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We propose a consistent estimator for the parameter shape of the generalized gaussian noise in the class of causal time series including ARMA, AR(∞), GARCH, ARCH(∞), ARMA-GARCH, APARCH, ARMA-APARCH,..., processes. As well we prove the consistency and the asymptotic normality of the Generalized Gaussian Quasi-Maximum Likelihood Estimator (GGQMLE) for this class of causal time series with any fixed parameter shape, which over-performs the efficiency of the classical Gaussian QMLE.

Introduction

This paper is first devoted to estimate the parameter shape r 0 of the white noise density from an observed trajectory of an affine causal process. This class of time series was already defined and studied in [START_REF] Duchenes | On diagnostic checking time series models with portmanteau test statistics based on generalized inverses and 2-inverses[END_REF], [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] and [START_REF] Bardet | Asymptotic behaviour of the Laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF]. Hence, we will consider an observed sample (X 1 , • • • , X n ) where (X t ) t∈Z is a solution of the following equation:

X t = M θ 0 * (X t-k ) k≥1 ζ t + f γ 0 * (X t-k ) k≥1 , t ∈ Z, (1) 
where

• θ 0 * ∈ Θ ⊂ R d , d
∈ N * and γ 0 * ∈ Γ ⊂ R e , e ∈ N * are two unknown vectors of parameters, also called the "true" parameters (but d and e are known);

• (ζ t ) t∈Z is a sequence of centred independent identically distributed random variables (i.i.d.r.v.) with symmetric probability distribution, i.e. ζ 0 L = -ζ 0 , and such as there exists r 0 ≥ 1 and s ≥ min(2, r 0 ) satisfying

E(ζ 0 ) = 0, E(|ζ 0 | r 0 ) = 1 and E(|ζ 0 | s ) < ∞.
(2)

• For x = (x n ) n∈N ∈ R ∞ where R ∞ is the space of real sequences with a finite number of non zero terms, (θ, (x n ) n∈N ) → M θ ((x n ) n∈N ) ∈ (0, ∞) and (γ, (x n ) n∈N ) → f γ ((x n ) n∈N ) ∈ R are two known applications.

In [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] and [START_REF] Bardet | Asymptotic behaviour of the Laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF], it was proved that all the most famous stationary time series used in econometrics, such as ARMA, AR(∞), GARCH, ARCH(∞), TARCH, ARMA-GARCH processes can be written as a causal stationary solution of (1).

The maximum of the conditional quasi-likelihood method, Gaussian QMLE, is the most used to estimate the parameters of the models for stochastic processes. This method was mainly built using the Gaussian instrumental density, see for instance [START_REF] Berkes | GARCH processes: structure and estimatio[END_REF] or [START_REF] Francq | Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes[END_REF] for GARCH(p, q) processes, [START_REF] Francq | Optimal predictions of powers of conditionally heteroskedastic processes[END_REF] for ARMA-GARCH processes, [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] for general heteroskedastic models, and [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] for the general class of affine causal models. Trindade et al. (2006) studies the ARMA and GARCH models driven by asymmetric Laplace noise, [START_REF] Bardet | Asymptotic behaviour of the Laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF] estimated the model parameters using the Laplacian QMLE, i.e. the estimator is constructed from a Laplacian conditional density. Even if the obtained estimators are consistent only under moment conditions on the conditional density, it could be But theoretically, the divergence of true innovation density can greatly increase the variance of the estimates, increasing with the cost of ignoring true distribution innovation.

In order to avoid this arbitrary choice of QML conditional density, [START_REF] Lii | An Approximate Maximum Likelihood Estimation for Non-Gaussian Non-minimum Phase Moving Average Processes[END_REF] proposed an approximate procedure of maximum average non-reversible moving average processes driven by a non-Gaussian noise, [START_REF] Francq | Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE[END_REF] proposed a two stage non Gaussian QML estimation for GARCH processes based on generalized Gaussian errors, Jianqing et al. (2014) proposed a three step quasi-maximum likelihood procedure.

The generalized Gaussian density also known as the Generalized Error Distribution (denoted GED(r) with r > 0) or the power Gamma distribution is given by

g r (x) = 1 2 r 1-1/r Γ(1/r) e -|x| r r for x ∈ R. (3) 
Note that g 1 is the Laplace density and g 2 is the Gaussian one. If Z r follows a GED(r), then

E Z r = 0 and E Z r r = 1. (4) 
Moreover, we have the following result and notation:

m r (p) = E Z r p = r p r -1 Γ( p+1 r ) Γ( r+1 r )
for any p > 0.

(5)

In this paper, we propose a new two stage estimation procedure leading to a Pseudo Generalized Gaussian Quasi-Maximum Likelihood Estimator (PGGQMLE) in the general case of affine causal process.

1. Firstly, we assume that (ζ t ) in ( 1) is a white noise distributed following a GED(r 0 ) with r 0 ≥ 1 an unknown parameter. Then r 0 is estimated by r using jointly the Gaussian and Laplacian QMLEs of θ 0 . The strong consistency of r is established.

2. Secondly, after showing that the Generalized Gaussian Quasi-Maximum Likelihood Estimator (GGQMLE) of θ 0 , i.e. a quasi-maximum likelihood estimator built using a GED(r) as an instrumental density (see below), is strongly consistent for any r > 1, by replacing r with r a PGGQMLE is obtained and its consistency is also established.

The following Section 2 provides the definitions and assumptions. Section 3 studies the estimator r of the parameter shape r and its consistency is established. Then, the asymptotic behavior of the PGGQML estimator is studied in Section 4, while the results of Monte-Carlo experiments are presented in Section 6.

Definition and assumptions

2.1. Definition of the estimator Assume that (X 1 , • • • , X n ) is an observed trajectory of X solution of (1) where θ 0 * ∈ Θ ⊂ R d and γ 0 * ∈ Γ ⊂ R e are unknown. For estimating θ 0 * and γ 0 * we consider the log-likelihood of (X 1 , • • • , X n ) conditionally to (X 0 , X -1 , • • • ). If g is the probability density (with respect to Lebesgue measure) of ζ 0 , then, from the affine causal definition of X, this conditional log-likelihood is equal to: with f t γ := f γ (X t-1 , . . . , X 1 , u) and M t θ := M θ (X t-1 , . . . , X 1 , u) , where u = (u n ) n∈N is a finitely non-zero sequence (u n ) n∈N . The choice of (u n ) n∈N does not have any consequences on the asymptotic behaviour of L n , and (u n ) could typically be chosen as a sequence of zeros. Finally, a Quasi-Maximum Likelihood Estimator (QMLE) of (θ 0 * , γ 0 * ) can be defined with the respect of the choice of g

φ (g) n = ( θ (g) n , γ (g) n ) := Argmax (θ,γ)∈Θ×Γ log QL (g) (θ,γ) (X 1 , • • • , X n ) .
The aim of this paper is to propose a new choice of the function g, while the QMLE is generally built with g = g 2 the standard Gaussian distribution (denoted Gaussian QMLE) or, less often, with g = g 1 the standard Laplacian distribution (denoted Laplacian QMLE). Now, we will consider moire generally g = g r .

As a consequence, for any 1 ≤ r ≤ s with s defined in (2), then the equation ( 1) can be written again:

X t = M θ r * (X t-1 , X t-2 , • • • ) ζ (r) t + f γ 0 * (X t-1 , X t-2 , • • • ), t ∈ Z (6) with ζ (r) t = ζ t E(|ζ 0 | r ) -1/r , implying E(|ζ (r) t | r ) = 1 and M θ r * = E(|ζ 0 | r ) 1/r M θ 0 * . Then, we can define the Generalized Gaussian Quasi Maximum Likelihood φ r n = ( θ r n , γ r n ) of φ r * = (θ r * , γ 0 * ) that is defined by φ (r) n = ( θ (r) n , γ (r) n ) := Argmin (θ,γ)∈Θ×Γ n t=1 q t (θ, γ) where q t (θ, γ) := log | M t θ | + 1 r | M t θ | -r |X t -f t γ | r . (7) 
In other words, this estimator is equal to φ (g) n when g = g r the GED(r) density.

Remark 2.1. We also see that for r = 2 the Generalized Gaussian contrast is the Gaussian contrast and for r = 1 it is the Laplacian one. [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] and [START_REF] Bardet | Asymptotic behaviour of the Laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF] have respectively proved the consistency and the asymptotic normality of φ (2) n and φ (1) n respectively. Using these both these consistent estimators, we begin with the estimation of the parameter shape r 0 when the distribution of ζ 0 is exactly a GED(r 0 ).

Existence and stationarity

First we will provide some sufficient conditions for insuring the existence and stationarity of a solution of (1) such as E |X 0 | s < ∞ with s ≥ 1. As it was already done in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], several Lipshitz-type inequalities on f γ and M θ can be used for obtaining this s-order stationarity of an ergodic causal solution of (1). First, denote g φ Φ = sup φ∈Φ g φ where Φ ⊂ R d+e and • is the usual Euclidian norm. Now, let us introduce the generic symbol K φ for any of function

K φ : R N → R m or M m (R) (for instance K φ = f φ or M φ or their derivatives). For k = 0, 1, 2, define a Lipshitz assumption on function K φ : Assumption (A k (K, Φ)) ∀x ∈ R ∞ , φ ∈ Φ → K φ (x) ∈ C k (Φ) and ∂ k φ K φ satisfies ∂ k φ K φ (0) Φ < ∞ and there exists a sequence α (k) j (K, Φ) j of nonnegative numbers such that ∀x, y ∈ R ∞ ∂ k φ K φ (x) -∂ k φ K φ (y) Φ ≤ ∞ j=1 α (k) j (K, Φ)|x j -y j |, with ∞ j=1 α (k) j (K, Φ) < ∞.
For ensuring a stationary s-order solution of (1), where s ≥ 1, define the set

Φ(s) := φ = (θ, γ) ∈ R d+e , (A 0 ( f, {φ})) and (A 0 (M, {φ})) hold, ∞ j=1 α (0) j ( f, {φ}) + (E[|ζ 0 | s ]) 1/s ∞ j=1 α (0) j (M, {φ}) < 1 .
Then, from [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], we obtain:

Proposition 2.1. If φ 0 * ∈ Φ(s)
for some s ≥ 1, then there exists a unique causal (X t is independent of (ζ i ) i>t for t ∈ Z) solution X of (1), which is stationary, ergodic and satisfies

E |X 0 | s < ∞ .
Thus, the stationarity and r-order of a solution of ( 6) is ensured from this corollary:

Corollary 2.1. If φ ∈ Φ r (r), with: Φ r (r) := φ = (θ, γ) ∈ R d+e , (A 0 ( f, {φ})) and (A 0 (M, {φ})) hold, ∞ j=1 α (0) j ( f, {φ}) + ∞ j=1 α (0) j (M, {φ}) < 1 , (8) 
then there exists a unique causal solution X of (6), which is stationary, ergodic and satisfies E |X 0 | r < ∞ .

Additive assumptions required for the estimation

Fix some compact subset Φ of Φ(s) ⊂ R d+e . We will consider the following assumptions:

(Ainf) There exists M > 0 such that inf (θ,γ)∈Φ M θ (x) ≥ M for all x ∈ R ∞ .
(Id) For all (θ, γ) ∈ Φ, ( f t γ = f t γ 0 and M t θ = M t θ 0 a.s.) ⇒ θ = θ 0 and γ = γ 0 .

(Var) One of the families (∂ f t γ 0 /∂γ i ) 1≤i≤d or (∂M t θ 0 /∂θ i ) 1≤i≤d is a.e. linearly independent, where:

∂ f t γ ∂γ := ∂ f γ ∂γ (X t-1 , . . .) and ∂M t θ ∂θ := ∂M θ ∂θ (X t-1 , . . .).
The condition [(Id)] is a usual identifiability condition while the condition (Var) is needed for ensuring the finiteness of the asymptotic variance in the result on asymptotic normality.

Estimation of the parameter shape r 0

In this section we propose a method to estimate the parameter shape r 0 when (ζ t ) is supposed to exactly follow a GED(r 0 ) with r 0 ≥ 1.

Construction of the estimator in case of GED(r 0 ) white noise

Assume now that ζ 0 follows a GED(r 0 ) and (X 1 , . . . , X n ) is an observed trajectory of (X t ) that satisfies (1). In this case, a straightforward relation can be established between M θ 0 * and M θ (r) : Lemma 3.1. For any r ≥ 1, when (X 1 , . . . , X n ) is an observed trajectory of (X t ) that satisfies (1) and ζ 0 follows a GED(r 0 ), then

M θ 0 * = M θ r * r 1 r -1 r 0        Γ 1 + 1 r 0 Γ r+1 r 0        1/r and f t γ r * = f t γ 0 . (9) 
Proof. Here we use the relation provided by the rewritting of (1), i.e.

M θ 0 * = M θ r * E |ζ 0 | r -1/r (10)
and the moment equality (5) and that induce (9).

In the sequel we will consider two particular cases r = 1, corresponding to the Laplacian QMLE and r = 2, corresponding to the classical Gaussian QMLE. Hence using the results of Lemma 3.1 we obtain:

M t θ 1 * M t θ 2 * 2 = Γ 2 ( 2 r 0 ) Γ( 1 r 0 )Γ( 3 r 0 ) := H(r 0 ). ( 11 
)
This function H is a continuous and increasing function so it is invertible. The forthcoming Figure 1 exhibits the graph of H. The relation ( 11) leads to the definition of an estimator r n of the parameter shape r 0 given by the expression

r n = H -1           1 n n t=1 M t θ (1) n M t θ (2) n 2           , (12) 
since θ 1 * and θ 2 * are unknwon and can be estimated using QMLE estimators.

Consistency of r n

Now we study the consistency of the proposed estimator r n for the shape parameter r 0 .

Theorem 3.1. Let X be a stationary solution of the equation (1) where ζ 0 follows a GED(r 0 ) and φ 0 * ∈ Φ, a compact subset of Φ(2). Assume also that Assumptions (A 0 ( f, Φ)), (A 0 (M, Φ)), (Ainf) and (Id) hold with

α (0) j ( f, Φ) + α (0) j (M, Φ) = O j -for some > 3/2. ( 13 
)
Then the estimator r n is strongly consistent, i.e. r n a.s.

-→ n→∞ r 0 .

Proof of Theorem 3.1. It is clear that e t (θ 1 * , θ 2 * ) :

= M t θ 1 * M t θ 2 *
2 = H(r 0 ) for any t ∈ Z by definition of θ 1 * and θ 2 * . As a consequence, h n (θ 1 * , θ 2 * ) := 1 n n t=1 e t (θ 1 * , θ 2 * ) = H(r 0 ). But since the function θ ∈ R d → M θ (x) is supposed to be a continuous function for any x ∈ R ∞ , the function (θ 1 , θ 2 ) ∈ R 2d → h n (θ 1 , θ 2 ) is also alsmost surely a continuous function. [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF] proved that θ 2 n a.s.

-→ n→∞ θ 2 * , [START_REF] Bardet | Asymptotic behaviour of the Laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF] proved that θ 1 n a.s.

-→ n→∞ θ 1 * under the assumptions. Therefore

h n ( θ 1 n , θ 2 n ) -h n (θ 1 * , θ 2 * ) a.s. -→ n→∞ 0, i.e. h n ( θ 1 n , θ 2 n ) a.s.
-→ n→∞ H(r 0 ). Since the function H -1 is also a continuous function, the proof is established.

Consistency of the Pseudo-Generalized Gaussian Quasi-Maximum Likelihood Estimator

In this section we first study the consistency of the Generalized Gaussian Quasi-Maximum Likelihood Estimator (GGQMLE).

Theorem 4.1. Let X be a stationary solution of the equation ( 6) with 1 ≤ r ≤ s and φ r * ∈ Φ for a compact subset Φ ⊂ Φ r (r) defined in (8) under Assumptions (A 0 ( f, Φ)), (A 0 (M, Φ)). Assume also that Assumptions (Ainf) and (Id) hold with

α (0) j ( f, Φ) + α (0) j (M, Φ) = O j -for some > max 2 r + 1 s -1 , 1 . (14) 
Then, for any r ≥ 1, φ (r) n a.s.

-→ n→∞ φ r * with φ r * defined in (6).

Remark 4.1. When s ≥ r + 1, the bound in ( 14) is obtained with > 1. As a consequence, long-range dependent processes such as FARIMA processes (that are particular cases of AR(∞) processes) can also be considered.

Proof of Theorem 4.1. Using the assumptions, (X t ) is also a solution of ( 6). The proof of the theorem is divided into two parts and follows the same procedure than in [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]. Consider ( q t (θ, γ)) 0≤t≤n defined in ( 7) and (q t ) t∈Z defined by

q t (θ, γ) := log |M t θ | + 1 r |M t θ | -r |X t -f t γ | r . ( 15 
)
1. We first prove that 1 n n t=1 q t (θ, γ) -E q t (θ, γ) Θ a.s.

-→ n→∞ 0.

(16) (i) In the same way and for the same reason in the proof of Theorem 1 of [START_REF] Bardet | Asymptotic behaviour of the Laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF], a uniform (on Θ) strong law of large numbers is satisfied by q t (θ, γ) t∈Z , which is a sequence of martingale increments, is implied by establishing E q t (φ) Φ < ∞. But for all t ∈ Z,

q t (θ, γ) ≤ log |M t θ | + 1 r |M t θ | -r |X t -f t γ | r ≤ |X t -f t γ | r r M r + log(|M|) + |M t θ | |M| ≤ C |X t | r + | f t γ | r + |M t θ | + 1 ,
with C > 0 that does not depend on (θ, γ). But, since Θ ⊂ Φ(r) implying E |X t | r < ∞, and as it was already proved in [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF],

E sup θ∈Θ |M t θ | r + | f t γ | r < ∞.
Therefore E q 0 (θ, γ) Φ < ∞ and (16) holds.

2. Moreover, we also have:

1 n n t=1 q t (θ, γ) -q t (θ, γ) Θ a.s. -→ n→∞ 0. ( 17 
)
Indeed, for any t ≥ 1 and (θ, γ) ∈ Θ, and using several times the mean value Theorem,

r q t (θ, γ) -q t (θ, γ) ≤ r log(| M t θ |) -log(|M t θ |) + | M t θ | -r |X t -f t γ | r -|M t θ | -r |X t -f t γ | r ≤ r M M t θ -M t θ + |X t -f t γ | r × | M t θ | -r -|M t θ | -r +| M t θ | -r |X t -f t γ | r -|X t -f t γ | r ≤ r M M t θ -M t θ + 2 r-1 |X t | r + | f t γ | r × r M r+1 M t θ -M t θ + 1 M r r |Z γ | r-1 f t γ -f t γ where |Z γ | ≤ max |X t -f t γ |, |X t -f t γ | ≤ 2 |X t | + | f t γ | + | f t γ |.
Therefore, there exists C > 0 depending on r and M such at

q t (θ, γ) -q t (θ, γ) ≤ C 1 + |X t | r + | f t γ | r M t θ -M t θ + |X t | r-1 + | f t γ | r-1 + | f t γ | r-1 f t γ -f t γ .
As a consequence, if r ≤ s ≤ r + 1, using Hölder Inequality with p = (r + 1)/r and q = r + 1, we obtain

E q t (θ, γ) -q t (θ, γ) s/(r+1) Θ ≤ C E 1 + |X t | r + f t γ r Φ s/(r+1) M t θ -M t θ s/(r+1) Φ + |X t | r-1 + f t γ r-1 Φ + f t γ r-1 Φ s/(r+1) f t γ -f t γ s/(r+1) Φ ≤ C 1 + E |X t | s r/(r+1) + E f t γ s Φ r/(r+1) E M t θ -M t θ s Φ 1/(r+1) + C E |X t | s(r-1)/r r/(r+1) + E f t γ s(r-1)/r Φ r/(r+1) + E f t γ s(r-1)/r Φ r/(r+1) E f t γ -f t γ s Φ 1/(r+1) .
Using again [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF], we know that max

E |X t | s , E f t γ s Φ , E f t γ s Φ < ∞.
Moreover, we also have

E M t θ -M t θ s Φ ≤ E |X 0 | s ∞ k=t α (0) k (M, Φ) s and E f t γ -f t γ s Φ ≤ E |X 0 | s ∞ k=t α (0) k ( f, Φ) s .
Finally, we obtain that there exists C > 0 not depending on t sur as for any t ≥ 1,

E q t (θ, γ) -q t (θ, γ) s/(r+1) Θ ≤ C ∞ k=t α (0) k (M, Φ) + α (0) k ( f, Φ) s/(r+1) ≤ C t 1-( s)/(r+1) , (18) 
from ( 14). Using Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF], ( 17) is established if there exists u ∈ (0, 1] such as

t≥1 1 t u E q t (θ, γ) -q t (θ, γ) u Φ < ∞. ( 19 
)
It is such the case with u = s/(r + 1), since we have:

t≥1 1 t s/(r+1) E q t (θ, γ) -q t (θ, γ) s/(r+1) Φ ≤ C t≥1 t 1-( +1)s/(r+1) < ∞.
In case of s ≥ r + 1, it is sufficient to consider the previous case with s = r + 1.

3. From ( 16) and ( 17), we deduce 1

n n t=1 q t (θ, γ) -E q t (θ, γ) Θ a.s. -→ n→∞ 0. ( 20 
)
Moreover, for φ = (θ, γ) ∈ Φ, we study L(φ) = -E q 0 (φ) .

with h(x) = log(x) -1 + x. But for any x ∈ (0, 1) ∪ (1, ∞), h(x) > 0 and h(1) = 0. Therefore if M θ M θ r * , L(φ r * ) -L(φ) > 0 (> 0 is replaced by = 0 if M θ = M θ r *
). This implies from Condition (Id) that L(φ r * ) -L(φ) > 0 for all θ ∈ Θ, θ θ r * . Hence a supremum of L(φ) is only reached for φ = φ r * , which is the unique maximum, and this the same behavior for n t=1 q t (θ, γ) from ( 20), implying φ (r) n a.s.

-→ n→∞ φ r * .

Since φ r * = (γ r * , θ 0 * ), it is clear that for θ (r) a.s.

-→ n→∞ θ 0 * for any r ≤ s. Concerning the parameter θ, we will add the following assumption on the function M θ with p a positive real number:

(HM)(p): For any C > 0 and θ ∈ R d , C × M θ (•) = M |C| p θ (•).
Examples: Assumption (HM)(p) is trivially satisfied in case of ARMA or AR(∞) processes with p = 1, but also for GARCH(p, q) processes with p = 1, or APARCH(p, δ, q) processes with p = δ.

As a consequence, under Assumption (HM)(p), we have:

θ r * = E(|ζ 0 | r ) p/r θ 0 * .
Even if p, r 0 and r are known, the is generally unknown. But in the particular cas where ζ 0 follows a GED(r 0 ), using (5), we obtain:

θ r * = r r r 0 -1 0 Γ r+1 r 0 Γ r 0 +1 r 0 p/r θ 0 * .
Therefore, if ζ 0 follows a GED(r 0 ), θ (r) can also be used for estimating θ 0 * for any 1 ≤ r ≤ s. But which parameter r has to be chosen for estimated the parameters θ 0 * and γ 0 * ? Clearly, when r 0 is known, the choice r = r 0 is induced by the following property:

Property 4.1. Let X be a stationary solution of the equation (1) where ζ 0 follows a GED(r 0 ) and φ 0 * ∈ Φ, a compact subset of Φ(r 0 ). Assume also that Assumptions (A 0 ( f, Φ)), (A 0 (M, Φ)), (Ainf) and (Id) hold with

α (0) j ( f, Φ) + α (0) j (M, Φ) = O j -for some > 1. ( 21 
)
Then the estimator φ (r 0 ) is asymptotically efficient (its renormalized asymptotic covariance behaves as the Cramèr-Rao bound).

Proof of Property 4.1. Denote L n (φ) = 1 n n t=1 q t (θ, γ) and L n (φ) = 1 n log f (X 1 ,...,X n ) (X 1 , . . . , X n ) , where f (X 1 ,...,X n ) is the probability density of the vector (X 1 , . . . , X n ) with respect to the Lebesgue measure when (ζ t ) is a white noise following a GED(r 0 ) distribution. Then, if φ n := Argmax φ∈Φ L n (φ) then φ is the classical maximum likelihood estimator. Using [START_REF] Daniels | The asymptotic efficiency of a maximum likelihood estimator[END_REF], we know that φ is asymptotically efficient. 21). As a consequence, φ n = φ (r 0 ) + O P (1/n) and therefore φ (r 0 ) is also asymptotically efficient.

But L n (φ) = L n (φ) + 1 n log( f X 1 (X 1 )) and therefore L n (φ) = L n (φ) + O P (1/n). Morevoer L n (φ) = 1 n n t=1 q t (θ, γ) + O P (1/n) under condition (
What can be done if r 0 is unknown? We can use the previous estimator r n of r 0 and plug-in it in the formula of the estimator of φ. Hence: Property 4.2. Under the assumptions of Property 4.1 but with Φ, a compact subset of Φ(v) with v = max(r 0 , 2), then φ ( r n ) n a.s.

-→ n→∞ φ 0 * with φ 0 * defined in (1).

Proof of Property 4.2. The function r ∈ [1, ∞) → φ (r) n is a.s. a continuous function. As a consequence, using r n a.s.

-→ n→∞ r 0 obtained in Theorem 3.1 and φ (r 0 ) n a.s.

-→ n→∞ φ 0 * obtained in Property 4.1, we obtain φ ( r n ) n a.s.

-→ n→∞ φ 0 * .

Examples

In this section, we explicitly apply the proposed two stage estimation procedure to several classical time series that are affine causal models: AR(p), GARCH(p, q) and APARCH(p, δ, q) processes.

1/ AR(p) processes: Consider the equation of an AR(p) process, i.e.

X t = a 0 * ζ t + µ 0 * + Σ p i=1 β 0 * i X t-i , t ∈ Z, (22) 
where µ 0 * ∈ R, a 0 * > 0, ∞ j=1 β 0 * i < 1 and (ζ t ) t∈Z is a white noise satisfying (2). Such AR(p) process is a special case of the affine causal process (1) with M t θ = a and f t γ = µ + Σ p i=1 β i X t-i where θ = a and γ = µ, β 1 , . . . , β p . For 0 < α < β < ∞, and 0 < ρ < 1, define

Θ = [α, β] and Γ = (µ, β 1 , . . . , β p ) ∈ R p+1 , |µ| ≤ ρ -1 and p i=1 β i ≤ ρ .
Moreover, since M t θ is a real constant not depending of the time, the parameter shape estimator defined in 12 becomes,

r n = H -1               a (1) n a (2) n       2        
Then, the Generalized Gaussian Quasi-Maximum Likelihood Estimator φ r n n = ( θ r n n , γ r n n ) is defined by

φ ( r n ) n := Argmin (θ,γ)∈Θ×Γ n t=1 q t (θ, γ) where q t (θ, γ) := log a + 1 r n |a| -r n X t -(µ + p i=1 β i X t-i ) r n , (23) 
with X 0 = X -1 = . . . = X 1-p = 0 by convention. Then the assumptions of Property 4.1 and 4.2 are satisfied since the Lipshitz coefficients of M θ and f γ and their derivatives decrease exponentially fast (see for instance [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]).

2/ GARCH process: The GARCH(p, q) process has been introduced by [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF] as the solution of equations

       X t = σ t ζ t , σ 2 t = ω 0 * + p i=1 α 0 * i X 2 t-i + q j=1 β 0 * j σ 2 t-j , (24) 
where ω 0 * > 0, α 0 * i ≥ 0 for i = 1, . . . , p and β 0 * j ≥ 0 for j = 1, . . . , q with α 0 * p , β 0 * q positive and p i=1

α 0 * i + q j=1 β 0 * j < 1.
As a consequence (X t ) t is a stationary process such as E |X 0 | s < ∞ (see for instance [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]. Such GARCH process is a special case of affine causal process (1) where M t θ = σ t (θ) and f t γ = 0, we denote here θ = ω, α 1 , . . . , α p , β 1 , . . . , β q and (σ t (θ)) t satisfies the recurrence relationship

σ 2 t (θ) = ω + p i=1 α i X 2 t-i + q j=1
β j σ 2 t-j (θ) for any t ∈ Z.

Now define Θ such as:

Θ = θ ∈ [0, ∞[ p+q+1 , ρ ≤ ω ≤ 1/ρ, p i=1 α i + q j=1 β j ≤ ρ ,
with 0 < ρ, ρ < 1, and this ensuring the stationarity of (X t ) for any θ ∈ Θ.

Using Lemma 3.1 we get

r n = H -1        1 n n t=1 σ 2 t ( θ (1) n ) σ 2 t ( θ (2) n )        (25) 
where σ 2 t is defined using (X i ) i∈N = 0. We estimate θ by the Generalized Gaussian Quasi-Maximum Likelihood Estimator θ ( r n ) n defined by

θ ( r n ) n := Argmin θ∈Θ n t=1 log | M t θ | + 1 r n X t M t θ r n .
Then the assumptions of Property 4.1 and 4.2 are satisfied since the Lipshitz coefficients of M θ and f γ and their derivatives decrease exponentially fast (see for instance [START_REF] Bardet | Asymptotic normality of the Quasi-Maximum likelihood estimator for multidimensional causal process[END_REF]).

3/ APARCH process: The APARCH(p, δ, q) processes have been introduced by [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF] as the solution of equations

       X t = σ t ζ t , σ δ t = ω 0 * + p i=1 α 0 * i |X t-i | -γ 0 * i X t-i δ + q j=1 β 0 * j σ δ t-j , (26) 
where δ ≥ 1, ω 0 * > 0, -1 < γ 0 * i < 1 and α 0 * i ≥ 0 for i = 1, . . . , p, β 0 * j ≥ 0 for j = 1, . . . , q satisfying q j=1 β 0 * j < 1. In the sequel the parameter δ is supposed to be known. More generally, we denote now θ = ω, α 1 , . . . , α p , γ 1 , . . . , γ p , β 1 , . . . , β q , with ω > 0, -1 < γ i < 1 and α i ≥ 0 for i = 1, . . . , p, β j ≥ 0 for j = 1, . . . , q satisfying q j=1 β 0 * j < 1. Then conditions of stationarity of (X t ) can be deduced. Indeed, using L the usual backward operator such as LX t = X t-1 , then 1 -q j=1 β j L j -1 exists and simple computations imply for t ∈ Z:

σ δ t (θ) = 1 - q j=1 β j L j -1 ω + p i=1 α i (1 -γ i ) δ (max(X t-i , 0)) δ + α i (1 + γ i ) δ (-min(X t-i , 0)) δ = b 0 (θ) + i≥1 b + i (θ) (max(X t-i , 0)) δ + i≥1 b - i (θ) (max(-X t-i , 0)) δ .
where b 0 (θ) = ω(1 -q j=1 β j ) -1 and the coefficients (b + i (θ), b - i (θ)) i≥1 are defined by the recursion relations 

       b + i (θ) = q k=1 β k b + i-k (θ) + α i (1 -γ i ) δ with α i (1 -γ i ) = 0 for i > p b - i (θ) = q k=1 β k b - i-k (θ) + α i (1 + γ i ) δ with α i (1 + γ i ) = 0 for i > p ( 
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with b + i (θ) = b - i (θ) = 0 for i ≤ 0. As a consequence, an APARCH process is a special case of the affine causal process with f t θ ≡ 0 and M t θ = σ t (θ). Therefore α (0) j ( f, Θ) = 0 and simple computations imply α (0) j (M, {θ}) = sup θ∈Θ max |b + j (θ)| 1/δ , |b - j (θ)| 1/δ and we established in [START_REF] Bardet | Asymptotic behaviour of the Laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF] that the sequence (α (0) j (M, {θ})) i decreases exponentially fast. Thus, with 0 < ρ, ρ < 1 define the compact set Θ by

For θ 0 * ∈ Θ, the estimator of the parameter shape r 0 in the case of an APARCH proces is

Since we have an estimation r n for the parameter shape r, we use it in the estimation of (

Then the assumptions of Property 4.1 and 4.2 are satisfied since the Lipshitz coefficients of M θ and f γ and their derivatives decrease exponentially fast (see for instance [START_REF] Bardet | Asymptotic behaviour of the Laplacian quasi-maximum likelihood estimator of affine causal processes[END_REF]).

Numerical Results

In order to illustrate the interest of the estimate of the parameter shape r, we realize Monte-Carlo experiments on the behavior of Gaussian QMLE, Laplace QMLE and the Pseudo Generalized Gaussian QMLE, for GARCH and APARCH processes and several sizes of sample (n = 100, n = 1000 and n = 5000). More precisely, we will consider:

• a GARCH(1, 1) process defined by X t = σ t ζ t where σ 2 t = α 0 + α 1 X 2 t-1 + βσ 2 t-1 with α 0 = 0.2, α 1 = 0.4 and β = 0.2;

• an APARCH(1, δ, 1) process defined by X t = σ t ζ t where σ δ t = α 0 + α 1 |X t-1 | -γX t-1 δ + βσ δ t-1 and α 0 = 0.2, α 1 = 0.4, γ = 0.8, β = 0.2 and δ = 1.2 (δ is supposed to be known).

Estimation of r

We first consider white noise (ζ t ) t∈Z such as the distribution of ζ 0 is a generalized Gaussian distributions for several values of r: r = 1 (Laplace distribution), r = 1.3, r = 1.7, r = 2 (Gaussian distribution) and r = 2.6. Using 1000 independent replications of both the processes, r is estimated by r n defined in (12) and its root-mean-square error (RMSE) is computed and reported in forthcoming tables 1 and 2. 

Conclusion of the numerical results:

The simulations exhibit that the larger the sample size n the smaller the RMSE of the parameter shape estimator r n . They also show that the larger the shape parameter r the larger the RMSE of r n . More precisely, it seems that the RMSE of r n /r is only depending on n. • the Gaussian distribution N(0, 1);

Hence, to allow comparison of the estimators, we have chosen the usual normalization of the model writing with unit variance white noise (ζ t ) t . We first assume that ζ 0 follows a Generalized Gaussian distribution GED(r 0 ) to within one multiplicative constant, with r 0 ≥ 1, and therefore

Then we can write with r 0 ≥ 1 :Hence, for r ≥ 1, and for both the processes, we can write with E(ζ 2 0 ) = 1 and

with (ζ r 0 t ) a white noise such as ζ r 0 0 follows the GED(r 0 ) distribution defined in (3). Now consider r ≥ 1. We can write:

1/r and therefore E ζ (r) t r = 1. As a consequence, 1. For GARCH(1, 1) process, we have M t

2 . Then we deduce

.

Thus, we will compare three estimators of θ (2 * ) = (α (2 * ) 0 , α (2 * ) 1 , β (2 * ) 1 ): 2) ) defined in (7);

12

• the modified Laplacian QMLE θ (1) n = ( α (1) 0 , α (1) 1 , β (1) ) such as

, where θ (1) n = ( α (1) 0 , α (1) 1 , β (1) 1 );

, where

2. For the APARCH(1, δ, 1) process, we have M t

δ . Therefore we deduce

.

Thus, we will compare three estimators of θ (2 * ) = (α (2 * ) 0 , α (2 * ) 1 , γ (2 * ) , β (2 * ) ):

, where θ (1) n = ( α (1) 0 , α (1) 1 , γ (1) , β (1) );

, where θ

.

Remark: Since r n is obtained from the reciprocal function Conclusion of the numerical results: Firstly, the simulations exhibit that the larger the sample size n the smaller the RMSE of the estimators. Secondly, as we suspected, θ (1) and θ (2) give the best results when the white noise distribution is Laplace (respectively Gaussian). Thirdly, globally, it is θ r n which provides the best results when n ≥ 1000 (otherwise for n = 100 a bad estimation of r * 0 can be damaging to it). For uniform and Student distributions that are not GED distributions, the procedure automatically searches for the nearest GED. The PGGQMLE estimator θ r n uses this to provide an estimator as close as possible to the one obtained by maximizing the "true" conditional quasi-likelihood.