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Abstract

We propose a consistent estimator for the parameter shape of the generalized gaussian noise in the class of causal time
series including ARMA, AR(∞), GARCH, ARCH(∞), ARMA-GARCH, APARCH, ARMA-APARCH,..., processes.
As well we prove the consistency and the asymptotic normality of the Generalized Gaussian Quasi-Maximum Likeli-
hood Estimator (GGQMLE) for this class of causal time series with any fixed parameter shape, which over-performs
the efficiency of the classical Gaussian QMLE.
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1. Introduction

This paper is first devoted to estimate the parameter shape r0 of the white noise density from an observed trajectory
of an affine causal process. This class of time series was already defined and studied in Duchenes and Francq (2008),
Bardet and Wintenberger (2009) and Bardet et al. (2017). Hence, we will consider an observed sample (X1, · · · , Xn)
where (Xt)t∈Z is a solution of the following equation:

Xt = Mθ0∗
(
(Xt−k)k≥1

)
ζt + fγ0∗

(
(Xt−k)k≥1

)
, t ∈ Z, (1)

where

• θ0∗ ∈ Θ ⊂ Rd, d ∈ N∗ and γ0∗ ∈ Γ ⊂ Re, e ∈ N∗ are two unknown vectors of parameters, also called the ”true”
parameters (but d and e are known);

• (ζt)t∈Z is a sequence of centred independent identically distributed random variables (i.i.d.r.v.) with symmetric
probability distribution, i.e. ζ0

L
= − ζ0, and such as there exists r0 ≥ 1 and s ≥ min(2, r0) satisfying

E(ζ0) = 0, E(|ζ0|
r0 ) = 1 and E(|ζ0|

s) < ∞. (2)

• For x = (xn)n∈N ∈ R∞ where R∞ is the space of real sequences with a finite number of non zero terms,
(θ, (xn)n∈N)→ Mθ((xn)n∈N) ∈ (0,∞) and (γ, (xn)n∈N)→ fγ((xn)n∈N) ∈ R are two known applications.

In Bardet and Wintenberger (2009) and Bardet et al. (2017), it was proved that all the most famous stationary time
series used in econometrics, such as ARMA, AR(∞), GARCH, ARCH(∞), TARCH, ARMA-GARCH processes can
be written as a causal stationary solution of (1).

Email addresses: y.boularouk@centre-univ-mila.dz (Yakoub Boularouk), bardet@univ-paris1.fr (Jean-Marc Bardet)

Preprint submitted to Elsevier July 19, 2020



The maximum of the conditional quasi-likelihood method, Gaussian QMLE, is the most used to estimate the param-
eters of the models for stochastic processes. This method was mainly built using the Gaussian instrumental density,
see for instance Berkes et al. (2003) or Francq and Zakoian (2004) for GARCH(p, q) processes, Francq and Zakoian
(2013) for ARMA-GARCH processes, Straumann and Mikosch (2006) for general heteroskedastic models, and Bardet
and Wintenberger (2009) for the general class of affine causal models. Trindade et al. (2006) studies the ARMA and
GARCH models driven by asymmetric Laplace noise, Bardet et al. (2017) estimated the model parameters using
the Laplacian QMLE, i.e. the estimator is constructed from a Laplacian conditional density. Even if the obtained
estimators are consistent only under moment conditions on the conditional density, it could be But theoretically, the
divergence of true innovation density can greatly increase the variance of the estimates, increasing with the cost of
ignoring true distribution innovation.
In order to avoid this arbitrary choice of QML conditional density, Lii and Rosenblatt (1992) proposed an approximate
procedure of maximum average non-reversible moving average processes driven by a non-Gaussian noise, Francq et
al. (2011) proposed a two stage non Gaussian QML estimation for GARCH processes based on generalized Gaussian
errors, Jianqing et al. (2014) proposed a three step quasi-maximum likelihood procedure.
The generalized Gaussian density also known as the Generalized Error Distribution (denoted GED(r) with r > 0) or
the power Gamma distribution is given by

gr(x) =
1
2

r1−1/r

Γ(1/r)
e−

|x|r
r for x ∈ R. (3)

Note that g1 is the Laplace density and g2 is the Gaussian one. If Zr follows a GED(r), then

E
(
Zr

)
= 0 and E

(∣∣∣Zr

∣∣∣r) = 1. (4)

Moreover, we have the following result and notation:

mr(p) = E
(∣∣∣Zr

∣∣∣p) = r
p
r −1 Γ( p+1

r )

Γ( r+1
r )

for any p > 0. (5)

In this paper, we propose a new two stage estimation procedure leading to a Pseudo Generalized Gaussian Quasi-
Maximum Likelihood Estimator (PGGQMLE) in the general case of affine causal process.

1. Firstly, we assume that (ζt) in (1) is a white noise distributed following a GED(r0) with r0 ≥ 1 an unknown
parameter. Then r0 is estimated by r̂ using jointly the Gaussian and Laplacian QMLEs of θ0. The strong
consistency of r̂ is established.

2. Secondly, after showing that the Generalized Gaussian Quasi-Maximum Likelihood Estimator (GGQMLE) of
θ0, i.e. a quasi-maximum likelihood estimator built using a GED(r) as an instrumental density (see below), is
strongly consistent for any r > 1, by replacing r with r̂ a PGGQMLE is obtained and its consistency is also
established.

The following Section 2 provides the definitions and assumptions. Section 3 studies the estimator r̂ of the parameter
shape r and its consistency is established. Then, the asymptotic behavior of the PGGQML estimator is studied in
Section 4, while the results of Monte-Carlo experiments are presented in Section 6.

2. Definition and assumptions

2.1. Definition of the estimator
Assume that (X1, · · · , Xn) is an observed trajectory of X solution of (1) where θ0∗ ∈ Θ ⊂ Rd and γ0∗ ∈ Γ ⊂ Re are

unknown. For estimating θ0∗ and γ0∗ we consider the log-likelihood of (X1, · · · , Xn) conditionally to (X0, X−1, · · · ). If
g is the probability density (with respect to Lebesgue measure) of ζ0, then, from the affine causal definition of X, this
conditional log-likelihood is equal to:

n∑
t=1

log
(

1
Mt
θ

g
(Xt − f t

γ

Mt
θ

))
2



where Mt
θ := Mθ(Xt−1, Xt−2, · · · ) and f t

γ := fγ(Xt−1, Xt−2, · · · ), with the assumption that Mt
θ > 0. However, Mt

θ and f t
γ

are generally not computable since X0, X−1, . . . are unknown. Thus, a quasi-log-likelihood is considered instead of the
log-likelihood and it is defined by:

log
(
QL(g)

(θ,γ)(X1, · · · , Xn)
)

=

n∑
t=1

log

 1

M̂t
θ

g
(Xt − f̂ t

γ

M̂t
θ

) ,
with f̂ t

γ := fγ(Xt−1, . . . , X1, u) and M̂t
θ := Mθ(Xt−1, . . . , X1, u) , where u = (un)n∈N is a finitely non-zero sequence

(un)n∈N . The choice of (un)n∈N does not have any consequences on the asymptotic behaviour of Ln, and (un) could
typically be chosen as a sequence of zeros. Finally, a Quasi-Maximum Likelihood Estimator (QMLE) of (θ0∗, γ0∗) can
be defined with the respect of the choice of g

φ̂
(g)
n = (̂θ(g)

n , γ̂
(g)
n ) := Argmax(θ,γ)∈Θ×Γ log

(
QL(g)

(θ,γ)(X1, · · · , Xn)
)
.

The aim of this paper is to propose a new choice of the function g, while the QMLE is generally built with g = g2 the
standard Gaussian distribution (denoted Gaussian QMLE) or, less often, with g = g1 the standard Laplacian distribu-
tion (denoted Laplacian QMLE). Now, we will consider moire generally g = gr.

As a consequence, for any 1 ≤ r ≤ s with s defined in (2), then the equation (1) can be written again:

Xt = Mθr∗ (Xt−1, Xt−2, · · · ) ζ
(r)
t + fγ0∗ (Xt−1, Xt−2, · · · ), t ∈ Z (6)

with ζ(r)
t = ζt

(
E(|ζ0|

r)
)−1/r, implying E(|ζ(r)

t |
r) = 1 and Mθr∗ =

(
E(|ζ0|

r)
)1/r Mθ0∗ . Then, we can define the Generalized

Gaussian Quasi Maximum Likelihood φ̂r
n = (̂θr

n, γ̂
r
n) of φr∗ = (θr∗, γ0∗) that is defined by

φ̂(r)
n = (̂θ(r)

n , γ̂(r)
n ) := Argmin(θ,γ)∈Θ×Γ

n∑
t=1

q̂t(θ, γ) where q̂t(θ, γ) := log
(
|M̂t

θ|
)

+
1
r
|M̂t

θ|
−r |Xt − f̂ t

γ|
r. (7)

In other words, this estimator is equal to φ̂(g)
n when g = gr the GED(r) density.

Remark 2.1. We also see that for r = 2 the Generalized Gaussian contrast is the Gaussian contrast and for r = 1 it is
the Laplacian one.

Bardet and Wintenberger (2009) and Bardet et al. (2017) have respectively proved the consistency and the asymptotic
normality of φ̂(2)

n and φ̂(1)
n respectively. Using these both these consistent estimators, we begin with the estimation of

the parameter shape r0 when the distribution of ζ0 is exactly a GED(r0).

2.2. Existence and stationarity
First we will provide some sufficient conditions for insuring the existence and stationarity of a solution of (1)

such as E
[
|X0|

s] < ∞ with s ≥ 1. As it was already done in Doukhan and Wintenberger (2007), several Lipshitz-type
inequalities on fγ and Mθ can be used for obtaining this s-order stationarity of an ergodic causal solution of (1). First,
denote ‖gφ‖Φ = supφ∈Φ ‖gφ‖ where Φ ⊂ Rd+e and ‖ · ‖ is the usual Euclidian norm. Now, let us introduce the generic
symbol Kφ for any of function Kφ : RN 7→ Rm or Mm(R) (for instance Kφ = fφ or Mφ or their derivatives). For
k = 0, 1, 2, define a Lipshitz assumption on function Kφ:

Assumption (Ak(K,Φ)) ∀x ∈ R∞, φ ∈ Φ 7→ Kφ(x) ∈ Ck(Φ) and ∂k
φKφ satisfies

∥∥∥∂k
φKφ(0)

∥∥∥
Φ
< ∞ and there exists a

sequence
(
α(k)

j (K,Φ)
)

j of nonnegative numbers such that ∀x, y ∈ R∞

∥∥∥∂k
φKφ(x) − ∂k

φKφ(y)
∥∥∥

Φ
≤

∞∑
j=1

α(k)
j (K,Φ)|x j − y j|, with

∞∑
j=1

α(k)
j (K,Φ) < ∞.
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For ensuring a stationary s-order solution of (1), where s ≥ 1, define the set

Φ(s) :=
{
φ = (θ, γ) ∈ Rd+e, (A0( f , {φ})) and (A0(M, {φ})) hold,

∞∑
j=1

α(0)
j ( f , {φ}) + (E[|ζ0|

s])1/s
∞∑
j=1

α(0)
j (M, {φ}) < 1

}
.

Then, from Doukhan and Wintenberger (2007), we obtain:

Proposition 2.1. If φ0∗ ∈ Φ(s) for some s ≥ 1, then there exists a unique causal (Xt is independent of (ζi)i>t for t ∈ Z)
solution X of (1), which is stationary, ergodic and satisfies E

[
|X0|

s] < ∞ .

Thus, the stationarity and r-order of a solution of (6) is ensured from this corollary:

Corollary 2.1. If φ ∈ Φr(r), with:

Φr(r) :=
{
φ = (θ, γ) ∈ Rd+e, (A0( f , {φ})) and (A0(M, {φ})) hold,

∞∑
j=1

α(0)
j ( f , {φ}) +

∞∑
j=1

α(0)
j (M, {φ}) < 1

}
, (8)

then there exists a unique causal solution X of (6), which is stationary, ergodic and satisfies E
[
|X0|

r] < ∞ .

2.3. Additive assumptions required for the estimation

Fix some compact subset Φ of Φ(s) ⊂ Rd+e. We will consider the following assumptions:

(Ainf) There exists M > 0 such that inf(θ,γ)∈Φ Mθ(x) ≥ M for all x ∈ R∞.

(Id) For all (θ, γ) ∈ Φ, ( f t
γ = f t

γ0
and Mt

θ = Mt
θ0

a.s.) ⇒ θ = θ0 and γ = γ0.

(Var) One of the families (∂ f t
γ0
/∂γi)1≤i≤d or (∂Mt

θ0
/∂θi)1≤i≤d is a.e. linearly independent, where:

∂ f t
γ

∂γ
:=

∂ fγ
∂γ

(Xt−1, . . .) and
∂Mt

θ

∂θ
:=

∂Mθ

∂θ
(Xt−1, . . .).

The condition [(Id)] is a usual identifiability condition while the condition (Var) is needed for ensuring the finiteness
of the asymptotic variance in the result on asymptotic normality.

3. Estimation of the parameter shape r0

In this section we propose a method to estimate the parameter shape r0 when (ζt) is supposed to exactly follow a
GED(r0) with r0 ≥ 1.

3.1. Construction of the estimator in case of GED(r0) white noise

Assume now that ζ0 follows a GED(r0) and (X1, . . . , Xn) is an observed trajectory of (Xt) that satisfies (1). In this
case, a straightforward relation can be established between Mθ0∗ and Mθ(r) :

Lemma 3.1. For any r ≥ 1, when (X1, . . . , Xn) is an observed trajectory of (Xt) that satisfies (1) and ζ0 follows a
GED(r0), then

Mθ0∗ = Mθr∗ r
1
r −

1
r0

Γ
(
1 + 1

r0

)
Γ
( r+1

r0

) 1/r

and f t
γr∗ = f t

γ0
. (9)

4



Proof. Here we use the relation provided by the rewritting of (1), i.e.

Mθ0∗ = Mθr∗
(
E
[
|ζ0|

r])−1/r (10)

and the moment equality (5) and that induce (9).

In the sequel we will consider two particular cases r = 1, corresponding to the Laplacian QMLE and r = 2, corre-
sponding to the classical Gaussian QMLE. Hence using the results of Lemma 3.1 we obtain:

( Mt
θ1∗

Mt
θ2∗

)2
=

Γ2( 2
r0

)

Γ( 1
r0

)Γ( 3
r0

)
:= H(r0). (11)

This function H is a continuous and increasing function so it is invertible. The forthcoming Figure 1 exhibits the
graph of H.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

r

H
(r

)

Figure 1: Graph of the function H(r)

The relation (11) leads to the definition of an estimator r̂n of the parameter shape r0 given by the expression

r̂n = H−1

1
n

n∑
t=1

( M̂t
θ̂(1)

n

M̂t
θ̂(2)

n

)2

 , (12)

since θ1∗ and θ2∗ are unknwon and can be estimated using QMLE estimators.

3.2. Consistency of r̂n

Now we study the consistency of the proposed estimator r̂n for the shape parameter r0.

Theorem 3.1. Let X be a stationary solution of the equation (1) where ζ0 follows a GED(r0) and φ0∗ ∈ Φ, a compact
subset of Φ(2). Assume also that Assumptions (A0( f ,Φ)), (A0(M,Φ)), (Ainf) and (Id) hold with

α(0)
j ( f ,Φ) + α(0)

j (M,Φ) = O
(
j−`

)
for some ` > 3/2. (13)

Then the estimator r̂n is strongly consistent, i.e. r̂n
a.s.
−→
n→∞

r0.
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Proof of Theorem 3.1. It is clear that êt(θ1∗, θ2∗) :=
( M̂t

θ1∗

M̂t
θ2∗

)2
= H(r0) for any t ∈ Z by definition of θ1∗ and θ2∗. As

a consequence, hn(θ1∗, θ2∗) := 1
n

∑n
t=1 êt(θ1∗, θ2∗) = H(r0). But since the function θ ∈ Rd 7→ Mθ(x) is supposed to be

a continuous function for any x ∈ R∞, the function (θ1, θ2) ∈ R2d 7→ hn(θ1, θ2) is also alsmost surely a continuous
function.
Bardet and Wintenberger (2009) proved that θ̂2

n
a.s.
−→
n→∞

θ2∗, Bardet et al. (2017) proved that θ̂1
n

a.s.
−→
n→∞

θ1∗ under the

assumptions.
Therefore hn (̂θ1

n, θ̂
2
n) − hn(θ1∗, θ2∗)

a.s.
−→
n→∞

0, i.e. hn (̂θ1
n, θ̂

2
n)

a.s.
−→
n→∞

H(r0). Since the function H−1 is also a continuous

function, the proof is established.

4. Consistency of the Pseudo-Generalized Gaussian Quasi-Maximum Likelihood Estimator

In this section we first study the consistency of the Generalized Gaussian Quasi-Maximum Likelihood Estimator
(GGQMLE).

Theorem 4.1. Let X be a stationary solution of the equation (6) with 1 ≤ r ≤ s and φr∗ ∈ Φ for a compact subset
Φ ⊂ Φr(r) defined in (8) under Assumptions (A0( f ,Φ)), (A0(M,Φ)). Assume also that Assumptions (Ainf) and (Id)
hold with

α(0)
j ( f ,Φ) + α(0)

j (M,Φ) = O
(
j−`

)
for some ` > max

{
2

r + 1
s
− 1 , 1

}
. (14)

Then, for any r ≥ 1, φ̂(r)
n

a.s.
−→
n→∞

φr∗ with φr∗ defined in (6).

Remark 4.1. When s ≥ r + 1, the bound in (14) is obtained with ` > 1. As a consequence, long-range dependent
processes such as FARIMA processes (that are particular cases of AR(∞) processes) can also be considered.

Proof of Theorem 4.1. Using the assumptions, (Xt) is also a solution of (6). The proof of the theorem is divided into
two parts and follows the same procedure than in Bardet and Wintenberger (2009). Consider (̂qt(θ, γ))0≤t≤n defined in
(7) and (qt)t∈Z defined by

qt(θ, γ) := log
(
|Mt

θ|
)

+
1
r
|Mt

θ|
−r |Xt − f t

γ|
r. (15)

1. We first prove that ∥∥∥∥1
n

n∑
t=1

qt(θ, γ) − E
(
qt(θ, γ)

)∥∥∥∥
Θ

a.s.
−→
n→∞

0. (16)

(i) In the same way and for the same reason in the proof of Theorem 1 of Bardet et al. (2017), a uniform (on Θ)
strong law of large numbers is satisfied by

(
qt(θ, γ)

)
t∈Z, which is a sequence of martingale increments, is implied by

establishing E
(
‖qt(φ)‖Φ

)
< ∞. But for all t ∈ Z,

∣∣∣qt(θ, γ)
∣∣∣ ≤ ∣∣∣ log

(
|Mt

θ|
)∣∣∣ +

1
r
|Mt

θ|
−r |Xt − f t

γ|
r

≤
|Xt − f t

γ|
r

r Mr +
∣∣∣ log(|M|)

∣∣∣ +
|Mt

θ|

|M|
≤ C

(
|Xt |

r + | f t
γ|

r + |Mt
θ| + 1

)
,

with C > 0 that does not depend on (θ, γ). But, since Θ ⊂ Φ(r) implying E
(
|Xt |

r) < ∞, and as it was already proved in
Bardet and Wintenberger (2009), E

(
supθ∈Θ

(
|Mt

θ|
r + | f t

γ|
r)) < ∞. Therefore E

(∥∥∥q0(θ, γ)
∥∥∥

Φ

)
< ∞ and (16) holds.

2. Moreover, we also have: ∥∥∥∥1
n

n∑
t=1

(
qt(θ, γ) − q̂t(θ, γ)

)∥∥∥∥
Θ

a.s.
−→
n→∞

0. (17)
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Indeed, for any t ≥ 1 and (θ, γ) ∈ Θ, and using several times the mean value Theorem,

r
∣∣∣q̂t(θ, γ) − qt(θ, γ)

∣∣∣ ≤ r
∣∣∣ log(|M̂t

θ|) − log(|Mt
θ|)

∣∣∣ +
∣∣∣|M̂t

θ|
−r |Xt − f̂ t

γ|
r − |Mt

θ|
−r |Xt − f t

γ|
r
∣∣∣

≤
r
M

∣∣∣M̂t
θ − Mt

θ

∣∣∣ + |Xt − f t
γ|

r ×
∣∣∣|M̂t

θ|
−r − |Mt

θ|
−r

∣∣∣
+|M̂t

θ|
−r

∣∣∣|Xt − f̂ t
γ|

r − |Xt − f t
γ|

r
∣∣∣

≤
r
M

∣∣∣M̂t
θ − Mt

θ

∣∣∣ + 2r−1(|Xt |
r + | f t

γ|
r) × r

Mr+1

∣∣∣M̂t
θ − Mt

θ

∣∣∣
+

1
Mr r |Zγ|r−1

∣∣∣ f̂ t
γ − f t

γ

∣∣∣
where |Zγ| ≤ max

(
|Xt − f̂ t

γ|, |Xt − f t
γ|
)
≤ 2 |Xt | + | f̂ t

γ| + | f
t
γ|. Therefore, there exists C > 0 depending on r and M such at∣∣∣q̂t(θ, γ) − qt(θ, γ)

∣∣∣ ≤ C
((

1 + |Xt |
r + | f t

γ|
r) ∣∣∣M̂t

θ − Mt
θ

∣∣∣ +
(
|Xt |

r−1 + | f̂ t
γ|

r−1 + | f t
γ|

r−1) ∣∣∣ f̂ t
γ − f t

γ

∣∣∣).
As a consequence, if r ≤ s ≤ r + 1, using Hölder Inequality with p = (r + 1)/r and q = r + 1, we obtain

E
(∥∥∥q̂t(θ, γ) − qt(θ, γ)

∥∥∥s/(r+1)
Θ

)
≤ C E

((
1 + |Xt |

r + ‖ f t
γ‖

r
Φ

)s/(r+1) ∥∥∥M̂t
θ − Mt

θ

∥∥∥s/(r+1)
Φ

+
(
|Xt |

r−1 + ‖ f̂ t
γ‖

r−1
Φ + ‖ f t

γ‖
r−1
Φ

)s/(r+1) ∥∥∥ f̂ t
γ − f t

γ

∥∥∥s/(r+1)
Φ

)
≤ C

(
1 +

(
E
(
|Xt |

s))r/(r+1)
+

(
E
(
‖ f t
γ‖

s
Φ

))r/(r+1)
) (
E
(∥∥∥M̂t

θ − Mt
θ

∥∥∥s
Φ

)1/(r+1)

+ C
((
E
(
|Xt |

s(r−1)/r))r/(r+1)
+

(
E
(
‖ f t
γ‖

s(r−1)/r
Φ

))r/(r+1)
+

(
E
(
‖ f̂ t
γ‖

s(r−1)/r
Φ

))r/(r+1)
) (
E
(∥∥∥ f̂ t

γ − f t
γ

∥∥∥s
Φ

)1/(r+1)
.

Using again Bardet and Wintenberger (2009), we know that max
(
E
(
|Xt |

s),E(
‖ f t
γ‖

s
Φ

)
,E

(
‖ f̂ t
γ‖

s
Φ

)
< ∞. Moreover, we

also have

E
(∥∥∥M̂t

θ − Mt
θ

∥∥∥s
Φ

)
≤ E

(
|X0|

s) ( ∞∑
k=t

α(0)
k (M,Φ)

)s
and E

(∥∥∥ f̂ t
γ − f t

γ

∥∥∥s
Φ

)
≤ E

(
|X0|

s) ( ∞∑
k=t

α(0)
k ( f ,Φ)

)s
.

Finally, we obtain that there exists C > 0 not depending on t sur as for any t ≥ 1,

E
(∥∥∥q̂t(θ, γ) − qt(θ, γ)

∥∥∥s/(r+1)
Θ

)
≤ C

∞∑
k=t

(
α(0)

k (M,Φ) + α(0)
k ( f ,Φ)

)s/(r+1)
≤ C t1−(` s)/(r+1), (18)

from (14). Using Corollary 1 of Kounias and Weng (1969), (17) is established if there exists u ∈ (0, 1] such as∑
t≥1

1
tu E

(∥∥∥qt(θ, γ) − q̂t(θ, γ)
∥∥∥u

Φ

)
< ∞. (19)

It is such the case with u = s/(r + 1), since we have:∑
t≥1

1
ts/(r+1) E

(∥∥∥qt(θ, γ) − q̂t(θ, γ)
∥∥∥s/(r+1)

Φ

)
≤ C

∑
t≥1

t1−(`+1)s/(r+1) < ∞.

In case of s ≥ r + 1, it is sufficient to consider the previous case with s = r + 1.

3. From (16) and (17), we deduce ∥∥∥∥1
n

n∑
t=1

q̂t(θ, γ) − E
(
qt(θ, γ)

)∥∥∥∥
Θ

a.s.
−→
n→∞

0. (20)

Moreover, for φ = (θ, γ) ∈ Φ, we study
L(φ) = −E

(
q0(φ)

)
.
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which can also be consider as a Kullback-Lieber discripency. Using E
(
|ζt |

r) = 1, we obtain:

L(φ) = −
1
r
E
(

log
(
|Mt

θ|
r) +

( Mt
θr∗

Mt
θ

)r ∣∣∣∣ζt +
f t
γ0∗ − f t

γ

Mt
θr∗

∣∣∣∣r)
=⇒ L(φr∗) − L(φ) =

1
r
E
(

log
(∣∣∣∣ Mt

θ

Mt
θr∗

∣∣∣∣r) +
∣∣∣∣ Mt

θr∗

Mt
θ

∣∣∣∣r ∣∣∣∣ζt +
f t
γ0∗ − f t

γ

Mt
θr∗

∣∣∣∣r − 1
)

=
1
r
E
(

log
(∣∣∣∣ Mt

θ

Mt
θr∗

∣∣∣∣r) − 1 +
∣∣∣∣ Mt

θr∗

Mt
θ

∣∣∣∣r E(∣∣∣∣ζt +
f t
γ0∗ − f t

γ

Mt
θr∗

∣∣∣∣r | (Xt−k)k≥1

))
.

But for ζt following a symmetric probability distribution, for any m ∈ R∗, E
(
|ζt + m|r

)
> E

(
|ζt |

r) = 1. Therefore, for
θ , θr∗, if fγ , fγ0∗ (else > is replaced by ≥),

L(φr∗) − L(φ) >
1
r
E
(

log
(∣∣∣∣ Mt

θ

Mt
θr∗

∣∣∣∣r) − 1 +
∣∣∣∣ Mt

θr∗

Mt
θ

∣∣∣∣r)
>

1
r

h
(∣∣∣∣ Mt

θ

Mt
θr∗

∣∣∣∣r),
with h(x) = log(x) − 1 + x. But for any x ∈ (0, 1) ∪ (1,∞), h(x) > 0 and h(1) = 0. Therefore if Mθ , Mθr∗ ,
L(φr∗) − L(φ) > 0 (> 0 is replaced by = 0 if Mθ = Mθr∗ ). This implies from Condition (Id) that L(φr∗) − L(φ) > 0 for
all θ ∈ Θ, θ , θr∗. Hence a supremum of L(φ) is only reached for φ = φr∗, which is the unique maximum, and this the
same behavior for

∑n
t=1 q̂t(θ, γ) from (20), implying φ̂(r)

n
a.s.
−→
n→∞

φr∗.

Since φr∗ = (γr∗, θ0∗), it is clear that for θ̂(r) a.s.
−→
n→∞

θ0∗ for any r ≤ s. Concerning the parameter θ, we will add the

following assumption on the function Mθ with p a positive real number:

(HM)(p): For any C > 0 and θ ∈ Rd, C × Mθ(·) = M|C|p θ(·).

Examples: Assumption (HM)(p) is trivially satisfied in case of ARMA or AR(∞) processes with p = 1, but also
for GARCH(p, q) processes with p = 1, or APARCH(p, δ, q) processes with p = δ.

As a consequence, under Assumption (HM)(p), we have:

θr∗ =
(
E(|ζ0|

r)
)p/r

θ0∗.

Even if p, r0 and r are known, the is generally unknown. But in the particular cas where ζ0 follows a GED(r0), using
(5), we obtain:

θr∗ =
(
r

r
r0
−1

0

Γ
( r+1

r0

)
Γ
( r0+1

r0

) )p/r
θ0∗.

Therefore, if ζ0 follows a GED(r0), θ̂(r) can also be used for estimating θ0∗ for any 1 ≤ r ≤ s. But which parameter r
has to be chosen for estimated the parameters θ0∗ and γ0∗? Clearly, when r0 is known, the choice r = r0 is induced by
the following property:

Property 4.1. Let X be a stationary solution of the equation (1) where ζ0 follows a GED(r0) and φ0∗ ∈ Φ, a compact
subset of Φ(r0). Assume also that Assumptions (A0( f ,Φ)), (A0(M,Φ)), (Ainf) and (Id) hold with

α(0)
j ( f ,Φ) + α(0)

j (M,Φ) = O
(
j−`

)
for some ` > 1. (21)

Then the estimator φ̂(r0) is asymptotically efficient (its renormalized asymptotic covariance behaves as the Cramèr-Rao
bound).
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Proof of Property 4.1. Denote L̃n(φ) = 1
n

∑n
t=1 qt(θ, γ) and Ln(φ) = 1

n log
(
f(X1,...,Xn)(X1, . . . , Xn)

)
, where f(X1,...,Xn) is

the probability density of the vector (X1, . . . , Xn) with respect to the Lebesgue measure when (ζt) is a white noise fol-
lowing a GED(r0) distribution. Then, if φ̃n := Argmaxφ∈ΦLn(φ) then φ̃ is the classical maximum likelihood estimator.
Using Daniels (1961), we know that φ̃ is asymptotically efficient.
But Ln(φ) = L̃n(φ) + 1

n log( fX1 (X1)) and therefore Ln(φ) = L̃n(φ) + OP(1/n).
Morevoer L̃n(φ) = 1

n
∑n

t=1 q̂t(θ, γ) + OP(1/n) under condition (21). As a consequence, φ̃n = φ̂(r0) + OP(1/n) and
therefore φ̂(r0) is also asymptotically efficient.

What can be done if r0 is unknown? We can use the previous estimator r̂n of r0 and plug-in it in the formula of the
estimator of φ. Hence:

Property 4.2. Under the assumptions of Property 4.1 but with Φ, a compact subset of Φ(v) with v = max(r0, 2), then
φ̂(̂rn)

n
a.s.
−→
n→∞

φ0∗ with φ0∗ defined in (1).

Proof of Property 4.2. The function r ∈ [1,∞) → φ̂(r)
n is a.s. a continuous function. As a consequence, using

r̂n
a.s.
−→
n→∞

r0 obtained in Theorem 3.1 and φ̂(r0)
n

a.s.
−→
n→∞

φ0∗ obtained in Property 4.1, we obtain φ̂(̂rn)
n

a.s.
−→
n→∞

φ0∗.

5. Examples

In this section, we explicitly apply the proposed two stage estimation procedure to several classical time series
that are affine causal models: AR(p), GARCH(p, q) and APARCH(p, δ, q) processes.

1/ AR(p) processes: Consider the equation of an AR(p) process, i.e.

Xt = a0∗ ζt + µ0∗ + Σ
p
i=1β

0∗
i Xt−i, t ∈ Z, (22)

where µ0∗ ∈ R, a0∗ > 0,
∑∞

j=1

∣∣∣β0∗
i

∣∣∣ < 1 and (ζt)t∈Z is a white noise satisfying (2).
Such AR(p) process is a special case of the affine causal process (1) with Mt

θ = a and f t
γ = µ+ Σ

p
i=1βi Xt−i where θ = a

and γ =
(
µ, β1, . . . , βp

)
. For 0 < α < β < ∞, and 0 < ρ < 1, define

Θ = [α, β] and Γ =
{
(µ, β1, . . . , βp) ∈ Rp+1, |µ| ≤ ρ−1 and

p∑
i=1

∣∣∣βi

∣∣∣ ≤ ρ}.
Moreover, since Mt

θ is a real constant not depending of the time, the parameter shape estimator defined in 12 becomes,

r̂n = H−1

 â(1)
n

â(2)
n

2
Then, the Generalized Gaussian Quasi-Maximum Likelihood Estimator φ̂̂rn

n = (̂θ̂rn
n , γ̂

r̂n
n ) is defined by

φ̂(̂rn)
n := Argmin(θ,γ)∈Θ×Γ

n∑
t=1

q̂t(θ, γ) where q̂t(θ, γ) := log
(
a
)

+
1
r̂n
|a|−̂rn

∣∣∣∣Xt − (µ +

p∑
i=1

βi Xt−i)
∣∣∣∣̂rn
, (23)

with X0 = X−1 = . . . = X1−p = 0 by convention.
Then the assumptions of Property 4.1 and 4.2 are satisfied since the Lipshitz coefficients of Mθ and fγ and their deriva-
tives decrease exponentially fast (see for instance Bardet and Wintenberger (2009)).

2/GARCH process: The GARCH(p, q) process has been introduced by Bollerslev (1986) as the solution of equations Xt = σt ζt,

σ2
t = ω0∗ +

∑p
i=1 α

0∗
i X2

t−i +
∑q

j=1 β
0∗
j σ

2
t− j,

(24)

9



where ω0∗ > 0, α0∗
i ≥ 0 for i = 1, . . . , p and β0∗

j ≥ 0 for j = 1, . . . , q with α0∗
p , β

0∗
q positive and

p∑
i=1

α0∗
i +

q∑
j=1

β0∗
j < 1.

As a consequence (Xt)t is a stationary process such as E
(
|X0|

s) < ∞ (see for instance Bardet and Wintenberger (2009).
Such GARCH process is a special case of affine causal process (1) where Mt

θ = σt(θ) and f t
γ = 0, we denote here

θ =
(
ω, α1, . . . , αp, β1, . . . , βq

)
and (σt(θ))t satisfies the recurrence relationship

σ2
t (θ) = ω +

p∑
i=1

αi X2
t−i +

q∑
j=1

β j σ
2
t− j(θ) for any t ∈ Z.

Now define Θ such as:

Θ =
{
θ ∈ [0,∞[p+q+1, ρ ≤ ω ≤ 1/ρ,

p∑
i=1

αi +

q∑
j=1

β j ≤ ρ
′},

with 0 < ρ, ρ′ < 1, and this ensuring the stationarity of (Xt) for any θ ∈ Θ.
Using Lemma 3.1 we get

r̂n = H−1

1
n

n∑
t=1

σ̂2
t (̂θ(1)

n )

σ̂2
t (̂θ(2)

n )

 (25)

where σ̂2
t is defined using (Xi)i∈N = 0.

We estimate θ by the Generalized Gaussian Quasi-Maximum Likelihood Estimator θ̂(̂rn)
n defined by

θ̂(̂rn)
n := Argminθ∈Θ

n∑
t=1

(
log

(
|M̂t

θ|
)

+
1
r̂n

∣∣∣∣ Xt

M̂t
θ

∣∣∣∣̂rn)
.

Then the assumptions of Property 4.1 and 4.2 are satisfied since the Lipshitz coefficients of Mθ and fγ and their deriva-
tives decrease exponentially fast (see for instance Bardet and Wintenberger (2009)).

3/ APARCH process: The APARCH(p, δ, q) processes have been introduced by Ding et al. (1993) as the solution of
equations  Xt = σt ζt,

σδt = ω0∗ +
∑p

i=1 α
0∗
i
(
|Xt−i| − γ

0∗
i Xt−i

)δ
+

∑q
j=1 β

0∗
j σ

δ
t− j,

(26)

where δ ≥ 1, ω0∗ > 0, −1 < γ0∗
i < 1 and α0∗

i ≥ 0 for i = 1, . . . , p, β0∗
j ≥ 0 for j = 1, . . . , q satisfying

∑q
j=1 β

0∗
j < 1. In

the sequel the parameter δ is supposed to be known.
More generally, we denote now

θ =
(
ω, α1, . . . , αp, γ1, . . . , γp, β1, . . . , βq

)
,

with ω > 0, −1 < γi < 1 and αi ≥ 0 for i = 1, . . . , p, β j ≥ 0 for j = 1, . . . , q satisfying
∑q

j=1 β
0∗
j < 1. Then

conditions of stationarity of (Xt) can be deduced. Indeed, using L the usual backward operator such as LXt = Xt−1,
then

(
1 −

∑q
j=1 β jL j)−1 exists and simple computations imply for t ∈ Z:

σδt (θ) =
(
1 −

q∑
j=1

β j L j)−1
[
ω +

p∑
i=1

αi (1 − γi)δ(max(Xt−i, 0))δ + αi (1 + γi)δ(−min(Xt−i, 0))δ
]

= b0(θ) +
∑
i≥1

b+
i (θ) (max(Xt−i, 0))δ +

∑
i≥1

b−i (θ) (max(−Xt−i, 0))δ.

where b0(θ) = ω(1 −
∑q

j=1 β j)−1 and the coefficients (b+
i (θ), b−i (θ))i≥1 are defined by the recursion relationsb+

i (θ) =
∑q

k=1 βkb+
i−k(θ) + αi(1 − γi)δ with αi(1 − γi) = 0 for i > p

b−i (θ) =
∑q

k=1 βkb−i−k(θ) + αi(1 + γi)δ with αi(1 + γi) = 0 for i > p
(27)
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with b+
i (θ) = b−i (θ) = 0 for i ≤ 0.

As a consequence, an APARCH process is a special case of the affine causal process with f t
θ ≡ 0 and Mt

θ = σt(θ).
Therefore α(0)

j ( f ,Θ) = 0 and simple computations imply α(0)
j (M, {θ}) = sup

θ∈Θ
max

(
|b+

j (θ)|1/δ, |b−j (θ)|1/δ
)

and we estab-

lished in Bardet et al. (2017) that the sequence (α(0)
j (M, {θ}))i decreases exponentially fast. Thus, with 0 < ρ, ρ′ < 1

define the compact set Θ by

Θ =
{
θ ∈ R2p+q+1

/
ρ ≤ ω ≤ 1/ρ and

∞∑
j=1

max
(
|b+

j |
1/δ, |b−j |

1/δ) ≤ ρ′}. (28)

For θ0∗ ∈ Θ, the estimator of the parameter shape r0 in the case of an APARCH proces is

r̂n = H−1

1
n

n∑
t=1

σ̂2
t (̂θ(1)

n )

σ̂2
t (̂θ(2)

n )

 . (29)

Since we have an estimation r̂n for the parameter shape r, we use it in the estimation of (̂θ(̂rn)
n )

θ̂(̂rn)
n := Argminθ∈Θ

n∑
t=1

(
log

(
|M̂t

θ|
)

+
1
r̂n

∣∣∣∣ Xt

M̂t
θ

∣∣∣∣̂rn)
.

Then the assumptions of Property 4.1 and 4.2 are satisfied since the Lipshitz coefficients of Mθ and fγ and their
derivatives decrease exponentially fast (see for instance Bardet et al. (2017)).

6. Numerical Results

In order to illustrate the interest of the estimate of the parameter shape r, we realize Monte-Carlo experiments
on the behavior of Gaussian QMLE, Laplace QMLE and the Pseudo Generalized Gaussian QMLE, for GARCH and
APARCH processes and several sizes of sample (n = 100, n = 1000 and n = 5000). More precisely, we will consider:

• a GARCH(1, 1) process defined by Xt = σt ζt where σ2
t = α0 + α1X2

t−1 + βσ2
t−1 with α0 = 0.2, α1 = 0.4 and

β = 0.2;

• an APARCH(1, δ, 1) process defined by Xt = σt ζt where σδt = α0 + α1
(
|Xt−1| − γXt−1

)δ
+ βσδt−1 and α0 =

0.2, α1 = 0.4, γ = 0.8, β = 0.2 and δ = 1.2 (δ is supposed to be known).

6.1. Estimation of r
We first consider white noise (ζt)t∈Z such as the distribution of ζ0 is a generalized Gaussian distributions for several

values of r: r = 1 (Laplace distribution), r = 1.3, r = 1.7, r = 2 (Gaussian distribution) and r = 2.6. Using 1000
independent replications of both the processes, r is estimated by r̂n defined in (12) and its root-mean-square error
(RMSE) is computed and reported in forthcoming tables 1 and 2.

r = 1 r = 1.3 r = 1.7 r = 2 r = 2.6
n = 100 0.362 0.366 0.650 1.007 1.381
n = 1000 0.064 0.084 0.122 0.158 0.196
n = 5000 0.030 0.039 0.051 0.071 0.086

Table 1: RMSE of r̂n for the GARCH(1, 1) process particular case from 1000 independent replications.

Conclusion of the numerical results: The simulations exhibit that the larger the sample size n the smaller the RMSE
of the parameter shape estimator r̂n. They also show that the larger the shape parameter r the larger the RMSE of r̂n.
More precisely, it seems that the RMSE of r̂n/r is only depending on n.
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r = 1 r = 1.3 r = 1.7 r = 2 r = 2.6
n = 100 0.522 0.672 1.560 2.946 2.386
n = 1000 0.073 0.090 0.756 0.218 0.271
n = 5000 0.029 0.036 0.067 0.089 0.117

Table 2: RMSE of r̂n for the APARCH(1, 1) process particular case from 1000 independent replications.

6.2. Comparisons of Gaussian, Laplacian and Pseudo-Gaussian Generalized QMLE

In the sequel, we will consider white noises (ζt) where ζ0 follows several different probability distributions with
unit variance:

• the Gaussian distribution N(0, 1);

• the centered Laplacian distribution L(1/
√

2);

• the Uniform distributionU([−
√

3,
√

3]);

• the renormalized Student distribution
√

3/5 t5.

Hence, to allow comparison of the estimators, we have chosen the usual normalization of the model writing with unit
variance white noise (ζt)t. We first assume that ζ0 follows a Generalized Gaussian distribution GED(r0) to within one
multiplicative constant, with r0 ≥ 1, and therefore ζ0 =

(
mr0 (2)

)−1/2Zr0 for obtaining E(ζ2
0 ) = 1. Then we can write

with r0 ≥ 1 :Hence, for r ≥ 1, and for both the processes, we can write with E(ζ2
0 ) = 1 and

Xt = Mt
θ2∗ ζt = Mt

θ2∗

(
mr0 (2)

)−1/2
ζr0

t

with (ζr0
t ) a white noise such as ζr0

0 follows the GED(r0) distribution defined in (3).
Now consider r ≥ 1. We can write:

Xt = Mt
θ2∗ ζt =

 (
mr0 (r)

)1/r(
mr0 (2)

)1/2 Mt
θ2∗

 ζ(r)
t = Mt

θr∗ ζ
(r)
t ,

with ζ(r)
t = ζt

(
mr0 (2)

)1/2(
mr0 (r)

)1/r and therefore E
(∣∣∣ζ(r)

t

∣∣∣r) = 1. As a consequence,

1. For GARCH(1, 1) process, we have
(
Mt
θ2∗

)2
= α(2∗)

0 + α(2∗)
1 X2

t−1 + β(2∗)(Mt−1
θ2∗

)2. Then we deduce

(
Mt
θr∗

)2
=

(
mr0 (r)

)2/r

mr0 (2)
(
α(2∗)

0 + α(2∗)
1 X2

t−1
)

+ β(2∗)(Mt−1
θr∗

)2
= α(r∗)

0 + α(2∗)
1 X2

t−1 + β(r∗)(Mt−1
θr∗

)2

=⇒


α(r∗)

0 =

(
mr0 (r)

)2/r

mr0 (2)
α(2∗)

0

α(r∗)
1 =

(
mr0 (r)

)2/r

mr0 (2)
α(2∗)

1

β(r∗) = β(2∗)

.

Thus, we will compare three estimators of θ(2∗) = (α(2∗)
0 , α(2∗)

1 , β(2∗)
1 ):

• the classical Gaussian QMLE θ̂(2)
n = (α̂(2)

0 , α̂(2)
1 , β̂(2)) defined in (7);
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• the modified Laplacian QMLE θ̃(1)
n = (α̃(1)

0 , α̃(1)
1 , β̃(1)) such as

α̃(1)
0 =

mr̂n (2)(
mr̂n (1)

)2 α̂
(1)
0

α̃(1)
1 =

mr̂n (2)(
mr̂n (1)

)2 α̂
(1)
0

β̃(1) = β̂(1)

, where θ̂(1)
n = (α̂(1)

0 , α̂(1)
1 , β̂(1)

1 );

• the modified Pseudo-Gaussian Generalized QMLE θ̃(̂rn)
n = (α̃(̂rn)

0 , α̃(̂rn)
1 , β̃(̂rn)) such as

α̃(̂rn)
0 = mr̂n (2) α̂(̂rn)

0
α̃(̂rn)

1 = mr̂n (2) α̂(̂rn)
1

β̃(̂rn) = β̂(̂rn)
, where θ̂(̂rn)

n = (α̂(̂rn)
0 , α̂(̂rn)

1 , β̂(̂rn)).

2. For the APARCH(1, δ, 1) process, we have
(
Mt
θ2∗

)δ
= α(2∗)

0 + α(2∗)
1

(
|Xt−1| − γ

(2∗)Xt−1
)δ

+ β(2∗)(Mt−1
θ2∗

)δ. Therefore
we deduce

(
Mt
θr∗

)δ
=

(
mr0 (r)

)δ/r(
mr0 (2)

)δ/2 (
α(2∗)

0 + α(2∗)
1

(
|Xt−1| − γ

(2∗)Xt−1
)δ))

+ β(2∗)(Mt−1
θr∗

)δ
= α(r∗)

0 + α(r∗)
1

(
|Xt−1| − γ

(r∗)Xt−1
)δ

+ β(r∗)(Mt−1
θr∗

)δ

=⇒



α(r∗)
0 =

(
mr0 (r)

)δ/r(
mr0 (2)

)δ/2 α(2∗)
0

α(r∗)
1 =

(
mr0 (r)

)δ/r(
mr0 (2)

)δ/2 α(2∗)
1

γ(r∗) = γ(2∗)

β(r∗) = β(2∗)

.

Thus, we will compare three estimators of θ(2∗) = (α(2∗)
0 , α(2∗)

1 , γ(2∗), β(2∗)):

• the classical Gaussian QMLE θ̂(2)
n = (α̂(2)

0 , α̂(2)
1 , γ̂(2), β̂(2)) defined in (7);

• the modified Laplacian QMLE θ̃(1)
n = (α̃(1)

0 , α̃(1)
1 , γ̃(1), β̃(1)) such as

α̃(1)
0 =

(
mr̂n (2)

)δ/2(
mr̂n (1)

)δ α̂(1)
0

α̃(1)
1 =

(
mr̂n (2)

)δ/2(
mr̂n (1)

)δ α̂(1)
0

γ̃(1) = γ̂(1)

β̃(1) = β̂(1)

, where θ̂(1)
n = (α̂(1)

0 , α̂(1)
1 , γ̂(1), β̂(1));

• the modified Pseudo-Gaussian Generalized QMLE θ̃(̂rn)
n = (α̃(̂rn)

0 , α̃(̂rn)
1 , β̃(̂rn)

1 ) such as
α̃(̂rn)

0 =
(
mr̂n (2)

)δ/2
α̂(̂rn)

0
α̃(̂rn)

1 =
(
mr̂n (2)

)δ/2
α̂(̂rn)

1
γ̃(̂rn) = γ̂(̂rn)

β̃(̂rn) = β̂(̂rn)

, where θ̂(̂rn)
n = (α̂(̂rn)

0 , α̂(̂rn)
1 , β̂(̂rn)

1 ).

Remark: Since r̂n is obtained from the reciprocal function H−1, it could not be defined if the condition 1
n

∑n
t=1

( M̂t

θ̂
(1)
n

M̂t

θ̂
(2)
n

)2
<
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0.75 is not satisfied. As a consequence, in the numerical procedure we set r̂n = 10 when 1
n

∑n
t=1

( M̂t

θ̂
(1)
n

M̂t

θ̂
(2)
n

)2
≥ 0.74. This

is a very common case when we take the uniform distribution as the one of the white noise.

The results are presented in Tables 3 and 4.

L N t5 U

θ̃̂rn
n θ̃(1)

n θ̃(2)
n θ̃̂rn

n θ̃(1)
n θ̃(2)

n θ̃̂rn
n θ̃(1)

n θ̃(2)
n θ̃̂rn

n θ̃(1)
n θ̃(2)

n

n = 100 α0 0.622 0.096 0.102 0.207 0.089 0.088 0.968 0.101 0.105 1.094 0.094 0.079
α1 0.801 0.253 0.279 0.344 0.200 0.197 0.526 0.250 0.265 1.590 0.167 0.134
β 0.392 0.230 0.273 0.294 0.226 0.235 0.351 0.229 0.269 0.129 0.221 0.190
Sum 1.816 0.580 0.654 0.845 0.515 0.520 1.845 0.580 0.639 2.813 0.482 0.403
r̂n 1.323 2.540 1.647 8.872

n = 1000 α0 0.043 0.039 0.043 0.037 0.036 0.034 0.051 0.038 0.047 0.019 0.035 0.027
α1 0.102 0.092 0.102 0.068 0.063 0.060 0.107 0.084 0.110 0.036 0.049 0.036
β 0.104 0.102 0.111 0.087 0.090 0.087 0.101 0.094 0.119 0.034 0.083 0.065
Sum 0.250 0.234 0.256 0.192 0.189 0.180 0.259 0.216 0.277 0.088 0.167 0.130
r̂n 1.021 2.035 1.224 9.789

n = 5000 α0 0.018 0.017 0.019 0.016 0.016 0.015 0.022 0.017 0.023 0.015 0.016 0.012
α1 0.042 0.040 0.044 0.027 0.028 0.025 0.045 0.037 0.051 0.031 0.022 0.017
β 0.046 0.046 0.051 0.037 0.039 0.037 0.045 0.044 0.063 0.014 0.036 0.028
Sum 0.106 0.102 0.114 0.081 0.083 0.081 0.112 0.099 0.136 0.059 0.073 0.056
r̂n 1.001 2.008 1.198 9.995

Table 3: Sample mean of r̂n and Root-Mean Square Error of the components of θ̃̂rn
n , θ̃(1)

n and θ̃(2)
n for the considered GARCH(1, 1) processes.

Conclusion of the numerical results: Firstly, the simulations exhibit that the larger the sample size n the smaller the
RMSE of the estimators. Secondly, as we suspected, θ̃(1) and θ̃(2) give the best results when the white noise distribution
is Laplace (respectively Gaussian). Thirdly, globally, it is θ̃̂rn which provides the best results when n ≥ 1000 (otherwise
for n = 100 a bad estimation of r∗0 can be damaging to it). For uniform and Student distributions that are not GED
distributions, the procedure automatically searches for the nearest GED. The PGGQMLE estimator θ̃̂rn uses this to
provide an estimator as close as possible to the one obtained by maximizing the ”true” conditional quasi-likelihood.
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L N t5 U

θ̃̂rn
n θ̃(1)

n θ̃(2)
n θ̃̂rn

n θ̃(1)
n θ̃(2)

n θ̃̂rn
n θ̃(1)

n θ̃(2)
n θ̃̂rn

n θ̃(1)
n θ̃(2)

n

n = 100 α0 0.250 0.073 0.078 0.101 0.064 0.062 0.212 0.074 0.078 0.031 0.054 0.045
α1 0.411 0.200 0.212 0.221 0.149 0.141 0.363 0.189 0.209 0.069 0.115 0.094
γ 0.386 0.295 0.307 0.245 0.225 0.213 0.347 0.276 0.298 0.128 0.182 0.162
β 0.222 0.202 0.204 0.184 0.175 0.169 0.222 0.196 0.200 0.087 0.142 0.121
S um 1.269 0.770 0.801 0.751 0.613 0.584 1.145 0.733 0.785 0.314 0.493 0.422
r̂n 1.237 2.470 1.586 8.793

n = 1000 α0 0.029 0.027 0.029 0.020 0.019 0.018 0.033 0.026 0.033 0.011 0.018 0.013
α1 0.070 0.068 0.074 0.051 0.051 0.049 0.076 0.065 0.080 0.024 0.041 0.032
γ 0.120 0.120 0.130 0.095 0.097 0.095 0.115 0.111 0.135 0.032 0.085 0.066
β 0.081 0.081 0.086 0.054 0.056 0.053 0.076 0.073 0.094 0.019 0.048 0.037
S um 0.300 0.296 0.320 0.220 0.223 0.215 0.300 0.276 0.342 0.086 0.192 0.149
r̂n 1.021 2.029 1.227 9.739

n = 5000 α0 0.012 0.012 0.013 0.009 0.009 0.009 0.014 0.011 0.015 0.009 0.007 0.006
α1 0.032 0.031 0.035 0.022 0.022 0.021 0.034 0.030 0.040 0.020 0.018 0.014
γ 0.055 0.055 0.061 0.039 0.042 0.039 0.054 0.053 0.071 0.013 0.035 0.027
β 0.034 0.034 0.039 0.024 0.026 0.024 0.032 0.031 0.042 0.008 0.020 0.016
S um 0.134 0.132 0.147 0.094 0.099 0.092 0.135 0.125 0.168 0.050 0.081 0.062
r̂n 1.002 2.007 1.195 9.996

Table 4: Sample mean of r̂n and Root-Mean Square Error of the components of θ̃̂rn
n , θ̃(1)

n and θ̃(2)
n for the considered APARCH(1, 1) processes.
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