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McKean probabilistic representation
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July 20th 2020

Abstract

Usually Fokker-Planck type partial differential equations (PDEs) are well-posed if the initial condition
is specified. In this paper, alternatively, we consider the inverse problem which consists in prescribing
final data: in particular we give sufficient conditions for existence and uniqueness. In the second part of
the paper we provide a probabilistic representation of those PDEs in the form a solution of a McKean type
equation corresponding to the time-reversal dynamics of a diffusion process.

Key words and phrases. Inverse problem; McKean stochastic differential equation; probabilistic represen-
tation of PDEs; time-reversed diffusion; Fokker Planck equation.
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1 Introduction

The main objective of the paper consists in studying well-posedness and probabilistic representation of the
Fokker-Planck PDE with terminal condition
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(1.1)

where o : [0,7] x RY — Mg,,(R), b : [0,7] x R? — R? and p is a prescribed finite Borel measure on
RY. When u(t) admits a density for some ¢ € [0, 7] we write u(t) = u(t, z)dz. This equation is motivated
by applications in various domains of physical sciences and engineering, as heat conduction [3], material
science or hydrology [2]. In particular, hydraulic inversion is interested in inverting a diffusion process
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representing the concentration of a pollutant to identify the pollution source location when the final con-
centration profile is observed. Those models are often formulated by PDE problems which are in general
ill-posed because, either the solution is not unique or the solution is not stable. For this issue, the existence
is ensured by the fact that the observed contaminant is necessarily originated from some place at a given
time (as soon as the model is correct). Several authors have handled the lack of uniqueness problem by
introducing regularization methods approaching the problem by well-posed PDEs, see typically [18] and
[11]. A second issue, when the problem is well-approximated by a regularized problem, consists in provid-
ing a numerical approximating scheme to the backward diffusion process. In particular for (I.2) there are
very few results even concerning existence and uniqueness.

Our point of view is that a probabilistic representation of (I.2) can bring new insights to the treatment
of the two mentioned issues: well-posedness and numerical approximation. To realize this objective we
consider the renormalized PDE

d
13002 (00 ") j(t, 2)0) — div (b(t, z)0)
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= (1.2)
WT) = @
where i = W is a probability measure. We remark that the PDEs (L.2) and (L.I)) are equivalent in the sense

that a solution (I.2) (resp. (L.I)) provides a solution to the other one. The program consists in considering
the McKean type stochastic differential equation (SDE)

t t¢ o ) - t
Yt:Yo—/ b(T—r,YT)dH/ {d“’y@”(T T’Y’“)pr(y’“))} dr+/ o (T —r,Y,) dB,,
0 0 pr(Yr) i€[1,d] 0

pt density law of py = law of Yy, t €]0, T|,
Yo~ pr =i,

(1.3)
where j is a m-dimensional Brownian motion and ¥ = oo ", whose solution is the couple (Y, p). Indeed
an application of It6 formula (see Proposition shows that whenever (Y, p) is a solution of (I.3) then
t — pr—; is a solution of (L.2).

The idea of considering (I.3) comes from the SDE verified by time-reversal of a diffusion. Time-reversal
of Markov processes was explored by several authors: see for instance [8] for the diffusion case in finite
dimension, [6] for the diffusion case in infinite dimension and [9] for the jump case.

Consider a forward diffusion process X solution of

t t
Xt:Xo—i-/ b(s,XS)ds—i—/ o(s, X )dW,, t € 0,7, (1.4)
0 0

where o and b are Lipschitz coefficients with linear growth and W is a standard Brownian motion on R™.
X; == Xr_4,t € [0,T] will denote the time-reversal process. In [8] the authors gave sufficient general
conditions on o, b and the marginal laws p; of X; so that Y := X is a solution (in law) of the SDE

t t . ) _ t
n:xT—/ b(T—r,Yr)dr—k/ {dzvy(Ez.(T T,YT)pT_mYT))} dr+/ o (T = r,Y,)dB,. (15)
0 0 i€[[1,d] 0

PT—r (}/r)
The key idea to show well-posedness of the McKean SDE (L3), is the study of uniqueness of the PDE (I.2)
(or (L)). For instance, the trivial case of the heat equation with terminal condition produces uniqueness.
Suppose indeed that u : [0, 7] — S’ (R?) solves

ou = Au

u(T) = p.

(1.6)



Then, the Fourier transform of u, v (t,-) := Fu(t,-),t € [0, T] solves the ODE (for fixed ¢ € R?)

Lo (t,8) =— € v (t,€), (.€) € [0,T] x RY (1.7)

This admits at most one solution, since setting 1 = 0 the unique solution of (L7) is the null function.

Another relatively simple situation is described below to study uniqueness among the solutions of (L.2)
starting in the class of Dirac measures. Suppose for a moment that the PDE in the first line of (L2), but with
initial condition (see (3.2)) is well-posed. Sufficient conditions for this will be provided in Remark[3.3] Let
r € R? and u be a solution of (L2) such that u(0,-) = §,.. If X% is the solution of (I4) with initial condition
z, it is well-known that the family of laws of X}, ¢ € [0, 7], is a solution of (I.2). So this coincides with u(, -)
and in particular 4 is the law of X%. To conclude we only need to determine z.

Consider the example when ¢ is continuous bounded non-degenerate and the drift bis affinei.e. b(s, y) =
bo (8) + b1 (s)y, (s,y) € [0,T] x R, by (resp. b1) being mappings from [0, T to RY (resp. to M (R)). Taking
the expectation in the SDE fulfilled by X*, we show that the function ¢ — E*(t) := E(X}) is solution of

T
B0 = [ untdn) = [ (tolo) + () ds

Previous linear ODE has clearly a unique solution. At this point z = E(0) is determined.

Those examples give a flavor of how to tackle the well-posedness issue. However, generalizing those
approaches is far more complicated and constitutes the first part of the present work. The contributions of
the paper are twofold.

1. We investigate uniqueness for the Fokker-Planck PDE with terminal condition (I.2). This is done in
Section Blin two different situations: the case when the coefficients are bounded and the situation of
a PDE associated with an inhomogeneous Ornstein-Uhlenbeck semigroup. In Section [3.3l we show
uniqueness when the coefficients are stepwise time-homogeneous. In Theorem [3.13] the coefficients
are time-homogeneous, bounded and Hélder, with non-degenerate diffusion. Corollary B.16extends
previous results to the case of stepwise time-inhomogeneous coefficients. In Section 3.4 Theorem
treats the Ornstein-Uhlenbeck case. In Section B.2l we show uniqueness for bounded continuous
coefficients for solutions starting in the class C of multiples of Dirac measures. In Proposition 3.9 we
discuss the framework of dimension d = 1. Theorem[3.10lis devoted to the case d > 2. We distinguish
the non-degenerate case from the possibly degenerate case but with smooth coefficients: we prove

uniqueness for small time horizon T'.

2. We study existence and uniqueness in law for the McKean SDE (L.3), with some specific remarks con-
cerning strong existence and pathwise uniqueness. We differentiate specifically between existence
and uniqueness. After some preliminary considerations in Section 4] Sections 4.2 and 3] link the
well-posedness of the PDE ([L.2) to the well-posedness of the McKean SDE (L.3). In particular Propo-
sition [£.6] (resp. Corollary .9) links the existence (resp. uniqueness) of (L.2) with (L.3). In Section £4]
Proposition .14 and Theorem .16 discuss the case of bounded coefficients. Theorem [£.19]is Section
is devoted to the case of Ornstein-Uhlenbeck (with not necessarily Gaussian terminal condition),

where strong existence and pathwise uniqueness are established.



2 Notations and preliminaries

Let us fix d,m € N*, T > 0. C° (R?) is the linear space of smooth functions with compact support. For
a given p € N*, [1, p] denotes the set of all integers between 1 and p included. My ,,, (R) stands for the set
of d x m matrices. If d = m, we simply use the notation M, (R). For a given A € My (R), T'r (A) (resp.
AT) symbolizes the trace (resp. the transpose) of the matrix A. ||A|| denotes the usual Frobenius norm.
(,) denotes the usual scalar product on R¢, with associated norm |.|. For a given f : R? — R!, p,l € N*,
9;f%, (i,5) € [1,1] x [1,p] denote the partial derivatives of f being defined in the sense of distributions
on R? whenever they exist. We also introduce the mapping Jf from R? to M ), (R) such that Jf : z —
031" () s pepaxan

Let a €]0,1[,n € N. Cy(R?) (resp. Cj*(R?)) indicates the space of bounded continuous functions (resp.
bounded functions of class C" such that all the derivatives are bounded). C®(R¢) is the Banach space of
bounded a-Hélder functions R — R equipped with the norm |.|, := ||.|| + [.],, , where

[f]a = sup |f($£‘) — f(y)|

o < 0Q.
z,yERY x#y |x - y|

If n is some integer C®T"(R?) is the Banach space of bounded functions f : R? — R such that all its
derivatives up to order n are bounded and such that the derivatives of order n are a-Holder continuous.
This is equipped with the norm obtained as the sum of the Cj*(R¢)-norm plus the sum of the quantities
[g]a Where g is an n-order derivative of f. For more details, see Section 0.2 of [12]. If F is a linear Banach
space, we denote by ||.|| ; the associated operator norm and by £ (E) the space of linear bounded operators
E — E. Often in the sequel we will have E = C2%(R?).

P (R?) (resp. My (R?), My (R?)) denotes the set of probability measures (resp. non-negative finite
valued measure, finite signed measures) on (R, B (R?)). We also denote by S (R?) the space of Schwartz
functions and by S’ (R?) the space of tempered distributions. For all ¢ € S (R?) and p € My (R?), we set
the notations

Fop:&— e_i@’:”)gb (z)dx, Fu: & e_i<5’””>u (dz) .
R R4

Given a mapping u : [0,7] — M/ (R?), we convene that when for ¢ € [0,7], u(t) has a density, this is
denoted by w (¢, -). We also introduce, for a given ¢ in [0, T, the differential operator,

d d
1
Lof =5 > Bt )05 f + ) b (t,) Oif, (2.1)
ij=1 i=1
f € C?(R?%) and denote by L} its formal adjoint, which means that for a given signed measure 7
L&
Lin:= 5 D 05 (St )n) — div (b(t,x)1) - (22)
ij=1

With this notation, equation (I.I) rewrites
ou= Liu
! t (2.3)
u(T) = p.
In the sequel we will often make use of the following assumptions.

Assumption 1. b, o are Lipschitz in space uniformly in time, with linear growth.



Assumption 2. b and o are bounded and ¥ is continuous.

Assumption 3. There exists € > 0 such that forall t € [0,T], ¢ € R?, z € R?

(S(t,2)€,€) > elgf. (2.4)

For a given random variable X on a probability space (£, F,P), Lp (X) denotes its law under P and
Ep (X) its expectation under P. When self-explanatory, the subscript will be omitted in the sequel.

3 A Fokker-Planck PDE with terminal condition

3.1 Preliminary results on uniqueness

In this section, we consider a Fokker-Planck type PDE with terminal condition for which the notion of

solution is clarified in the following definition.

Definition 3.1. Fix pn € My (R?). We say that a mapping u from [0, T] to My (R?) solves the PDE (1), if for all
¢ €C®(RY) andall t € [0,T]

T
swu® ) = [ swan) - [ [ Lowul) @ @)

Rd Rd t Jrd

We consider the following assumption related to a given class C € M (R?).

Assumption 4. Forall v € C, the PDE

Oyu = Lu (3.2)
u(0)=v

admits at most one solution u : [0,T] — M (R?).

We recall that, for a given v € My (R?), u : [0,7] — My (R?) is a solution of the PDE (3.2) if for all
¢ €€ (R%) and allt € [0,T],

[owuw @)= [ owr@+ [ [ Lowue s 63

Suppose there is an M. (R?)-valued solution of (3.2) u and Assumption B with respect to some class C
holds and such that u(0) € C. Then this unique solution will be denoted by u” in the sequel. We remark
that, whenever Assumption [ holds with respect to a given C C P (Rd), then (8.2) admits at most one

M (R?)-valued solution with any initial value belonging to R*.C := () ys0mec

We start with a simple but fundamental observation.

Proposition 3.2. Let us suppose o,b to be locally bounded, v be a Borel probability on R, o > 0, & be a r.v.
distributed according to v. Suppose that there is a solution X of SDE

t t
X, =¢ —|—/ b(r,X,.)dr —|—/ o(r,X,)dW,, t €[0,T], P—a.s., (3.4)
0 0

where W is an m-dimensional standard Brownian motion. Then the M. (R?)-valued function t — oL (X;) is a
solution of B.2) with initial value cw.



Proof. One first applies Itd formula to ¢(X;), where ¢ is a smooth function with compact support and then
one takes the expectation. O

Remark 3.3. 1. Suppose that the coefficients b, > are bounded. AssumptionHlholds with respect toC := M. (R?)
as soon as the martingale problem associated with b, ¥ admits uniqueness for all initial condition of the type

8z, x € RY. Indeed, this is a consequence of Lemma 2.3 in [5].

2. Suppose b and o with linear growth. Let v € M (R?) not vanishing (resp. v € P (R?)). The existence of
a My (R%)-valued (resp. P (R?)-valued) solution for (3.2) (even on t > 0) is ensured when the martingale
problem associated to b, ¥ admits existence (and consequently when the SDE (B.4) admits weak existence) with
initial condition v (resp. 7). This follows by Proposition We remark that, for example, this happens
when the coefficients b, o are continuous with linear growth: see Theorem 12.2.3 in for the case of bounded
coefficients, the general case can be easily obtained by truncation.

3. The martingale problem associated to b, 3 is well-posed for all deterministic initial condition, for instance in the
following cases.

e When X, b have linear growth and . is continuous and non-degenerate, i.e. Assumption [B] see [17]
Corollary 7.1.7 and Theorem 10.2.2.

e Suppose d = 1 and o is bounded. When o is lower bounded by a positive constant on each compact set,
see [[17]], Exercise 7.3.3.
e When d = 2, ¥ is non-degenerate and o and b are time-homogeneous and bounded, see [17]], Exercise

7.3.4.

o When o, b are Lipschitz with linear growth (with respect to the space variable), in which case we have even
strong solutions of the corresponding stochastic differential equation.

Lemma 3.4. Let T > 0 be arbitrary and v € P (R?). We suppose the validity of Assumptions Qland Bl Then there
is a unique M. (R?)-valued solution u to (3:2) with u(0) = v. Moreover u” takes values in P(R?).

Proof. Existence follows by items 2. and 3. of Remark[3.3] Uniqueness is a consequence of items 1. and 3.
of the same Remark. O

Below we give two uniqueness results for the PDE (1.2).

Proposition 3.5. Suppose Assumption 4 holds with respect to a given C C M4 (R?). Suppose that for all v € C
there exists an M (R?)-valued solution of (3.2) with initial value v. Then, the following properties are equivalent.

1. The mapping from C to M4 (R?) v +— u”(T) is injective.

2. Forall i € M (R%), the PDE @3) with terminal value y admits at most a solution in the sense of Definition
BIamong all M. (R?)-valued solutions starting in the class C.

Proof. Concerning the converse implication, consider (v,2/) € C? such that u”(T) = u*'(T') and suppose
that uniqueness holds for equation (2.3) for all terminal values in M (R?) in the sense of Definition B.1]
among non-negative measure-valued solutions starting in the class C. We remark that u”,u”’ are such
solutions and are associated to the same terminal value. Uniqueness gives u” = u”’ and in particular

v="u.



Concerning the direct implication, consider u', u? two non-negative measure-valued solutions of equation
(L2) in the sense of Definition B} with the same terminal value in M (R?), such that u’ (0),i € {1,2},
belong to C and suppose that v — u” (T') is injective from C to M. (R?). Setting v’ := u’ (0), we remark
that for a given i € {1,2}

ou’ = Liu'

' ! (3.5)

u’ (0) = v,
in the sense of identity 33). Then, the fact u! (T') = u? (T) gives u** (T') = u*2 (T) . By injectivity 11 = v
and the result follows by Assumption 4 O

Proceeding in the same way as for the proof of Proposition B.5lwe obtain the following.

Proposition 3.6. Suppose that for all v € My (R?), there exists a unique solution u” of (3.2) with initial value v.
Then, the following properties are equivalent.

1. The mapping v — u” (T) is injective.

2. Forall p € My (R?), the PDE (L) with terminal value ;i admits at most a solution in the sense of Definition
B1

Remark 3.7. 1. Suppose that the coefficients 3, b are bounded. Then, any measure-valued solution u : [0,T] —
M4 (R?) of B2) such that u(0) € P(R?) takes values in P(R?). Indeed, this can be shown approaching the
function ¢ = 1 from below by smooth functions with compact support.

2. Replacing M4 (R?) with P(R?) in Assumption @ item 2. in Proposition B3 can be stated also replacing
M (RY) with P(RY).

3.2 Uniqueness: the case of Dirac initial conditions

In this section we give examples of functions b, for which uniqueness of (2.3) among M, (R%)-valued

solutions is ensured, supposing Assumption@lis in force with respect to C := (adz) 0 pepa-

Remark 3.8. Let o > 0. Let = € RY. Suppose that there is a solution X® of SDE B4) with & = x.
1. By PropositionB.2 the M. (R?)-valued mapping t — oL (X7) is a solution of B2) with initial value o,.
2.t al (X7) can be identified with u®®= and in particular [;, u®’= (t) (dy) = «, Vt € [0, 7).

If Assumption[Mholds, X* denotes the unique solution of equation (3.4) with initial value = € R%.
We start with the case of dimension d = m = 1.

Proposition 3.9. Suppose the validity of Assumption Awith C = (ady) ¢ ,cp and Mwith d = m = 1. Then,
forall p € M (R), equation (IL.2) with terminal value y admits at most one solution in the sense of Definition 3.1l

among the M (R)-valued solutions starting in C.
Proof. Fix (x,y) € R? and a, 8 > 0 such that
u® (T) = u? (T). (3.6)

It suffices to show that o« =  and = = y to conclude, thanks to Proposition[38.5 By item 2. of Remark[3.8] we
have a = /3 and consequently Lp (X7) = Lp (X7). In particular E (X7.) = E (X%). Since b, o are Lipschitz
in space, they have bounded derivatives in the sense of distributions that we denote by 9,b and 9,.0.



Set Z*Y := XY — X*. We have
¢ ¢
759 = (y — ) +/ bV 2TV ds +/ o™V ZEVAW,, Yt € [0,T), (3.7)
0 0
where for a given s € [0, T
1 1
S / 0:b(s,aXY + (1 —a)X¥)da, o2Y = / 0.0 (8,aX? 4+ (1 —a)X?) da.
0 0

The unique solution of (3.7) is well-known to be

Z%Y = exp (/ b’;’yds) £ (/ U?’ydW5> (y — x),
0 0

where £ (-) denotes the Doléans exponential. Finally, we have

E <exp (/OT bg»%) € </0 a§=ydWS>T> (y— ) =0.

Since the quantity appearing in the expectation is strictly positive, we conclude = = y. O

We continue now with a discussion concerning the multidimensional case d > 2. The uniqueness result
below only holds when the time-horizon is small enough. Later, in Section 3.3 we will present in a frame-
work of piecewise time-homogeneous coefficients results which are valid for any time-horizon. Theorem
B.I0distinguishes two cases: the first one with regular possibly degenerate coefficients, the second one with
non-degenerate possibly irregular coefficients.

Theorem 3.10. We suppose Assumption@lwith C = (ad;) 4~ ,cpa and the validity of either item (a) or (b) below.
(a) Assumption [Tl
(b) Assumptionsland

There is T' > 0 small enough such that the following holds. For all p € M (Rd), equation (I.2) admits at most one
solution in the sense of DefinitionBIlamong the M. (R?)-valued solutions starting in C.

The proof of item (a) of Theorem [B.I0 relies on a basic lemma of moments estimation.

Lemma 3.11. We suppose Assumption[ll Let (z,y) € R x R?. Then, sup,c(o 7 E (|X§C - Xty|2) < |y — xf? K7,
with K :=2K" + 37" (K"vj)z, where
K= SUP]H 6 (s, )

sel0,T

and for all j € [1,m]

K% = sup ||||Jo;(s,)] |
s€[0,T]

oo *

Proof (of Lemma[3.17).
For a given (z,y) € R? x R? we set
75 = XY — X2t e [0,T).
We have , o
78 =y —x+ / BV ZEVdr + Z/ CoVIZTVAWI | t € [0,T), (3.8)
0 0
Jj=1



with, for all r € [0, 7]
1 ‘ 1
BY .= / Jo(r,aX? + (1 —a)X7)da, CHY7 .= / Joj(r,aX?+(1—-a)X))da,¥Vje[l,m].
0 0

By the classical existence and uniqueness theorem for SDEs with Lipschitz coefficients we know that

E(sup [X;|*) < oo, (3.9)
s<T
for all z € R%. This implies
E( sup |Z5Y%) < oc. (3.10)
t€[0,T
Now, It6’s formula gives, for all t € [0, T
t m t . 5 d ]
229 =ly—af 42 [ (Brzenznare Y [ lopize a2 A G
0 0 ;
7j=1 =1

where, for a given i € [1,d], M*¥" denotes the local martingale [ Z#¥* Y™ | (C3¥I Z2v) dW].

Consequently, for all i € [1, d], we have

K2

. mo T N2 ) 2
el = |3 / (zev) (crvizev) ar,
j=1"0

m T ) 2

< Z/ \Ofvyvﬂz:-ﬂ] \Z2Y)? dr, (3.12)
j=1"70

< | TD (K9 sup |Z0Y)7.
J=1 rel0,T]

.1 .
By the latter inequality and (3.10), we know that E ([M ””'fw]%) < oo, 80 for alli € [1,d], M™¥" is a true
martingale. Taking expectation in identity (3.11), we obtain

t m
E(1207) = ly - af? +/ E (2 (BEvZEY, 75) + ) \c:=y=k2fvy\2> dr.
0

k=1

Hence, thanks to Cauchy-Schwarz inequality and to the definition of K” and K7 for all j € [1,m]

t
B(1207) <ly—of* + & [ E(1257) dr
0
and we conclude via Gronwall’s Lemma. O

Proof (of Theorem[3.10).
Fix (z1,72) € R? x R%, o, B > 0 such that

u® (T) = uf%= (T). (3.13)

To conclude, it suffices to show o = 8 and z; = x5 thanks to Proposition 3.5l



1. We suppose first Assumption[Il Once again, item 2. of Remark[3.8 gives o = /3 and

E(XZ) = E(X22). (3.14)
Adopting the same notations as in the proof of Lemma[B.11] a similar argument as in (3.12), together
with (3.0) allow to show that the local martingale part of Z***2 = X*2 — X** defined in (3.8) is a

true martingale. So, taking the expectation in 3.12) with « = z1,y = 22, by LemmaB.IT]we obtain

T
[ECX - X7) = (02 —0)| < Ko [ B = XPlar
0

T
< Kb/ \/E(|X:2 — X)) dr
0
K
2

K
2

< = Tezt |xy —aq).

Remembering (38.14), this implies
K
(1 — ETeI;T) |xe — x| <0.

Taking 7" such that £7 < M with Me™ < 1, we have 1 — %Te%T > 0, which implies |z3 — 21| = 0.

2. We suppose here Assumptions 2land 38l Firstly, point 1. of Theorem 1. in ensures the existence
of probability spaces (0, 7,P"), i € {1,2} on which are defined respectively two m-dimensional
Brownian motions W', W? and two processes X', X? such that

t t
X/ =z —I—/ b (S,X;;) ds —i—/ o (S,X;;) dWi P'—as..t €[0,T].
0 0

Once again, item 2. of Remark[3.8/implies a; = o and
Lp1 (X}) = Lp2 (X7). (3.15)

Secondly, point b. of Theorem 3 in shows that for every given bounded D C R¢, forall ¢ : [0, T] x
R? — R? belonging to W, ([0, T] x D) (see Definition of that space in [19]) for a given p > d + 2, we
have forall t € [0,T],i € {1, 2},

t t
¢ (t, X}) _¢(0,xi)+/0 (0 + Ls) ¢ (s, X2) ds+/0 Jo (s, X%) o (s, X)) dW!, P'—as. (3.16)

where the application of 9; + L, t € [0,T] has to be understood componentwise.

Thirdly, Theorem 2. in [19] shows that if 7" is sufficiently small, then the system of d PDEs

V(o) € [0.7] x Y, 2B+ Lud (b,2) =0, (3.17)

¢ (T, x) =,

admits a solution ¢ in W,-? ([0, T] x D) for all p > 1 and all bounded D C R?. Moreover the partial
derivatives in space of ¢ are bounded (in particular J¢ is bounded) and ¢ (¢, -) is injective for all
t € 10,7
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Combining now (3.17) with identity (3.16)), we observe that ¢ (., X?) ,i € {1, 2}, are local martingales.
Using additionally the fact that J¢ and o are bounded, it is easy to show that they are true martingales.
Taking the expectation in (3.16) with respect to P, i = 1,2, gives

¢ (0,2;) =Epi (¢ (T, X7)),i € {1,2}.
In parallel, identity (3.15) gives

En (6 (T, X})) = Een (6 (1, X3).

S0, ¢ (0,21) = ¢ (0, z2). We conclude that z1 = x5 since ¢ (0, -) is injective.

3.3 Uniqueness: the case of bounded, non-degenerate coefficients

In this section we consider the case of time-homogeneous, bounded and Holder coefficients in dimension
d > 1. We suppose that Assumption[3lholds and consider the following one.

Assumption 5. 1. b, o are time-homogeneous and bounded.

2. Forall (i,5) € [1,d]?, b;, %i; € C** (RY), for a given o €]0, .

We refer to the differential operator 2.I) L; and we simply set here L = L.
Remark 3.12. Suppose the validity of Assumptions[3]

1. Let T > 0. Proposition 4.2 in [5] implies that for every v € My (R?), there exists a unique My (R?)-valued
solution of equation (3.2) with initial value v. This unique solution will be denoted by u”. In the sequel T will
be omitted.

2. We remark that the uniqueness result mentioned in item 1. is unknown in the case of general bounded coeffi-
cients. In the general framework, only a uniqueness result for non-negative solutions is available, see Remark

B.J1.

3. Since L is time-homogeneous, taking into account Assumptions[Bl Bl operating a shift, uniqueness of (3.2) also
holds replacing the initial time O by any other initial time, for every initial value in My (R?), with any other
maturity T.

Theorem 3.13. Suppose the validity of Assumptions Bland Bl Then, for all p € My (R?), equation (L2) with
terminal value p admits at most one My (R)-valued solution in the sense of Definition B1}

By Theorems 3.1.12, 3.1.14 and Corollary 3.1.16 in [12] the differential operator L suitably extends as a
map D(L) = C>**T2(R?) C C?**(R?) — C>* (R?) and that extension is sectorial, see Definition 2.0.1 in [12].
We set E := C?* (R?). By the considerations below that Definition, in (2.0.2) and (2.0.3) therein, one defines
P :=¢l P E— E,t>0. By Proposition 2.1.1 in , (Py)¢>0 is a semigroup and ¢ — P, is analytical on
10, +o00[ with values in £ (E), with respect to ||.|| ;.

Before proving the theorem, we provide two lemmata.
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Lemma 3.14. Suppose the validity of AssumptionsBland Bl Then, for all ¢ € E and all v € My (R?), the function
from R* to R

t— Pio (z) v (dx)
R4
is analytic.
Proof. The result can be easily established using the fact that ¢ — P,¢ with values in £(F) is analytic and
the fact that the map ¢ — [, ¢(2)v(dz) is linear and bounded.
O

Lemma 3.15. Suppose the validity of AssumptionsBlandBl Let T > 0. Then for all v € My (RY), t € [0,T] and
¢ € E we have the identity

/ bi¢ (z) v (dr) = / ¢ (x)u” () (dz), (3.18)
Rd Rd
where u” was defined in point 1. of Remark[3.12]

Proof. Letv € My (R?). We denote by v” the mapping from [0, T] to M (R?) such that V¢ € [0,T],V¢ € E

b’ (8) (dz) = | Pupla)v(da). (3.19)
R¢ R¢

Previous expression defines the measure v*(t,-) since ¢ — [, Pi¢(x)v(dx) is continuous with respect to

the sup-norm, using || P;¢||« < ||#]|~, and Lebesgue dominated convergence theorem.

By approximating elements of E with elements of C2° (R?), it will be enough to prove (BI8) for ¢ €

C (RY).

Our goal is to show that v” is a M (R?)-valued solution of (3.2) with initial value v to conclude v* = u

via point 1. of Remark B:I2land so to prove B.I8) for ¢ € C° (RY).

Lett € [0,7]and ¢ € C2° (R?). On the one hand, point (i) of Proposition 2.1.1 in gives

v

LP¢ = P,Lo, (3.20)
since C2° (R?) € D (L) = C?**2 (R4, R). On the other hand, for all s € [0,t], we have
|LPS¢|E = |PSL¢|20¢

<|Pllg1Lolg
< Moe** [Lé|,

with My, w the real parameters appearing in Definition 2.0.1 in and using point (iii) of Proposition 2.1.1
in the same reference. Then the mapping s — LP;¢ belongs obviously to L'([0,]; E) and point (ii) of
Proposition 2.1.4 in [12] combined with identity (3.20) gives

t
P = ¢+/O P,Léds.

Back to our main goal, using in particular Fubini’s theorem, we have

/]Rd P (z)v(dx) = y ¢ (x)v(de) + /Rd /0 P;Lo (x) dsv (dx)
= y ¢ (x)v(de) + /0 /Rd P;Lo (z) v (dx)ds
= [ s@van+ [ [ Lo@v () ) as

This shows that v” is a solution of equation (3.2). O
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Proof (of Theorem[3.13).
Letv, 1" € My (R?) such that
pr:=u’(T)=u" (T).

Thanks to Proposition 3.6] it suffices to show that v = v/ i.e.
voec Y, [ o= [ 6 (@),
Re R¢

Since T > 0 is arbitrary, by Remark B2l we can consider u*?>” and u”’ ", defined as the corresponding u”
and u”’ functions obtained replacing the horizon T with 27". They are defined on [0, 27] and by Remark
1. (uniqueness on [0, T), they constitute extensions of the initial u” and u*’.
By Remark[B.123., the uniqueness of an M (R?)-valued solution of (82) (for ¢ € [T, 2T, with T as initial
time) holds for

opu(r) = L*u(r), T <7 <2T

(3.21)
u(T) = ur-.
Now, the functions u*2” and u*" 27 solve B21) on [T, 27T]. This gives in particular
Vr>T, ¥ e C (RY), [ ¢(x)u? (1) (dz) = | ¢(x)u”?" (7)(d). (3.22)
Rd Rd

Fix ¢ € C2° (R?). Combining now the results of LemmataB.I4and B.15, we obtain that the function

e [ @@ u? (1) (dz) — | b (x)u’ T (1) (do) (3.23)
R¢ R¢

defined on [0, 277, is zero on [T, 27| and analytic on |0, 27"]. Hence it is zero on |0, 27]. By (3.I8) we obtain
/ Poo (2) (v — /) (de) = 0, ¥t €]0, 2. (3.24)
Rd

Separating v and ¢/ in positive and negative components, we can finally apply dominated convergence
theorem in (3.23) to send 7 to 0. This is possible thanks to points (i) of Proposition 2.1.4 and (iii) of
Proposition 2.1.1 in together with the representation (3.18). Indeed P;¢ (z) — ¢ () for every ¢ €
E,z € R" when 7 — 0. This shows v = ¢/ and ends the proof.

O

For the sake of applications it is useful to formulate a piecewise time-homogeneous version of Theorem

Corollary 3.16. Let n € N*. Let 0 =ty < ... < t, = T be a partition. For k € [2,n] (resp. k = 1) we denote
Iy, =]tg—1,tx] (resp. [to,t1]). Suppose that the following holds.

1. Forall k € [1,n], the restriction of o (resp. b) to Ij, x R? is a time-homogeneous function o* : R4 — My(R)
(resp. b* : R — RY).

2. Assumption[3

3. AssumptionBlis verified for each o, b* and S*, where we have set % 1= o*g* '

Then, for all i € My (RY), equation (L2) with terminal value j1 admits at most one My (R?)-valued solution in the

sense of Definition[3.]
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Proof. For each given k € [1,n], we introduce the PDE operator L* defined by
1 d
L* .= 5 > SEo+ Y bEo. (3.25)
i,j=1 i=1
Let now u', u? be two solutions of (I.2) with same terminal value .

The measure-valued functions v := u’ (- +t,,_1) ,i € {1,2} defined on [0,T — t,,_1] are solutions of

v =(L")v
v (T —tn-1, ) = M,

(3.26)

in the sense of Definition Blreplacing T by T' — t,,_1 and L by L". Then, Theorem B3 gives v! = vZ and

2

consequently u' = u? on [t,,_1, T]. To conclude, we proceed by backward induction.

O

3.4 Uniqueness: the case of Ornstein-Uhlenbeck semigroup

In this section, we consider the case b := (s,z) — C(s)z with C' continuous from [0,7] to M4 (R) and o
continuous from [0,7] to My, (R). We set X := oo . We also denote by D (t), t € [0,7], the unique
solution of

D(t) = I—/OtC(s)TD(s)ds, te0,7).

We recall that for every ¢ € [0, T, D(t) is invertible and
t
Dt = I+/ C(s)"D7(s)ds, t € [0,T).
0

For previous and similar properties, see Chapter 8 of [4].

In that setting, the classical Fokker-Planck PDE for finite measures reads

d

d
6,511 t) = Yt ij(?iju t) — 61' C(t)x ;a t
(t) JZ::l (t) (t) ; (C(t)z);u(t) 527)

u(0) =v e My (R?).

Proposition 3.17. Forall v € M (R?), equation B.27) with initial value v admits at most one My (R?)-valued
solution.

Proof.

1. Let v € My (R?) and u be a solution of (3.2) with initial value v. Identity (3.3) can be extended to
S (R?) since for all ¢t € [0, 7], u (t) belongs to M (R?). Then, t — Fu (t) verifies

Fu (t) (&) =.7:1/(§)+/ <C(S)T§,V.7:u(s)>ds—%/o (3 (s)¢&,&) Fu(s)ds, (t,&) € [O,T]de. (3.28)

0

In fact, the integrand inside the first integral has to be understood as a Schwartz distribution: in
particular the symbol V is understood in the sense of distributions and for each given s € [0,77,
<C (s)" & VFu (s)> denotes the tempered distribution

d

o Y 0Fu(s) (6= (C9)7€) ¢(©).

i=1
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Indeed, even though for any ¢, Fu (t) is a function, the equation (8:28) has to be understood in &’ (R?).
Hence, for all ¢ € S (R?), this gives

[o@Fum©d- [ o0 Fv© s 3.29)
__Zk;/ o [ aFo©ue @i [ [ 660 mue©oows
:—klzl/C kl/ F (O19x) ( ) (d€) S__//Rd $)&, &) Fu(s) (§) deds

. T 1
[ [ (e (0607 600) + 5 26)6.90(©)) Futerdeas,
where ¢y, : £ — &0 (§) for a given k € [1,d].

. Letnow v : [0, 7] — My (R?) defined by

= T r|ua X .
[o@vn = [ (D0 2)u) ). (3.30)
€[0,T],¢ € Cp(R?). For every & € RY, we set ¢(z) = exp(—i(¢, z)) in (B30) to obtain

Fv (t)(§) = Fu@®)(D(t)§), (3.31)
forall ¢ € RY, forallt € [0, 7.

. We want now to show that, for each £, ¢t — Fv (¢) fulfills an ODE. To achieve this, suppose for a
moment that (¢,§) — Fu (t) (§) is differentiable with respect to the variable . Then, on the one hand,
we have for all (¢,¢) € [0,7T] x RY,

Fa®)© =7+ [ (00T eVeFu ©)ds—5 [ G@eoFaE©@ds (3

thanks to identity (328). This means in particular that, for each given ¢ € RY, ¢t — Fu(t) (§) is
differentiable almost everywhere on [0, 7.

On the other hand, for almost every ¢ € [0, T] and all £ € R, we have

8.V (1) (6) = aFu(r +Z( 7 (P0) aFa(@e).

d
=aFu®) (@1 - Y (CO' DWE) dFu®) (D),
i=1
= 2 (BODOEDOEFv (1) (©), (339
where from line 1 to line 2, we have used the fact & (D (t) ) = —C (t)" D (t)Eforall (t,€) € [0,T] xR?
and from line 2 to line 3, the identity (8.32). Since ¢ — Fv (t) (§) is absolutely continuous by (B.31),
(3.33) implies

Fe®)(©=Fr(© =5 [ CEODEEDHOFY () (€ ds R (334)

forallt € [0,T].
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4. Now, if (¢,&) — Fu(t) (§) is not necessarily differentiable in the variable £, we will be able to prove
(339 still holds by making use of calculus in the sense of distributions.

5. Suppose that (3.34) holds. This gives

oo Te)?

Fu(t) (&) =e i == Fu (D1 (1)¢). (3.35)

6. The proof is now concluded after we have established the (3.34). Since both sides of it are continuous
in (¢,¢), it will be enough to show the equality as S’'(R%)-valued. This can be done differentiating
(B:28), considered as an equality in S’'(R?). For this we will apply Lemma setting ® := Fu (t)
for every fixed ¢t € [0,7] and differentiating in time. We set ®,(¢) = Fv(t)(£), ¢ € R and ®,(¢) =
Jra 0(€)@:(§)dE, ¢ € S(RY). We remark that @, is compatible with the one defined in (3.36). (3.34) will
the directly follow from Lemma[3.18

O
Lemma3.18. Let ® € S’ (R?),t € [0,T]. We denote by ®, the element of S’ (R?) such that for all ¢ € S (R?)
Dy (p) :=det (D' ()@ (o (D' ())) . (3.36)

Then, forall t € [0,T]

go(x)) ds. (3.37)

d t
wi(e) = () =3 [ @), (- (C ) D)),
i=1
Proof. We begin with the case ® € S (R?) (or only C* (R?)). In this case,
@y (x) =0 (D (t)x), € RY ¢t €[0,T).
Hence, for every ¢ € [0, T
d d
o) = (G
S <c " D(t)z, VO (D (t) x)>
d
==Y (c®'PWa) @), (@),

%

o~

D(t)z), V(D (t) a:)>
(

—

1=

Now, coming back to the general case, let ® € &' (R?) and (¢.),., a sequence of mollifiers in S (R?),
converging to the Dirac measure. Then for all ¢ > 0, the function ® * ¢, : z — ® (¢ (z — -)) belongs to
S’ (RY) N € (R?). By the first part of the proof, (3.37) holds replacing ® = ® % ¢.. Now, this converges to
®in &’ (R?) when € tends to 0. (3:37) follows sending e to 0". Indeed, for all ¢ € S (R?), t € [0, 7], setting
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be 1y — ¢e(—y), we have

Py (p) = lim [ () (P * @), () da

e—0t JRd
R .
= El_igl+ » o(2)® * ¢ (z) dw — El_i)%l+ ;/0 det (D' (s)) /]Rd (C (s)" :C)i ¢ (D' (s)2) ;@ * ¢ (x)dxds

—M/ w0028 ((07), 07 99) )
Z/ det (D (’“)CD((C( )" -)icp(Dfl (s))) ds

_ Z/O (ai@)s (x — (C (S)TD(S) x)cp(:v)) ds.

3

To conclude, it remains to justify the commutation between the limit in € and the integral in time from line
3 to line 4 using Lebesgue dominated convergence theorem. On the one hand, for a given ¢ € [1, d], the fact
9;® belongs to &’ (R?) implies that there exists C > 0, N € N such that for all p € S (R?)

N
9:® ()] < C sup sup (1+ Jo]) " 05 ()]
|a|<N zeR?

see Chapter 1, Exercise 8 in [16]. On the other hand, the quantities

sup (14 122) " [0 (20D~ (5) ) * 6.

r€ERC

are bounded uniformly in the couple (s, ¢), for all j € [1,d], @ € N taking also into account that the
function s — D~!(s) is continuous and therefore bounded. Since C is also continuous on [0, 7], we are
justified to use Lebesgue’s dominated convergence theorem.

O

Theorem 3.19. For all i € My (R?), equation (L2) with terminal value p admits at most one My (R?)-valued
solution in the sense of Definition[3.7)

Proof. Let u € My (R?) and u a solution of (2.3) with terminal value . Then, u solves equation (3.2) with
initial value u (0). As a consequence, by I (3.35) appearing at the end of the proof of PropositionB.17 for all
§ERY,

Fu(€) = e =9 Fu (0) (D71 (1) €),
so that

(7]

fu<0><s>—efT| Fu(D(T)€).

Hence, u (0) is entirely determined by p and Proposition[B.I7 gives the result. O

4 McKean SDEs related to time-reversal of diffusions

4.1 Preliminary considerations

In this last section we concentrate on the analysis of the well-posedness of the McKean SDE (L.3).
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Regarding b : [0, 7] xR — R%, o : [0, T] x R? — My, (R), weseth:=b(T —.,-),5: =0 (T —.,-),5:=50.
Given a probability-valued function p : [0,7] — P(R?), we denote by p; the density of p (), for t € [0, 7],
whenever it exists. For the McKean type SDE (L.3), we consider the following notion of solution.

Definition 4.1. On a given filtered probability space (Q, F, (Fo)eepo,m) » ]P’) equipped with an m-dimensional (Fy),¢ (o -
Brownian motion 3, a solution of equation [L3) is a couple (Y, p) fulfilling (I.3) with Brownian motion j3, such that
Y is (1) yeqo,r-adapted and such that for all i € [1,d], all compact K C R all T < T

/OT /K ‘divy (il (r,y) pr (y)) ‘ dydr < oo. (4.1)

Remark 4.2. For a given solution (Y, p) of equation (L3), identity @) appearing in Definition 1] implies in
particular that, forall ¢ € [1,d], all T < T

/T div, (i (r,Y:) pr (Yr))
0

pr (Yr)
The terminology stating that (L.3) constitutes a probabilistic representation of (L.2) because is justified by

dr < oo, P—a.s.

the result below.

Proposition 4.3. Suppose b, o locally bounded. If (Y, p) is a solution of (L3) in the sense of Definition then
p (T — -) is a solution of (I1)), with u = p(0) in the sense of Definition B}

Proof. Let (Y, p) be a solution of (I.3) in the sense of Definition Il with a Brownian motion symbolized by
B. Let ¢ € C° (R?) and ¢ €]0, T]. Ito’s formula gives

Tt 1 N T—t .
60 =000+ [ (Vo). Vo (7)) +57r (B30 Vo)) st [ To ¥ o (5. 5.

4.2)
with

div, (3 S, s ~
b (s, ps) i= s (8 02 w) “B(sy), (5,y) €0, TR
ps (y) _

We now want to take the expectation in identity @.2). On the one hand, Remark [£.2] implies that for all
i€ [l,d] and s €]0, T
T
/ dsE
0

/OT B {Tr (f} (5,Ys) V30 (Ys)) } ds = idil /OT /Rd iij (s,y) 0ij¢ (y) ps (y) dyds p.s.

divy (B (5,Y) pa (¥2))
ps (Ys)

< 00.

0i¢ (Ys)

On the other hand

Previous expression is finite since ¢ is bounded on compact sets and the partial derivatives of ¢ have
compact supports. With similar arguments we prove that fOT dsE ‘<g(s, Ys), Vo (Ys)>‘ < 00, s €]0,T7.
Moreover, fixing s €]0, T'[, integrating by parts we have

E{(b(s,Ysip.), Vo (¥)) } = 5 Lo G m ) ooy [ (50,00 p. )y
k,j=1
4.3)

- /Rd Tr (i (s,9) v2¢(y)) ps (y) dy — /Rd <Z(s,y) Vo (y)>ps (y) dy.
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Now, the quadratic variation of the local martingale M"Y := [/ V¢ (Ys)" o (s,Ys) dBs yields

[MY] = /0 Vo (V) B (s,Ys) Vo (Ys) ds.

We remark in particular that E ([MY] T) < oo since o is bounded on compact sets and ¢ has compact
support. This shows MY is a true (even square integrable) martingale and all terms involved in (2) are
integrable.

At this point we evaluate the expectation in (4.2) taking into account the considerations above together with

(@) and (@.3). We obtain

T—t
BGr-0) = [ swu) = [ [ Lro)p @)y

Applying the change of variable ¢t — T' — ¢, we finally obtain the identity

T
[owmitan= [ ownn- [ [ Lo dus

which means that p (T — -) solves (L.2) in the sense of Definition BT with terminal value p. O
We also provide the different notions of existence and uniqueness for (L.3) we will use in the sequel.
Definition 4.4. Let A be a class of measure-valued functions from [0,T] to P (R?).

1. We say that (L.3) admits existence in law in A, if there exists a complete filtered probability space (Q, F (Fe)eepor » ]P’)
equipped with an m-dimensional (F),¢ o r1-Brownian motion 8 and a couple (Y, p) solution of (T3) in the
sense of Definition 1] such that p belongs to A.

2. Let (Y1, pt), (Y2, p?) be two solutions of (L3) in the sense of Definition {1 associated to some complete
filtered probability spaces (Ql, F1, (]:tl)te[O,T] ,]P’l), (92, F2, (}?)te[o,T] ,]P’2) respectively, equipped with
Brownian motions 3*, 32 respectively and such that p*, p? belong to A. We say that (L3) admits uniqueness
inlaw in A, if Yy, Y§ have the same law implies that Y, Y ? have the same law.

3. We say that (L3) admits strong existence in A if for any complete filtered probability space (2, F, (Ft)ieo,m > P)
equipped with an m-dimensional (Fy),¢ (o 1)-Brownian motion j3, there exists a solution (Y, p) of equation (T3)
in the sense of Definition .| such that p belongs to A.

4. We say that (L3) admits pathwise uniqueness in A of if for any complete filtered probability space (0, F, (Ft) e (o 71 - P)
equipped with an m-dimensional (F;), ¢, -Brownian motion 8, for any solutions (Y, p*), (Y?,p?) of @C3)
in the sense of Definition @l such that Y)' = Y§, P—a.s. and p*, p? belong to A, we have Y = Y2, P—a.s.

We finally define the sets in which we will formulate existence and uniqueness results in the sequel.

Notation1. 1. Foragiven C C P (R?), Ac denotes the set of measure-valued functions from [0, T) to P (R?) p
such that p (T)) belongs to C. Furthermore, for a given measure-valued function p : [0,T] — P (R?), we will

denote R
div, (Zi_pt)
b(t, s pe) = § ———= : (4.4)
bt
i€[1,d]
for almost all t € [0, T] whenever p, exists and the right-hand side quantity is well-defined. The function

(t,x) = b(t, z;py) is defined on [0, T] x R with values in R<.
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2. Let Ay (resp. Asz) denote the set of measure-valued functions from [0, T] to P (R?) p such that, for all t € [0, T},
p (t) admits a density p, with respect to the Lebesgue measure on R and such that (t,z) — b(t, z; p;) is locally
bounded (resp. is locally Lipschitz in space with linear growth) on [0, T[xR%.

We state now existence and uniqueness results for equation (3) in different settings.

4.2 PDE with terminal condition and existence for the McKean SDE

The existence result for equation (I.3) will be based on two pillars: the reachability condition constituted
by the existence of a solution of the Fokker-Planck PDE with terminal condition and the time-reversal
techniques of [8]. More precisely, we suppose that Assumption @ is in force for a fixed C € P (R?) and
consider the following extra assumptions, i.e. Assumptions[6] [Zland[8 still with respect to (C, ).

Assumption 6. The backward PDE (L) with terminal condition y admits at least an M (Rd)—valued solution u
in the sense of Definition BTl verifying the following.

1. u(0) belongs to C.

2. Vt €]0,T, u(t) admits a density with respect to the Lebesgue measure on R? (denoted by u (t,-)) and for all
to > 0 and all compact K C R¢

T d m
/ / (o) + 503 Josy (8 2) Osu (1, )| dadt < . 4.5)
to JK i=1 j=1

Remark 4.5. Suppose Assumption [1 holds and let u be the measure-valued function appearing in Assumption
Then @.5) implies that the family of densities u (T — t,-) ,t €]0,T[ verifies condition @) appearing in Definition
To show this, it suffices to check that for all to > 0, all compact K C R and all (i, j, k) € [1,d]* x [1,m]

T
/t /K 19, (o (5,) 735 (5, 9) u (5,9))] dyds < oo. (46)

The integrand appearing in (&6 is well-defined. Indeed, in the sense of distributions we have
8j (O'ikO'jku) = aikcrjk(?ju +u (O'ikaja'jk + O'jkajO'ik) ; (4.7)

moreover the components of o are Lipschitz, so they are (together with their space derivatives) locally bounded. Also
wand 0,0 are square integrable by [@.5). This implies (4.6).

Assumption 7. Let u be the measure-valued mapping appearing in Assumption [l We suppose that p admits a
density and u (T — -) | p(xpra belongs to Ay

We introduce two new assumptions.

Assumption 8. Let u be the measure-valued mapping appearing in Assumption [l We suppose that p admits a
density and u (T — -) |( p(xgra belongs toAs.

We remark that Assumption [8limplies[7]

Proposition 4.6. Suppose the validity of Assumptions [T} Assumption @ with respect to C and Assumption [l with
respect to (C, ). Then (I3) admits existence in law in Ac.

In particular if, moreover, Assumption[Z] (resp. [8) holds, then (I.3) admits existence in law in Ac N A; (resp. strong
existence in Ac N As).
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Proof. By Assumption [6] there is an M (R%)-valued solution u of equation (L) in the sense of Def-
inition 3] such that u(7) = p and u(0) belongs to C. We consider now a filtered probability space
(Q, F (Ft)iepor 7]P’) equipped with an (F}),c(, 77-Brownian motion W. Let X, be a r.v. distributed ac-
cording to u(0). Under Assumption[l] it is well-known that there is a solution X to

t t
X = Xo —|—/ b (s, Xs) ds—i—/ o (s, Xs)dWs, t €[0,T). (4.8)
0 0

Now, by PropositionB.2, ¢ — L (X;) is a P (R?)-valued solution of equation (82) in the sense of (3.3) with
initial value u (0) € C. Then Assumption @ gives

L(X,)=u(t),tel0,T] (4.9)

since u solves also (3.2) with initial value u (0) € C. This implies in particular that u is probability valued
and that for all ¢ €]0,T'[, X, has u (¢, -) as a density fulfilling condition &3] in Assumption|[6]

Combining this observation with Assumption[I] Theorem 2.1 in [8] states that there exists a filtered prob-
ability space (22,7, (G¢)ic(o.7): Q) equipped with the Brownian motion 3 and a copy of X (still denoted by
the same letter) such that X fulfills the first lign of (L.3) with 8 and

pt)=u(T-t),t€0,T| (4.10)

Finally, existence in law for (L3) in the sense of Definition [.1] holds since (X,u (T —)) is a solution of
(L.3) on the same filtered probability space and the same Brownian motion above. This occurs in A¢ since
L ()A(T) € C thanks to equality @9) for ¢t = T'.

We discuss rapidly the in particular point.

e Suppose that Assumption [} then u (T — -) belongs to Ac N .A; and we also have existence in law in
Ac N A;q.

e Suppose the validity of Assumption[8l Then, (£.10), strong existence and pathwise uniqueness for the
first line of (I.3) holds by classical arguments since the coefficients are locally Lipschitz with linear
growth, see [14] Exercise (2.10), and Chapter IX.2 and [14], Th. 12. section V.12. of [15]. By Yamada-
Watanabe theorem this implies uniqueness in law, which shows that u (T" — -) constitutes the marginal
laws of the considered strong solutions. This concludes the proof of strong existence in A¢ N A; since
u (T — -) belongs to A¢ N Az, by Assumption[§

Remark 4.7. By @I0), the second component p of the solution of (L.3) is given by u (T — -).

4.3 PDE with terminal condition and uniqueness for the McKean SDE

In this subsection we discuss some questions related to uniqueness for equation ([I.3). We state the following
hypothesis related to (u,C) where C is a given subset of P (R?).

Assumption 9. The equation (1) with terminal condition p admits at most a P (Rd)—valued solution u in the sense
of DefinitionB.lsuch that u (0) belongs to C.

We recall that SectionB.2 provides various classes of examples where Assumption [@holds.
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Proposition 4.8. Suppose the validity of Assumption[Qwith respect to (., C) and suppose b, o to be locally bounded.
Let (Y, p'), i € {1,2} be two solutions of equation (L3) in the sense of Definition Bl such that p* (T'),p* (T)
belong to C. Then,

p' =p’.
Proof. Proposition E3|shows that p* (T'— ), p* (T — -) are P (R?)-valued solutions of equation (L.2) in the

sense of Definition B with terminal value p. Assumption @] gives the result since p* (T'), p? (T) belong to
C. O

As a corollary, we establish some consequences about uniqueness in law and pathwise uniqueness re-
sults for equation (I.3) in the classes A; and As.

Corollary 4.9. Suppose the validity of Assumption[Qwith respect to (u,C). Then, the following results hold.

1. Ifbis locally bounded, o is continuous and if the non-degeneracy AssumptionBlholds then [L3) admits unique-
ness in law in Ac N Aj.

2. If (b, o) are locally Lipschitz with linear growth in space, then [L3) admits pathwise uniqueness in Ac N As.

Proof. If (Y, p) is a solution of (I.3) and is such that p (T") belongs to C, then by Proposition .8 p is deter-
mined by p = £ (Yp).
To show that item 1. (resp. 2.) holds, it suffices to show that the classical SDE

~

dXt =b (t, Xt, pt) —-b (t, Xt) dt + el (t, Xt) th, te [O, T[, (411)

where b was defined in (4.4) and W an m-dimensional Brownian motion, admits uniqueness in law (resp.
pathwise uniqueness). The mentioned uniqueness in law is a consequence of Theorem 10.1.3 in and
pathwise uniqueness holds by [14] Exercise (2.10), and Chapter IX.2 and [I5] Th. 12. Section V.12. O

4.4 Well-posedness for the McKean SDE: the bounded coefficients case

In this section, we state a significant result related to existence and uniqueness in law together with path-
wise uniqueness for equation (I.3). In particular we obtain existence and uniqueness in law for (L.3) in the
class A;

We formulate the following hypotheses.

Assumption 10. 1. Assumption[3lholds.
2. The functions o is Lipschitz (in space).

3. The functions o, b, (Vrbi)ie[[l,dﬂ' (Vrzij)i,je[[l,dﬂ
with exponent « €0, 1] in space uniformly in time.

are continuous bounded and V23 is Holder continuous

Assumption 11. X is supposed to be Holder continuous in time

Remark 4.10. Under Assumption[IQ) for every v € P(RY) there exists a unique P (R®)-valued solution u” of B.2).
Indeed the assumptions of Lemma 3.4 are fulfilled.

We continue with a fundamental lemma whose proof will appear in the Appendix.
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Lemma 4.11. Suppose the validity of Assumptions[0land [} Then, for all v € P (R?), u” (t) admits a density
u” (t,-) € C*(R?) forall t €]0,T]. Furthermore, for each compact K of 10,T] x RY, there are strictly positive
constants CI, CK CX, also depending on v such that

CE <u”(t,z) ck (4.12)
O’ (t,2)] < O3, ie[1,d], (4.13)

IN

forall (t,x) € K.

Lemma 4.12. Suppose that the initial condition pi equals u” (T) for some v € P (R?). We suppose the following.
1. Assumptions[10]
2. u” (t) admits a density u” (t,-) € W2 (RY), for all t €]0,T).

3. For each compact K of |0, T] x RY, there are strictly positive constants CX, CX, CE, also depending on v such

that @12) and @EI3) hold V(t,z) € K.
Then equation (L3) admits existence in law in A;.
Corollary 4.13. We suppose the validity of Assumptions[I0land and L1}

1. Suppose the existence of v € P(R?) such that v’ (T) = p. Then, equation (L3) admits existence in law in A;.
NA;.

Moreover, if v is a Dirac mass, existence in law occurs in A,y .,

2. Otherwise (I.3) does not admit existence in law.
Proof.

1. The first part is a direct consequence of Lemma@.1T] Lemma@.T2land expression (.4). If in addition,
v is a Dirac mass, then u” (0) belongs to C := (0.),ga, hence existence in law occurs in A¢ N A; again
by Proposition

2. Otherwise suppose ab absurdo that (Y, p) is a solution of (L.3). By Proposition @3 p (7' — -) is a solu-
tion of 2.3). We set vy = p(T') so that p(T"— -) verifies also (3.2) with initial value 1. Since, by Lemma
B.4uniqueness holds for (3.2), it follows that p(7' — -) = u”® which concludes the proof of item 2.

Proof (of LemmaM.I2). Suppose p = u” (T) for some v € P (R?).
We recall that Assumption @ holds with respect to C := P (R?) by RemarkB3]1.
In view of applying Proposition[4.6] we need to check that Assumptions[@land [Zlhold with respect to (11,C).

Assumption [l is verified by u = u”. Indeed the function u” is a P (R%)-valued solution of (I.2) with
terminal value ;1 and such that u” (0) belongs to C. Condition @.5) appearing in Assumption [f]is satisfied
with u = u” thanks to the right-hand side of inequalities @.12) and (£I3) and the fact that o is bounded.
Hence Assumption[@lholds with respect to (y,C).

It remains to show Assumption[Zholds i.e. that

div, (iz (t,x)u” (T —t, x))

(t,2) = u’ (T —t,x)
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is locally bounded on [0, T[xR®. To achieve this, we fix i € [1,d] and a bounded open subset O of [0, T[xR.
For (t,z) € O we have
div, (il (t,x)u” (T —t, x))
w” (T —t,x)

|Vou? (T —t, )]
uw” (T —t,x)

< ‘dwm (i (t, :v))‘ + S 2

The latter quantity is locally bounded in ¢,z thanks to the boundedness of 3, div, (il) and inequalities
(@12) and @I3). Hence, Assumption[Zholds. This ends the proof.

Proposition 4.14. Suppose the validity of Assumption[I0and[T1} The following results hold.

1. Let us suppose d = 1. Suppose p equals u®o (T') for some xo € RY. Then (L3) admits existence and uniqueness
inlawin Ag,) ., NAx, pathwise uniqueness in A, ., N As.

2. Let d > 2. There is a maturity T sufficiently small (only depending on the Lipschitz constant of b, o) such
that the following result holds. Suppose p equals u®=o (T') for some zg € R%. Then (L3) admits existence and
uniqueness in law in A,y ., N Ay, pathwise uniqueness in A,y ., N As.

Proof. By Assumptions[I0land [I1] Corollary A.13limplies that (I.3) admits existence in law in the two cases
in the specific classes. To check the uniqueness in law and pathwise uniqueness results, we wish to apply
Corollary It suffices to check Assumption @l because the other hypotheses are included in Assumption
Below we verify Assumption @ with respect to (u, (6,)zecr), for the separate two cases.

1. Fix 29 € R% This will follow from Proposition 3.9 that holds under Assumption [[lwhich is a conse-
quence of Assumption [10l

2. We proceed as for previous case but applying Theorem B.I0 instead of Proposition 3.9

We state now the most important results of the section.

Theorem 4.15. Suppose b, o are time-homogeneous, Assumption [[0land suppose there is v € P (R?) (a priori not
known) such that p = u” (T).

1. ([@3) admits existence and uniqueness in law. Moreover existence in law holds in A;.
2. (L.3) admits pathwise uniqueness in As.

Proof. 1. (a) First, Assumption [l trivially holds since b, o are time-homogeneous. Then, point 1 of
Corollary [4.13]implies that (L.3) admits existence in law (in .A;) since Assumption [I0/holds.

(b) Let (Y, p) be a solution of (I.3). Proceeding as in the proof of item 2. of Corollary 4.13| we obtain
that p(T — -) = u”® with vy = p (T). Then, Lemma[d.ITland the fact that o is bounded allow to
show that p belongs to A, see (@.4) in Notation[I]

(c) To conclude it remains to show uniqueness in law in A;. For this we wish to apply point 1.
of Corollary To achieve this, we check Assumption Pl with respect to (1, P (R?)). This is a
consequence of Assumptions[3land Bland Theorem[3.13] This concludes the proof of item 1.

2. Concerning pathwise uniqueness in A, we proceed as for uniqueness in law but applying point 2 of
Corollary[4.9] This is valid since Assumption[I0limplies that b, o are bounded and Lipschitz.
O
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In the result below we extend Theorem (.15 to the case when the coefficients b, o are piecewise time-
homogeneous.

Theorem 4.16. Let n € N*. Let 0 = tg < ... < t, = T be a partition. For k € [2,n] (resp. k = 1) we denote
I, =Jtgp—1,tx] (resp. [to,t1]). Suppose that the following holds.

1. For all k € [1,n] the restriction of o (resp. b) to I}, x R? is a time-homogeneous function o* : R% — My(R)
(resp. b* : R? — R?).

2. Assumption 3]
3. o is Lipschitz in space uniformly in time.

4. The functions o, b*, (V,bF)
with exponent o €]0, 1].

(V.2

. ij)z' jeqn,a e continuous bounded and V2% is Holder continuous

ie[1,d]”

Suppose p equals u” (T) for some v € P (R?). Then equation (L3) admits existence and uniqueness in law. Existence

in law holds in A;.

Remark 4.17. A similar remark as in Corollary I3 holds for the Theorems @10 and E16 If there is no v € P(R?)
such that w” (T) = p, then (I.3) does not admit existence in law.

Proof of Theorem[4.16). We recall that by Lemma[3.4] u* is well-defined for all vy € P (Rd).

1. We first show that u*° verifies (£12) and @.13). Indeed, fix k € [1, n]. The restriction uy of u* to I isa
solution v of the first line (3.2) replacing [0, 7] with I}, L by L* defined in (8.25), with initial condition
v(tg—1) = u”(tk—1). That restriction is even the unique solution, using Lemma [3.4 replacing [0, T']
with ;. We apply Lemma replacing [0, T] with I, taking into account Assumptions [0 and [I1]
which holds trivially replacing o, b, > with o®, %, ©* This implies that u*° verifies £12) and @I3)
replacing [0, 7] with I, and therefore on the whole [0, 7.

2. Existence in law in A;, follows now by Lemma

3. It remains to show uniqueness in law. Let (Y, p) be a solution of (I.3). We set v := p (). Since u*°
and p(T —-) solve (3.2), Lemma[B.4limplies that p is uniquely determined. Similarly as in item 1.(b) of
the proof of Theorem[4.15 item 1. of the present proof and Lemma4.ITlallow to show that p belongs
to Al .

4. It remains to show uniqueness in law in A;. For this, Corollary [3.16 implies Assumption [0 with
C = P(R?). Uniqueness of (L.3) in the class A; follows now by Corollary[£9] which ends the proof.

O

4.5 Well-posedness for the McKean SDE: the Ornstein-Uhlenbeck semigroup

In this section we consider the case b : (s, ) — C (s) z with C continuous from [0, T'] to R? and ¢ continuous
from [0,T] to Mg, (R). We also suppose that for all t € [0,T], o (t) is invertible. We denote by C (¢) ,t €
[0, T, the unique solution of the matrix-valued ODE

Ct) = I—i—/o C(s)C(s)ds.
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For a given 2y € R? and a given t €]0,T], we denote by p{° the density of a Gaussian random vector
with mean m;° = C(t)zo and covariance matrix Q; = C(t) fot C~1(s)S(s)C (s) " dsC(t)T. Note that for all
t €]0,T], Q. is strictly positive definite, in particular it is invertible. Indeed, for every ¢ € [0,7T], X(¢) is
strictly positive definite. By continuity in ¢, f(f C~1(s)%(s)C (s) " ds is also strictly positive definite and
finally the same holds for Q;. For a given v € P (R%), ¢ €]0, T], we set the notation

Py x g py° (x) v (dxo) . (4.14)

At this level, we need a lemma.

Lemma 4.18. Let v € P (R?). The measure-valued function t — pY (x)da is the unique solution of (3.2) with initial
value v and we denote it by u”. Furthermore, u” (T — -) belongs to As.

Proof. 1. We denote immediately u” (¢) (dz) := p}(x)dz, t €]0,T]. By Chapter 5, Section 5.6 in [10], for
every t €]0, T, p;° is the density of the random variable X;°, where X *° is the unique strong solution
of (3.4) with initial value . The mapping ¢ — p;°(z)dz is a solution of (3.2) by Proposition[3.2] with
initial condition d,,. Consequently, by superposition, u” is a solution of (3.2) with initial value v.

2. u” is the unique solution of (3.2) because of Proposition B.17
3. It remains to show that u” (T — -) belongs to As, namely that for all i € [1,d]

div, (Z(T —t), py_, (z))
pr_; (x)

(t,x) —

3

is locally Lipschitz with linear growth in space on [0, T[xR<.

Fixi € [1,d], t € [0,T[and « € R?. Remembering the fact, p7’ , is a Gaussian law with mean m?? ,
and covariance matrix Qr_; for a given z € R4, we have
divy (2 (T - t)i, Py (x)) 1

() = _p%7 @ /]Rd <Z (T —1),. ,Q;l_t (:c - mfﬁ’_t»p;"_t (z) v (dzg). (4.15)

Let K be a compact subset of |0, T'] x R?; then there is M > 0 such that for all (¢,2) € K, 79 € R,
|<E (T —1),. ’Q%it (:c - m?it»p?it (I)} < 2T -1, ||Q;lt}| |I - mi’oft}p%oft (z) < Mk.

This follows because ¢ + %(T — t) and t — Q" , are continuous on [0, 7| and, setting

2
cx = inf{t|(t,x) € K}, mg = suplalexp —cKa— ,
acR 2

we have
[z —m7 Py (x) < mi, V(¢ z) € K.

To show that left-hand side of @I5) is locally bounded on [0, T[xR? it remains to show that (¢, z)
Jga P72, (z)v(dxo) is lower bounded on K. Indeed, let I be a compact of R?. Since (¢, z, z¢) — p7°_,(z)
is strictly positive and continuous is lower bounded by a constant ¢( X, I'). The result follows choosing
I such that v(I) > 0.
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divm(z(zgjzg%’t(m)), i € [1,d] defined on

[0, T[xR? has locally bounded spatial derivatives, which implies that they are Lipschitz with linear

To conclude, it remains to show that the functions (¢, z) —

growth on each compact of [0, 7[xR¢. By technical but easy computations, the result follows using
the fact the real functions a — |a|™ exp (—%), m = 1,2, are bounded.
O

We give now a global well-posedness result for equation (L.3).

Theorem 4.19. 1. Suppose the initial condition p equals u” (T) for some v € P (RY). Then, equation (L.3)
admits existence in law, strong existence, uniqueness in law and pathwise uniqueness.

2. Otherwise [L3) does not admit any solution.

Proof. Item 2. can be proved using similar arguments as for the proof of Corollary Let (Y,p) be a
solution of ([L.3) and set vy, = p(T'). By Proposition p (T —-) is a solution of (2.3), so that p(T — -)
verifies also (3.2) with initial value 1. Since, by Proposition[8.I7] uniqueness holds for (3.2), it follows that
p(T — -) = u” which concludes the proof of item 2.

We prove now item 1. For this, taking into account Proposition [4.8|and Yamada-Watanabe theorem and
related results for classical SDEs, it suffices to show strong existence and pathwise uniqueness. We set
C=P (RY)

1. Concerning the strong existence statement, we want to apply Proposition For this we have to
check the validity of Assumption [T Assumption@with respect to C and Assumptions[6] Bhold with
respect to (i, C).

Since b, o are affine, Assumption [ trivially holds. Furthermore, Assumption d holds with respect to
C thanks to Proposition[3.17

Now, u” is a probability valued solution of (L) with terminal value x. Furthermore, Lemma
shows that u”, being the unique solution of solution of (3.2), is such that, for all ¢ €]0, 7], u”(¢) admits
pY (see @.14)) for density. Then, relation (&.5) holds since, by the considerations above @.14) (¢,z) —
pY () is locally bounded with locally bounded spatial derivatives. Hence, Assumption [fl holds with
respect to (u,C). Finally, Lemma implies that u” (T — -) belongs to A;. Hence, Assumption
holds with respect to (y,C). At this point Proposition .6limplies existence in law.

2. Let (Y, p) be a solution of equation (L.3). Proposition [£3] implies that p (T — -) solves (I.2). Then,
PropositionBI7gives p (T — -) = u*® with vy = p (T'). Lemma 418 implies p belongs to As.

3. It remains to show pathwise uniqueness in A;. Assumption [0l holds with respect to (p,C) thanks to
Theorem B.I9 Now, point 2 of Corollary .9 implies pathwise uniqueness in A; since b, o are locally

Lipschitz with linear growth in space.
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Appendix

4.6 Proof of Lemma 41T

Let v € P (R?Y). For each given ¢ € [0,7], we denote by G, the differential operator such that for all
fec?(RY)
d
1
Gif =3 D0 (i (6) ) =D 0 (bi () f) -
ij=1 i=1

Assumption [[0limplies that for a given f € C? (R?), G, f can be rewritten in the two following ways:

d d d
Gif = % D S0 f 4> (O 0%t ) = bilt, )i f + (), (4.16)
ij=1 i=1 j=1
with , .,
Cl : (t .I') — 1 Z &El(t ,T) — Z&bl(t .I')
7 2 ij=1 e i=1 7
1 d d d
Gif = 5 Z 8j (812” (t, )f + Eij (t, )8z.f - Z bi(ta )8lf) - Z 8ibi(t7 )f (417)
7,j=1 1=1 1=1

On the one hand, combining identity {.16) with Assumption[10] there exists a fundamental solution I (in
the sense of Definition stated in Section 1. p.3 of [7]]) of 9;u = Gu, thanks to Theorem 10. Section 6 Chap. 1.
in the same reference. Furthermore, there exists C, C > 0 such that for all i € [1,d], z,£ € R?, 7 € [0, 7],
t>T,

2
|F ($7t7§77-)| < Cl (t - T)_§ exXp <_%> ’ (418)
2
10,.T (2,1, €,7)| < i (t — 1)~ F exp <_%> , (4.19)

thanks to identities (6.12), (6.13) in Section 6 Chap. 1 in [7].

On the other hand, combining Identity (£17) with Assumption[I0 there exists a weak fundamental solution
O of O,u = G,u thanks to Theorem 5 in [1]. In addition, there exists K1, K5, K3 > 0 such that for almost
everyz,{ €RY, 7€ [0,T),t>T1

K|z —¢|?

2
Kil (t—7) 2exp (—m> <O(x,t,&,7)<Ki(t—7) 2exp <—%> , (4.20)

thanks to point (ii) of Theorem 10 in [I]].

Our goal is now to show that I' and © coincide. To this end, we adapt the argument developed at the
beginning of Section 7 in [1]]. Fix a function H from [0, 7] x R? belonging to CZ° ([0, 7] x R?). Identity (7.6)
in Theorem 12 Chap 1. Section 1. of [7] implies in particular that the function

w: (t,x) >—>/Ot/RdI‘(x,t,f,T)H(T,QdeT,

is continuously differentiable in time, two times continuously differentiable in space and is a solution of the
Cauchy problem

{atu (t,2) = Gyu (t,2) + H (t,2), (t,2) €]0,T] x R, o

u (0,-) = 0.
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It is consequently also a weak (i.e. distributional) solution of @2I), which belongs to £2(]0,T] x R%) (see
definition of that space in [])) since u is bounded thanks to inequality (I8) and the fact that H is bounded.
Then, point (ii) of Theorem 5 in [1]] says that

txH//Rd H (1,€)d¢dr

is the unique weak solution in £2(]0, 7] x R?) of @2I). This implies that for every (¢,2) €]0,7] x R¢ we

have .
/ / (T —0©)(z,t,&,7) H (1,£) dédT = 0.
0 Jre
Point (i) of Theorem 5 in [I] (resp inequality #I8)) implies that © (resp. I') belongs to L? (]0, 7] x R?) as a
function of (&, 7), for an arbitrary p > d + 2. Then, we conclude that for all (¢, ) €]0,T] x R,

O (x,t,&,7) =T (x,t,&,7), dédra.e. (4.22)

for all (7, &) € [0,t[xR? This happens by density of C2° ([0, 7] x R?) in L7 (]0,T] x R?), ¢ being the conju-
gate of p.

This, together with (£.20) and the fact that I is continuous in (7, §) implies that (£.20) holds for all (7, ¢) €
[0, t[xR% and therefore

1 4 K2|x—§|2 ! K3|17—§|2
?1 (t—7) 2exp (—m> <T(x,t,6,7)<Kj(t—71) 2exp (—m> . (4.23)
We introduce
Qs =T — / v (dE).
By @.23), with 7 = 0 we get
d K.
q (z) > Kilt_f /Rd exp < 2 |it ¢l ) v (d€). (4.24)

We denote now by v” the measure-valued mapping such that v¥ (0,-) = v and for all ¢ €]0, 7], v” (¢) has
density ¢; with respect to the Lebesgue measure on R?. We want to show that v is a solution of (3.2) with
initial value v to conclude u” = v” thanks to the validity of Assumption [ because of Remark[3.3]1. and
3. To this end, we remark that the definition of a fundamental solution for d,u = Gu says that uisa C L2
solution and consequently also a solution in the sense of distributions. In particular for all ¢ € C2° (R?), for
allt >e>0

[swv o= [ swv©@ [ [ Lowv s 4.25)

To conclude, it remains to send € to 0. Theorem 15 section 8. Chap 1. and point (ii) of the definition stated
p- 27 in [7] imply in particular that for all ¢ € C>° (RY), £ € RY,

| reec0o@ir — oo

e—0t

Fix now ¢ € C*° (Rd). In particular thanks to Fubini’s theorem, (4.20) and Lebesgue’s dominated conver-
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gence theorem we have
[ e@v@m = [ o [ raesopd
:/Rd/RdF(a:,e,{,O)(b(:c)d:cu(df)
— | P (& v (dE).

e—0t JRrd
By @25) v” is a solution of (3.2) and consequently u” = v”, so that, for every ¢ €]0,7], u” (t) admits
u”(t,-) = q for density with respect to the Lebesgue measure on R?. Now, integrating the inequali-

ties (418), @.I9) with respect to v and combining this with inequality (£24), we obtain the existence of
K1, Ko,C1,Cq > 0 such that for all ¢ €]0, T, for all z € RY, for all i € [1,d]

1 Ky |z — ¢
Ef% /Rd exp <—%> v(d§) <u” (t,z) < Kt %,

d+1

|8iu” (t,l‘)| <Cit™ = .

Consequently, the upper bounds in (£I2) and I3) hold. Concerning the lower bound in @I2), let I be
a compact subset of R? such that v(I) > 0, the result follows since (¢,z,£) +— exp (—%f'z) is strictly
positive, continuous and therefore lower bounded by a strictly positive constant on K x I for each compact
K of ]0,T] x R<.
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