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Fokker-Planck equations with terminal condition and related

McKean probabilistic representation

Lucas IZYDORCZYK * NabpiA OUDJANE f, FRANCESCO RUSSO *#
AND GIANMARIO TESSITORE §

July 20th 2020

Abstract

Usually Fokker-Planck type partial differential equations (PDEs) are well-posed if the initial condition
is specified. In this paper, alternatively, we consider the inverse problem which consists in prescribing
final data: in particular we give sufficient conditions for existence and uniqueness. In the second part of
the paper we provide a probabilistic representation of those PDEs in the form a solution of a McKean type

equation corresponding to the time-reversal dynamics of a diffusion process.

Key words and phrases. Inverse problem; McKean stochastic differential equation; probabilistic represen-
tation of PDEs; time-reversed diffusion; Fokker Planck equation.

2020 AMS-classification. 60H10; 60H30; 60]60; 35R30.

1 Introduction

The main objective of the paper consists in studying well-posedness and probabilistic representation of the
Fokker-Planck PDE with terminal condition

&
c
Il

d
;Z 9% (o0 )i, (t,x)u) — div (b(t, z)u) a1

i,j=1

ul) = p

where o : [0,7] x RY — Mg,,(R), b : [0,7] x R? — R? and p is a prescribed finite Borel measure on

RY. When u(t) admits a density for some ¢ € [0, 7] we write u(t) = u(t, z)dz. This equation 1s motivated
beck1985inverse
by applications in various domains of %hysmal sciences and engineering, as heat conduction [[3 I[uj, material
ardy1987math tizadlou2003marching
science [[13] or hydrology I[% In particular, hydmullc inversion is interested in inverting a diffusion process
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representing the concentration of a pollutant to identify the pollution source location when the final con-
centration profile is observed. Those models are often formulated by PDE problems which are in general
ill-posed because, either the solution is not unique or the solution is not stable. For this issue, the existence
is ensured by the fact that the observed contaminant is necessarily originated from some place at a given
time (as soon as the model is correct). Several authors have handled the lack of uniqueness probler& Eovwwsomuons
mtrged;icgl?g%n ;g;ﬂanzahon methods approaching the problem by well-posed PDEs, see typically I[|_|J and
Wue, when the problem is well-approximated by a regularized problem, consists in provid-

Term
ing a numerical approximating scheme to the backward diffusion process. In particular for (ﬁ)_ﬂﬁre are

very few results even concerning existence and uniqueness.
. . . o1 . . Term . . .
Our point of view is that a probabilistic representation of dl Iﬁli can bring new insights to the treatment
of the two mentioned issues: well-posedness and numerical approximation. To realize this objective we
consider the renormalized PDE

g = Uzl )ij(t,x)@) — div (b(t, z)a@) (12) [EFremm)
ar) = g

where i = Rd) is a probabili easure. We remark that the PDEs ﬁ% ﬁ%quwalent in the sense

that a solutlon ﬁl(er%slp (%;%rngmdes a solution to the other one. The program consists in considering

the McKean type stochastic differential equation (SDE)

t t . ) o t
Yt:Yo—/ b(T—r,YT)dH/ {d“’y@”(T T’Y’“)pr(y’“))} dr+/ o (T —r,Y,) dB,,
0 0 pr(Yr) i€[1,d] 0

pt density law of py = law of Yy, t €]0, T|,
}6'N PT = [,

13)

where j is a m-dimensional Brownian motion and ¥ = oo ", whose solution is the couple (Y, p). Indeed

bR t
an application of It6 formula (see Proposition Ejbosﬁ(e)ws that whenever (Y, p) is a solution of ﬁ)ﬂﬂ%n

. . Term
t — pr_, is a solution of

The idea of considering (%)Wnes from the SDE verified by time-reversal of a diffusion. Time-reversal
ussmann_pardoux

of Markov processes was explored by several authors: see for instance [[8] for the diffusion case in finite
lbinger
ié [forthed

C d lev

dimension, iffusion case in infinite dimension and ejump case.

Consider a forward diffusion process X solution of

t t
Xt:Xo—i-/ b(s,XS)ds—i—/ o(s, X )dW,, t € 0,7, (1.4)
0

where o and b are Lipschitz coefficients with linear growth and W is a standard Brownian motion on R™.
N d
X¢ = Xrp_4,t € [0,T] will denote the time-reversal process. In @uiﬁg?ﬁtﬁ&r‘s Oggve sufficient general

conditions on o, b and the marginal laws p; of X; so that Y := X is a solution (in law) of the SDE

! " divy (2 (T —r,Y,) pr—r (Yy !
Ve o [o@-ryyars [{EeB O B gy [ rvyas,. as)
0 0 pr—r (Yr) ie[1,d] 0

t T

The key idea to show well-posedness of the McKean SDE &)?_ﬁhe study of uniqueness of the PDE ﬁ)ﬂ
Term0

(or H})%%or instance, the trivial case of the heat equation with terminal condition produces uniqueness.

Suppose indeed that u : [0, 7] — &’ (R?) solves

omu = Au
u(T) = p.

16)



Then, the Fourier transform of u, v (t,-) := Fu(t,-),t € [0, T] solves the ODE (for fixed ¢ € R?)

%1} (tvg) = - |§|2’U (t,f) ) (tvg) € [OvT] x R4

17)

This admits at most one solution, since setting 7y = 0 the unique solution of (ﬁ)tl_?tlﬁhe null function.

Another relatively simple situation is described below to study uniqueness among the solutions of (ﬁ)%in
starting in the class of Dirac measures. Suppose for a moment that the PDE in the first line of ?eﬂn with
initial condition (see &ﬁ% well-posed. Sufficient conditions for this will be provided in Remark% Let
2 € R? and u be a solution of stch that u(0,-) = 0. If X* is the solution of (ﬁ% with initial condition
z, it is well-known that the family of laws of X, ¢ € [0, T, is a solution of 50 this coincides with u(t,-)
and in particular 4 is the law of X%. To conclude we only need to determine z.

Consider the example when ¢ is continuous bounded non-degenerate and the drift bis affinei.e. b(s, y) =
bo (8) + b1 (s)y, (s,y) € [0,T] x RY, by (resp. b1) being mappings from [0, T to RY (resp. to My (R)). Taking
the expectation in the SDE fulfilled by X*, we show that the function ¢ — E*(t) := E(X}) is solution of

T
B0 = [ iy = [ tofo) + () s

Previous linear ODE has clearly a unique solution. At this point z = E(0) is determined.

Those examples give a flavor of how to tackle the well-posedness issue. However, generalizing those
approaches is far more complicated and constitutes the first part of the present work. The contributions of
the paper are twofold.

1. We investigate uniqueness for the Fokker-Planck PDE with terminal condition ﬁ)&fﬁis is done in
Section ﬁ%n two different situations: the case when the coefficients are bounded and the situation of
a PDE associated with an inhomogeneous Ornstein-Uhlenbeck semigroup. In Section %we show
uniqueness when the coefficients are stepwise time-homogeneous. In Theorem %the coefficients
are time-homogeneous, bounded and Holder, with non-degenerate diffusion. Corollary %extemds
revious results to the case of stepwise time-inhomogeneous coefficients. In Section ﬁ Theorem
%he Ornstein-Uhlenbeck case. In Section ﬁwe show uniqueness for bounded continuous
coefficients for solutions starting in the class C of multipleLsi odf Dirac measures. In Proposition e
discuss the framework of dimension d = 1. Theorem is devoted to the case d > 2. We distinguish
the non-degenerate case from the possibly degenerate case but with smooth coefficients: we prove

uniqueness for small time horizon T'.

. . . ntro R
2. We study existence and uniqueness in law for the McKean SDE ﬁmh some specific remarks con-
cerning strong existence and pathwise uniqueness. We differentiate s]:1>ecifica11y between existence
. . . . . . im . X NI
and uniqueness. After some preliminary considerations in Section ﬁ_%ctlons ﬁ—and %}‘ﬁﬁ( the

T t
well-posedness of the PDE ﬁ)—teo_rrﬁ\e well-posedness of the McKean SDE ﬁ)n_l% %articular Propo-
ntro

. X _Pro o,. . . Term . amples44
sition &Iél (resp. Corollary inks the existence (resp. uniqueness) of Wi n Section
ni 3 WellP
Proposition &5 ﬁand Theorem ﬁﬂlscuss the case of bounded coefficients. Theorem %Sﬁﬁon

ﬁis devoted to the case of Ornstein-Uhlenbeck (with not necessarily Gaussian terminal condition),

where strong existence and pathwise uniqueness are established.



2 Notations and preliminaries

otations

Let us fix d,m € N*, T > 0. C° (R?) is the linear space of smooth functions with compact support. For
a given p € N*, [1, p] denotes the set of all integers between 1 and p included. M ,,, (R) stands for the set
of d x m matrices. If d = m, we simply use the notation M, (R). For a given A € My (R), T'r (A) (resp.
AT) symbolizes the trace (resp. the transpose) of the matrix A. ||A|| denotes the usual Frobenius norm.
(,) denotes the usual scalar product on R¢, with associated norm |.|. For a given f : R? — R!, p,l € N*,
9;f%, (i,5) € [1,1] x [1,p] denote the partial derivatives of f being defined in the sense of distributions
on R? whenever they exist. We also introduce the mapping Jf from R? to M, (R) such that Jf : z —
03" () s pepaxan

Let a €]0,1[,n € N. Cp(R?) (resp. Ci'(R?)) indicates the space of bounded continuous functions (resp.
bounded functions of class C" such that all the derivatives are bounded). C®(R¢) is the Banach space of
bounded a-Hélder functions R — R equipped with the norm |.|, := ||.|| + [.],, , where

[f]a = sup |f($£‘) — f(y)|

o < 0Q.
z,yERY x#y |x——y|

If n is some integer C®T"(R?) is the Banach space of bounded functions f : R? — R such that all its
derivatives up to order n are bounded and such that the derivatives of order n are a-Holder continuous.
This is equipped with the norm obtained as the sum of the C7*(R¢)-norm plus the sum of the quantities
[9] Where g is an n-order derivative of f. For more details, see Section 0.2 of a}rdi 119593 linear Banach
space, we denote by ||.|| ; the associated operator norm and by £ (E) the space of linear bounded operators
E — E. Often in the sequel we will have E = C2%(R?).

P (R?) (resp. My (R?), My (R?)) denotes the set of probability measures (resp. non-negative finite
valued measure, finite signed measures) on (R, B (R?)). We also denote by S (R?) the space of Schwartz
functions and by &’ (R?) the space of tempered distributions. For all ¢ € S (R?) and p € My (R?), we set
the notations

Fop:&— e_i@’:”)gb (z)dx, Fu: & e_i<5’””>u (dz) .
R R

Given a mapping u : [0,7] — M/ (R?), we convene that when for ¢ € [0,7], u(t) has a density, this is
denoted by w (¢, -). We also introduce, for a given ¢ in [0, T, the differential operator,

d d
1
Lif =5 > Bt )05 f + ) b (t,) 0if, (2.1)
ij=1 i=1
f € C?(R?%) and denote by L} its formal adjoint, which means that for a given signed measure 7
L&
Lin:= 5 > 05 (St )n) — div (b(t, 2)1) - (2.2)
ij=1

Term0Q
With this notation, equation d] I liD rewrites

Ou= Lju
! ! (2.3) |BackwardFokke
u(T) = p.

In the sequel we will often make use of the following assumptions.

Assumption 1. b, o are Lipschitz in space uniformly in time, with linear growth.

4



Assumption 2. b and o are bounded and ¥ is continuous.

Assumption 3. There exists € > 0 such that forall t € [0,T), ¢ € R?, z € R?

(S(t,2)€,€) > elgf. (2.4)

For a given random variable X on a probability space (£, F,P), Lp (X) denotes its law under P and
Ep (X) its expectation under P. When self-explanatory, the subscript will be omitted in the sequel.

3 A Fokker-Planck PDE with terminal condition

3.1 Preliminary results on uniqueness

In this section, we consider a Fokker-Planck type PDE with terminal condition for which the notion of
solution is clarified in the following definition.

Term0
7

Definition 3.1. Fix € My (R?). We say that a mapping u from [0, T] to My (R?) solves the PDE (ﬁfffﬂ)‘r all
¢ €C® (R andall t € [0,T]

T
s @)= [ ownn- [ [ Lot @ @)

Rd
We consider the following assumption related to a given class C € M. (R?).

Assumption 4. Forall v € C, the PDE

Oyu = Lfu (3.2)
u(0)=v

admits at most one solution u : [0,T] — M (R?).

We recall that, for a given v € My (R?), u : [0,T] — My (R?) is a solution of the PDE @)%% for all
¢ €€ (R%) and all t € [0,T],

t
s = [ swr+ [ [ Lowu s 63)
Rd Rd 0 JRrd
ker 1
Suppose there is an M. (R?)-valued solution of u and Assumption &vaith respect to some class C

holds and such that u(0) € C. Then this unique solution will be denoted by u” in the sequel. We remark
1 k
that, whenever Assumption &Eﬁolds with respect to a given C C P (Rd), then (ﬁ%mits at most one

M (R?)-valued solution with any initial value belonging to R*.C := () 4s0mec

We start with a simple but fundamental observation.

Proposition 3.2. Let us suppose o,b to be locally bounded, v be a Borel probability on R?, o > 0, € be a r.v.
distributed according to v. Suppose that there is a solution X of SDE

t t
X, =¢ —|—/ b(r, X,)dr —|—/ o(r,X,)dW,, t €[0,T], P—a.s., (3.4)
0 0

where W is an m-dimensional standard Brownian motion. Then the M. (R?)-valued function t — oL (X;) is a
k
solution of With initial value av.



Proof. One first applies Itd formula to ¢(X;), where ¢ is a smooth function with compact support and then
one takes the expectation. O

1
Remark 3.3. 1. Suppose that the coefficients b, %> are bounded. Assumption Hifolds with respect to C := M (R?)
as soon as the martingale problem associated with b, ¥ admits uniqueness for all initial condition of the type
e
8z, € RY. Indeed, this is a consequence of Lemma 2.3 in ilj? e

2. Suppose b and o with linear growth. Let v € M (R?) not vanishing (resp. v € P (R?)). The existence of
a My (R%)-valued (resp. P (R?)-valued) solution for @)%en ont > 0) is ensured when the martingale
problem associated to b, ¥ admits existence (and consequently when the SDE (@%dmits weak existence) with
initial condition v (resp. 7n). This follows by Proposition ﬁ&%&g remark that, for eaéample, this happens
when the coefficients b, o are continuous with linear growth: see Theorem 12.2.3 in or the case of bounded

coefficients, the general case can be easily obtained by truncation.

3. The martingale problem associated to b, 3 is well-posed for all deterministic initial condition, for instance in the
following cases.

3 k
o When X,b have linear growth and ¥ is continuous and non-degenerate, i.e. Assumption Etv%ge il'i'hooC
Corollary 7.1.7 and Theorem 10.2.2.

e Suppose d = 1 and o is bounded. When o is lower bounded by a positive constant on each compact set,

oock
see b if? Exercise 7.3.3.

k
o When d = 2, ¥ is non-degenerate and o and b are time-homogeneous and bounded, see bﬁf_ob%cercise
7.34.

o When o, b are Lipschitz with linear growth (with respect to the space variable), in which case we have even

strong solutions of the corresponding stochastic differential equation.

1zvon3
Lemma 3.4. Let T > 0 be arbitrary and v € P (R?). We suppose the validity of Assumptions Bt B Thien there
is a unique M. (R?)-valued solution u to with u(0) = v. Moreover u” takes values in P(R).

Proof. Existence follows by items 2. and 3. of Remark% Uniqueness is a consequence of items 1. and 3.

of the same Remark. O
T
Below we give two uniqueness results for the PDE (ﬁ)ﬂ

1
Proposition 3.5. Suppose Assumption &ﬂﬁolds with respect to a given C € M (R?). Suppose that for all v € C
k
there exists an M (R?)-valued solution of @)ﬁ‘th initial value v. Then, the following properties are equivalent.

1. The mapping from C to M4 (R?) v +— u”(T) is injective.

kwardFokk
2. Forall p € My (R%), the PDE (E‘EID with terminal value w admits at most a solution in the sense of Definition
ﬁamong all My (R?)-valued solutions starting in the class C.

Proof. Concerning the converse implicat}iggé ch()Or]l(:iigrer (v,1') € C? such that u”(T) = u” (T') and suppose
that uniqueness holds for equation ﬁ_fminal values in M (R?) in the sense of Definition ﬁ
among non-negative measure-valued solutions starting in the class C. We remark that u”,u”’ are such
solutions and are associated to the same terminal value. Uniqueness gives u” = u”’ and in particular

v="u.



Concerning the direct implication, consider u', u? two non-negative measure-valued solutions of equation
T :

(ﬁ)%fnhe sense of Definition ﬁ with the same terminal value in M (R?), such that u (0),i € {1,2},
belong to C and suppose that v — u” (T) is injective from C to M. (R?). Setting v’ := u’ (0), we remark
that for a given i € {1,2}

opu’ = Liu'

S (3.5)
u’ (0) = v,
Kk
in the sense of identity Wen, the fact u! (7)) = u? (T) gives u”* (T') = u*2 (T) . By injectivity 11 = v
1

and the result follows by Assumption O

Proceeding in the same way as for the proof of Proposition%]we obtain the following.

x
Proposition 3.6. Suppose that for all v € My (R?), there exists a unique solution u” of With initial value v.
Then, the following properties are equivalent.

1. The mapping v — u”(T) is injective.

Term0
2. Forall p € My(R?), the PDE (ﬁ)ﬁ%terminal value (v admits at most a solution in the sense of Definition

Rp1| Remark3.7. 1. Suppose that the coefficients ¥, b are bounded. Then, any measure-valued solution u : [0,T] —
k
M (RY) of (ﬁ)ﬁch that u(0) € P(R?) takes values in P(R?). Indeed, this can be shown approaching the
function ¢ = 1 from below by smooth functions with compact support.

2. Replacing M (R?) with P(RY) in Assumption &}%tem 2. in Proposition % can be stated also replacing
M (RY) with P(RY).

3.2 Uniqueness: the case of Dirac initial conditions

. . . . . . kwardFokker d
In this section we give examples of functions b, o for which uniqueness of ﬁwvﬂr (R*)-valued

1
solutions is ensured, supposing Assumptionﬁi’s in force with respect to C := (6z) 450 pepa-

. . in
Ralpha| Remark3.8. Let a > 0. Let z € R Suppose that there is a solution X* of SDE (ﬁﬁnth =2
d K
1. By Proposition ﬁ%ﬁ/\&r (R?)-valued mapping t — oL (X[) is a solution of With initial value 06,

2.t al (X7) can be identified with u®®= and in particular [;, u®’= (t) (dy) = «, Vt € [0, 7).

o1 .
If Assumption h}h%Fds, X" denotes the unique solution of equation ﬁ%ith initial value = € R
We start with the case of dimension d = m = 1.

1 ipl
propLipl| Proposition 3.9. Suppose the validity of Assumption ﬁl with C = (adz)ys0 per ANd hllwzi% d =m = 1. Then,
- :
forall p € My (R), equation ﬁ%ﬁt terminal value p admits at most one solution in the sense of Deﬁnitionﬁ
among the M (R)-valued solutions starting in C.

Proof. Fix (x,y) € R? and a, 8 > 0 such that

u®® (T) = u% (T). (3.6)
h
It suffices to show that « =  and = = y to conclude, thanks to Proposition% By item 2. of Remarkﬁ%
have a = /3 and consequently Lp (X7) = Lp (X7). In particular E (X7.) = E (X%). Since b, o are Lipschitz
in space, they have bounded derivatives in the sense of distributions that we denote by 9,b and 0,0.



propLipd

Set Z%Y := XY — X*. We have

t t
25 = (y —x) + / bEYZEVds + / OBV ZEVAW,, Vi € [0,T), (3.7)
0 0

where for a given s € [0, T
1 1
S / 0:b(s,aXY + (1 —a)X¥)da, o2Y = / 0.0 (8,aX? 4+ (1 —a)X?) da.
0 0

1
The unique solution of &)‘15 well-known to be

Z%Y = exp (/ b’;’yds) £ (/ U?’ydW5> (y — x),
0 0

where £ () denotes the Doléans exponential. Finally, we have

E <exp </OT bg»%) € </0 a§=ydWS>T> (y— ) =0.

Since the quantity appearing in the expectation is strictly positive, we conclude = = y. O

We continue now with a discussion concerning the multidimensional case d > 2. The uniqueness result
below only holds when the time-horizon is small enough. Later, in Section %we will present in a frame-
work of dpiecewise time-homogeneous coefficients results which are valid for any time-horizon. Theorem
%égﬁnguishes two cases: the first one with regular possibly degenerate coefficients, the second one with
non-degenerate possibly irregular coefficients.

Theorem 3.10. We suppose Assumption &Lul}ith C = (a0z) 40 pera and the validity of either item (a) or (b) below.
(a) Assumption mi -

1 3
(b) Assumptions iﬁ]\&%ﬁ EIVOD

. . . Term ,
There is T' > 0 small enough such that the following holds. For all p € M (Rd), equation (ﬁmzts at most one
solution in the sense of Definition ﬁamong the M. (R%)-valued solutions starting in C.

Lipd
The proof of item (a) of Theorem ﬁr_éﬁ‘es on a basic lemma of moments estimation.

ipld
Lemma 3.11. We supposeAssumptionﬁwﬁf(x, y) € R4 xR Then, sup;c|o 1) E (|X§C - Xty|2) < |y — z|? K7,
with K :=2K" + 37" (K"vj)z, where

K= su10]|| (6 (s, ) o

sel0,T

and for all j € [1,m]

K% .= sup |[[[Jo(s,-)
s€[0,T]

s -

Proof (of Lemmaﬁ

For a given (z,y) € R? x R? we set
75V = XY~ XPt € [0, 7).

We have

t m t
78 =y +/ BEYZ5Vdr + Z/ CTVIZTVAWI | t € [0,T), (3.8)
0 : 0
J=1



with, for all r € [0, 7]
1 ‘ 1
BY .= / Jo(r,aX? + (1 —a)X7)da, CHY7 .= / Joj(r,aX?+(1—-a)X))da,¥Vje[l,m].
0 0

By the classical existence and uniqueness theorem for SDEs with Lipschitz coefficients we know that

E(sup | XZ|*) < oo, (3.9) [sor
s<T
for all z € R%. This implies
E( sup |Z5Y%) < oc. (3.10) [sup
t€[0,T
Now, It6’s formula gives, for all t € [0, T
2 ! <N ; 2 d ;
|Z5Y)° = |y—x|2+2/ (BYZEY Z5Y) dT"‘Z/ |Cf’y"7zf’y‘ dr—l—ZZMtE"y"Z, (3.11) | ItoSquareNorm
0 0 ;
Jj=1 =1

where, for a given i € [1,d], M*¥" denotes the local martingale [ Z#¥* Y™ | (C3¥I Z2v) dW].

Consequently, for all i € [1, d], we have

K2

. mo T N2 ) 2
el = |3 / (zev) (crvizev) ar,
j=1"0

m T ) 2

<[ [ fervoze | izeepan 612)
j=1"0

< | TD (K9 sup |Z0Y)7.
j=1 T‘E[O,T]

1 .
By the latter inequality and m, we know that E QM ””'fw]%) < o0, s0 for all i € [1,d], M™¥" is a true
N
martingale. Taking expectation in identity ; %% 0 Oranin

t m
E(120) = ly - af? +/ E (2 (BEvZEY, Z5) + ) \c:=y=k2fvy\2> dr.
0

k=1

Hence, thanks to Cauchy-Schwarz inequality and to the definition of K” and K7 for all j € [1,m]

t
B(1207) <ly—of* + & [ E(1257) dr
0
and we conclude via Gronwall’s Lemma. O

Proof (of Theoremﬁf_i&d

Fix (z1,72) € R? x R% o, B > 0 such that
u® (T) = uf% (T). (3.13)

To conclude, it suffices to show o = § and x1 = x5 thanks to Proposition%



ipld h
1. We suppose first Assumption ﬁ%)ﬁce again, item 2. of Remark E‘g‘ g1€es a = fand

= . . Eequal
E(X5) =E (X5 (3.14)

Adopting the same notations as in the proof of Lemma ﬁa similar argument as in ﬁf_{mo ether
with ﬁ]} allow to show that the local martingale part of Z****2 = X*2 — X*1 defined in %l
true martingale. So, taking the expectation in "With 2 = x1,y = o2, by Lemma ﬁ%ve obtain

is a

T
[ECX — X7) — (a2 —0)| < Ko [ BLXZ = XPlar
0

T
< Kb/ \/E(|X:2 — X)) dr
0
K
2

K
2

< = Tezt |xy —aq).

1
Remembering (ﬁ)?_fhis implies
K
(1 — ETeI;T) |xe — x| <0.

Taking 7" such that £7 < M with Me™ < 1, we have 1 — %Te%T > 0, which implies |z — 21| = 0.

1 3
2. We suppose here Assumptions E]v;r?a tg[vanlrstly, point 1. of Theorem 1. in @I} ensures the existence
of probability spaces (0, 7,P"), i € {1,2} on which are defined respectively two m-dimensional
Brownian motions W', W? and two processes X', X? such that

t t
X/ =z —I—/ b (S,X;;) ds —i—/ o (S,X;;) dWi Pl—as..t €[0,T].
0 0

h
Once again, item 2. of Remark E‘g‘ 1maplies a1 = as and

Lp1 (X}) = Lp2 (X7). (3.15)

Secondly, point b. of Theorem 3 in m shows that for every given bounded D C R¢, forall ¢ : [0, T] x
R? — R? belonging to W, ([0,T] x D) (see Definition of that space in @]) for a givenp > d + 2, we
have forallt € [0,T],i € {1, 2},

t t
¢ (t,X}) = ¢ (0,2;) + / (8¢ + Ls) ¢ (s, X2) ds + / Jo (s,X2) o (s, X})dW,, P'—as.  (3.16)
0 0
where the application of 9; + L, ¢ € [0,T] has to be understood componentwise.

Thirdly, Theorem 2. in hﬁﬁﬂ shows that if T is sufficiently small, then the system of d PDEs

V(o) € [0.7] x RY, 2B+ Lud (b,2) =0, (3.17)

¢ (T, x) =,

admits a solution ¢ in W,-? ([0, T] x D) for all p > 1 and all bounded D C R?. Moreover the partial
derivatives in space of ¢ are bounded (in particular J¢ is bounded) and ¢ (¢, -) is injective for all
t € 10,7

10



Combining now ﬁ) with identity ﬁ, we observe that ¢ (., X) ,i € {1,2}, are local martingales.
Using additionally the fact that J¢ and ¢ are bounded, it is easy to show that they are true martingales.
Taking the expectation in ﬁ) with respect to P?,i = 1, 2, gives

¢ (0,2;) =Epi (¢ (T, X7)),i € {1,2}.
In parallel, identity ﬁ%lﬂves
Ep: (¢ (T, X7)) = Ep2 (¢ (T, X7)).

So, ¢ (0,21) = ¢ (0, z2). We conclude that z1 = x5 since ¢ (0, -) is injective.

3.3 Uniqueness: the case of bounded, non-degenerate coefficients

In this section we consider the case of time-homogeneous, bounded and Holder coefficients in dimension
3
d > 1. We suppose that Assumption ﬁ'i%rds and consider the following one.

Assumption 5. 1. b, o are time-homogeneous and bounded.
2. Forall (i,5) € [1,d]?, b;, %i; € C** (RY), for a given o €]0, & .
L
We refer to the differential operator ﬁ%t and we simply set here L = L.

a1
liminary| Remark 3.12. Suppose the validity of Assumptions éyﬁL

S
1. Let T > 0. Proposition 4.2 in a1 frmiplies that for cvery v € M (RY), there exists a unique My (R?)-valued
k
solution of equation ﬁ%‘th initial value v. This unique solution will be denoted by u”. In the sequel T will
be omitted.

2. We remark that the uniqueness result mentioned in item 1. is unknown in the case of general bounded coeffi-
cients. In the general framework, only a uniqueness result for non-negative solutions is available, see Remark

E31.

Al k
3. Since L is time-homogeneous, taking into account Assumptions %emting a shift, uniqueness of ﬁ)_ael%o
holds replacing the initial time O by any other initial time, for every initial value in My (R?), with any other
maturity T.

3 Lunl T
Theorem 3.13. Suppose the validity of Assumptions G B Then, for all p € My (R?), equation with
terminal value p admits at most one My (R®)-valued solution in the sense of Definition

di_1995
By Theorems 3.1.12, 3.1.14 and Corollary 3.1.16 in [ the differential operator L suitably extends as a

map D(L) = C**T2(R?) c C?*(R?) — C2* (R?) and that extension is sectorial, see Definition 2.0.1 in Eﬁfw
We set E := C?* (R?). By the considerations below that Definition, in (2.0.2) and (2.0.3) therein, one defines

P, :=¢€'" P, E— E,t > 0. By Proposition 2.1.1 in }fﬁf—r(%s a semigroup and ¢ — P; is analytical on

10, +o0[ with values in £ (E), with respect to ||.|| ;.

Before proving the theorem, we provide two lemmata.

11



3Lunl
Lemma 3.14. Suppose the validity of Assumptions Bt Then, forall € Eand all v € My (R?), the function
from R* to R

t— Pio (z) v (dzx)
R4
is analytic.
Proof. The result can be easily established using the fact that ¢ — P,¢ with values in £(E) is analytic and
the fact that the map ¢ — [, ¢ (2)v(dz) is linear and bounded.
O

Y unl
Lemma 3.15. Suppose the validity of Assumptions Bt Tet T > 0. Then forallv € My (R?), t € [0,T] and
¢ € E we have the identity

/ P (@) v (dv) = / 6 () u” (1) (dz) 518
Ré o Rd
where u” was defined in point 1. of Remarkﬁw

Proof. Letv € My (R?). We denote by v” the mapping from [0, T] to M (R?) such that V¢ € [0,T], V¢ € E
y o(z)v¥ (t) (dx) = y P,o(x)v(dx). (3.19)

Previous expression defines the measure v*(t,-) since ¢ — [, Pi¢(x)v(dx) is continuous with respect to

the sup-norm, using || P;¢||« < ||#]|c, and Lebesgue dominated convergence theorem.

By approximating elements of E with elements of C2° (R?), it will be enough to prove (%F for ¢ €

e (R7). ker

Our goal is to show that v’“liismei n/(\_;lf ¥ (Rd)—valuedosolution of with initial value v to conclude vV = u

via point 1. of Remarkﬁm prove (%‘for ¢ € C (RY).

Lett € [0,T]and ¢ € C2* (R%). On the one hand, point (i) of Proposition 2.1.1 in [{3f gives

v

LP¢ = P,Lo, (3.20)
since C2° (R?) € D (L) = C?**2 (R4, R). On the other hand, for all s € [0,t], we have
|LPS¢|E = |PSL¢|201

<|Pllg1Lolg
< Moe** [Lé|,

di_1995
with My, w the real parameters appearing in Definition 2.0.1 in [2f and using point (iii) of Proposition 2.1.1
in the same reference. Then the mapping s — LP;¢ belongs obviously to L'([0,]; E) and point (ii) of

di_1995
Proposition 2.1.4 in | [2f combined with identity m gives
t
Pp=¢+ / P,Lods.
0

Back to our main goal, using in particular Fubini’s theorem, we have

/]Rd P (z)v(dx) = y ¢ (x)v(de) + /Rd /0 P;Lo (x) dsv (dx)
= y ¢ (x)v(de) + /0 /Rd P;Lo (z) v (dx) ds

t
= / ¢ (x)v(de) + / / Lo (x) v (s) (dx) ds.
RE 0 JRd
er
This shows that v is a solution of equation @)ﬁ O
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Proof (of Theorem%.
Letv, 1" € My (R?) such that
pr:=u’(T)=u" (T).

Thanks to Proposition% it suffices to show thatv = v/ i.e.

Vo € C® (RY), / ¢ (x)v(de)= | ¢(x)V (dz).
Rd Rd

Since T' > 0 is arbitrary, by Remark xlzég icrelﬁlrconsider u”?T and u’/VQT, defined as the corresponding u”
and uf’/ functions obtained replacing the horizon T" with 27. They are defined on [0, 27| and by Remark
%ﬁ%emess on [0, T7), they constitute extensions of the initial u” and u”’.

By Remark%]?%ﬁ%}niqueness of an My (R%)-valued solution of “Gor ¢ [T, 2T, with T as initial
time) holds for

opu(r) = L*u(r), T <7 <2T

(3.21)
u(T) = ur.
Now, the functions u*?” and u*"?T solve ﬁ% [T, 2T). This gives in particular
Vr>T, ¥ e C (RY), [ ¢(@)u? (1) (dz) = | ¢(x)u’?" (7)(da). (3.22)
Rd Rd

Fix ¢ € C2° (R?). Combining now the results of Lemmata ﬁ%nd %zwe obtain that the function

e | ¢(@)u? (1) (de) — [ ()’ (1) (dx) (3.23)
R4 R4

0
defined on [0, 2T, is zero on [T, 27| and analytic on ]0, 27']. Hence it is zero on |0, 27]. By (% we obtain
/ Poo(2) (v — /) (de) = 0, ¥t €]0, 2. (3.24)
R4

Separating v and ¢/ in positive and negative components, we can finally apply dominated convergence
theorem in ﬁ to send 7 to 0". This is possible thanks to Igoints (i) of Proposition 2.1.4 and (iii) of

s . ardi_1995 .
Proposition 2.1.1 in 7 together with the representation ﬁf Indeed P, ¢ (x) — ¢ (x) for every ¢ €
E,z € R" when 7 — 0. This shows v = ¢/ and ends the proof.

O

For the sake of applications it is useful to formulate a piecewise time-homogeneous version of Theorem

Corollary 3.16. Let n € N*. Let 0 = tg < ... < t,, = T be a partition. For k € [2,n] (resp. k = 1) we denote
I, =]tg—1,tx] (resp. [to,t1]). Suppose that the following holds.

1. Forall k € [1,n], the restriction of o (resp. b) to I, x R% is a time-homogeneous function o : RY — My(R)
(resp. b* : R — RY).

3
2. Assumption ﬁlvon

1
3. Assumption s verified for each o, bF and $*, where we have set % 1= oFa* '

T
Then, for all i € My (R?), equation (ﬁ)ﬁﬁt terminal value p1 admits at most one My (R?)-valued solution in the
sense of Definition

13
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Proof. For each given k € [1,n], we introduce the PDE operator L* defined by
1 d
L= > B0 + ) _blo: (3.25)
ij=1 i=1
T
Let now u', u? be two solutions of H}%?h same terminal value p.

The measure-valued functions v := u’ (- +t,,_1) ,i € {1,2} defined on [0, — t,,_1] are solutions of

v = (L")v
v (T —ln-1, ) = M,

(3.26) | BackwardFokke:

in the sense of Definition %replacing TbyT —t,—1 and L by L™. Then, Theorem %@?gives vl = v?and

2

consequently u' = u? on [t,,_1, T]. To conclude, we proceed by backward induction.

O

3.4 Uniqueness: the case of Ornstein-Uhlenbeck semigroup

In this section, we consider the case b := (s,z) — C(s)z with C' continuous from [0,7] to M, (R) and o
continuous from [0,7] to Mg, (R). We set X := oo . We also denote by D (t), t € [0,7], the unique
solution of

D(t) = I—/OtC(s)TD(s)ds, te0,7).

We recall that for every ¢ € [0, T, D(t) is invertible and
t
DHt) = I+/ C(s)"D7(s)ds, t € [0,T).
0

onson
For previous and similar properties, see Chapter 8 of ﬁ .

In that setting, the classical Fokker-Planck PDE for finite measures reads

d

d
Opu (t) = ”221 %(t)ijOija (t) — ; 9 ((C(#)z);u(t) (3.27)

u(0) =v e My (R?).

. L .
dou_unig| Proposition 3.17. Forall v € My (Rd), equation @fwzth initial value v admits at most one My (Rd) -valued

solution.
Proof.
. ker . . .. , kbis
1. Let v € My (R?) and u be a solution of with initial value v. Identity can be extended to

S (R?) since for all ¢ € [0, 7], u (t) belongs to My (R?). Then, t — Fu (t) verifies

Fu(t) (&) :fu(§)+/ <C(S)T§,V]:u(s)>ds—%/0 (X (s)&,€) Fu(s)ds, (t,€) € [0,T]xR% (3.28)

0

In fact, the integrand inside the first integral has to be understood as a Schwartz distribution: in
particular the symbol V is understood in the sense of distributions and for each given s € [0,7],
<C (s)" &, VFu (s)> denotes the tempered distribution

d

o Y 0Fu(s) (6= (C9)7€) ¢(©).

i=1
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0
Indeed, even though for any ¢, Fu () is a function, the equation @)‘%o be understood in &’ (R).
Hence, for all ¢ € S (R?), this gives

g ¢ (&) Fu(t) (§) d§ — ¢(€) Fv (€) ¢(£)dE (3.29)

:_ZZ/O [ 6Fon (€ u () (@0 ds——//Rd $)€,€) Fus) (€) 4(€)deds

k,l=1

:_Z/C kl/;fam;k ) (de) ds——//Rd $)£,€) Fu(s) (€) déds

k=1

. T 1
[ [ (e (0607 600) + 5 26)6.90(©)) Futerdeas,
where ¢y, : £ — &0 (§) for a given k € [1,d].

. Letnow v : [0, 7] — My (R?) defined by

= TCC u X .
[ oy = [ 6(D0)uw ). (3:30)
€ [0,T), ¢ € Co(RY). For every ¢ € RY, we set ¢(z) = exp(—i(£, 2)) in G2 16 6btain
Fv(0)(€) = Fu(t) (D ()€). 31)

forall ¢ € RY, forallt € [0, 7.

. We want now to show that, for each £, t — Fv (¢) fulfills an ODE. To achieve this, suppose for a
moment that (¢,§) — Fu (t) (§) is differentiable with respect to the variable . Then, on the one hand,
we have for all (¢,¢) € [0,7T] x RY,

Fa®)© =7+ [ (00T eVeFu ©)ds—5 [ B@eoFaE©@ds (63

OUPDE
thanks to identity (%._Tﬁs means in particular that, for each given ¢ € R%, ¢t — Fu(t) (¢) is
differentiable almost everywhere on [0, 7.

On the other hand, for almost every ¢ € [0, T] and all £ € R, we have

8.V (1) (6) = aFu(r +Z( 7 (P00) aFa@e).

d

=aFu®)(@M&) - (CHDEE) aFun (@1,
1

=5 EOPOHEDB)EFV()(E), (3.33)

where from line 1 to line 2, we have used the fact & (D (t) ) = —C (t)" D (t)Eforall (t,€) € [0,T] x R?
nt

and from line 2 to line 3, the identity ﬁjﬁﬁce t — Fv(t) (&) is absolutely continuous by ,

hnical
mplies

Fe®©=Fr© -3 [ EOPOED©OFv () (@ds R (339

forallt € [0,T].
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4. Now, if (t,£) — Fu () (§) is not necessarily differentiable in the variable ¢, we will be able to prove
rierfw
"Still holds by making use of calculus in the sense of distributions.

ourierFwd

5. Suppose that olds. This gives

. |a<s) ¢

Fu(t) (&) =e Jo dﬁFV( @)f). (3.35) |FourierExplic

6. The proof is now concluded after we have established the ﬁg@%’m sides of it are continuous
in (¢,¢), it will be enough to show the equality as S’'(R%)-valued. This can be done differentiating
ﬁ%ﬂdered as an equality in §'(R?). For this we will apply Lemma %ﬂmg ¢ = Ful(t)
for every fixed ¢t € [0, 7] and differentiating in time. We set ®,(¢) = Fv(t)(£), ¢ € R? and ®,(¢) =

Jra 0(£)@:()dE, ¢ € S(RY). We remark that @, is compatible with the one defined in % &Efigﬁf%ﬁifmd
D
the directly follow from Lemma =

Lemma3.18. Let ® € S’ (R?),t € [0,T]. We denote by ®, the element of S’ (R?) such that for all ¢ € S (R?)

D () :==det (D7 (1)) @ (¢ (D (1)) . (3.36)

Then, forall t € [0,T]

Dulp) = 0(¢) - Z / 08, (r (€T D(5)a)

Proof. We begin with the case ® € S (R?) (or only C* (R?)). In this case,

o)) ds. (3.37)

i

@y (x) = ® (D (t)x), € RY ¢t €[0,T).

Hence, for every ¢ € [0, T

i@t<x>—<§< (1)1, V®<D<t>x>>

dt
~(c®' P2, Ve (D (1))
i( D(t)z) (0:9), (),

=

o~

—

Now, coming back to the general case, let ® € &' (R?) and (¢.),., a sequence of mollifiers in S (R?),
converging to the Dirac measure. Then for all ¢ > 0, the function ® * ¢, : * — ® (¢ (z — -)) belongs to
S’ (RY) N> (R?). By the first part of the proof, &)‘hﬁlds replacing ® = ® x ¢.. Now, this converges to
®in &’ (R?) when € tends to 0. &)‘f&lows sending € to 0F. Indeed, for all ¢ € S (R?), t € [0, 7], setting
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be 1y — ¢e(—y), we have

Py (p) = lim [ () (P * @), () da

e—0t JRd
R .
= El_igl+ » o(2)® * ¢ (z) dw — El_i)%l+ ;/0 det (D' (s)) /]Rd (C (s)" :C)i ¢ (D' (s)2) ;@ * ¢ (x)dxds

—M/ w0028 ((07), 07 99) )
Z/ det (D (’“)CD((C( )" -)icp(Dfl (s))) ds

_ Z/O (ai@)s (x — (C (S)TD(S) x)cp(:v)) ds.

3

To conclude, it remains to justify the commutation between the limit in € and the integral in time from line
3 to line 4 using Lebesgue dominated convergence theorem. On the one hand, for a given ¢ € [1, d], the fact
9;® belongs to &’ (R?) implies that there exists C > 0, N € N such that for all p € S (R?)

N
9:® ()] < C sup sup (1+ Jo]) " 05 ()]
|a|<N zeR?

see Chapter 1, Exercise 8 in @].LHOn the other hand, the quantities

sup (14122 [0 (20D~ (5) ) * 6.

r€ERC

are bounded uniformly in the couple (s, ¢), for all j € [1,d], @ € N taking also into account that the
function s + D~!(s) is continuous and therefore bounded. Since C is also continuous on [0, 7], we are
justified to use Lebesgue’s dominated convergence theorem.

O

T
Theorem 3.19. For all ;1 € My (R?), equation ﬁ)ﬁfmh terminal value yu admits at most one My (R?)-valued
solution in the sense of Definition

kwardFokk K
Proof. Let i € My (R?) and u a solution of (E‘jb With terminal value ;2. Then, u solves equation (ﬁ)%rlth

licito i
initial value u (0). As a consequence, by I (Efigﬂilée}gf)}éariﬁétaftjthe end of the proof of Propomhon%%
£ ERY,

Fu(€) = e i == Fu (0) (D71 (1) €)
so that

>T|

fu<0><s>—efo| dsfu( (1)¢).

Hence, u (0) is entirely determined by 1 and Proposition glves he result. O

4 McKean SDEs related to time-reversal of diffusions

4.1 Preliminary considerations

. . . ntro
In this last section we concentrate on the analysis of the well-posedness of the McKean SDE ﬁ)ﬁ
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Regarding b : [0, T'] xR RY, 00 [0, T) xR — My, (R), we seth:=b (T-.,),0=0(T-.-), $:=515.
Given a probability-valued function p : [0,7] — P(R?), we denote by p; the density of p (), for t € [0,T],
t
whenever it exists. For the McKean type SDE d%)% consider the following notion of solution.
Definition 4.1. On a given filtered probability space (Q, F (Fe)eepo » ]P’) equipped with an m-dimensional (F¢),¢(o 1)-

Brownian motion /3, a solution of equation ﬁ%@% couple (Y, p) fulfilling ﬁ%ﬁi Brownian motion (3, such that
Y is (1) yeqo,r-adapted and such that for all i € [1,d], all compact K C R, all T < T

/ / ‘divy (il (r,y) pr (y)) ‘ dydr < oo. 4.1)
0 JK

1
Remark 4.2. For a given solution (Y,p) of equation ﬁ?—tzﬁ%ntity ﬁnﬁsppearing in Definition %plies in

particular that, forall i € [1,d], all T < T

 |divy (S5 (r, Y2 pe (1)
/0 pr (Y7)

t T
The terminology stating that ﬁ)ﬁsﬁtutes a probabilistic representation of (ﬁ)—%ause is justified by
the result below.

1
pPprobRep| Proposition 4.3. Suppose b, o locally bounded. If (Y, p) is a solution of ﬁ%‘tniofhe sense of Definition ﬁgﬂlen
T
p (T — ) is a solution of (ﬁ)%%% w = p(0) in the sense ofDeﬁnition%
1
Proof. Let (Y, p) be a solution of ifi the sense of Definition EITwith a Brownian motion symbolized by
B. Let ¢ € C° (R?) and ¢ €]0, T]. Ito’s formula gives

dr < oo, P—a.s.

T—t T—t
. 6.V L (3 (6.7 02 T,
60 =000+ [ (e Vei). Vo (7)) #3577 (S Y0 Vo)) st [ To 1) o (5. s
(4.2) |1to
with

div, (55 $,Y) Ps N
b (s, ps) i= s (B 60m W) “B(sy), (5,y) €0, TR
ps (y) _

£
We now want to take the expectation in identity (ﬁ) On the one hand, Remark %plies that for all
i€ [1,d] and s €]0, T

T div, (i (,Y3) ps (YS)) oy
/0 ° ps (V) i (1a)| < oo

On the other hand
T N d T R
/ IE{TT (E (s,Y5) V2¢(YS))}dS = Z / / ij (s,9) 0i¢ (y) ps (v) dyds p.s.
0 =10 Jrd

Previous expression is finite since ¢ is bounded on compact sets and the partial derivatives of ¢ have
compact supports. With similar arguments we prove that fOT dsE ‘<g(s, Ys), Vo (Ys)>‘ < 00, s €]0,T7.
Moreover, fixing s €]0, T'[, integrating by parts we have

E{(b(s,Ysip.), Vo (¥)) } = 5 Lo G m ) ooy [ (50,00 p. )y
k,j=1
(43)
— [ (e Vow) p - [ (56,96 0))p. ) do
R4 Rd
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Now, the quadratic variation of the local martingale M"Y := [/ V¢ (Ys)" o (s,Ys) dBs yields

[MY] = /0 Vo (V) B (s,Ys) Vo (Ys) ds.

We remark in particular that E ([MY] T) < oo since o is bounded on compact sets and ¢ has compact
support. This shows MY is a true (even square integrable) martingale and all terms involved in ﬁ are
integrable.

At this point we evaluate the expectation in ﬁ) taking into account the considerations above together with

@15 and (3" We obtain
T—t
BG0r-0) = [ swu) = [ [ Lro)p @)y

Applying the change of variable ¢t — T' — ¢, we finally obtain the identity

T
[owrriwar= [ swutn - [ [ Lowpr.)dys
Rd Rd t Jrd
which means that p (T — -) solves (ﬁ)%rtnhe sense of Definition %with terminal value p. O
ntro
We also provide the different notions of existence and uniqueness for ﬁ)ﬁ will use in the sequel.

Definition 4.4. Let A be a class of measure-valued functions from [0,T] to P (R?).

ntro, . . . . .
1. We say that ﬁ)ﬂﬁzts existence in law in A, if there exists a complete filtered probability space (Q, F (Fe)iepor) » ]P’)
equipped with an m-dimensional (F), o r1-Brownian motion 8 and a couple (Y, p) solution of i the

1
sense of Definition %ch that p belongs to A.

t 1
2. Let (Y1, pt), (Y2, p?) be two solutions of ﬁ%ﬁhe sense of Definition Ef Fssociated to some complete
filtered probability spaces (Ql, F1, (]:tl)te[o 1 ,]P’l), (92, F2, (]:752)156[0 7 ,]P’2) respectively, equipped with
. . . ’ ’ ntro ,
Brownian motions 3*, 32 respectively and such that p*, p? belong to A. We say that ﬁ)ﬁr’mts uniqueness
inlaw in A, if Yy, Y§ have the same law implies that Y, Y ? have the same law.

3. Wesay that (ﬁ)%rﬁozits strong existence in Aif for any complete filtered probability space (Q, F, (Ft) ¢ (0 7, , P)
equipped with an m-dimensional (Fy),¢ (o 1-Brownian motion j3, there exists a solution (Y, p) of equation (‘%M
! ;
in the sense of Definition %ch that p belongs to A.

4. Wesay that d%)%its pathwise uniqueness in A of if for any complete filtered probability space (Q2, F, (Fy), €] P)
equipped with an m-dimensional (Fy), (o o-Brownian motion 3, for any solutions (Y, p*), (Y?,p?) of o
in the sense of Definition %ch that Yy = Y{, P—a.s. and p*, p? belong to A, we have Y = Y2, P—a.s.

We finally define the sets in which we will formulate existence and uniqueness results in the sequel.

Notation1. 1. Fora given C C P (R?), Ac denotes the set of measure-valued functions from [0, T) to P (R?) p
such that p (T)) belongs to C. Furthermore, for a given measure-valued function p : [0,T] — P (R?), we will

denote ~
divy (let)
b(t, i py) = { ————2 , (44) [g2P
bt
i€[1,d]
for almost all t € [0, T] whenever p, exists and the right-hand side quantity is well-defined. The function

(t,x) = b(t, z;py) is defined on [0, T] x R with values in R<.
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2. Let Ay (resp. Asz) denote the set of measure-valued functions from [0, T] to P (R?) p such that, for all t € [0, T},
p (t) admits a density p, with respect to the Lebesgue measure on R and such that (t,z) — b(t, z; p;) is locally
bounded (resp. is locally Lipschitz in space with linear growth) on [0, T[xR%.

. . . ntro. .
We state now existence and uniqueness results for equation dﬁ‘m_chfferent settings.

4.2 PDE with terminal condition and existence for the McKean SDE

ntr
The existence result for equation ﬁ)vfﬁ be based on two pillars: the reachability condition constituted

by the existence of a solution of the Fokker-Planck PDE with terminal condition and the time-reversal
ussmann_pardoux

1
techniques of [[8]. More precisely, we suppose that Assumption fs in force for a fixed ¢ C P (R?) and
%ﬁﬁl@k %FE 3.
ands] stll with respect to (C, p).

consider the following extra assumptions, i.e. Assumptions

0
Assumption 6. The backward PDE ﬁ%’ﬁ? terminal condition j admits at least an M, (Rd)—valued solution u
in the sense of Definition %vertfying the following.

1. u(0) belongs to C.

2. Vt €]0, T, u(t) admits a density with respect to the Lebesgue measure on R? (denoted by u (t,-)) and for all
to > 0 and all compact K C R¢

t

T d m
/ /|u(t,x)|2+ZZ|Uij () Dy (¢, o) |? daedt < o, 4.5)
o JK i=1 j=1

ipld 1
Remark 4.5. Suppose Assumption ﬁ%ﬁs and let u be the measure-valued function appearing in Assumption %f =
Then @) implies that the family of densities w (T —t,-) ,t €]0,T'[ verifies condition &)Tlppearing in Definition
1
“To show this, it suffices to check that for all to > 0, all compact K C R% and all (i, j, k) € [1,d]? x [1,m]

T
/ / 19, (03 (5,9) o0 (5, ) u (5, )| dyds < oo. (4.6)
to K

The integrand appearing in ﬁ)gz% well-defined. Indeed, in the sense of distributions we have

8j (Uikgjku) = Uikajkaju “+u (O'ikajajk + O'jkajO'ik) ; (47)
moreover the components of o are Lipschitz, so they are (together with their space derivatives) locally bounded. Also

u and o, 0; are square integrable by @) This implies ﬁ)ﬂ

1
Assumption 7. Let u be the measure-valued mapping appearing in Assumption %i “ve suppose that p admits a
density and u (T — -) | p(xpra belongs to Ay

We introduce two new assumptions.

1
Assumption 8. Let u be the measure-valued mapping appearing in Assumption %i “ve suppose that p admits a
density and u (T — -) |( p(xgra belongs toAs.

Ex_3 ﬁ}SE 2
We remark that Assumption %l 1rr}1§plles -
Ex 1

\re L. . ipld . &El . .
Proposition 4.6. Suppose the validity of Assumptions ﬁt %ssumptzon with respect to C and Assumption [el'wi
t
respect to (C, p). Then ﬁ%ﬁoﬁts existence in law in Ac.
2 t
In particular if, moreover, Assumption i&l%r?sp. %ﬁ %Zés, then ﬁ%ﬁoﬁts existence in law in Ac N Ay (resp. strong

existence in Ac N As).
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1 0

Proof. By Assumption B et is an M (R%)-valued solution u of equation ﬁ%nfhe sense of Def-
inition %such that u(7) = p and u(0) belongs to C. We consider now a filtered probability space
(Q F (F)eepor » ) equipped with an (}})t6 (0,77-Brownian motion W. Let X, be a r.v. distributed ac-

cording to u(0). Under Assumption HEss well-known that there is a solution X to

t t
X = Xo —|—/ b (s, Xs) ds—i—/ o (s, Xs)dWs, t €[0,T). (4.8)
0 0

d K Kbi
Now, by Proposition E]Zlmf = L(X,)isaP ng)—valued solution of equation in the sense of ﬁﬁ?h
initial value u (0) € C. Then Assumption @ gives

L(X:)=u(t),tel0,T] (4.9)

k

since u solves also ﬁ%th initial value u (0) € C. This implies in particular that u is probablhty valued
Ex 1

and that for all ¢ €]0, T, X; has u (¢, -) as a density fulfilling condition @) in Assumpt1on

ssmann_pardou

Combining this observation with Assumption iﬁ%’h’eorem 2.1in @] states that there exists a filtered prob-
ability space (9,3, (Ge)eero, 1, Q) equipped with the Brownian motion 3 and a copy of X (still denoted by
the same letter) such that X fulfills the first lign of ﬁ)—fh 5 and

pt)=u(T—-t),t€0,T| (4.10)

t 1 -

Finally, existence in law for "in the sense of Definition EL.I holds since (X,u(T —)) is a solution of
£

ﬁ)no—rrlthe same filtered probablhty space and the same Brownian motion above. This occurs in A¢ since

L (XT) € C thanks to equality (ﬁ)‘fﬁ t=
We discuss rapidly the in particular point.

Ex_2
e Suppose that Assumption EE then u (T — -) belongs to A N Ay and we also have existence in law in
Ac N A;q.

e Suppose the validity of Assumption en, ﬁ]} strong existence and pathwise uniqueness for the
first line of ﬁ)ﬂh_o%ds b classical arguments since the coefficients are locally L1psch1tz w1th linear

quorBoo uzYorBook
growth, see 4] Exercise (2.10), and Chapter IX.2 and iﬁl Th. 12. section V.12. of y amada-

Watanabe theorem this implies uniqueness in law, which shows that u (I" — -) constitutes the marginal

laws of the considered strong solutions. This concludes the proof of strong existence in A¢ N A; since
E

u (T — -) belongs to A¢ N Az, by Assumption

Remark 4.7. By @, the second component p of the solution of ﬁ)%%;iven byu(T —-).

4.3 PDE with terminal condition and uniqueness for the McKean SDE

t
In this subsection we discuss some questions related to uniqueness for equation ﬁ)?_\?%oé state the following
hypothesis related to (u,C) where C is a given subset of P (R?).

Term0
Assumption 9. The equation H)%mfﬁ terminal condition y admits at most a P (R%)-valued solution u in the
sense of Definition %such that u (0) belongs to C.

DET
We recall that Section ﬁprovides various classes of examples where Assumption él holds.

21

MKIdLaw



amples44

oothness

othnessl

Proposition 4.8. Suppose the validity of Assumption @%ﬁ%gpect to (u,C) and suppose b, o to be locally bounded.
Let (Y%, p'), i € {1,2} be two solutions of equation ﬁ)&z%he sense of Definition %%{ch that p* (T),p? (T)
belong to C. Then,

p! = p.
Proof. Proposition %%I%VES that p! (T — ), p? (T — -) are P ng)—valued solutions of equation ﬁ%%rrfnhe
sense of Definition %with terminal value p. Assumption %ge—e;‘%e result since p! (T'), p? (T') belong to
C. O

As a corollary, we establish some consequences about uniqueness in law and pathwise uniqueness re-

sults for equation (%)T_nr%‘le classes A; and As.
Corollary 4.9. Suppose the validity of Assumption @l £?fTﬁerfrergpect to (u,C). Then, the following results hold.

3 t
1. Ifbis locally bounded, o is continuous and if the non-degeneracy Assumption é\'f%llﬁls then ﬁ%ﬁoﬁts unique-
ness in law in Ac N Aj.

2. If (b, o) are locally Lipschitz with linear growth in space, then ﬁ%ﬁzits pathwise uniqueness in Ac N As.

Proof. If (Y, p) is a solution of “ahd is such that p (T') belongs to C, then by Proposition ﬁlé rpols deter-
mined by p = £ (Yp).
To show that item 1. (resp. 2.) holds, it suffices to show that the classical SDE

~

dXt =b (t, Xt, pt) —-b (t, Xt) dt + - (t, Xt) th, te [O, T[, (411)

where b was defined in (ﬁ) and W an m-dimensional Brownian motion, admits uniqueness in law (resg.

pathwise uniqueness). The mentioned uniqueness in law is a consequence of T}12eorem 10.1.3 in 7] and
YorBook
pathwise uniqueness holds by i IquZ Xercise (2.10), and Chapter IX.2 and }fyﬁf‘ﬁﬁh Section V.12. O

4.4 Well-posedness for the McKean SDE: the bounded coefficients case

In this section, we state a significant result related to existence and uniqueness in law together with path-

ntro ntro
wise uniqueness for equation ﬁ_ﬁ particular we obtain existence and uniqueness in law for ﬁ)ﬁfhe
class A,

We formulate the following hypotheses.

. . von3
Assumption10. 1. AssumptionBlTolds.

2. The functions o is Lipschitz (in space).

3. The functions o, b, (Vrbi)ie[[l,d]]r (Vrzij)i,je[[l,dﬂ
with exponent « €0, 1] in space uniformly in time.

are continuous bounded and V23 is Holder continuous

Assumption 11. X is supposed to be Holder continuous in time

FrozenSDE

h K
Remark 4.10. Under Assumptionﬁﬁf o every v € P(RY) there exists a unique P (R?)-valued solution u” of ﬁg

Indeed the assumptions of Lemma ﬁ%e fulfilled.

We continue with a fundamental lemma whose proof will appear in the Appendix.
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L . ooth thnessl , ,
Lemma 4.11. Suppose the validity of Assumptions [[U0fan en, jor all v € P (RY), u” (t) admits a density

u” (t,-) € C*(R?) forall t €]0,T]. Furthermore, for each compact K of 10,T] x RY, there are strictly positive
constants CI, CK  CX, also depending on v such that

IN

CE <u”(t,z) ck (4.12)
O’ (t,2)] < O3, ie[1,d], (4.13)

forall (t,x) € K.

Lemma 4.12. Suppose that the initial condition p equals u” (T) for some v € P (R?). We suppose the following.

h
1. Assumptionsﬁﬁ[wt S
2. u” (t) admits a density u” (t,-) € WoH(R®), for all t €]0,T).

3. For each compact K of 10, T] x RY, there are strictly positive constants CX, CX, CE, also depending on v such

that(ﬁ)andﬁrﬁuw ) € K.

. ntro . . .
Then equation ﬁ)ﬁmzts existence in law in A;.

oothnes oothnessl

Corollary 4.13. We suppose the validity of Assumptions[[Oland an

t
1. Suppose the existence of v € P(R?) such that u*(T) = . Then, equation ﬁ%ﬁoﬂ'ts existence in law in A;.
Moreover, if v is a Dirac mass, existence in law occurs in As,) cpa ) Aj.

2. Otherwise &)%or?os not admit existence in law.
Proof.

iedA
1. The first part is a direct consequence of Lemma ﬁ—lfermma% and expression (ﬁ) If in addition,
v is a Dirac mass, then u” (0) belongs to C := (0.),ga, hence existence in law occurs in Ac N A; again

P
by Proposition&%fX =

t b
2. Otherwise suppose ab absurdo that (Y, p) is a solution of N r}cz) Proposition &Pjop - -) is a solu-
kwardFokk X
tion of e sel z/oe = p(T) so that p(T — -) verifies also &E‘ﬁi; with initial value . Since, by Lemma

ﬁ%iqueness holds for ﬁ%’(}; follows that p(7" — -) = u” which concludes the proof of item 2.

Proof (of Lemma %{) Suppose p = u” (T) for some v € P (R?).
We recall that Assumption fiffolds with respect to C := P (R?) by Remark E31.
. . iy Ex Ex_ 2 .
In view of applying Proposmon&% we need to check that Assumptions %j and EI hold with respect to (u,C).

Term

Assumption %%Es_xv‘leriﬁed by u = u”. Indeed the function u” is a P (R%)-valued solution of with
terminal value x4 and such that u” ( ) belongs to C. Condition ﬁ) ap earmg in Assumption %Kmhsﬁed
with u = u” thanks to the right-hand side of inequalities (ﬁ) and “and the fact that o is bounded.
Hence Assumption %}Slﬁﬁ%s with respect to (u,C).

Ex_2
It remains to show Assumption ﬁﬁ%ﬁs i.e. that

div, (iz (t,x)u” (T —t, x))

(t,2) = u’ (T —t,x)
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is locally bounded on [0, T[xR®. To achieve this, we fix i € [1,d] and a bounded open subset O of [0, T[xR.
For (t,z) € O we have
div, (il (t,x)u” (T —t, x))
w” (T —t,x)

|Vou? (T —t, )]
uw” (T —t,x)

< ‘dwm (i (t, :v))‘ + S 2

The latter quantity is locally bounded in t,2:1: thanks to the boundedness of ¥, div, (il) and inequalities
E
and ?nsence, Assumption %‘Tgﬁs. This ends the proof.

t thnessl
Proposition 4.14. Suppose the validity of Assumption iZ ﬂagﬁg ﬁ 1T henfosliowing results hold.

t
1. Let us suppose d = 1. Suppose p equals u®o (T') for some zo € R%. Then ﬁ)%ﬁoﬁts existence and uniqueness
inlawin Ag,) ., NAx, pathwise uniqueness in A, ., N As.

2. Let d > 2. There is a maturity T sufficiently small (only depending on the Lipschitz constant of b, o) such
t
that the following result holds. Suppose p equals u®=o (T') for some zy € R%. Then d%)%ﬁoﬂ'ts existence and

uniqueness in law in A,y ., N Ay, pathwise uniqueness in A,y ., N As.

. ooth thnessl &%ﬁi. . ntro ., . . .
Proof. By Assumptions [T0[an orollary implies that ﬁ)ﬁﬁnﬁs existence in law in the two cases

in the specific classes. To check the uniqueness in law and pathwise uniqueness results, we wish to apply
] . . DETerm . . .
Corollary ﬁ_lt suffices to check Assumption ﬁ] becatise the other hypotheses are included in Assumption
oothness . . DETerm
i] U Below we verify Assumption 6] with respect to (4, (05)zer), for the separate two cases.

i ipld
1. Fix 29 € R% This will follow from Proposition %%olds under Assumption “llwhlch is a conse-

. oothness
quence of Assumption ii O

ipd ipl
2. We proceed as for previous case but applying Theorem ﬁ%ﬁl&ead of Proposition -

We state now the most important results of the section.

th
xUnigBis| Theorem 4.15. Suppose b, o are time-homogeneous, Assumptionﬁﬁloaonﬁ I;Z;Zose there is v € P (R?) (a priori not
known) such that = u” (T).

ntro , . . . . . .

1. ﬁ)ﬂr’mts existence and uniqueness in law. Moreover existence in law holds in A;.
ntro . . .

2. admits pathwise uniqueness in As.

thnessl
Proof. 1. (a) First, Assumption i] ]Iofci‘lv?aelsl;' holds since b, o are time-homogeneous. Then, point 1 of
t th
Corollary %imphes that &)ﬁnits existence in law (in A;) since Assumptionﬁ Oholds.

ntro

(b) Let (Y, p) be a solution of . Proceeding as in the proof of item 2. of Corollary% we obtain
iedA
that p(T — -) = u* with 1 = p (7). Then, Lemma ﬁaﬁd the fact that o is bounded allow to
c1
show that p belongs to A;, see ﬁ) in Notation“f -
(c) To conclude it remains to show uniqueness in law in A;. For this we wish to apply point 1.

of Corollary 9 To achieve this, we check Assumption B V?I%fTﬁe?gspect to (p, P (R?)). This is a
3Lunl
consequence of Assumptions f%]vaoﬁa t]u;nd Theorem %This concludes the proof of item 1.

2. Concerning pathwise uniqueness in A, we proceed as for uniqueness in law but applying point 2 of
o . . . . . oothness . .
Corollary his is valid since Assumptlonﬁ O implies that b, o are bounded and Lipschitz.
O
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nigBis
In the result below we extend Theorem%case when the coefficients b, o are piecewise time-

homogeneous.

Theorem 4.16. Let n € N*. Let 0 =ty < ... < t, = T be a partition. For k € [2,n] (resp. k = 1) we denote
I, =]tg—1,tx] (resp. [to,t1]). Suppose that the following holds.

1. Forall k € [1,n] the restriction of o (resp. b) to I, x R? is a time-homogeneous function o* : R? — My(R)
(resp. b* : R? — R?).

3
2. Assumption EIVOD

3. o is Lipschitz in space uniformly in time.

V. 2k

4. The functions o, b*, (V,bF) N ij)z' sl

with exponent o €]0, 1].

) , ( are continuous bounded and V2 X is Holder continuous
i€[1,d] T

t
Suppose p equals u” (T) for some v € P (R?). Then equation d%)nﬁor#zits existence and uniqueness in law. Existence
in law holds in A;.

i 3
Remark 4.17. A similar remark as in Corollary %holds for the Theorems %If there is no v € P(R?)

t
such that w”(T) = p, then d%)nﬂo%s not admit existence in law.

Proof of Theorem% We recall that by Lemma ﬁl_li”” is well-defined for all vy € P (Rd).

1. We first show that u*° verifies (ﬁ) and m%%deed, fix k € [1,n]. The restriction uy of u to I is a
k _
solution v of the first line ﬁ%placing [0, T] with I}, L by L* defined in &%, with initial condition
13
v(tk—1) = u”(ty—1). That restriction is even the unique solution, using Lemma ﬁﬁplacing [19, T)
. - iedAr . . - . . . oot sothnessl
with I;,. We apply Lemma ﬁr?placmg [0, T] with I}, taking into account Assumptions iiﬁl and ii i
which holds trivially replacing o, b, > with o%,b*, % This implies that u*° verifies (ﬁ) and (ﬁ)ﬂ
replacing [0, 7] with I}, and therefore on the whole [0, 7.

2. Existence in law in 4;, follows now by Lemma %

t
3. It remains to show uniqueness in law. Let (Y, p) be a solution of . We set vo := p (T). Since u*°

K 13
and p(T" —-) solve ﬁ,_%emma ﬁi?nplies that p is uniquely determined. Similarly as in item 1.(b) of
nigBis iedAr
the proof of Theorem%ﬁ_gﬁl. of the present proof and Lemma ﬁﬁl‘ﬁow to show that p belongs
to Al .

4. It remains to show uniqueness in law in A;. For this, Corollary %implies Assumption El With
C = P(R%). Uniqueness of ﬁ)%tn_r?he class A; follows now by Corollary ﬁwhieh ends the proof.

O

4.5 Well-posedness for the McKean SDE: the Ornstein-Uhlenbeck semigroup

Sex
In this section we consider the case b : (s, ) — C (s) z with C continuous from [0, T'] to R? and & continuous

from [0,T] to Mg, (R). We also suppose that for all t € [0,T], o (t) is invertible. We denote by C (¢) ,t €
[0, T, the unique solution of the matrix-valued ODE

C(t) = I—i—/o C(s)C(s)ds.
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For a given 2y € R? and a given t €]0,T], we denote by p{° the density of a Gaussian random vector
with mean m;° = C(t)zo and covariance matrix Q; = C(t) fot C~1(s)S(s)C (s) " dsC(t)T. Note that for all
t €]0,T], Q. is strictly positive definite, in particular it is invertible. Indeed, for every ¢ € [0,7T], X(¢) is
strictly positive definite. By continuity in ¢, f(f C~1(s)%(s)C (s) " ds is also strictly positive definite and
finally the same holds for Q;. For a given v € P (R%), ¢ €]0, T], we set the notation

Py x , py° (x) v (dxo) . (4.14)
R

At this level, we need a lemma.

K
oU_lemma| Lemma4.18. Letv € P (R?). The measure-valued function t — p{ (x)da is the unique solution of ﬁ_uenr‘th initial
value v and we denote it by u”. Furthermore, u” (T — -) belongs to As.

atshreve

Proof. 1. We denote immediately u” (¢) (dz) := pf(z)dz, t €]0,T]. By Chapter 5, Section 5.6 in lﬁl, for
every t €]0, T, p;° is the density of the random variable X;°, where X *° is the unique strong solution
in L. . . . ker L. ndam
of ﬁﬁ/ith initial value x¢. The mapping ¢t — p;°(x)dz is a solution of @"bfy Proposmon%ﬂ‘l
k
initial condition §,,. Consequently, by superposition, u” is a solution of (ﬁ)ﬁth initial value v.

. .
2. u” is the unique solution of ﬁ)‘b%cause of Proposition ES I EEU —
3. It remains to show that u” (T — -) belongs to As, namely that for all i € [1,d]

div, (Z(T —t), py_, (z))
pr_; (x)

(t,z) —

3

is locally Lipschitz with linear growth in space on [0, T[xR<.

Fixi € [1,d], t € [0,T[and « € R?. Remembering the fact, p7’ , is a Gaussian law with mean m?? ,
and covariance matrix Qr_; for a given z € R4, we have

div, (3 (T = 1), p_, (z)) 1

- /]R BT =0),,Qp (2 —mi2 ) pi, (z) v (dwo) . (4.15)

Py, (x) ph, (2)

Let K be a compact subset of |0, T'] x R?; then there is M > 0 such that for all (¢,2) € K, 7o € R,
|<E (T — 1), ’Q%it (:c - m?it»p?it (I)} < 2T -1), ||Q;lt}| |I - mi’oft}p%oft (z) < Mk.

This follows because ¢ + %(T — t) and t — Q" , are continuous on [0, 7| and, setting

2
cx = inf{t|(t,x) € K}, mg = suplalexp —cKa— ,
acR 2

we have
[z —m7 Py (x) < mi, V(¢ z) € K.

To show that left-hand side of 55 locally bounded on [0, T[xR? it remains to show that (¢, z) —
Jga P72, (z)v(dxo) is lower bounded on K. Indeed, let I be a compact of R?. Since (¢, z,z¢) — p7°_,(z)
is strictly positive and continuous is lower bounded by a constant ¢( X, I'). The result follows choosing
I such that v(I) > 0.
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divm(z(zgjzg%’t(m)), i € [1,d] defined on

[0, T[xR? has locally bounded spatial derivatives, which implies that they are Lipschitz with linear

To conclude, it remains to show that the functions (¢, z) —

growth on each compact of [0, 7[xR¢. By technical but easy computations, the result follows using
the fact the real functions a — |a|™ exp (—%), m = 1,2, are bounded.
O

We give now a global well-posedness result for equation di ﬁftro

Theorem 4.19. 1. Suppose the initial condition p equals u” (T) for some v € P (R?). Then, equation =

admits existence in law, strong existence, uniqueness in law and pathwise uniqueness.
. ntro . .
2. Otherwise oes not admit any solution.

Proof. Item 2. can be proved using similar arguments as for the proof of Corollary ﬁﬁ Let (Y,p) be a

t bR kwardFokk
solution of ﬁnairrﬁ set vy = p(T). By Proposition ﬁ%[op (T — -) is a solution of (Eﬁb, S0 that Si T —)
. ker = . .. R . U_Uni ker

verifies also @)ﬁth initial value vy. Since, by Proposition E& ! EE uniqueness holds for (ﬁ)ﬁf follows that
p(T — -) = u” which concludes the proof of item 2.

We prove now item 1. For this, taking into account Proposition and Yamada-Watanabe theorem and
related results for classical SDEs, it suffices to show strong existence and pathwise uniqueness. We set
¢ =P (RY)

. . e X Pro .
1. Concerning the strong existence statement, we want to apply Proposition &]ﬁ For this we have to
ipld 1 EX
check the validity of Assumption #%?sumption El with respect to C and Assumptions %ﬁéwith
respect to (i, C).

ipld 1
Since b, o are affine, Assumption “Ilfrlwally holds. Furthermore, Assumption &ﬂﬁolds with respect to

U_Uni
C thanks to Proposition ES I EE =

Termo ﬁi
Now, u” is a probability valued solution of (ﬁ%ﬁi terminal value .. Furthermore, Lemma =

shows that u”, being the unique solution of solution of (ﬁ% such that, for all ¢t €]0, T, u”(¢) admits
pY (see ﬁ) for density. Then, relation @) holds since, by the considerations above ﬁ (t,z) —
pf (x) is locally bounded with locally bounded spatial derivatives. Hence, Assumption %Kl%l?%s with
respect to (u,C). Finally, Lemma %ﬁ%hes that u” (T — -) belongs to A,. Hence, Assumption
holds with respect to (i, C). At this point Proposition %{%ﬁ'& existence in law.

2. Let (Y, p) be a solution of equation dﬁ){l_tl%%oposition %%F}?ies that p (T — ) solves (ﬁf_e"rf%en,

L. U_Uni . emma |
Proposition givesp (T — ) = u” withyy = p (7). Lemma implies p belongs to As.

. . . . . DETerm
3. It remains to show pathwise uniqueness in A;. Assumption églﬁlas_wﬁh respect to (u,C) thanks to
U _Unj
Theorem EX I§f NOW, point 2 of Corollary ﬁ(fmplies pathwise uniqueness in A, since b, o are locally
Lipschitz with linear growth in space.
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Appendix

4.6 Proof of Lemmaﬁc‘ir

Let v € P (R?). For each given ¢t € [0,7], we denote by G, the differential operator such that for all
fec?(RY)
d
1
Gif =5 D0 (i (6) ) =D 0 (bi () f) -
ij=1 i=1

th
Assumptionﬁ g 1%1pnl1eésssthat for a given f € C? (R?), G, f can be rewritten in the two following ways:

d d d
Gif = % D St )0 f + D (D %t ) = bilt, )i f + ¢t ) f, (4.16)
i=1 j=1

i,j=1 i—

with
d

d
1
1. 3 _ 'y
c .(t,x)>—>§ E 0i; 2 (t, ) E 0;b;(t, x).

ij=1 i=1

d d d
1
Guf =5 2 %Oy (6] + (60 = 3206 00f) = 30,1 (4.17)
o ied Ny h .
On the one hand, combining identity ﬁ)ﬁlﬁh Assumpti(é)rgﬁ O fhiere exists a fundamental solution T (in
el 1964
the sense of Definition stated in Section 1. p.3 of |f l)eofmgf u = Gu, thanks to Theorem 10. Section 6 Chap. 1.
in the same reference. Furthermore, there exists C, Cy > 0 such that for all i € [1,d], z,£ € R?, 7 € [0, 7],
t>T,

2
|F ($7t7§77-)| < Cl (t - T)_§ exXp <_%> ’ (418)
2
10,.T (2,1, €,7)| < C (t — 1)~ F exp _%> , (4.19)

ied 1964
thanks to identities (6.12), (6.13) in Section 6 Chap. 1 in |7I A

th
On the other hand, combining Identity (ﬁ%th Assumptionﬁ iilo; foﬁ elr'léa Z)Sdsts a weak fundamental solution
G 1
© of Oyu = Gu thanks to Theorem 5 in | I o.nlsr? %éa“fﬁén, there exists K1, Ko, K3 > 0 such that for almost
everyz,{ € RY, 7€ [0,T),t>T1

2 2
Kil (t—7) 2exp (—%) <O(x,t,&,7)<Ki(t—7) 2exp <—M> , (4.20)

4(t—71)
thanks to point (ii) of Theorem 10 in [ ?nsonGeneral

Our goal is now to show that I' and © coincide. To this end, we adapt the argument developed at the
G 1
beginning of Section 7 in [1]. Fix a function H from [0,7] x R? belonging to € ([0, T] x R?). Identity (7.6)
iedman 1964
in Theorem 12 Chap 1. Section 1. of |7I llemr%)allfes in particular that the function

w: (t,x) >—>/Ot/RdI‘(x,t,f,T)H(T,QdeT,

is continuously differentiable in time, two times continuously differentiable in space and is a solution of the
Cauchy problem

{atu (t,2) = Gyu (t,2) + H (t,2), (t,2) €]0,T] x R, o

u (0,-) = 0.
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hyPb
It is consequently also a weak (i.e. distributional) solution of ﬁ)ﬁﬁhieh belongs to £2(]0, 7] x R?) (see
nsonGener

1 Friedman 1
definition of that space in [f] Jsince u 1s bounded thanks to inequality (ﬁ)ﬁ‘%ﬁ that H is bounded.

. .. . onsonGeneral
Then, point (ii) of Theorem 5 in ﬁm

t
(t,a:)l—>/0 /Rd@(x,t,f,T)H(T,{)dng

h
is the unique weak solution in £2(]0, T x R?) of (%)T\L%}%is implies that for every (t,x) €]0,7] x R? we
have

t
| [ c-owrent oo
0 Jra
Point (i) of Theorem 5 in [] Ofr%%?ffﬁﬁéﬁéhty (& K) rEﬁfalml1aens_flhat O (resp. I') belongs to L? (]0,T] x R?) asa

function of (&, 7), for an arbitrary p > d + 2. Then, we conclude that for all (¢, ) €]0,T] x R,
O (x,t,&,7) =T (x,t,&,7), dédra.e. (4.22)

for all (7, &) € [0,t[xR? This happens by density of C2° ([0,7] x R?) in L7 (]0,T] x R?), ¢ being the conju-
gate of p.

A A
This, together with We fact that T is continuous in (7, §) implies that Wor all (1,¢) €
[0, t[xR% and therefore

1 _d Ko |a:—§|2 _d K |517—§|2
— (t—1)"2 == Sl)< < —7)7 " e S ). )
e (t—r1) exp( i ) S I(z,t,6,7) <Ky (t—7) 2exp 1= (4.23)
We introduce
qt ::ZC'—>/ F(I,t,f,O)V(dé)
d
AronsonBis *
By (&Jﬁjb, with 7 = 0 we get
1 . Kylz—¢f
> —t 2 - . .
0 (@) > gt /R d exp( | v(dg) (4.24)

We denote now by v” the measure-valued mapping such that v¥ (0,-) = v and for all ¢ €]0, 7], v” (¢) has
density ¢; with respect to the Lebesgue measure on R?. We want to show that v” is a solution of with
initial value v to conclude u” = v* thanks to the validity of Assumption &gblecause of Remark% 1. and
3. To this end, we remark that the definition of a fundamental solution for d,u = Gu says that uisa C L2
solution and consequently also a solution in the sense of distributions. In particular for all ¢ € C2° (R?), for
allt >e>0

t
6@ v (0@ = [ o @+ [ [ Lo@v () (dn)ds 4.25)

Rd Rd e JRd
To conclude, it remains to send € to 0. Theorem 15 section 8. Chap 1. and point (ii) of the definition stated

. iedman 1964
p. 27 in (7 imply in particular that for all ¢ € C° (R?), £ € RY,

| rec0o@ir = (.

e—0*t

Aronson
Fix now ¢ € C* (Rd). In particular thanks to Fubini’s theorem, ﬁmbesgue’s dominated conver-
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gence theorem we have

/Rdéf’(:c)vl/(e)(d:c):/Rd¢(:1:)/Rdf(:c,e,§,0)u(dg)dx

:/ / T (z,¢,£,0) 6 () dav (d)
Rd JRd
¢ (&) v (dE).

€~>O+ Rd

EP k
By (%7 Y is a solution of and consequently u” = v¥, so that, for every t €]0,7], u” () admits
u”(t,") = ¢ for density with respect to the Lebesgue measure on R?. Now, mtegratmg the inequali-

. PropFriPedmdhrikdman_2 Friedman
ties (IS respect to v and combining this with inequality , W€ 0 am the existence of

K1, Ko,C1,Cq > 0 such that for all ¢ €]0, T, for all z € RY, for all i € [1,d]

1 K
Et%/ﬂgde"p< Bt ')Md&)Su"(t,x)gKlt%,

d+1

|8iu (t .I')l <Citm 7.

Consequently, the upper bounds in (ﬁ) and m—h@ld. Concerning the lower bound in (ﬁ), let I be
a compact subset of R? such that v(I) > 0, the result follows since (¢,z,£) +— exp (—%f'z) is strictly
positive, continuous and therefore lower bounded by a strictly positive constant on K x I for each compact
K of ]0,T] x R<.
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