

Property 5. The PDE (L) with terminal condition p admits at most a P (R?)-valued solution u in the sense of
Definition[3lsuch that u (0) belongs to C.

We recall that SectionB.2 provides various classes of examples where Property Blholds.

Proposition 5.4. Suppose the validity of PropertyBlwith respect to C and suppose b, o to be locally bounded.
Let (Y, p"), i € {1,2} be two solutions of the SDE (I.3) in the sense of DefinitionEdlsuch that p* (T, p* (T)
belong to C. Then,
p' =p”

Proof. Proposition .3 shows that p* (T — ), p* (T — -) are P (R?)-valued solutions of the PDE (L) in the
sense of Definition Bl with terminal value u. Property [l gives the result since p' (T'), p? (T') belong to
C. O

As a corollary, we establish some consequences about uniqueness in law and pathwise uniqueness re-
sults for the SDE (I.3) in the classes A; and As.

Corollary 5.5. Suppose the validity of Property[Blwith respect to C. Then, the following results hold.

1. Ifbis locally bounded, o is continuous and if the non-degeneracy Assumptiondlholds then the SDE (L.3) admits
uniqueness in law in Ac N Aj.

2. If b, o are locally Lipschitz with linear growth in space, then (L3) admits pathwise uniqueness in Ac N As.
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Proof. 1f (Y, p) is a solution of the SDE (L.3) and is such that p (T") belongs to C, then by Proposition 5.4 p is
determined by ¢ = £ (Y)).
To show that item 1. (resp. 2.) holds, it suffices to show that the classical SDE

dX; = (b(t, Xeipe) = b(t, X)) dt +5 (1, X:) AW, ¢ € [0.7, (5.7)

where b was defined in (4.4) and W an m-dimensional Brownian motion, admits uniqueness in law (resp.
pathwise uniqueness). The mentioned uniqueness in law is a consequence of Theorem 10.1.3 in and
pathwise uniqueness holds by [24] Exercise (2.10), and Chapter IX.2 and [25] Th. 12. Section V.12. O

5.3 Proof of Lemma[3.17]

Proof. For a given (z,y) € R? x R? we set
Z8Y = XV — X2t € [0,T].

We have , o
Z5Y =y —ax+ / BEYZEYdr + Z/ Of’y’jZf’yde, t e [0,T], (5.8)
0 -

with, for all r € [0, 7]
1 _ 1
BiY = / Jb(r,aX! +(1—a)X¥)da, CH¥7 = / Joj(riaX?+(1—-a)X7)da,Vj € [1,m].
0 0

By the classical existence and uniqueness theorem for SDEs with Lipschitz coefficients we know that

E(sup [X;|*) < oo, (5.9)
s<T
for all z € R%. This implies
E( sup |Z2Y)%) < oo. (5.10)
t€[0,T]
Now, It0’s formula gives, for all ¢ € [0, T
|ZEY)? = |y — 2 +2/ (BZYZEY Z7Y) dr+Z/ |C”“”ZW} dr+2ZM”““ (5.11)
i=1

where, for a given i € [1,d], M™% denotes the local martingale [, Z¥" Z;l:l (Cxvizzv) dWi.
Consequently, for all i € [1, d], we have

d T 2
[Mﬂc,yyi]T _ x Y, 1 1 Y JZx y) d,,«7
j=1"0 l
d T
< / ’Cwﬂmzw,u |Zw’y| dr, (5.12)
j=1"0
d
<\ T (K79)? sup [Z2)?
= re0,7]

By the latter inequality and (5.1I0), we know that E ([M”“”]%) < oo, 80 for all i € [1,d], M™% is a true
martingale. Taking expectation in identity (5.11), we obtain
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¢ d
E (|Zf’y|2) =y —af +/0 E (2 (B®YZmY, ZTY) 4+ Z }C:’yx’fzivyﬁ) dr.
k=1

Hence, thanks to Cauchy-Schwarz inequality and to the definition of K® and K77 for all j € [1,d]

B (707) <ttt + & [ 5 (o) s

and we conclude via Gronwall’s Lemma. O

5.4 Proof of Lemma[4.5l

Let v € P (R?Y). For each given ¢t € [0,7], we denote by G, the differential operator such that for all
fec? (RY)

d
th:% D0 (S () )) =D 0 (bi(t,-) f)-

ij=1 i=1

Assumption [flimplies that for a given f € C? (R?), G f can be rewritten in the two following ways:

d d d
Gif = % D St )05 f + D (D %t ) = bilt, )i f + ¢t ) f, (5.13)
i,j=1 i=1 j=1
with
d d
ci(ta) 5 > 05Nt ) = Y Oibit,x)
1,j=1 1=1
1 d d d
th = 5 Z 8j (812” (t, )f + Eij (t, )8z.f - Z bi(ta )8lf) - Z 8ibi(t7 )f (514)
1,j=1 1=1 1=1

On the one hand, combining identity (5.13) with Assumptions 2] Bl 4 and [6] there exists a fundamental
solution T" (in the sense of Definition stated in Section 1. p.3 of [10]) of d,u = Gyu, thanks to Theorem 10.
Section 6 Chap. 1. in the same reference. Furthermore, there exists Cy,Cs > 0 such that for all ¢ € [1,d],
v, €RY, T €[0,T],t>T,

2
|F ($7t7§77-)| < Cl (t - T)_§ exXp <_%> ’ (515)
2
10,.T (2,1, €,7)| < Ci (t — 1)~ F exp <_%> , (5.16)

thanks to identities (6.12), (6.13) in Section 6 Chap. 1 in [10].

On the other hand, combining Identity (5.14) with Assumption[f] there exists a so called weak funda-
mental solution © of d,u = G;u thanks to Theorem 5 in [1]. In addition, there exists K, Ko, K3 > 0 such
that for almost every z,£ € R?, 7 € [0,T],t > 7

1 _d Koz —¢)? _d K —¢P
E (t - T) 2 exp <_%> <O (‘TutaguT) <K (t - T) 2 exp <_%> ) (517)

thanks to point (ii) of Theorem 10 in [1]].
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Our goal is now to show that I' and © coincide. To this end, we adapt the argument developed at the
beginning of Section 7 in [I]|. Fix a function H from [0, 7] x R? belonging to C° ([0, T] x R?). Identity (7.6)
in Theorem 12 Chap 1. Section 1. of implies in particular that the function

w: (t,x) >—>/Ot/RdI‘(x,t,f,T)H(T,QdeT,

is continuously differentiable in time, two times continuously differentiable in space and is a solution of the
Cauchy problem
Owu (t,z) = Gyu (t,z) + H (t,z), (t,x) €]0,T] x R4, (5.18)
u (0,-) = 0.
It is consequently also a weak (i.e. distributional) solution of (5.I8), which belongs to £2(]0,T] x R%) (see
definition of that space in []) since u is bounded thanks to inequality (5.15) and the fact that H is bounded.
Then, point (ii) of Theorem 5 in [1]] says that

t
(t,a:)l—>/0 /Rd@(x,t,g,T)H(T,{)dédT

is the unique weak solution in £2(]0, 7] x R?) of (518). This implies that for every (¢,z) €]0,7] x R¢ we
have

// (T —0O) (x,t,&,7) H (1,£) dédr = 0.
0 R4

Point (i) of Theorem 5 in [1] (resp inequality (5.I5)) implies that © (resp. I') belongs to L? (]0,T] x R?) as a
function of (&, 7), for an arbitrary p > d + 2. Then, we conclude that for all (¢,z) €]0,T] x R,

O (z,t,&,7) =T (2,t,&,7), dédTa.c. (5.19)

for all (7, &) € [0,t[xR% This happens by density of C° ([0, 7] x R?) in L? (]0,T] x R?), ¢ being the conju-
gate of p.

This, together with (5.17) and the fact that I' is continuous in (7,¢) implies that (5.I7) holds for all
(7,€) € [0,t[xR? and therefore
1 d (_ Ky lz — ¢

— (t—7) 2 exp =)

2
X ) <T(a,t,67) <Ky (t—7) Fexp (—M> . (5.20)
1

4(t—71)
We introduce
wimor [ Tt &0 ().
R4
By (5.20), with 7 = 0 we get

2
g () > Kilf% /R o <—%> v (d€) (5.21)

We denote now by v” the measure-valued mapping such that v¥ (0,-) = v and for all ¢ €]0, 7], v” (¢) has
density ¢; with respect to the Lebesgue measure on R?. We want to show that v” is a solution of the PDE
(32) with initial value v to conclude u” = v” thanks to the validity of Property[[lbecause of Lemma[3.4Jand
Assumptions2] Bland @ To this end, we remark that the definition of a fundamental solution for d;u = Giu
says that u is a C'1? solution and consequently also a solution in the sense of distributions. In particular for
all ¢ € C° (RY), forallt > € >0

[ 6@V )= | 6@V (e (de) + / / Lo () v (5) (da) s (5.22)
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To conclude, it remains to send € to 0+. Theorem 15 section 8. Chap 1. and point (ii) of the definition stated
p- 27 in [10] imply in particular that for all ¢ € C° (R%), £ € RY,

| T@ec0o@i = 6.

e—0+

Fix now ¢ € C* (Rd). In particular thanks to Fubini’s theorem, (5.17) and Lebesgue’s dominated conver-

gence theorem we have
[ @y @@= [ 0@ [ Taecor@
:/Rd/RdF(a:,e,{,O)(b(:c)d:cu(df)
— | o (v (dE).

e—0+ Rd

By (522) v is a solution of the PDE (3.2) and consequently u” = v, so that, for every ¢ €]0,7], u” (t)
admits u”(t,-) = ¢, for density with respect to the Lebesgue measure on R%. Now, integrating the inequal-
ities (5.15), (5.16) with respect to v and combining this with inequality (5.21), we obtain the existence of
K1, K2,C1,Cq > 0 such that for all t €]0, T, for all x € RY, for all i € [1,d]

1 Ko |z —&|?
Etig /Rd exp <—%> v(de) <u” (t,z) < Kyt %,

d+1

|81"UJU (t,ZC)| S OltiT.
Consequently, the upper bounds in @.5) and [.6) hold. Concerning the lower bound in @.3), let I be a
compact subset of R? such that v(I) > 0, the result follows since (¢, z,£) ~ exp (—%}:5'2) is strictly

positive, continuous and therefore lower bounded by a strictly positive constant on K x I for each compact
K of ]0,T] x R%.
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