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Fokker-Planck equations with terminal condition and related

McKean probabilistic representation
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AND GIANMARIO TESSITORE §

July 20th 2020

Abstract

Usually Fokker-Planck type partial differential equations (PDEs) are well-posed if the initial condition

is specified. In this paper, alternatively, we consider the inverse problem which consists in prescribing

final data: in particular we give sufficient conditions for existence and uniqueness. In the second part of

the paper we provide a probabilistic representation of those PDEs in the form a solution of a McKean type

equation corresponding to the time-reversal dynamics of a diffusion process.

Key words and phrases. Inverse problem; McKean stochastic differential equation; probabilistic represen-

tation of PDEs; time-reversed diffusion; Fokker Planck equation.
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1 Introduction

The main objective of the paper consists in studying well-posedness and probabilistic representation of the

Fokker-Planck PDE with terminal condition




∂tu = 1
2

d∑

i,j=1

∂2ij
(
(σσ⊤)i,j(t, x)u

)
− div (b(t, x)u)

u(T ) = µ,

(1.1) EDPTerm0

where σ : [0, T ] × Rd → Md,m(R), b : [0, T ] × Rd → Rd and µ is a prescribed finite Borel measure on

Rd. When u(t) admits a density for some t ∈ [0, T ] we write u(t) = u(t, x)dx. This equation is motivated

by applications in various domains of physical sciences and engineering, as heat conduction
beck1985inverse
[3], material

science
renardy1987mathematical

[13] or hydrology
bagtzoglou2003marching
[2]. In particular, hydraulic inversion is interested in inverting a diffusion process
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representing the concentration of a pollutant to identify the pollution source location when the final con-

centration profile is observed. Those models are often formulated by PDE problems which are in general

ill-posed because, either the solution is not unique or the solution is not stable. For this issue, the existence

is ensured by the fact that the observed contaminant is necessarily originated from some place at a given

time (as soon as the model is correct). Several authors have handled the lack of uniqueness problem by

introducing regularization methods approaching the problem by well-posed PDEs, see typically
tikhonov1977solutions
[18] and

lattes1969method
[11]. A second issue, when the problem is well-approximated by a regularized problem, consists in provid-

ing a numerical approximating scheme to the backward diffusion process. In particular for (
EDPTerm
1.2) there are

very few results even concerning existence and uniqueness.

Our point of view is that a probabilistic representation of (
EDPTerm
1.2) can bring new insights to the treatment

of the two mentioned issues: well-posedness and numerical approximation. To realize this objective we

consider the renormalized PDE



∂tū = 1
2

d∑

i,j=1

∂2ij
(
(σσ⊤)i,j(t, x)ū

)
− div (b(t, x)ū)

ū(T ) = µ̄,

(1.2) EDPTerm

where µ̄ = µ
µ(Rd) is a probability measure. We remark that the PDEs (

EDPTerm
1.2) and (

EDPTerm0
1.1) are equivalent in the sense

that a solution (
EDPTerm
1.2) (resp. (

EDPTerm0
1.1)) provides a solution to the other one. The program consists in considering

the McKean type stochastic differential equation (SDE)




Yt = Y0 −

∫ t

0

b (T − r, Yr) dr +

∫ t

0

{
divy (Σi. (T − r, Yr) pr (Yr))

pr (Yr)

}

i∈[[1,d]]

dr +

∫ t

0

σ (T − r, Yr) dβr,

pt density law of pt = law of Yt, t ∈]0,T[,

Y0 ∼ pT = µ̄,

(1.3) MKIntro

where β is a m-dimensional Brownian motion and Σ = σσ⊤, whose solution is the couple (Y,p). Indeed

an application of Itô formula (see Proposition
PProbRep
4.3) shows that whenever (Y,p) is a solution of (

MKIntro
1.3) then

t 7→ pT−t is a solution of (
EDPTerm
1.2).

The idea of considering (
MKIntro
1.3) comes from the SDE verified by time-reversal of a diffusion. Time-reversal

of Markov processes was explored by several authors: see for instance
haussmann_pardoux
[8] for the diffusion case in finite

dimension,
wakolbinger
[6] for the diffusion case in infinite dimension and

jacod_levy
[9] for the jump case.

Consider a forward diffusion process X solution of

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ], (1.4) eq:X

where σ and b are Lipschitz coefficients with linear growth and W is a standard Brownian motion on Rm.

X̂t := XT−t, t ∈ [0, T ] will denote the time-reversal process. In
haussmann_pardoux
[8] the authors gave sufficient general

conditions on σ, b and the marginal laws pt of Xt so that Y := X̂ is a solution (in law) of the SDE

Yt = XT −

∫ t

0

b (T − r, Yr) dr+

∫ t

0

{
divy (Σi. (T − r, Yr) pT−r (Yr))

pT−r (Yr)

}

i∈[[1,d]]

dr+

∫ t

0

σ (T − r, Yr) dβr. (1.5) IntroPardoux

The key idea to show well-posedness of the McKean SDE (
MKIntro
1.3), is the study of uniqueness of the PDE (

EDPTerm
1.2)

(or (
EDPTerm0
1.1)). For instance, the trivial case of the heat equation with terminal condition produces uniqueness.

Suppose indeed that u : [0, T ] 7→ S ′
(
Rd
)

solves



∂tu = ∆u

u (T ) = µ.
(1.6) HeatPDE
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Then, the Fourier transform of u, v (t, ·) := Fu (t, ·) , t ∈ [0, T ] solves the ODE (for fixed ξ ∈ Rd)




d
dt
v (t, ξ) = − |ξ|2 v (t, ξ) , (t, ξ) ∈ [0, T ]× Rd

v (T, ·) = Fµ.
(1.7) HeatODE

This admits at most one solution, since setting Fµ = 0 the unique solution of (
HeatODE
1.7) is the null function.

Another relatively simple situation is described below to study uniqueness among the solutions of (
EDPTerm
1.2)

starting in the class of Dirac measures. Suppose for a moment that the PDE in the first line of (
EDPTerm
1.2), but with

initial condition (see (
Fokker
3.2)) is well-posed. Sufficient conditions for this will be provided in Remark

R1
3.3. Let

x ∈ Rd and u be a solution of (
EDPTerm
1.2) such that u(0, ·) = δx. If Xx is the solution of (

eq:X
1.4) with initial condition

x, it is well-known that the family of laws of Xx
t , t ∈ [0, T ], is a solution of (

EDPTerm
1.2). So this coincides with u(t, ·)

and in particular µ is the law of Xx
T . To conclude we only need to determine x.

Consider the example when σ is continuous bounded non-degenerate and the drift b is affine i.e. b(s, y) =

b0 (s) + b1 (s) y, (s, y) ∈ [0, T ]× Rd, b0 (resp. b1) being mappings from [0, T ] to Rd (resp. to Md (R)). Taking

the expectation in the SDE fulfilled by Xx, we show that the function t 7→ Ex(t) := E(Xx
t ) is solution of

Ex(t) =

∫

Rd

yµ (dy)−

∫ T

t

(b0(s) + b1(s)E
x(s)) ds.

Previous linear ODE has clearly a unique solution. At this point x = E(0) is determined.

Those examples give a flavor of how to tackle the well-posedness issue. However, generalizing those

approaches is far more complicated and constitutes the first part of the present work. The contributions of

the paper are twofold.

1. We investigate uniqueness for the Fokker-Planck PDE with terminal condition (
EDPTerm
1.2). This is done in

Section
S3
3 in two different situations: the case when the coefficients are bounded and the situation of

a PDE associated with an inhomogeneous Ornstein-Uhlenbeck semigroup. In Section
SGP
3.3 we show

uniqueness when the coefficients are stepwise time-homogeneous. In Theorem
P315
3.13 the coefficients

are time-homogeneous, bounded and Hölder, with non-degenerate diffusion. Corollary
C313
3.16 extends

previous results to the case of stepwise time-inhomogeneous coefficients. In Section
S34
3.4, Theorem

BwdOU_Uniq
3.19 treats the Ornstein-Uhlenbeck case. In Section

S32
3.2 we show uniqueness for bounded continuous

coefficients for solutions starting in the class C of multiples of Dirac measures. In Proposition
propLip1
3.9 we

discuss the framework of dimension d = 1. Theorem
propLipd
3.10 is devoted to the case d ≥ 2. We distinguish

the non-degenerate case from the possibly degenerate case but with smooth coefficients: we prove

uniqueness for small time horizon T .

2. We study existence and uniqueness in law for the McKean SDE (
MKIntro
1.3), with some specific remarks con-

cerning strong existence and pathwise uniqueness. We differentiate specifically between existence

and uniqueness. After some preliminary considerations in Section
Prelim
4.1, Sections

MKEX
4.2 and

MKUNIQ
4.3 link the

well-posedness of the PDE (
EDPTerm
1.2) to the well-posedness of the McKean SDE (

MKIntro
1.3). In particular Propo-

sition
MKEx_Prop
4.6 (resp. Corollary

Coro
4.9) links the existence (resp. uniqueness) of (

EDPTerm
1.2) with (

MKIntro
1.3). In Section

SExamples44
4.4,

Proposition
TExUniq
4.14 and Theorem

TC313
4.16 discuss the case of bounded coefficients. Theorem

MKOU_WellP
4.19 is Section

Sex
4.5 is devoted to the case of Ornstein-Uhlenbeck (with not necessarily Gaussian terminal condition),

where strong existence and pathwise uniqueness are established.

3



2 Notations and preliminaries
SNotations

Let us fix d,m ∈ N∗, T > 0. C∞
c

(
Rd
)

is the linear space of smooth functions with compact support. For

a given p ∈ N∗, [[1, p]] denotes the set of all integers between 1 and p included. Md,m (R) stands for the set

of d × m matrices. If d = m, we simply use the notation Md (R). For a given A ∈ Md (R), Tr (A) (resp.

A⊤) symbolizes the trace (resp. the transpose) of the matrix A. ||A|| denotes the usual Frobenius norm.

〈, 〉 denotes the usual scalar product on Rd, with associated norm |.|. For a given f : Rp → Rl, p, l ∈ N∗,

∂jf
i, (i, j) ∈ [[1, l]] × [[1, p]] denote the partial derivatives of f being defined in the sense of distributions

on Rp whenever they exist. We also introduce the mapping Jf from Rp to Ml,p (R) such that Jf : z 7→(
∂jf

i (z)
)
(i,j)∈[[1,l]]×[[1,p]]

.

Let α ∈]0, 1[, n ∈ N. Cb(R
d) (resp. Cn

b (R
d)) indicates the space of bounded continuous functions (resp.

bounded functions of class Cn such that all the derivatives are bounded). Cα(Rd) is the Banach space of

bounded α-Hölder functions Rd → R equipped with the norm |.|α := ||.||∞ + [.]α , where

[f ]α := sup
x,y∈Rd,x 6=y

|f(x)− f(y)|

|x− y|
α <∞.

If n is some integer Cα+n(Rd) is the Banach space of bounded functions f : Rd → R such that all its

derivatives up to order n are bounded and such that the derivatives of order n are α-Hölder continuous.

This is equipped with the norm obtained as the sum of the Cn
b (R

d)-norm plus the sum of the quantities

[g]α where g is an n-order derivative of f . For more details, see Section 0.2 of
lunardi_1995
[12]. If E is a linear Banach

space, we denote by ||.||E the associated operator norm and by L (E) the space of linear bounded operators

E → E. Often in the sequel we will have E = C2α(Rd).

P
(
Rd
)

(resp. M+

(
Rd
)
,Mf

(
Rd
)
) denotes the set of probability measures (resp. non-negative finite

valued measure, finite signed measures) on
(
Rd,B

(
Rd
))

. We also denote by S
(
Rd
)

the space of Schwartz

functions and by S ′
(
Rd
)

the space of tempered distributions. For all φ ∈ S
(
Rd
)

and µ ∈ Mf

(
Rd
)
, we set

the notations

Fφ : ξ 7→

∫

Rd

e−i〈ξ,x〉φ (x) dx, Fµ : ξ 7→

∫

Rd

e−i〈ξ,x〉µ (dx) .

Given a mapping u : [0, T ] → Mf

(
Rd
)
, we convene that when for t ∈ [0, T ], u (t) has a density, this is

denoted by u (t, ·). We also introduce, for a given t in [0, T ], the differential operator,

Ltf :=
1

2

d∑

i,j=1

Σij(t, ·)∂ijf +

d∑

i=1

bi (t, ·) ∂if, (2.1) EqOpL

f ∈ C2(Rd) and denote by L∗
t its formal adjoint, which means that for a given signed measure η

L∗
t η :=

1

2

d∑

i,j=1

∂2ij (Σi,j(t, x)η) − div (b(t, x)η) . (2.2) EqOpL*

With this notation, equation (
EDPTerm0
1.1) rewrites




∂tu = L∗

tu

u (T ) = µ.
(2.3) BackwardFokker

In the sequel we will often make use of the following assumptions.

Lip1d Assumption 1. b, σ are Lipschitz in space uniformly in time, with linear growth.
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Zvon1 Assumption 2. b and σ are bounded and Σ is continuous.

Zvon3 Assumption 3. There exists ǫ > 0 such that for all t ∈ [0, T ], ξ ∈ Rd, x ∈ Rd

〈Σ(t, x)ξ, ξ〉 ≥ ǫ |ξ|2 . (2.4)

For a given random variable X on a probability space (Ω,F ,P), LP (X) denotes its law under P and

EP (X) its expectation under P. When self-explanatory, the subscript will be omitted in the sequel.

3 A Fokker-Planck PDE with terminal condition
S3

3.1 Preliminary results on uniqueness

In this section, we consider a Fokker-Planck type PDE with terminal condition for which the notion of

solution is clarified in the following definition.

Def Definition 3.1. Fix µ ∈ Mf

(
Rd
)
. We say that a mapping u from [0, T ] to Mf

(
Rd
)

solves the PDE (
EDPTerm0
1.1), if for all

φ ∈ C∞
c

(
Rd
)

and all t ∈ [0, T ]

∫

Rd

φ (y)u (t) (dy) =

∫

Rd

φ (y)µ (dy)−

∫ T

t

∫

Rd

Lsφ (y)u (s) (dy) ds. (3.1) weak

We consider the following assumption related to a given class C ⊆ M+

(
Rd
)
.

GH1 Assumption 4. For all ν ∈ C, the PDE 


∂tu = L∗

tu

u (0) = ν
(3.2) Fokker

admits at most one solution u : [0, T ] → M+

(
Rd
)
.

We recall that, for a given ν ∈ Mf

(
Rd
)
, u : [0, T ] → Mf

(
Rd
)

is a solution of the PDE (
Fokker
3.2) if for all

φ ∈ C∞
c

(
Rd
)

and all t ∈ [0, T ],

∫

Rd

φ (y)u (t) (dy) =

∫

Rd

φ (y) ν (dy) +

∫ t

0

∫

Rd

Lsφ (y)u (s) (dy) ds. (3.3) weakbis

Suppose there is an M+

(
Rd
)
-valued solution of (

Fokker
3.2) u and Assumption

GH1
4 with respect to some class C

holds and such that u(0) ∈ C. Then this unique solution will be denoted by uν in the sequel. We remark

that, whenever Assumption
GH1
4 holds with respect to a given C ⊆ P

(
Rd
)
, then (

Fokker
3.2) admits at most one

M+

(
Rd
)
-valued solution with any initial value belonging to R∗

+C := (αν)α>0,ν∈C .

We start with a simple but fundamental observation.

PFundam Proposition 3.2. Let us suppose σ, b to be locally bounded, ν be a Borel probability on Rd, α > 0, ξ be a r.v.

distributed according to ν. Suppose that there is a solution X of SDE

Xt = ξ +

∫ t

0

b (r,Xr) dr +

∫ t

0

σ (r,Xr) dWr, t ∈ [0, T ], P−a.s., (3.4) EqLin

where W is an m-dimensional standard Brownian motion. Then the M+

(
Rd
)
-valued function t 7→ αL (Xt) is a

solution of (
Fokker
3.2) with initial value αν.
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Proof. One first applies Itô formula to ϕ(Xt), where ϕ is a smooth function with compact support and then

one takes the expectation.

R1 Remark 3.3. 1. Suppose that the coefficients b,Σ are bounded. Assumption
GH1
4 holds with respect to C := M+

(
Rd
)

as soon as the martingale problem associated with b,Σ admits uniqueness for all initial condition of the type

δx, x ∈ Rd. Indeed, this is a consequence of Lemma 2.3 in
figalli
[5].

2. Suppose b and σ with linear growth. Let ν ∈ M+

(
Rd
)

not vanishing (resp. ν ∈ P
(
Rd
)
). The existence of

a M+

(
Rd
)
-valued (resp. P

(
Rd
)
-valued) solution for (

Fokker
3.2) (even on t ≥ 0) is ensured when the martingale

problem associated to b,Σ admits existence (and consequently when the SDE (
EqLin
3.4) admits weak existence) with

initial condition ν (resp. ν
‖ν‖ ). This follows by Proposition

PFundam
3.2. We remark that, for example, this happens

when the coefficients b, σ are continuous with linear growth: see Theorem 12.2.3 in
stroock
[17] for the case of bounded

coefficients, the general case can be easily obtained by truncation.

3. The martingale problem associated to b,Σ is well-posed for all deterministic initial condition, for instance in the

following cases.

• When Σ, b have linear growth and Σ is continuous and non-degenerate, i.e. Assumption
Zvon3
3, see

stroock
[17]

Corollary 7.1.7 and Theorem 10.2.2.

• Suppose d = 1 and σ is bounded. When σ is lower bounded by a positive constant on each compact set,

see
stroock
[17], Exercise 7.3.3.

• When d = 2, Σ is non-degenerate and σ and b are time-homogeneous and bounded, see
stroock
[17], Exercise

7.3.4.

• When σ, b are Lipschitz with linear growth (with respect to the space variable), in which case we have even

strong solutions of the corresponding stochastic differential equation.

LC313 Lemma 3.4. Let T > 0 be arbitrary and ν ∈ P
(
Rd
)
. We suppose the validity of Assumptions

Zvon1
2 and

Zvon3
3. Then there

is a unique M+

(
Rd
)
-valued solution u to (

Fokker
3.2) with u(0) = ν. Moreover uν takes values in P(Rd).

Proof. Existence follows by items 2. and 3. of Remark
R1
3.3. Uniqueness is a consequence of items 1. and 3.

of the same Remark.

Below we give two uniqueness results for the PDE (
EDPTerm
1.2).

P1 Proposition 3.5. Suppose Assumption
GH1
4 holds with respect to a given C ⊆ M+(R

d). Suppose that for all ν ∈ C

there exists an M+(R
d)-valued solution of (

Fokker
3.2) with initial value ν. Then, the following properties are equivalent.

1. The mapping from C to M+(R
d) ν 7→ uν(T ) is injective.

2. For all µ ∈ M+(R
d), the PDE (

BackwardFokker
2.3) with terminal value µ admits at most a solution in the sense of Definition

Def
3.1 among all M+

(
Rd
)
-valued solutions starting in the class C.

Proof. Concerning the converse implication, consider (ν, ν′) ∈ C2 such that uν(T ) = uν′

(T ) and suppose

that uniqueness holds for equation (
BackwardFokker
2.3) for all terminal values in M+

(
Rd
)

in the sense of Definition
Def
3.1

among non-negative measure-valued solutions starting in the class C. We remark that uν ,uν′

are such

solutions and are associated to the same terminal value. Uniqueness gives uν = uν′

and in particular

ν = ν′.

6



Concerning the direct implication, consider u1,u2 two non-negative measure-valued solutions of equation

(
EDPTerm
1.2) in the sense of Definition

Def
3.1, with the same terminal value in M+

(
Rd
)
, such that ui (0) , i ∈ {1, 2} ,

belong to C and suppose that ν 7→ uν (T ) is injective from C to M+

(
Rd
)
. Setting νi := ui (0), we remark

that for a given i ∈ {1, 2} 


∂tu

i = L∗
tu

i

ui (0) = νi,
(3.5) FPBis

in the sense of identity (
weakbis
3.3). Then, the fact u1 (T ) = u2 (T ) gives uν1 (T ) = uν2 (T ) . By injectivity ν1 = ν2

and the result follows by Assumption
GH1
4.

Proceeding in the same way as for the proof of Proposition
P1
3.5 we obtain the following.

P2 Proposition 3.6. Suppose that for all ν ∈ Mf

(
Rd
)
, there exists a unique solution uν of (

Fokker
3.2) with initial value ν.

Then, the following properties are equivalent.

1. The mapping ν 7→ uν(T ) is injective.

2. For all µ ∈ Mf (R
d), the PDE (

EDPTerm0
1.1) with terminal value µ admits at most a solution in the sense of Definition

Def
3.1.

RP1 Remark 3.7. 1. Suppose that the coefficients Σ, b are bounded. Then, any measure-valued solution u : [0, T ] →

M+(R
d) of (

Fokker
3.2) such that u(0) ∈ P(Rd) takes values in P(Rd). Indeed, this can be shown approaching the

function ϕ ≡ 1 from below by smooth functions with compact support.

2. Replacing M+(R
d) with P(Rd) in Assumption

GH1
4, item 2. in Proposition

P1
3.5 can be stated also replacing

M+(R
d) with P(Rd).

3.2 Uniqueness: the case of Dirac initial conditions
S32

In this section we give examples of functions b, σ for which uniqueness of (
BackwardFokker
2.3) among M+(R

d)-valued

solutions is ensured, supposing Assumption
GH1
4 is in force with respect to C := (αδx)α>0,x∈Rd .

Ralpha Remark 3.8. Let α ≥ 0. Let x ∈ Rd. Suppose that there is a solution Xx of SDE (
EqLin
3.4) with ξ = x.

1. By Proposition
PFundam
3.2, the M+

(
Rd
)
-valued mapping t 7→ αL (Xx

t ) is a solution of (
Fokker
3.2) with initial value αδx.

2. t 7→ αL (Xx
t ) can be identified with uαδx and in particular

∫
Rd u

αδx (t) (dy) = α, ∀t ∈ [0, T ].

If Assumption
Lip1d
1 holds, Xx denotes the unique solution of equation (

EqLin
3.4) with initial value x ∈ Rd.

We start with the case of dimension d = m = 1.

propLip1 Proposition 3.9. Suppose the validity of Assumption
GH1
4 with C = (αδx)α>0,x∈R

and
Lip1d
1 with d = m = 1. Then,

for all µ ∈ M+ (R), equation (
EDPTerm
1.2) with terminal value µ admits at most one solution in the sense of Definition

Def
3.1

among the M+ (R)-valued solutions starting in C.

Proof. Fix (x, y) ∈ R2 and α, β ≥ 0 such that

u
αδx (T ) = u

βδy (T ) . (3.6) identity

It suffices to show that α = β and x = y to conclude, thanks to Proposition
P1
3.5. By item 2. of Remark

Ralpha
3.8, we

have α = β and consequently LP (X
x
T ) = LP (X

y
T ). In particular E (Xx

T ) = E (Xy
T ). Since b, σ are Lipschitz

in space, they have bounded derivatives in the sense of distributions that we denote by ∂xb and ∂xσ.
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Set Zx,y := Xy −Xx. We have

Z
x,y
t = (y − x) +

∫ t

0

bx,ys Zx,y
s ds+

∫ t

0

σx,y
s Zx,y

s dWs, ∀t ∈ [0, T ], (3.7) EDol

where for a given s ∈ [0, T ]

bx,ys =

∫ 1

0

∂xb (s, aX
y
s + (1− a)Xx

s ) da, σ
x,y
s =

∫ 1

0

∂xσ (s, aX
y
s + (1− a)Xx

s ) da.

The unique solution of (
EDol
3.7) is well-known to be

Zx,y = exp

(∫ .

0

bx,ys ds

)
E

(∫ .

0

σx,y
s dWs

)
(y − x),

where E (·) denotes the Doléans exponential. Finally, we have

E

(
exp

(∫ T

0

bx,ys ds

)
E

(∫ .

0

σx,y
s dWs

)

T

)
(y − x) = 0.

Since the quantity appearing in the expectation is strictly positive, we conclude x = y.

We continue now with a discussion concerning the multidimensional case d ≥ 2. The uniqueness result

below only holds when the time-horizon is small enough. Later, in Section
SGP
3.3 we will present in a frame-

work of piecewise time-homogeneous coefficients results which are valid for any time-horizon. Theorem
propLipd
3.10 distinguishes two cases: the first one with regular possibly degenerate coefficients, the second one with

non-degenerate possibly irregular coefficients.

propLipd Theorem 3.10. We suppose Assumption
GH1
4 with C = (αδx)α>0,x∈Rd and the validity of either item (a) or (b) below.

(a) Assumption
Lip1d
1.

(b) Assumptions
Zvon1
2 and

Zvon3
3.

There is T > 0 small enough such that the following holds. For all µ ∈ M+

(
Rd
)
, equation (

EDPTerm
1.2) admits at most one

solution in the sense of Definition
Def
3.1 among the M+

(
Rd
)
-valued solutions starting in C.

The proof of item (a) of Theorem
propLipd
3.10 relies on a basic lemma of moments estimation.

Lemma Lemma 3.11. We suppose Assumption
Lip1d
1. Let (x, y) ∈ Rd×Rd. Then, supt∈[0,T ] E

(
|Xx

t −X
y
t |

2
)
≤ |y − x|

2
eKT ,

with K := 2Kb +
∑m

j=1

(
Kσ,j

)2
, where

Kb := sup
s∈[0,T ]

|| ||Jb (s, ·)|| ||∞

and for all j ∈ [[1,m]]

Kσ,j := sup
s∈[0,T ]

|| ||Jσ.j (s, ·)|| ||∞ .

Proof (of Lemma
Lemma
3.11).

For a given (x, y) ∈ Rd × Rd we set

Z
x,y
t := X

y
t −Xx

t , t ∈ [0, T ].

We have

Z
x,y
t = y − x+

∫ t

0

Bx,y
r Zx,y

r dr +

m∑

j=1

∫ t

0

Cx,y,j
r Zx,y

r dW j
r , t ∈ [0, T ], (3.8) EZxy

8



with, for all r ∈ [0, T ]

Bx,y
r :=

∫ 1

0

Jb (r, aXy
r + (1− a)Xx

r ) da, Cx,y,j
r :=

∫ 1

0

Jσ.j (r, aX
y
r + (1− a)Xx

r ) da, ∀ j ∈ [[1,m]].

By the classical existence and uniqueness theorem for SDEs with Lipschitz coefficients we know that

E(sup
s≤T

|Xz
s |

2) <∞, (3.9) SQI

for all z ∈ Rd. This implies

E( sup
t∈[0,T ]

|Zx,y
t |

2
) <∞. (3.10) sup

Now, Itô’s formula gives, for all t ∈ [0, T ]

|Zx,y
t |

2
= |y − x|

2
+ 2

∫ t

0

〈Bx,y
r Zx,y

r , Zx,y
r 〉 dr +

m∑

j=1

∫ t

0

∣∣Cx,y,j
r Zx,y

r

∣∣2 dr + 2

d∑

i=1

M
x,y,i
t , (3.11) ItoSquareNorm

where, for a given i ∈ [[1, d]], Mx,y,i denotes the local martingale
∫ ·

0 Z
x,y,i
s

∑m
j=1

(
Cx,y,j

s Zx,y
s

)
i
dW j

s .

Consequently, for all i ∈ [[1, d]], we have

√
[Mx,y,i]T =

√√√√
m∑

j=1

∫ T

0

(
Z

x,y,i
r

)2 (
C

x,y,j
r Z

x,y
r

)2
i
dr,

≤

√√√√
m∑

j=1

∫ T

0

∣∣∣Cx,y,j
r Z

x,y
r

∣∣∣
2

|Zx,y
r |

2
dr, (3.12) EMForm

≤

√√√√T

m∑

j=1

(Kσ,j)
2

sup
r∈[0,T ]

|Zx,y
r |

2
.

By the latter inequality and (
sup
3.10), we know that E

(
[Mx,y,i]

1
2

T

)
< ∞, so for all i ∈ [[1, d]], Mx,y,i is a true

martingale. Taking expectation in identity (
ItoSquareNorm
3.11), we obtain

E

(
|Zx,y

t |
2
)
= |y − x|2 +

∫ t

0

E

(
2 〈Bx,y

r Zx,y
r , Zx,y

r 〉+
m∑

k=1

∣∣Cx,y,k
r Zx,y

r

∣∣2
)
dr.

Hence, thanks to Cauchy-Schwarz inequality and to the definition of Kb and Kσ,j for all j ∈ [[1,m]]

E

(
|Zx,y

t |
2
)
≤ |y − x|

2
+K

∫ t

0

E

(
|Zx,y

r |
2
)
dr

and we conclude via Gronwall’s Lemma.

Proof (of Theorem
propLipd
3.10).

Fix (x1, x2) ∈ Rd × Rd, α, β ≥ 0 such that

u
αδx1 (T ) = u

βδx2 (T ) . (3.13)

To conclude, it suffices to show α = β and x1 = x2 thanks to Proposition
P1
3.5.
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1. We suppose first Assumption
Lip1d
1. Once again, item 2. of Remark

Ralpha
3.8 gives α = β and

E (Xx1

T ) = E (Xx2

T ) . (3.14) Eequal

Adopting the same notations as in the proof of Lemma
Lemma
3.11, a similar argument as in (

EMForm
3.12), together

with (
sup
3.10) allow to show that the local martingale part of Zx1,x2 = Xx2 − Xx1 defined in (

EZxy
3.8) is a

true martingale. So, taking the expectation in (
EMForm
3.12) with x = x1, y = x2, by Lemma

Lemma
3.11 we obtain

|E (Xx2

T −Xx1

T )− (x2 − x1)| ≤ Kb

∫ T

0

E|Xx2
r −Xx1

r |dr

≤ Kb

∫ T

0

√
E (|Xx2

r −Xx1
r |)

2
dr

≤
K

2
Te

K
2 T |x2 − x1| .

Remembering (
Eequal
3.14), this implies

(
1−

K

2
Te

K
2 T

)
|x2 − x1| ≤ 0.

Taking T such that K
2 T < M with MeM < 1, we have 1− K

2 Te
K
2 T > 0, which implies |x2 − x1| = 0.

2. We suppose here Assumptions
Zvon1
2 and

Zvon3
3. Firstly, point 1. of Theorem 1. in

z
[19] ensures the existence

of probability spaces
(
Ωi,F i,Pi

)
, i ∈ {1, 2} on which are defined respectively two m-dimensional

Brownian motions W 1,W 2 and two processes X1, X2 such that

X i
t = xi +

∫ t

0

b
(
s,X i

s

)
ds+

∫ t

0

σ
(
s,X i

s

)
dW i

s , P
i−a.s., t ∈ [0,T].

Once again, item 2. of Remark
Ralpha
3.8 implies α1 = α2 and

LP1

(
X1

T

)
= LP2

(
X2

T

)
. (3.15) TermLaw

Secondly, point b. of Theorem 3 in
z
[19] shows that for every given bounded D ⊂ Rd, for all φ : [0, T ]×

Rd → Rd belonging to W 1,2
p ([0, T ]×D) (see Definition of that space in

z
[19]) for a given p > d+ 2, we

have for all t ∈ [0, T ], i ∈ {1, 2},

φ
(
t,X i

t

)
= φ (0, xi) +

∫ t

0

(∂t + Ls)φ
(
s,X i

s

)
ds+

∫ t

0

Jφ
(
s,X i

s

)
σ
(
s,X i

s

)
dW i

s , P
i−a.s. (3.16) TSDE

where the application of ∂t + Lt, t ∈ [0, T ] has to be understood componentwise.

Thirdly, Theorem 2. in
z
[19] shows that if T is sufficiently small, then the system of d PDEs

∀ (t, x) ∈ [0, T ]× Rd,




∂tφ (t, x) + Ltφ (t, x) = 0,

φ (T, x) = x,
(3.17) E317

admits a solution φ in W 1,2
p ([0, T ]×D) for all p > 1 and all bounded D ⊂ Rd. Moreover the partial

derivatives in space of φ are bounded (in particular Jφ is bounded) and φ (t, ·) is injective for all

t ∈ [0, T ].
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Combining now (
E317
3.17) with identity (

TSDE
3.16), we observe that φ

(
., X i

)
, i ∈ {1, 2} , are local martingales.

Using additionally the fact that Jφ and σ are bounded, it is easy to show that they are true martingales.

Taking the expectation in (
TSDE
3.16) with respect to Pi, i = 1, 2, gives

φ (0, xi) = EPi

(
φ
(
T,X i

T

))
, i ∈ {1, 2} .

In parallel, identity (
TermLaw
3.15) gives

EP1

(
φ
(
T,X1

T

))
= EP2

(
φ
(
T,X2

T

))
.

So, φ (0, x1) = φ (0, x2). We conclude that x1 = x2 since φ (0, ·) is injective.

3.3 Uniqueness: the case of bounded, non-degenerate coefficients
SGP

In this section we consider the case of time-homogeneous, bounded and Hölder coefficients in dimension

d ≥ 1. We suppose that Assumption
Zvon3
3 holds and consider the following one.

Lun1 Assumption 5. 1. b, σ are time-homogeneous and bounded.

2. For all (i, j) ∈ [[1, d]]2, bi,Σij ∈ C2α
(
Rd
)
, for a given α ∈]0, 12 [.

We refer to the differential operator (
EqOpL
2.1) Lt and we simply set here L ≡ Lt.

RPreliminary Remark 3.12. Suppose the validity of Assumptions
Zvon3
3,

Lun1
5.

1. Let T > 0. Proposition 4.2 in
figalli
[5] implies that for every ν ∈ Mf

(
Rd
)
, there exists a unique Mf

(
Rd
)
-valued

solution of equation (
Fokker
3.2) with initial value ν. This unique solution will be denoted by uν . In the sequel T will

be omitted.

2. We remark that the uniqueness result mentioned in item 1. is unknown in the case of general bounded coeffi-

cients. In the general framework, only a uniqueness result for non-negative solutions is available, see Remark
R1
3.3 1.

3. Since L is time-homogeneous, taking into account Assumptions
Zvon3
3,

Lun1
5, operating a shift, uniqueness of (

Fokker
3.2) also

holds replacing the initial time 0 by any other initial time, for every initial value in Mf

(
Rd
)
, with any other

maturity T .

P315 Theorem 3.13. Suppose the validity of Assumptions
Zvon3
3 and

Lun1
5. Then, for all µ ∈ Mf

(
Rd
)
, equation (

EDPTerm
1.2) with

terminal value µ admits at most one Mf

(
Rd
)
-valued solution in the sense of Definition

Def
3.1.

By Theorems 3.1.12, 3.1.14 and Corollary 3.1.16 in
lunardi_1995
[12] the differential operator L suitably extends as a

map D(L) = C2α+2(Rd) ⊂ C2α(Rd) 7→ C2α
(
Rd
)

and that extension is sectorial, see Definition 2.0.1 in
lunardi_1995
[12].

We set E := C2α
(
Rd
)
. By the considerations below that Definition, in (2.0.2) and (2.0.3) therein, one defines

Pt := etL, Pt : E → E, t ≥ 0. By Proposition 2.1.1 in
lunardi_1995
[12], (Pt)t≥0 is a semigroup and t 7→ Pt is analytical on

]0,+∞[ with values in L (E), with respect to ||.||E .

Before proving the theorem, we provide two lemmata.
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key_1 Lemma 3.14. Suppose the validity of Assumptions
Zvon3
3 and

Lun1
5. Then, for all φ ∈ E and all ν ∈ Mf

(
Rd
)
, the function

from R∗
+ to R

t 7→

∫

Rd

Ptφ (x) ν (dx)

is analytic.

Proof. The result can be easily established using the fact that φ 7→ Ptφ with values in L(E) is analytic and

the fact that the map ψ 7→
∫
Rd ψ(x)ν(dx) is linear and bounded.

key_2 Lemma 3.15. Suppose the validity of Assumptions
Zvon3
3 and

Lun1
5. Let T > 0. Then for all ν ∈ Mf

(
Rd
)
, t ∈ [0, T ] and

φ ∈ E we have the identity ∫

Rd

Ptφ (x) ν (dx) =

∫

Rd

φ (x)uν (t) (dx) , (3.18) EL310

where uν was defined in point 1. of Remark
RPreliminary
3.12.

Proof. Let ν ∈ Mf

(
Rd
)
. We denote by vν the mapping from [0, T ] to Mf

(
Rd
)

such that ∀t ∈ [0, T ], ∀φ ∈ E
∫

Rd

φ(x)vν (t) (dx) =

∫

Rd

Ptφ(x)ν(dx). (3.19) ERiesz

Previous expression defines the measure vν (t, ·) since φ 7→
∫
Rd Ptφ(x)ν(dx) is continuous with respect to

the sup-norm, using ‖Ptφ‖∞ ≤ ‖φ‖∞, and Lebesgue dominated convergence theorem.

By approximating elements of E with elements of C∞
c

(
Rd
)
, it will be enough to prove (

EL310
3.18) for φ ∈

C∞
c

(
Rd
)
.

Our goal is to show that vν is a Mf

(
Rd
)
-valued solution of (

Fokker
3.2) with initial value ν to conclude vν = uν

via point 1. of Remark
RPreliminary
3.12 and so to prove (

EL310
3.18) for φ ∈ C∞

c

(
Rd
)
.

Let t ∈ [0, T ] and φ ∈ C∞
c

(
Rd
)
. On the one hand, point (i) of Proposition 2.1.1 in

lunardi_1995
[12] gives

LPtφ = PtLφ, (3.20) LP

since C∞
c

(
Rd
)
⊂ D (L) = C2α+2

(
Rd,R

)
. On the other hand, for all s ∈ [0, t], we have

|LPsφ|E = |PsLφ|2α

≤ ||Ps||E |Lφ|E

≤M0e
ωs |Lφ|E ,

with M0, ω the real parameters appearing in Definition 2.0.1 in
lunardi_1995
[12] and using point (iii) of Proposition 2.1.1

in the same reference. Then the mapping s 7→ LPsφ belongs obviously to L1([0, t];E) and point (ii) of

Proposition 2.1.4 in
lunardi_1995
[12] combined with identity (

LP
3.20) gives

Ptφ = φ+

∫ t

0

PsLφds.

Back to our main goal, using in particular Fubini’s theorem, we have
∫

Rd

Ptφ (x) ν (dx) =

∫

Rd

φ (x) ν (dx) +

∫

Rd

∫ t

0

PsLφ (x) dsν (dx)

=

∫

Rd

φ (x) ν (dx) +

∫ t

0

∫

Rd

PsLφ (x) ν (dx) ds

=

∫

Rd

φ (x) ν (dx) +

∫ t

0

∫

Rd

Lφ (x)vν (s) (dx) ds.

This shows that vν is a solution of equation (
Fokker
3.2).
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Proof (of Theorem
P315
3.13).

Let ν, ν′ ∈ Mf

(
Rd
)

such that

µT := u
ν (T ) = u

ν′

(T ) .

Thanks to Proposition
P2
3.6, it suffices to show that ν = ν′ i.e.

∀φ ∈ C∞
c

(
Rd
)
,

∫

Rd

φ (x) ν (dx) =

∫

Rd

φ (x) ν′ (dx) .

Since T > 0 is arbitrary, by Remark
RPreliminary
3.12 we can consider uν,2T and uν′,2T , defined as the corresponding uν

and uν′

functions obtained replacing the horizon T with 2T . They are defined on [0, 2T ] and by Remark
RPreliminary
3.12 1. (uniqueness on [0, T ]), they constitute extensions of the initial uν and uν′

.

By Remark
RPreliminary
3.12 3., the uniqueness of an Mf

(
Rd
)
-valued solution of (

Fokker
3.2) (for t ∈ [T, 2T ], with T as initial

time) holds for 


∂tu(τ) = L∗u(τ), T ≤ τ ≤ 2T

u(T ) = µT .
(3.21) FPShift

Now, the functions uν,2T and uν′,2T solve (
FPShift
3.21) on [T, 2T ]. This gives in particular

∀τ ≥ T, ∀φ ∈ C∞
c

(
Rd
)
,

∫

Rd

φ (x)uν,2T (τ) (dx) =

∫

Rd

φ (x)uν′,2T (τ) (dx) . (3.22) IdLawBis

Fix φ ∈ C∞
c

(
Rd
)
. Combining now the results of Lemmata

key_1
3.14 and

key_2
3.15, we obtain that the function

τ 7→

∫

Rd

φ (x)uν,2T (τ) (dx)−

∫

Rd

φ (x)uν′,2T (τ) (dx) (3.23) ETau

defined on [0, 2T ], is zero on [T, 2T ] and analytic on ]0, 2T ]. Hence it is zero on ]0, 2T ]. By (
EL310
3.18) we obtain

∫

Rd

Pτφ (x) (ν − ν′) (dx) = 0, ∀t ∈]0, 2T ]. (3.24) ETaubis

Separating ν and ν′ in positive and negative components, we can finally apply dominated convergence

theorem in (
ETau
3.23) to send τ to 0+. This is possible thanks to points (i) of Proposition 2.1.4 and (iii) of

Proposition 2.1.1 in
lunardi_1995
[12] together with the representation (

EL310
3.18). Indeed Pτφ (x) → φ (x) for every φ ∈

E, x ∈ Rd when τ → 0+. This shows ν = ν′ and ends the proof.

For the sake of applications it is useful to formulate a piecewise time-homogeneous version of Theorem
P315
3.13.

C313 Corollary 3.16. Let n ∈ N∗. Let 0 = t0 < . . . < tn = T be a partition. For k ∈ [[2, n]] (resp. k = 1) we denote

Ik =]tk−1, tk] (resp. [t0, t1]). Suppose that the following holds.

1. For all k ∈ [[1, n]], the restriction of σ (resp. b) to Ik × Rd is a time-homogeneous function σk : Rd → Md(R)

(resp. bk : Rd → Rd).

2. Assumption
Zvon3
3.

3. Assumption
Lun1
5 is verified for each σk, bk and Σk, where we have set Σk := σkσk⊤.

Then, for all µ ∈ Mf

(
Rd
)
, equation (

EDPTerm
1.2) with terminal value µ admits at most one Mf

(
Rd
)
-valued solution in the

sense of Definition
Def
3.1.
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Proof. For each given k ∈ [[1, n]], we introduce the PDE operator Lk defined by

Lk :=
1

2

d∑

i,j=1

Σk
ij∂ij +

d∑

i=1

bki ∂i. (3.25) OpLk

Let now u1,u2 be two solutions of (
EDPTerm
1.2) with same terminal value µ.

The measure-valued functions vi := ui (·+ tn−1) , i ∈ {1, 2} defined on [0, T − tn−1] are solutions of



∂tv = (Ln)

∗
v

v (T − tn−1, ·) = µ,
(3.26) BackwardFokker_k

in the sense of Definition
Def
3.1 replacing T by T − tn−1 and L by Ln. Then, Theorem

P315
3.13 gives v1 = v2 and

consequently u1 = u2 on [tn−1, T ]. To conclude, we proceed by backward induction.

3.4 Uniqueness: the case of Ornstein-Uhlenbeck semigroup
S34

In this section, we consider the case b := (s, x) 7→ C(s)x with C continuous from [0, T ] to Md (R) and σ

continuous from [0, T ] to Md,m (R). We set Σ := σσ⊤. We also denote by D (t) , t ∈ [0, T ], the unique

solution of

D(t) = I −

∫ t

0

C(s)⊤D(s)ds, t ∈ [0, T ].

We recall that for every t ∈ [0, T ], D(t) is invertible and

D−1(t) = I +

∫ t

0

C(s)⊤D−1(s)ds, t ∈ [0, T ].

For previous and similar properties, see Chapter 8 of
bronson
[4].

In that setting, the classical Fokker-Planck PDE for finite measures reads




∂tu (t) =

d∑

i,j=1

Σ(t)ij∂iju (t)−

d∑

i=1

∂i ((C(t)x)i u (t))

u(0) = ν ∈ Mf

(
Rd
)
.

(3.27) FP_OU

FwdOU_Uniq Proposition 3.17. For all ν ∈ Mf

(
Rd
)
, equation (

FP_OU
3.27) with initial value ν admits at most one Mf

(
Rd
)
-valued

solution.

Proof.

1. Let ν ∈ Mf

(
Rd
)

and u be a solution of (
Fokker
3.2) with initial value ν. Identity (

weakbis
3.3) can be extended to

S
(
Rd
)

since for all t ∈ [0, T ], u (t) belongs to Mf

(
Rd
)
. Then, t 7→ Fu (t) verifies

Fu (t) (ξ) = Fν(ξ)+

∫ t

0

〈
C (s)

⊤
ξ,∇Fu (s)

〉
ds−

1

2

∫ t

0

〈Σ (s) ξ, ξ〉 Fu (s) ds, (t, ξ) ∈ [0, T ]×Rd. (3.28) WeakOUPDE

In fact, the integrand inside the first integral has to be understood as a Schwartz distribution: in

particular the symbol ∇ is understood in the sense of distributions and for each given s ∈ [0, T ],〈
C (s)⊤ ξ,∇Fu (s)

〉
denotes the tempered distribution

ϕ 7→

d∑

i=1

∂iFu (s)
(
ξ 7→

(
C (s)

⊤
ξ
)
i
ϕ (ξ)

)
.
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Indeed, even though for any t, Fu (t) is a function, the equation (
WeakOUPDE
3.28) has to be understood in S ′

(
Rd
)
.

Hence, for all φ ∈ S
(
Rd
)
, this gives

∫

Rd

φ (ξ)Fu (t) (ξ) dξ −

∫

Rd

φ (ξ)Fν (ξ)φ(ξ)dξ (3.29)

= −i

d∑

k,l=1

∫ t

0

C (s)kl

∫

Rd

ξlFφk (ξ)u (s) (dξ) ds−
1

2

∫ t

0

∫

Rd

〈Σ (s) ξ, ξ〉 Fu (s) (ξ)φ(ξ)dξds

= −

d∑

k,l=1

∫ t

0

C (s)kl

∫

Rd

F (∂lφk) (ξ)u (s) (dξ) ds−
1

2

∫ t

0

∫

Rd

〈Σ (s) ξ, ξ〉 Fu (s) (ξ) dξds

= −

∫ t

0

∫

Rd

(
divξ

(
C (s)

⊤
ξφ (ξ)

)
+

1

2
〈Σ (s) ξ, ξ〉φ (ξ)

)
Fu(s)(ξ)dξds,

where φk : ξ 7→ ξkφ (ξ) for a given k ∈ [[1, d]].

2. Let now v : [0, T ] → Mf

(
Rd
)

defined by
∫

Rd

φ (x)v (t) (dx) =

∫

Rd

φ
(
D (t)

⊤
x
)
u (t) (dx) , (3.30) MeasChange

t ∈ [0, T ], φ ∈ Cb(R
d). For every ξ ∈ Rd, we set φ(x) = exp(−i〈ξ, x〉) in (

MeasChange
3.30) to obtain

Fv (t) (ξ) = Fu (t) (D (t) ξ) , (3.31) EAcont

for all ξ ∈ Rd, for all t ∈ [0, T ].

3. We want now to show that, for each ξ, t 7→ Fv (t) fulfills an ODE. To achieve this, suppose for a

moment that (t, ξ) 7→ Fu (t) (ξ) is differentiable with respect to the variable ξ. Then, on the one hand,

we have for all (t, ξ) ∈ [0, T ]× Rd,

Fu (t) (ξ) = Fν (ξ) +

∫ t

0

〈
C (s)

⊤
ξ,∇ξFu (s) (ξ)

〉
ds−

1

2

∫ t

0

〈Σ (s) ξ, ξ〉 Fu (s) (ξ) ds, (3.32) strongPDE

thanks to identity (
WeakOUPDE
3.28). This means in particular that, for each given ξ ∈ Rd, t 7→ Fu (t) (ξ) is

differentiable almost everywhere on [0, T ].

On the other hand, for almost every t ∈ [0, T ] and all ξ ∈ Rd, we have

∂tFv (t) (ξ) = ∂tFu (t) (D (t) ξ) +

d∑

i=1

(
d

dt
(D (t) ξ)

)

i

∂iFu (t) (D (t) ξ) ,

= ∂tFu (t) (D (t) ξ)−

d∑

i=1

(
C (t)

⊤
D (t) ξ

)
i
∂iFu (t) (D (t) ξ) ,

= −
1

2
〈Σ (t)D (t) ξ,D (t) ξ〉 Fv (t) (ξ) , (3.33) ETechnical

where from line 1 to line 2, we have used the fact d
dt

(D (t) ξ) = −C (t)
⊤
D (t) ξ for all (t, ξ) ∈ [0, T ]×Rd

and from line 2 to line 3, the identity (
strongPDE
3.32). Since t 7→ Fv (t) (ξ) is absolutely continuous by (

EAcont
3.31),

(
ETechnical
3.33) implies

Fv (t) (ξ) = Fν (ξ)−
1

2

∫ t

0

〈Σ (s)D (s) ξ,D (s) ξ〉 Fv (s) (ξ) ds, ξ ∈ Rd, (3.34) EDOFourierFwd

for all t ∈ [0, T ].
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4. Now, if (t, ξ) 7→ Fu (t) (ξ) is not necessarily differentiable in the variable ξ, we will be able to prove

(
EDOFourierFwd
3.34) still holds by making use of calculus in the sense of distributions.

5. Suppose that (
EDOFourierFwd
3.34) holds. This gives

Fu (t) (ξ) = e−
∫

t

0

|σ(s)⊤ξ|2
2 dsFν

(
D−1 (t) ξ

)
. (3.35) FourierExplicitOU

6. The proof is now concluded after we have established the (
EDOFourierFwd
3.34). Since both sides of it are continuous

in (t, ξ), it will be enough to show the equality as S ′(Rd)-valued. This can be done differentiating

(
WeakOUPDE
3.28), considered as an equality in S ′(Rd). For this we will apply Lemma

weakDer
3.18 setting Φ := Fu (t)

for every fixed t ∈ [0, T ] and differentiating in time. We set Φt(ξ) = Fv(t)(ξ), ξ ∈ Rd and Φt(ϕ) =∫
Rd ϕ(ξ)Φt(ξ)dξ, ϕ ∈ S(Rd). We remark that Φt is compatible with the one defined in (

EPhi
3.36). (

EDOFourierFwd
3.34) will

the directly follow from Lemma
weakDer
3.18.

weakDer Lemma 3.18. Let Φ ∈ S
′ (
Rd
)
, t ∈ [0, T ]. We denote by Φt the element of S

′ (
Rd
)

such that for all ϕ ∈ S
(
Rd
)

Φt (ϕ) := det
(
D−1 (t)

)
Φ
(
ϕ
(
D−1 (t) ·

))
. (3.36) EPhi

Then, for all t ∈ [0, T ]

Φt(ϕ) = Φ(ϕ)−
d∑

i=1

∫ t

0

(∂iΦ)s

(
x 7→

(
C (s)⊤ D (s)x

)
i
ϕ(x)

)
ds. (3.37) EDerivS

Proof. We begin with the case Φ ∈ S
(
Rd
)

(or only C∞
(
Rd
)
). In this case,

Φt (x) = Φ (D (t)x) , x ∈ Rd, t ∈ [0, T ].

Hence, for every t ∈ [0, T ]

d

dt
Φt (x) =

〈
d

dt
(D (t)x) ,∇Φ (D (t)x)

〉

= −
〈
C (t)⊤ D (t)x,∇Φ (D (t)x)

〉

= −

d∑

i=1

(
C (t)

⊤
D (t)x

)
i
(∂iΦ)t (x) ,

Now, coming back to the general case, let Φ ∈ S ′
(
Rd
)

and (φǫ)ǫ>0 a sequence of mollifiers in S
(
Rd
)
,

converging to the Dirac measure. Then for all ǫ > 0, the function Φ ∗ φǫ : x 7→ Φ (φǫ (x− ·)) belongs to

S ′
(
Rd
)
∩ C∞

(
Rd
)
. By the first part of the proof, (

EDerivS
3.37) holds replacing Φ = Φ ⋆ ϕε. Now, this converges to

Φ in S ′
(
Rd
)

when ǫ tends to 0+. (
EDerivS
3.37) follows sending ǫ to 0+. Indeed, for all ϕ ∈ S

(
Rd
)
, t ∈ [0, T ], setting
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φ̌ǫ : y 7→ φǫ(−y), we have

Φt (ϕ) = lim
ǫ→0+

∫

Rd

ϕ(x) (Φ ∗ φǫ)t (x) dx

= lim
ǫ→0+

∫

Rd

ϕ(x)Φ ∗ φǫ (x) dx− lim
ǫ→0+

d∑

i=1

∫ t

0

det
(
D−1 (s)

) ∫

Rd

(
C (s)

⊤
x
)
i
ϕ
(
D−1 (s)x

)
∂iΦ ∗ φǫ(x)dxds

= Φ(ϕ) − lim
ǫ→0+

d∑

i=1

∫ t

0

det
(
D−1 (s)

)
∂iΦ

(((
C (s)

⊤
·
)
i
ϕ
(
D−1 (s) ·

))
∗ φ̌ǫ

)
ds

= Φ(ϕ) −

d∑

i=1

∫ t

0

det
(
D−1 (s)

)
∂iΦ

((
C (s)

⊤
·
)
i
ϕ
(
D−1 (s) ·

))
ds

= Φ(ϕ) −

d∑

i=1

∫ t

0

(∂iΦ)s

(
x 7→

(
C (s)

⊤
D (s)x

)
i
ϕ (x)

)
ds.

To conclude, it remains to justify the commutation between the limit in ǫ and the integral in time from line

3 to line 4 using Lebesgue dominated convergence theorem. On the one hand, for a given i ∈ [[1, d]], the fact

∂iΦ belongs to S ′
(
Rd
)

implies that there exists C > 0, N ∈ N such that for all ϕ ∈ S
(
Rd
)

|∂iΦ (ϕ)| ≤ C sup
|α|≤N

sup
x∈Rd

(
1 + |x|2

)N
|∂αxϕ(x)| ,

see Chapter 1, Exercise 8 in
rudin
[16]. On the other hand, the quantities

sup
x∈Rd

(
1 + |x|

2
)N ∣∣∂αx

(
xjϕ(D

−1 (s) ·)
)
∗ φ̌ǫ

∣∣

are bounded uniformly in the couple (s, ǫ), for all j ∈ [[1, d]], α ∈ Nd, taking also into account that the

function s 7→ D−1(s) is continuous and therefore bounded. Since C is also continuous on [0, T ], we are

justified to use Lebesgue’s dominated convergence theorem.

BwdOU_Uniq Theorem 3.19. For all µ ∈ Mf

(
Rd
)
, equation (

EDPTerm
1.2) with terminal value µ admits at most one Mf

(
Rd
)
-valued

solution in the sense of Definition
Def
3.1.

Proof. Let µ ∈ Mf

(
Rd
)

and u a solution of (
BackwardFokker
2.3) with terminal value µ. Then, u solves equation (

Fokker
3.2) with

initial value u (0). As a consequence, by I (
FourierExplicitOU
3.35) appearing at the end of the proof of Proposition

FwdOU_Uniq
3.17, for all

ξ ∈ Rd,

Fµ (ξ) = e−
∫

T

0

|σ(s)⊤ξ|2
2 dsFu (0)

(
D−1 (T ) ξ

)
,

so that

Fu (0) (ξ) = e
∫

T

0

|σ(s)⊤ξ|
2

2 dsFµ (D (T ) ξ) .

Hence, u (0) is entirely determined by µ and Proposition
FwdOU_Uniq
3.17 gives the result.

4 McKean SDEs related to time-reversal of diffusions
S4

4.1 Preliminary considerations
Prelim

In this last section we concentrate on the analysis of the well-posedness of the McKean SDE (
MKIntro
1.3).
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Regarding b : [0, T ]×Rd 7→ Rd, σ : [0, T ]×Rd 7→Md,m (R), we set b̂ := b (T − ., ·), σ̂ := σ (T − ., ·), Σ̂ := σ̂⊤σ̂.

Given a probability-valued function p : [0, T ] → P(Rd), we denote by pt the density of p (t), for t ∈ [0, T ],

whenever it exists. For the McKean type SDE (
MKIntro
1.3), we consider the following notion of solution.

MKSol Definition 4.1. On a given filtered probability space
(
Ω,F , (Ft)t∈[0,T ] ,P

)
equipped with anm-dimensional (Ft)t∈[0,T ]-

Brownian motion β, a solution of equation (
MKIntro
1.3) is a couple (Y,p) fulfilling (

MKIntro
1.3) with Brownian motion β, such that

Y is (Ft)t∈[0,T ]-adapted and such that for all i ∈ [[1, d]], all compactK ⊂ Rd, all τ < T

∫ τ

0

∫

K

∣∣∣divy
(
Σ̂i. (r, y) pr (y)

)∣∣∣ dydr <∞. (4.1) IdInt

RDefMK Remark 4.2. For a given solution (Y,p) of equation (
MKIntro
1.3), identity (

IdInt
4.1) appearing in Definition

MKSol
4.1 implies in

particular that, for all i ∈ [[1, d]], all τ < T

∫ τ

0

∣∣∣∣∣∣

divy

(
Σ̂i. (r, Yr) pr (Yr)

)

pr (Yr)

∣∣∣∣∣∣
dr <∞, P−a.s.

The terminology stating that (
MKIntro
1.3) constitutes a probabilistic representation of (

EDPTerm
1.2) because is justified by

the result below.

PProbRep Proposition 4.3. Suppose b, σ locally bounded. If (Y,p) is a solution of (
MKIntro
1.3) in the sense of Definition

MKSol
4.1, then

p (T − ·) is a solution of (
EDPTerm0
1.1), with µ = p(0) in the sense of Definition

Def
3.1.

Proof. Let (Y,p) be a solution of (
MKIntro
1.3) in the sense of Definition

MKSol
4.1 with a Brownian motion symbolized by

β. Let φ ∈ C∞
c

(
Rd
)

and t ∈]0, T ]. Itô’s formula gives

φ (YT−t) = φ (Y0)+

∫ T−t

0

〈
b̃(s, Ys; ps),∇φ (Ys)

〉
+
1

2
Tr
(
Σ̂ (s, Ys)∇

2φ (Ys)
)
ds+

∫ T−t

0

∇φ (Ys)
⊤
σ (s, Ys) dβs,

(4.2) Ito

with

b̃ (s, y; ps) :=




divy

(
Σ̂j. (s, y) ps (y)

)

ps (y)





j∈[[1,d]]

− b̂ (s, y) , (s, y) ∈]0, T [×Rd.

We now want to take the expectation in identity (
Ito
4.2). On the one hand, Remark

RDefMK
4.2, implies that for all

i ∈ [[1, d]] and s ∈]0, T [
∫ T

0

dsE

∣∣∣∣∣∣

divy

(
Σ̂i. (s, Ys) ps (Ys)

)

ps (Ys)
∂iφ (Ys)

∣∣∣∣∣∣
<∞.

On the other hand
∫ T

0

E

{
Tr
(
Σ̂ (s, Ys)∇

2φ (Ys)
)}

ds =

d∑

i,j=1

∫ T

0

∫

Rd

Σ̂ij (s, y)∂ijφ (y) ps (y) dyds p.s.

Previous expression is finite since σ is bounded on compact sets and the partial derivatives of φ have

compact supports. With similar arguments we prove that
∫ T

0 dsE
∣∣∣
〈
b̂ (s, Ys) ,∇φ (Ys)

〉∣∣∣ < ∞, s ∈]0, T [.

Moreover, fixing s ∈]0, T [, integrating by parts we have

E

{〈
b̃ (s, Ys; ps) ,∇φ (Ys)

〉}
=

d∑

k,j=1

∫

Rd

∂k

(
Σ̂jk (s, y) ps (y)

)
∂jφ (y) dy −

∫

Rd

〈
b̂ (s, y) ,∇φ (y)

〉
ps (y) dy

(4.3) E42quater

= −

∫

Rd

Tr
(
Σ̂ (s, y)∇2φ (y)

)
ps (y) dy −

∫

Rd

〈
b̂ (s, y) ,∇φ (y)

〉
ps (y) dy.
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Now, the quadratic variation of the local martingale MY :=
∫ ·

0 ∇φ (Ys)
⊤
σ (s, Ys) dβs yields

[
MY

]
=

∫ ·

0

∇φ (Ys)
⊤
Σ (s, Ys)∇φ (Ys) ds.

We remark in particular that E
([
MY

]
T

)
< ∞ since σ is bounded on compact sets and φ has compact

support. This shows MY is a true (even square integrable) martingale and all terms involved in (
Ito
4.2) are

integrable.

At this point we evaluate the expectation in (
Ito
4.2) taking into account the considerations above together with

(
E42bis
4.1) and (

E42quater
4.3). We obtain

E (φ (YT−t)) =

∫

Rd

φ (y)µ (dy)−

∫ T−t

0

∫

Rd

LT−sφ (y) ps (y) dyds.

Applying the change of variable t 7→ T − t, we finally obtain the identity

∫

Rd

φ (y) pT−t (y) dy =

∫

Rd

φ (y)µ (dy)−

∫ T

t

∫

Rd

Lsφ (y) pT−s (y) dyds,

which means that p (T − ·) solves (
EDPTerm
1.2) in the sense of Definition

Def
3.1 with terminal value µ.

We also provide the different notions of existence and uniqueness for (
MKIntro
1.3) we will use in the sequel.

MKDSol Definition 4.4. Let A be a class of measure-valued functions from [0, T ] to P
(
Rd
)
.

1. We say that (
MKIntro
1.3) admits existence in law in A, if there exists a complete filtered probability space

(
Ω,F , (Ft)t∈[0,T ] ,P

)

equipped with an m-dimensional (Ft)t∈[0,T ]-Brownian motion β and a couple (Y,p) solution of (
MKIntro
1.3) in the

sense of Definition
MKSol
4.1 such that p belongs to A.

2. Let
(
Y 1,p1

)
,
(
Y 2,p2

)
be two solutions of (

MKIntro
1.3) in the sense of Definition

MKSol
4.1 associated to some complete

filtered probability spaces
(
Ω1,F1,

(
F1

t

)
t∈[0,T ]

,P1
)

,
(
Ω2,F2,

(
F2

t

)
t∈[0,T ]

,P2
)

respectively, equipped with

Brownian motions β1, β2 respectively and such that p1,p2 belong to A. We say that (
MKIntro
1.3) admits uniqueness

in law in A, if Y 1
0 , Y

2
0 have the same law implies that Y 1, Y 2 have the same law.

3. We say that (
MKIntro
1.3) admits strong existence in A if for any complete filtered probability space (Ω,F , (Ft)t∈[0,T ] ,P)

equipped with anm-dimensional (Ft)t∈[0,T ]-Brownian motion β, there exists a solution (Y,p) of equation (
MKIntro
1.3)

in the sense of Definition
MKSol
4.1 such that p belongs to A.

4. We say that (
MKIntro
1.3) admits pathwise uniqueness in A of if for any complete filtered probability space (Ω,F , (Ft)t∈[0,T ] ,P)

equipped with anm-dimensional (Ft)t∈[0,T ]-Brownian motion β, for any solutions
(
Y 1,p1

)
,
(
Y 2,p2

)
of (

MKIntro
1.3)

in the sense of Definition
MKSol
4.1 such that Y 1

0 = Y 2
0 , P−a.s. and p1,p2 belong to A, we have Y 1 = Y 2, P−a.s.

We finally define the sets in which we will formulate existence and uniqueness results in the sequel.

NAC1_2 Notation 1. 1. For a given C ⊆ P
(
Rd
)
, AC denotes the set of measure-valued functions from [0, T ] to P

(
Rd
)
p

such that p (T ) belongs to C. Furthermore, for a given measure-valued function p : [0, T ] 7→ P
(
Rd
)
, we will

denote

b(t, ·;pt) :=




divy

(
Σ̂i.pt

)

pt





i∈[[1,d]]

, (4.4) EBP

for almost all t ∈ [0, T ] whenever pt exists and the right-hand side quantity is well-defined. The function

(t, x) 7→ b(t, x;pt) is defined on [0, T ]× Rd with values in Rd.
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2. Let A1 (resp. A2) denote the set of measure-valued functions from [0, T ] to P
(
Rd
)
p such that, for all t ∈ [0, T [,

p (t) admits a density pt with respect to the Lebesgue measure on Rd and such that (t, x) 7→ b(t, x;pt) is locally

bounded (resp. is locally Lipschitz in space with linear growth) on [0, T [×Rd.

We state now existence and uniqueness results for equation (
MKIntro
1.3) in different settings.

4.2 PDE with terminal condition and existence for the McKean SDE
MKEX

The existence result for equation (
MKIntro
1.3) will be based on two pillars: the reachability condition constituted

by the existence of a solution of the Fokker-Planck PDE with terminal condition and the time-reversal

techniques of
haussmann_pardoux
[8]. More precisely, we suppose that Assumption

GH1
4 is in force for a fixed C ⊆ P

(
Rd
)

and

consider the following extra assumptions, i.e. Assumptions
MKEx_1
6,

MKEx_2
7 and

MKEx_3
8, still with respect to (C, µ).

MKEx_1 Assumption 6. The backward PDE (
EDPTerm0
1.1) with terminal condition µ admits at least an M+

(
Rd
)
-valued solution u

in the sense of Definition
Def
3.1 verifying the following.

1. u (0) belongs to C.

2. ∀t ∈]0, T [, u (t) admits a density with respect to the Lebesgue measure on Rd (denoted by u (t, ·)) and for all

t0 > 0 and all compactK ⊂ Rd

∫ T

t0

∫

K

|u (t, x)|2 +
d∑

i=1

m∑

j=1

|σij (t, x) ∂iu (t, x)|
2
dxdt <∞. (4.5) HP

R45 Remark 4.5. Suppose Assumption
Lip1d
1 holds and let u be the measure-valued function appearing in Assumption

MKEx_1
6.

Then (
HP
4.5) implies that the family of densities u (T − t, ·) , t ∈]0, T [ verifies condition (

IdInt
4.1) appearing in Definition

MKSol
4.1. To show this, it suffices to check that for all t0 > 0, all compact K ⊂ Rd and all (i, j, k) ∈ [[1, d]]2 × [[1,m]]

∫ T

t0

∫

K

|∂j (σik (s, y)σjk (s, y)u (s, y))| dyds <∞. (4.6) Integr

The integrand appearing in (
Integr
4.6) is well-defined. Indeed, in the sense of distributions we have

∂j (σikσjku) = σikσjk∂ju+ u (σik∂jσjk + σjk∂jσik) ; (4.7) Deriv

moreover the components of σ are Lipschitz, so they are (together with their space derivatives) locally bounded. Also

u and σjk∂j are square integrable by (
HP
4.5). This implies (

Integr
4.6).

MKEx_2 Assumption 7. Let u be the measure-valued mapping appearing in Assumption
MKEx_1
6. We suppose that µ admits a

density and u (T − ·) [0,T [×Rd belongs to A1.

We introduce two new assumptions.

MKEx_3 Assumption 8. Let u be the measure-valued mapping appearing in Assumption
MKEx_1
6. We suppose that µ admits a

density and u (T − ·) [0,T [×Rd belongs toA2.

We remark that Assumption
MKEx_3
8 implies

MKEx_2
7.

MKEx_Prop Proposition 4.6. Suppose the validity of Assumptions
Lip1d
1, Assumption

GH1
4 with respect to C and Assumption

MKEx_1
6 with

respect to (C, µ). Then (
MKIntro
1.3) admits existence in law in AC .

In particular if, moreover, Assumption
MKEx_2
7 (resp.

MKEx_3
8) holds, then (

MKIntro
1.3) admits existence in law in AC ∩ A1 (resp. strong

existence in AC ∩ A2).
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Proof. By Assumption
MKEx_1
6, there is an M+

(
Rd
)
-valued solution u of equation (

EDPTerm0
1.1) in the sense of Def-

inition
Def
3.1 such that u (T ) = µ and u (0) belongs to C. We consider now a filtered probability space(

Ω,F , (Ft)t∈[0,T ] ,P
)

equipped with an (Ft)t∈[0,T ]-Brownian motion W . Let X0 be a r.v. distributed ac-

cording to u(0). Under Assumption
Lip1d
1, it is well-known that there is a solution X to

Xt = X0 +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dWs, t ∈ [0, T ]. (4.8) SDE

Now, by Proposition
PFundam
3.2, t 7→ L (Xt) is a P

(
Rd
)
-valued solution of equation (

Fokker
3.2) in the sense of (

weakbis
3.3) with

initial value u (0) ∈ C. Then Assumption
GH1
4 gives

L (Xt) = u (t) , t ∈ [0, T ], (4.9) MKIdLaw

since u solves also (
Fokker
3.2) with initial value u (0) ∈ C. This implies in particular that u is probability valued

and that for all t ∈]0, T [, Xt has u (t, ·) as a density fulfilling condition (
HP
4.5) in Assumption

MKEx_1
6.

Combining this observation with Assumption
Lip1d
1, Theorem 2.1 in

haussmann_pardoux
[8] states that there exists a filtered prob-

ability space
(
Ω,G, (Gt)t∈[0,T ],Q

)
equipped with the Brownian motion β and a copy of X̂ (still denoted by

the same letter) such that X̂ fulfills the first lign of (
MKIntro
1.3) with β and

p (t) = u (T − t) , t ∈]0, T [. (4.10) Eup

Finally, existence in law for (
MKIntro
1.3) in the sense of Definition

MKSol
4.1 holds since (X̂,u (T − ·)) is a solution of

(
MKIntro
1.3) on the same filtered probability space and the same Brownian motion above. This occurs in AC since

L
(
X̂T

)
∈ C thanks to equality (

MKIdLaw
4.9) for t = T .

We discuss rapidly the in particular point.

• Suppose that Assumption
MKEx_2
7; then u (T − ·) belongs to AC ∩ A1 and we also have existence in law in

AC ∩ A1.

• Suppose the validity of Assumption
MKEx_3
8. Then, (

Eup
4.10), strong existence and pathwise uniqueness for the

first line of (
MKIntro
1.3) holds by classical arguments since the coefficients are locally Lipschitz with linear

growth, see
RevuzYorBook
[14] Exercise (2.10), and Chapter IX.2 and

RevuzYorBook
[14], Th. 12. section V.12. of

rogers_v2
[15]. By Yamada-

Watanabe theorem this implies uniqueness in law, which shows that u (T − ·) constitutes the marginal

laws of the considered strong solutions. This concludes the proof of strong existence in AC ∩A2 since

u (T − ·) belongs to AC ∩ A2, by Assumption
MKEx_3
8.

RExistence2 Remark 4.7. By (
Eup
4.10), the second component p of the solution of (

MKIntro
1.3) is given by u (T − ·) .

4.3 PDE with terminal condition and uniqueness for the McKean SDE
MKUNIQ

In this subsection we discuss some questions related to uniqueness for equation (
MKIntro
1.3). We state the following

hypothesis related to (µ, C) where C is a given subset of P
(
Rd
)
.

APDETerm Assumption 9. The equation (
EDPTerm0
1.1) with terminal condition µ admits at most a P

(
Rd
)
-valued solution u in the

sense of Definition
Def
3.1 such that u (0) belongs to C.

We recall that Section
S32
3.2 provides various classes of examples where Assumption

APDETerm
9 holds.
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MKProp Proposition 4.8. Suppose the validity of Assumption
APDETerm
9 with respect to (µ, C) and suppose b, σ to be locally bounded.

Let
(
Y i,pi

)
, i ∈ {1, 2} be two solutions of equation (

MKIntro
1.3) in the sense of Definition

MKSol
4.1 such that p1 (T ) ,p2 (T )

belong to C. Then,

p
1 = p

2.

Proof. Proposition
PProbRep
4.3 shows that p1 (T − ·) ,p2 (T − ·) are P

(
Rd
)
-valued solutions of equation (

EDPTerm
1.2) in the

sense of Definition
Def
3.1 with terminal value µ. Assumption

APDETerm
9 gives the result since p1 (T ) ,p2 (T ) belong to

C.

As a corollary, we establish some consequences about uniqueness in law and pathwise uniqueness re-

sults for equation (
MKIntro
1.3) in the classes A1 and A2.

Coro Corollary 4.9. Suppose the validity of Assumption
APDETerm
9 with respect to (µ, C). Then, the following results hold.

1. If b is locally bounded, σ is continuous and if the non-degeneracy Assumption
Zvon3
3 holds then (

MKIntro
1.3) admits unique-

ness in law in AC ∩ A1.

2. If (b, σ) are locally Lipschitz with linear growth in space, then (
MKIntro
1.3) admits pathwise uniqueness in AC ∩ A2.

Proof. If (Y,p) is a solution of (
MKIntro
1.3) and is such that p (T ) belongs to C, then by Proposition

MKProp
4.8 p is deter-

mined by µ = L (Y0).

To show that item 1. (resp. 2.) holds, it suffices to show that the classical SDE

dXt = b (t,Xt;pt)− b̂ (t,Xt) dt+ σ̂ (t,Xt) dWt, t ∈ [0, T [, (4.11) FrozenSDE

where b was defined in (
EBP
4.4) and W an m-dimensional Brownian motion, admits uniqueness in law (resp.

pathwise uniqueness). The mentioned uniqueness in law is a consequence of Theorem 10.1.3 in
stroock
[17] and

pathwise uniqueness holds by
RevuzYorBook
[14] Exercise (2.10), and Chapter IX.2 and

rogers_v2
[15] Th. 12. Section V.12.

4.4 Well-posedness for the McKean SDE: the bounded coefficients case
SExamples44

In this section, we state a significant result related to existence and uniqueness in law together with path-

wise uniqueness for equation (
MKIntro
1.3). In particular we obtain existence and uniqueness in law for (

MKIntro
1.3) in the

class A1

We formulate the following hypotheses.

smoothness Assumption 10. 1. Assumption
Zvon3
3 holds.

2. The functions σ is Lipschitz (in space).

3. The functions σ, b, (∇xbi)i∈[[1,d]], (∇xΣij)i,j∈[[1,d]] are continuous bounded and ∇2
xΣ is Hölder continuous

with exponent α ∈]0, 1[ in space uniformly in time.

smoothness1 Assumption 11. Σ is supposed to be Hölder continuous in time

Runu Remark 4.10. Under Assumption
smoothness
10, for every ν ∈ P(Rd) there exists a unique P

(
Rd
)
-valued solution uν of (

Fokker
3.2).

Indeed the assumptions of Lemma
LC313
3.4 are fulfilled.

We continue with a fundamental lemma whose proof will appear in the Appendix.
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FriedAr Lemma 4.11. Suppose the validity of Assumptions
smoothness
10 and

smoothness1
11. Then, for all ν ∈ P

(
Rd
)
, uν (t) admits a density

uν (t, ·) ∈ C1
(
Rd
)

for all t ∈]0, T ]. Furthermore, for each compact K of ]0, T ] × Rd, there are strictly positive

constants CK
1 , C

K
2 , C

K
3 , also depending on ν such that

CK
1 ≤ uν (t, x) ≤ CK

2 (4.12)

|∂iu
ν (t, x)| ≤ CK

3 , i ∈ [[1, d]], (4.13)

for all (t, x) ∈ K .

P49 Lemma 4.12. Suppose that the initial condition µ equals uν (T ) for some ν ∈ P
(
Rd
)
. We suppose the following.

1. Assumptions
smoothness
10.

2. uν (t) admits a density uν (t, ·) ∈W
1,1
loc (R

d), for all t ∈]0, T ].

3. For each compactK of ]0, T ]×Rd, there are strictly positive constants CK
1 , C

K
2 , C

K
3 , also depending on ν such

that (
dens
4.12) and (

DerDens
4.13) hold ∀(t, x) ∈ K .

Then equation (
MKIntro
1.3) admits existence in law in A1.

CP49 Corollary 4.13. We suppose the validity of Assumptions
smoothness
10 and and

smoothness1
11.

1. Suppose the existence of ν ∈ P(Rd) such that uν(T ) = µ. Then, equation (
MKIntro
1.3) admits existence in law in A1.

Moreover, if ν is a Dirac mass, existence in law occurs in A(δx)x∈Rd
∩ A1.

2. Otherwise (
MKIntro
1.3) does not admit existence in law.

Proof.

1. The first part is a direct consequence of Lemma
FriedAr
4.11, Lemma

P49
4.12 and expression (

EBP
4.4). If in addition,

ν is a Dirac mass, then uν (0) belongs to C := (δx)x∈Rd , hence existence in law occurs in AC ∩A1 again

by Proposition
MKEx_Prop
4.6.

2. Otherwise suppose ab absurdo that (Y,p) is a solution of (
MKIntro
1.3). By Proposition

PProbRep
4.3 p (T − ·) is a solu-

tion of (
BackwardFokker
2.3). We set ν0 = p(T ) so that p(T −·) verifies also (

Fokker
3.2) with initial value ν0. Since, by Lemma

LC313
3.4 uniqueness holds for (

Fokker
3.2), it follows that p(T − ·) = uν0 which concludes the proof of item 2.

Proof (of Lemma
P49
4.12). Suppose µ = uν (T ) for some ν ∈ P

(
Rd
)
.

We recall that Assumption
GH1
4 holds with respect to C := P

(
Rd
)

by Remark
R1
3.3 1.

In view of applying Proposition
MKEx_Prop
4.6, we need to check that Assumptions

MKEx_1
6 and

MKEx_2
7 hold with respect to (µ, C).

Assumption
MKEx_1
6 is verified by u = uν . Indeed the function uν is a P

(
Rd
)
-valued solution of (

EDPTerm
1.2) with

terminal value µ and such that uν (0) belongs to C. Condition (
HP
4.5) appearing in Assumption

MKEx_1
6 is satisfied

with u = uν thanks to the right-hand side of inequalities (
dens
4.12) and (

DerDens
4.13) and the fact that σ is bounded.

Hence Assumption
MKEx_1
6 holds with respect to (µ, C).

It remains to show Assumption
MKEx_2
7 holds i.e. that

(t, x) 7→
divx

(
Σ̂i.(t, x)u

ν(T − t, x)
)

uν(T − t, x)
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is locally bounded on [0, T [×Rd. To achieve this, we fix i ∈ [[1, d]] and a bounded open subset O of [0, T [×Rd.

For (t, x) ∈ O we have
∣∣∣∣∣∣

divx

(
Σ̂i. (t, x) u

ν (T − t, x)
)

uν (T − t, x)

∣∣∣∣∣∣
≤
∣∣∣divx

(
Σ̂i. (t, x)

)∣∣∣+
∣∣∣Σ̂i. (t, x)

∣∣∣ |∇xu
ν (T − t, x)|

uν (T − t, x)
.

The latter quantity is locally bounded in t, x thanks to the boundedness of Σ, divx
(
Σ̂i.

)
and inequalities

(
dens
4.12) and (

DerDens
4.13). Hence, Assumption

MKEx_2
7 holds. This ends the proof.

TExUniq Proposition 4.14. Suppose the validity of Assumption
smoothness
10 and

smoothness1
11. The following results hold.

1. Let us suppose d = 1. Suppose µ equals uδx0 (T ) for some x0 ∈ Rd. Then (
MKIntro
1.3) admits existence and uniqueness

in law in A(δx)x∈Rd
∩ A1, pathwise uniqueness in A(δx)x∈Rd

∩ A2.

2. Let d ≥ 2. There is a maturity T sufficiently small (only depending on the Lipschitz constant of b, σ) such

that the following result holds. Suppose µ equals uδx0 (T ) for some x0 ∈ Rd. Then (
MKIntro
1.3) admits existence and

uniqueness in law in A(δx)x∈Rd
∩ A1, pathwise uniqueness in A(δx)x∈Rd

∩ A2.

Proof. By Assumptions
smoothness
10 and

smoothness1
11, Corollary

CP49
4.13 implies that (

MKIntro
1.3) admits existence in law in the two cases

in the specific classes. To check the uniqueness in law and pathwise uniqueness results, we wish to apply

Corollary
Coro
4.9. It suffices to check Assumption

APDETerm
9 because the other hypotheses are included in Assumption

smoothness
10. Below we verify Assumption

APDETerm
9 with respect to (µ, (δx)x∈R), for the separate two cases.

1. Fix x0 ∈ Rd. This will follow from Proposition
propLip1
3.9 that holds under Assumption

Lip1d
1 which is a conse-

quence of Assumption
smoothness
10.

2. We proceed as for previous case but applying Theorem
propLipd
3.10 instead of Proposition

propLip1
3.9.

We state now the most important results of the section.

TExUniqBis Theorem 4.15. Suppose b, σ are time-homogeneous, Assumption
smoothness
10 and suppose there is ν ∈ P

(
Rd
)

(a priori not

known) such that µ = uν (T ).

1. (
MKIntro
1.3) admits existence and uniqueness in law. Moreover existence in law holds in A1.

2. (
MKIntro
1.3) admits pathwise uniqueness in A2.

Proof. 1. (a) First, Assumption
smoothness1
11 trivially holds since b, σ are time-homogeneous. Then, point 1 of

Corollary
CP49
4.13 implies that (

MKIntro
1.3) admits existence in law (in A1) since Assumption

smoothness
10 holds.

(b) Let (Y,p) be a solution of (
MKIntro
1.3). Proceeding as in the proof of item 2. of Corollary

CP49
4.13, we obtain

that p(T − ·) = uν0 with ν0 = p (T ). Then, Lemma
FriedAr
4.11 and the fact that σ is bounded allow to

show that p belongs to A1, see (
EBP
4.4) in Notation

NAC1_2
1.

(c) To conclude it remains to show uniqueness in law in A1. For this we wish to apply point 1.

of Corollary
Coro
4.9. To achieve this, we check Assumption

APDETerm
9 with respect to

(
µ,P

(
Rd
))

. This is a

consequence of Assumptions
Zvon3
3 and

Lun1
5 and Theorem

P315
3.13 This concludes the proof of item 1.

2. Concerning pathwise uniqueness in A2, we proceed as for uniqueness in law but applying point 2 of

Corollary
Coro
4.9. This is valid since Assumption

smoothness
10 implies that b, σ are bounded and Lipschitz.
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In the result below we extend Theorem
TExUniqBis
4.15 to the case when the coefficients b, σ are piecewise time-

homogeneous.

TC313 Theorem 4.16. Let n ∈ N∗. Let 0 = t0 < . . . < tn = T be a partition. For k ∈ [[2, n]] (resp. k = 1) we denote

Ik =]tk−1, tk] (resp. [t0, t1]). Suppose that the following holds.

1. For all k ∈ [[1, n]] the restriction of σ (resp. b) to Ik × Rd is a time-homogeneous function σk : Rd → Md(R)

(resp. bk : Rd → Rd).

2. Assumption
Zvon3
3.

3. σ is Lipschitz in space uniformly in time.

4. The functions σk, bk,
(
∇xb

k
i

)
i∈[[1,d]]

,
(
∇xΣ

k
ij

)
i,j∈[[1,d]]

are continuous bounded and ∇2
xΣ

k is Hölder continuous

with exponent α ∈]0, 1[.

Suppose µ equals uν(T ) for some ν ∈ P
(
Rd
)
. Then equation (

MKIntro
1.3) admits existence and uniqueness in law. Existence

in law holds in A1.

RC313 Remark 4.17. A similar remark as in Corollary
CP49
4.13 holds for the Theorems

TExUniqBis
4.15 and

TC313
4.16. If there is no ν ∈ P(Rd)

such that uν(T ) = µ, then (
MKIntro
1.3) does not admit existence in law.

Proof of Theorem
TC313
4.16). We recall that by Lemma

LC313
3.4, uν0 is well-defined for all ν0 ∈ P

(
Rd
)
.

1. We first show that uν0 verifies (
dens
4.12) and (

DerDens
4.13). Indeed, fix k ∈ [[1, n]]. The restriction uk of uν0 to Īk is a

solution v of the first line (
Fokker
3.2) replacing [0, T ] with Īk, L by Lk defined in (

OpLk
3.25), with initial condition

v(tk−1) = uν0(tk−1). That restriction is even the unique solution, using Lemma
LC313
3.4 replacing [0, T ]

with Īk. We apply Lemma
FriedAr
4.11 replacing [0, T ] with Īk, taking into account Assumptions

smoothness
10 and

smoothness1
11,

which holds trivially replacing σ, b,Σ with σk, bk,Σk This implies that uν0 verifies (
dens
4.12) and (

DerDens
4.13)

replacing [0, T ] with Īk , and therefore on the whole [0, T ].

2. Existence in law in A1, follows now by Lemma
P49
4.12.

3. It remains to show uniqueness in law. Let (Y,p) be a solution of (
MKIntro
1.3). We set ν0 := p (T ). Since uν0

and p(T −·) solve (
Fokker
3.2), Lemma

LC313
3.4 implies that p is uniquely determined. Similarly as in item 1.(b) of

the proof of Theorem
TExUniqBis
4.15, item 1. of the present proof and Lemma

FriedAr
4.11 allow to show that p belongs

to A1.

4. It remains to show uniqueness in law in A1. For this, Corollary
C313
3.16 implies Assumption

APDETerm
9 with

C = P(Rd). Uniqueness of (
MKIntro
1.3) in the class A1 follows now by Corollary

Coro
4.9, which ends the proof.

4.5 Well-posedness for the McKean SDE: the Ornstein-Uhlenbeck semigroup
Sex

In this section we consider the case b : (s, x) 7→ C (s) xwith C continuous from [0, T ] to Rd and σ continuous

from [0, T ] to Md,m (R). We also suppose that for all t ∈ [0, T ], σ (t) is invertible. We denote by C (t) , t ∈

[0, T ], the unique solution of the matrix-valued ODE

C(t) = I +

∫ t

0

C(s)C(s)ds.
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For a given x0 ∈ Rd and a given t ∈]0, T ], we denote by px0
t the density of a Gaussian random vector

with mean mx0
t = C(t)x0 and covariance matrix Qt = C(t)

∫ t

0
C−1(s)Σ(s)C−1 (s)⊤ dsC(t)⊤. Note that for all

t ∈]0, T ], Qt is strictly positive definite, in particular it is invertible. Indeed, for every t ∈ [0, T ], Σ(t) is

strictly positive definite. By continuity in t,
∫ t

0
C−1(s)Σ(s)C−1 (s)⊤ ds is also strictly positive definite and

finally the same holds for Qt. For a given ν ∈ P
(
Rd
)
, t ∈]0, T ], we set the notation

pνt : x 7→

∫

Rd

px0
t (x) ν (dx0) . (4.14) Epnu

At this level, we need a lemma.

OU_lemma Lemma 4.18. Let ν ∈ P
(
Rd
)
. The measure-valued function t 7→ pνt (x)dx is the unique solution of (

Fokker
3.2) with initial

value ν and we denote it by uν . Furthermore, uν (T − ·) belongs to A2.

Proof. 1. We denote immediately uν (t) (dx) := pνt (x)dx, t ∈]0, T ]. By Chapter 5, Section 5.6 in
karatshreve
[10], for

every t ∈]0, T ], px0
t is the density of the random variableXx0

t , whereXx0 is the unique strong solution

of (
EqLin
3.4) with initial value x0. The mapping t 7→ px0

t (x)dx is a solution of (
Fokker
3.2) by Proposition

PFundam
3.2, with

initial condition δx0 . Consequently, by superposition, uν is a solution of (
Fokker
3.2) with initial value ν.

2. uν is the unique solution of (
Fokker
3.2) because of Proposition

FwdOU_Uniq
3.17.

3. It remains to show that uν (T − ·) belongs to A2, namely that for all i ∈ [[1, d]]

(t, x) 7→
divx

(
Σ (T − t)i· p

ν
T−t (x)

)

pνT−t (x)
,

is locally Lipschitz with linear growth in space on [0, T [×Rd.

Fix i ∈ [[1, d]], t ∈ [0, T [ and x ∈ Rd. Remembering the fact, px0

T−t is a Gaussian law with mean mx0

T−t

and covariance matrix QT−t for a given x0 ∈ Rd, we have

divx
(
Σ (T − t)i· p

ν
T−t (x)

)

pνT−t (x)
= −

1

pνT−t (x)

∫

Rd

〈
Σ (T − t)i· , Q

−1
T−t

(
x−mx0

T−t

)〉
px0

T−t (x) ν (dx0) . (4.15) div_OU

Let K be a compact subset of ]0, T ]× Rd; then there is MK > 0 such that for all (t, x) ∈ K , x0 ∈ Rd,

∣∣〈Σ (T − t)i· , Q
−1
T−t

(
x−mx0

T−t

)〉
px0

T−t (x)
∣∣ ≤ |Σ (T − t)i·|

∣∣∣∣Q−1
T−t

∣∣∣∣ ∣∣x−mx0

T−t

∣∣ px0

T−t (x) ≤MK .

This follows because t 7→ Σ(T − t) and t 7→ Q−1
T−t are continuous on [0, T [ and, setting

cK := inf{t|(t, x) ∈ K}, mK := sup
a∈R

|a| exp

(
−cK

a2

2

)
,

we have

|x−mx0

T−t|p
x0

T−t(x) ≤ mK , ∀(t, x) ∈ K.

To show that left-hand side of (
div_OU
4.15) is locally bounded on [0, T [×Rd it remains to show that (t, x) 7→∫

Rd p
x0

T−t(x)ν(dx0) is lower bounded on K . Indeed, let I be a compact of Rd. Since (t, x, x0) 7→ px0

T−t(x)

is strictly positive and continuous is lower bounded by a constant c(K, I). The result follows choosing

I such that ν(I) > 0.
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To conclude, it remains to show that the functions (t, x) 7→
divx(Σ(T−t)i·p

ν
T−t(x))

pν
T−t

(x) , i ∈ [[1, d]] defined on

[0, T [×Rd has locally bounded spatial derivatives, which implies that they are Lipschitz with linear

growth on each compact of [0, T [×Rd. By technical but easy computations, the result follows using

the fact the real functions a 7→ |a|m exp
(
−a2

2

)
, m = 1, 2, are bounded.

We give now a global well-posedness result for equation (
MKIntro
1.3).

MKOU_WellP Theorem 4.19. 1. Suppose the initial condition µ equals uν (T ) for some ν ∈ P
(
Rd
)
. Then, equation (

MKIntro
1.3)

admits existence in law, strong existence, uniqueness in law and pathwise uniqueness.

2. Otherwise (
MKIntro
1.3) does not admit any solution.

Proof. Item 2. can be proved using similar arguments as for the proof of Corollary
CP49
4.13. Let (Y,p) be a

solution of (
MKIntro
1.3) and set ν0 = p(T ). By Proposition

PProbRep
4.3, p (T − ·) is a solution of (

BackwardFokker
2.3), so that p(T − ·)

verifies also (
Fokker
3.2) with initial value ν0. Since, by Proposition

FwdOU_Uniq
3.17, uniqueness holds for (

Fokker
3.2), it follows that

p(T − ·) = uν0 which concludes the proof of item 2.

We prove now item 1. For this, taking into account Proposition
MKProp
4.8 and Yamada-Watanabe theorem and

related results for classical SDEs, it suffices to show strong existence and pathwise uniqueness. We set

C := P
(
Rd
)

1. Concerning the strong existence statement, we want to apply Proposition
MKEx_Prop
4.6. For this we have to

check the validity of Assumption
Lip1d
1, Assumption

GH1
4 with respect to C and Assumptions

MKEx_1
6,

MKEx_3
8 hold with

respect to (µ, C).

Since b, σ are affine, Assumption
Lip1d
1 trivially holds. Furthermore, Assumption

GH1
4 holds with respect to

C thanks to Proposition
FwdOU_Uniq
3.17.

Now, uν is a probability valued solution of (
EDPTerm0
1.1) with terminal value µ. Furthermore, Lemma

OU_lemma
4.18

shows that uν , being the unique solution of solution of (
Fokker
3.2), is such that, for all t ∈]0, T ], uν(t) admits

pνt (see (
Epnu
4.14)) for density. Then, relation (

HP
4.5) holds since, by the considerations above (

Epnu
4.14) (t, x) 7→

pνt (x) is locally bounded with locally bounded spatial derivatives. Hence, Assumption
MKEx_1
6 holds with

respect to (µ, C). Finally, Lemma
OU_lemma
4.18 implies that uν (T − ·) belongs to A2. Hence, Assumption

MKEx_3
8

holds with respect to (µ, C). At this point Proposition
MKEx_Prop
4.6 implies existence in law.

2. Let (Y,p) be a solution of equation (
MKIntro
1.3). Proposition

PProbRep
4.3 implies that p (T − ·) solves (

EDPTerm
1.2). Then,

Proposition
FwdOU_Uniq
3.17 gives p (T − ·) = uν0 with ν0 = p (T ). Lemma

OU_lemma
4.18 implies p belongs to A2.

3. It remains to show pathwise uniqueness in A2. Assumption
APDETerm
9 holds with respect to (µ, C) thanks to

Theorem
BwdOU_Uniq
3.19. Now, point 2 of Corollary

Coro
4.9 implies pathwise uniqueness in A2 since b, σ are locally

Lipschitz with linear growth in space.
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Appendix

4.6 Proof of Lemma
FriedAr

4.11

Let ν ∈ P
(
Rd
)
. For each given t ∈ [0, T ], we denote by Gt the differential operator such that for all

f ∈ C2
(
Rd
)

Gtf =
1

2

d∑

i,j=1

∂ij (Σij (t, ·) f)−

d∑

i=1

∂i (bi (t, ·) f) .

Assumption
smoothness
10 implies that for a given f ∈ C2

(
Rd
)
, Gtf can be rewritten in the two following ways:

Gtf =
1

2

d∑

i,j=1

Σij(t, ·)∂ijf +
d∑

i=1

(
d∑

j=1

∂iΣij(t, ·)− bi(t, ·))∂if + c1(t, ·)f, (4.16) Friedman

with

c1 : (t, x) 7→
1

2

d∑

i,j=1

∂ijΣij(t, x)−

d∑

i=1

∂ibi(t, x).

Gtf =
1

2

d∑

i,j=1

∂j(∂iΣij(t, ·)f +Σij(t, ·)∂if −
d∑

i=1

bi(t, ·)∂if)−
d∑

i=1

∂ibi(t, ·)f. (4.17) Aronson

On the one hand, combining identity (
Friedman
4.16) with Assumption

smoothness
10, there exists a fundamental solution Γ (in

the sense of Definition stated in Section 1. p.3 of
friedman_1964
[7]) of ∂tu = Gtu, thanks to Theorem 10. Section 6 Chap. 1.

in the same reference. Furthermore, there exists C1, C2 > 0 such that for all i ∈ [[1, d]], x, ξ ∈ Rd, τ ∈ [0, T ],

t > τ ,

|Γ (x, t, ξ, τ)| ≤ C1 (t− τ)
− d

2 exp

(
−
C2 |x− ξ|2

4 (t− τ)

)
, (4.18) PropFriedman_1

|∂xi
Γ (x, t, ξ, τ)| ≤ C1 (t− τ)−

d+1
2 exp

(
−
C2 |x− ξ|

2

4 (t− τ)

)
, (4.19) PropFriedman_2

thanks to identities (6.12), (6.13) in Section 6 Chap. 1 in
friedman_1964
[7].

On the other hand, combining Identity (
Aronson
4.17) with Assumption

smoothness
10, there exists a weak fundamental solution

Θ of ∂tu = Gtu thanks to Theorem 5 in
AronsonGeneral
[1]. In addition, there exists K1,K2,K3 > 0 such that for almost

every x, ξ ∈ Rd , τ ∈ [0, T ], t ≥ τ

1

K1
(t− τ)−

d
2 exp

(
−
K2 |x− ξ|

2

4 (t− τ)

)
≤ Θ(x, t, ξ, τ) ≤ K1 (t− τ)−

d
2 exp

(
−
K3 |x− ξ|

2

4 (t− τ)

)
, (4.20) PropAronson

thanks to point (ii) of Theorem 10 in
AronsonGeneral
[1].

Our goal is now to show that Γ and Θ coincide. To this end, we adapt the argument developed at the

beginning of Section 7 in
AronsonGeneral
[1]. Fix a function H from [0, T ]× Rd belonging to C∞

c

(
[0, T ]× Rd

)
. Identity (7.6)

in Theorem 12 Chap 1. Section 1. of
friedman_1964
[7] implies in particular that the function

u : (t, x) 7→

∫ t

0

∫

Rd

Γ (x, t, ξ, τ)H (τ, ξ) dξdτ,

is continuously differentiable in time, two times continuously differentiable in space and is a solution of the

Cauchy problem 


∂tu (t, x) = Gtu (t, x) +H (t, x) , (t, x) ∈]0, T ]× Rd,

u (0, ·) = 0.
(4.21) CauchyPb
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It is consequently also a weak (i.e. distributional) solution of (
CauchyPb
4.21), which belongs to E2(]0, T ] × Rd) (see

definition of that space in
AronsonGeneral
[1]) since u is bounded thanks to inequality (

PropFriedman_1
4.18) and the fact that H is bounded.

Then, point (ii) of Theorem 5 in
AronsonGeneral
[1] says that

(t, x) 7→

∫ t

0

∫

Rd

Θ(x, t, ξ, τ)H (τ, ξ) dξdτ

is the unique weak solution in E2(]0, T ] × Rd) of (
CauchyPb
4.21). This implies that for every (t, x) ∈]0, T ] × Rd we

have ∫ t

0

∫

Rd

(Γ−Θ) (x, t, ξ, τ)H (τ, ξ) dξdτ = 0.

Point (i) of Theorem 5 in
AronsonGeneral
[1] (resp inequality (

PropFriedman_1
4.18)) implies that Θ (resp. Γ) belongs to Lp

(
]0, T ]× Rd

)
as a

function of (ξ, τ), for an arbitrary p ≥ d+ 2. Then, we conclude that for all (t, x) ∈]0, T ]× Rd,

Θ(x, t, ξ, τ) = Γ (x, t, ξ, τ) , dξdτa.e. (4.22) coincide

for all (τ, ξ) ∈ [0, t[×Rd. This happens by density of C∞
c

(
[0, T ]× Rd

)
in Lq

(
]0, T ]× Rd

)
, q being the conju-

gate of p.

This, together with (
PropAronson
4.20) and the fact that Γ is continuous in (τ, ξ) implies that (

PropAronson
4.20) holds for all (τ, ξ) ∈

[0, t[×Rd and therefore

1

K1
(t− τ)

− d
2 exp

(
−
K2 |x− ξ|

2

4 (t− τ)

)
≤ Γ (x, t, ξ, τ) ≤ K1 (t− τ)

− d
2 exp

(
−
K3 |x− ξ|

2

4 (t− τ)

)
. (4.23) PropAronsonBis

We introduce

qt := x 7→

∫

Rd

Γ (x, t, ξ, 0) ν (dξ) .

By (
PropAronsonBis
4.23), with τ = 0 we get

qt (x) ≥
1

K1
t−

d
2

∫

Rd

exp

(
−
K2 |x− ξ|2

4t

)
ν (dξ) . (4.24) PropFriedman_3

We denote now by vν the measure-valued mapping such that vν (0, ·) = ν and for all t ∈]0, T ], vν (t) has

density qt with respect to the Lebesgue measure on Rd. We want to show that vν is a solution of (
Fokker
3.2) with

initial value ν to conclude uν = vν thanks to the validity of Assumption
GH1
4 because of Remark

R1
3.3 1. and

3. To this end, we remark that the definition of a fundamental solution for ∂tu = Gtu says that u is a C1,2

solution and consequently also a solution in the sense of distributions. In particular for all φ ∈ C∞
c

(
Rd
)
, for

all t ≥ ǫ > 0 ∫

Rd

φ (x)vν (t) (dx) =

∫

Rd

φ (x)vν (ǫ) (dx) +

∫ t

ǫ

∫

Rd

Lsφ (x)v
ν (s) (dx) ds. (4.25) NearFP

To conclude, it remains to send ǫ to 0+. Theorem 15 section 8. Chap 1. and point (ii) of the definition stated

p. 27 in
friedman_1964
[7] imply in particular that for all φ ∈ C∞

c

(
Rd
)
, ξ ∈ Rd,

∫

Rd

Γ (x, ǫ, ξ, 0)φ (x) dx −→
ǫ→0+

φ (ξ) .

Fix now φ ∈ C∞
c

(
Rd
)
. In particular thanks to Fubini’s theorem, (

PropAronson
4.20) and Lebesgue’s dominated conver-
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gence theorem we have
∫

Rd

φ (x)vν (ǫ) (dx) =

∫

Rd

φ (x)

∫

Rd

Γ (x, ǫ, ξ, 0) ν (dξ) dx

=

∫

Rd

∫

Rd

Γ (x, ǫ, ξ, 0)φ (x) dxν (dξ)

−→
ǫ→0+

∫

Rd

φ (ξ) ν (dξ) .

By (
NearFP
4.25) vν is a solution of (

Fokker
3.2) and consequently uν = vν , so that, for every t ∈]0, T ], uν (t) admits

uν(t, ·) = qt for density with respect to the Lebesgue measure on Rd. Now, integrating the inequali-

ties (
PropFriedman_1
4.18), (

PropFriedman_2
4.19) with respect to ν and combining this with inequality (

PropFriedman_3
4.24), we obtain the existence of

K1,K2, C1, C2 > 0 such that for all t ∈]0, T ], for all x ∈ Rd, for all i ∈ [[1, d]]

1

K1
t−

d
2

∫

Rd

exp

(
−
K2 |x− ξ|

2

4t

)
ν (dξ) ≤ uν (t, x) ≤ K1t

− d
2 ,

|∂iu
ν (t, x)| ≤ C1t

− d+1
2 .

Consequently, the upper bounds in (
dens
4.12) and (

DerDens
4.13) hold. Concerning the lower bound in (

dens
4.12), let I be

a compact subset of Rd such that ν(I) > 0, the result follows since (t, x, ξ) 7→ exp
(
−K2|x−ξ|2

4t

)
is strictly

positive, continuous and therefore lower bounded by a strictly positive constant on K× I for each compact

K of ]0, T ]× Rd.
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