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INTRODUCTION

The introduction of fly-by-wire in the early 80's increased the level of automation of civil aircraft (A/C) significantly, thanks to the development of advanced flight guidance and control laws. This major technological progress has also led to the development of new means for monitoring some key parameters and for protecting the flight envelop, hence improving the safety. This also provides tools to reduce the pilots' workload, which is especially valuable in case of unexpected situations. Actually, to keep a high level of automation available, some flight parameters such as the Angle of Attack (AoA/𝛼) and the Calibrated Air Speed (CAS/𝑉 𝐶 ) are critical. Hence, their monitoring and robustness are major concerns, as well as extending their availability for use by the Flight Control Systems (FCS). They are usually measured by several sensors, but can also be computed onboard from other measurements. The classical solution relies on hardware redundancy so that some parameters are measured by several identical sensors. A majority-based voting mechanism is then used for Fault Detection and Isolation (FDI) in order to deliver so-called "consolidated" measurements, i.e. more accurate and fault tolerant measurements. A triplex voting scheme is used to cope with single failures, but, even if very improbable, simultaneous and consistent faults of two or three sources are difficult to detect. Besides, this solution penalizes the overall system performances in terms of weight, power consumption, space requirements, cost and extra maintenance needs. Solutions based on the principles of the so-called analytical redundancy can also achieve the objective of extending their availability without adding extra hardware complexity. Nevertheless, they require extended onboard computational capabilities, knowing they are still limited on current civil A/C. Within the scope of estimation methods, model-based techniques have been investigated [START_REF] Marzat | Model-based fault diagnosis for aerospace systems: a survey[END_REF], Seren 2013, Hardier 2013). In this paper, we focus on nonlinear state estimators which permit residuals to be generated, that can be used for FDI purposes. Among them, recursive Bayesian filtering [START_REF] Deok-Jin | Nonlinear Bayesian filtering with applications to estimation and navigation[END_REF] is well suited to deal with nonlinear systems. Under specific assumptions (e.g., Gaussian stochastic uncertainties), it can provide a solution to the estimation problem while, in the general case, the exact analytical one is intractable in practice as it would require to calculate too complex multidimensional integrals. A first class of methods is related to analytical approximations in the Gaussian case and encompasses the well-known Extended Kalman Filter (EKF) [START_REF] Nǿrgaard | New developments in state estimation for nonlinear systems[END_REF][START_REF] Van Eykeren | Sensor fault detection and isolation using adaptive extended Kalman filter[END_REF], 2014, Seren 2013[START_REF] Hardier | Model-based techniques for virtual sensing of longitudinal flight parameters[END_REF][START_REF] Mohan | Introduction to the Kalman filter and tuning its statistics for near optimal estimates and Cramer-Rao bound[END_REF][START_REF] Majumder | Robust extended Kalman filter for ballistic object tracking during re-entry[END_REF]. This one is still rarely implemented for A/C FDI with a notable exception of a recent application on board the latest A350 [START_REF] Lavigne | A model-based technique for early and robust detection of oscillatory failure case in A380 actuators[END_REF][START_REF] Zolghadri | Signal and model-based fault detection for aircraft systems[END_REF]. The EKF delivers an estimated state, recursively computed as a prediction (provided by an imperfect and uncertain model) corrected by an innovation term which makes use of noisy, but healthy, measurements. It permits to deal with both Gaussian distributions and system nonlinearities, the latter being usually linearized at the 1 st -order. Since the approximations made in the EKF can sometimes lead to divergence and turn out to be inappropriate for solving more complex and realistic problems, many other advanced techniques also exist. In theory, these techniques can manage system modeling uncertainties, unknown inputs, linearization errors, imperfect measurements, more complex noise distributions, and so on. Among others, sampling-based approaches such as Divided-Difference, Sigma-Point or Unscented Kalman Filters [START_REF] Chowdhary | Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter[END_REF][START_REF] Marzat | Model-based fault diagnosis for aerospace systems: a survey[END_REF][START_REF] Van Eykeren | Sensor fault detection and isolation using adaptive extended Kalman filter[END_REF] use a finite set of points, sampled in the state space, to describe the uncertainty distribution. These samples are then propagated through the nonlinear modeling in order to predict and update the a posteriori distribution. It can be proved that this results in a better approximation of the moments of the random distribution w.r.t. what is done in the EKF. Finally, a third category of techniques which seem to be efficient to deal with nonlinear and non-Gaussian filtering problems corresponds to direct numerical approximation observers or simulation-based filters, such as Finite-Difference, Sequential Monte-Carlo or Particle Filters [START_REF] Rawlings | Particle filtering and moving horizon estimation[END_REF].

However, due to the stringent computational constraints for civil A/C, the most complex methods cannot be implemented onboard. Besides, A/C nonlinearities are not strong and do not require advanced algorithms to perform the estimation. Several studies [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF] have demonstrated that analytical formulations using a 1st-order linearization can deal with A/C nonlinearities and measurement imperfections thanks to appropriate tuning. Hence an EKF-based algorithm is favored in this study, similar to the one developed in previous works (Seren 2013). Since sensor faults can occur during the flight, a self-adaptive method is also added to the estimation scheme. In the literature, several adaptive methods are proposed to deal with measurement uncertainties, making use of an adaptive tuning of the covariance matrices [START_REF] Hide | Adaptive Kalman filtering for low-cost INS/GPS[END_REF]. However, few solutions exist to face detected faulty and unavailable measurements over long time horizon. In this paper, an alternative solution is described. It relies on a new formulation of the filter equations, combined with an FDI algorithm which makes use of both the generated residuals and the estimated states. Compared to previous works [START_REF] Hardier | Model-based techniques for virtual sensing of longitudinal flight parameters[END_REF]) that directly merge consolidated information, the proposed estimator makes only use of the measurements provided by the available anemometric sensors (pressure, temperature…). Moreover, complementary detection methods are also integrated into the scheme to isolate sensor faults. The remaining of the paper is organized as follows: section 2 presents the A/C modeling equations, and section 3 details the detection and adaptive algorithms. Finally, section 4 shows the performance and robustness of the overall estimation and detection scheme in realistic conditions corresponding to real flight test data with successive static and total pressure probes faults. The most relevant flight parameters to describe the A/C behavior are the ones expressed w.r.t. the air mass flow. Many probes installed onboard provide a direct measurement of some air data parameters needed to control the aircraft. For instance, Pitot tubes, as well as both static pressure (𝑃 𝑠 ) and total air temperature (𝑇 𝑡 ) probes allow the CAS information to be computed onboard, as it is the most important velocity value for the FCS. Similarly, the redundant AoA probes provide direct measurements of this flight parameter, which is essential for both A/C flight envelop protection and autopilot. However, air data probes are subject to a harsh environment and failures can occur which require to reconfigure the FCS on the basis of the remaining valid sensors. Contrary to previous air data, inertial and A/C ground speed measurements, provided by Inertial Reference Systems (IRS) and the Global Positioning System (GPS) respectively, appear much more reliable and accurate since they take advantage of additional hardware redundancies and they are less sensitive to the environmental conditions. Besides, an onboard processing aims at consolidating these data. As a result, we consider in this paper that these data are trustworthy enough to focus on the estimation of the 3 wind speed components 𝑊 ⃗⃗⃗ = (𝑊 𝑋0 , 𝑊 𝑌0 , 𝑊 𝑍0 ) (expressed in the reference Earth frame) and of some modeling errors (related to both aerodynamics and atmosphere). The choice of these states rather than the classical A/C ones for longitudinal flight parameters estimation allow limiting the complexity of the proposed estimator. All available anemometric measurements will be merged to reconstruct through time the critical longitudinal flight parameters (i.e., AoA and CAS).

AIRCRAFT AND ATMOSPHERE MODELING

Therefore, the state vector 𝑋 and process equations 𝑓 are simply reduced to (omitting the state noise):

𝑋 ̇= (𝑊 ⃗⃗⃗ ̇, 𝑏 ̇𝐶𝐿 , ∆ ̇𝐼𝑆𝐴 , 𝑧̇𝐶) = 𝑓(𝑋) = (0 ⃗ , -𝑏 𝐶 𝐿 𝜏 ⁄ , 0,0) (2) 
In ( 2), 𝑏 𝐶 𝐿 refers to a bias on the aerodynamic lift force coefficient 𝐶 𝐿 to account for modeling uncertainty. ∆ 𝐼𝑆𝐴 is the difference between the measured static temperature (denoted by 𝑇 𝑠 in the sequel) and the one given by the International Standard Atmosphere (ISA) reference modeling at the current geopotential altitude. 𝑧 𝐶 corresponds to a barometric correction term. The dynamics associated to the state variable components are modeled by both non-filtered and filtered random walks. For the state 𝑏 𝐶 𝐿 , the time constant 𝜏 is set to several seconds. The physical meaning of the state variables ∆ 𝐼𝑆𝐴 and 𝑧 𝐶 can be understood by analyzing the ISA modeling used for the computation of 𝑇 𝑠 and 𝑃 𝑠 [START_REF] Esdu | Equations for calculation of International Standard Atmosphere and associated off-standard atmospheres[END_REF][START_REF] Esdu | Equations for calculation of International Standard Atmosphere and associated off-standard atmospheres[END_REF](ESDU , 1996)). This model establishes both static temperature and pressure evolutions as a function of the altitude.

Unfortunately, the resulting atmosphere description is not accurate enough. Some local effects, such as strong and inconsistent temperature and pressure gradients variations are not considered, introducing errors in the variables. One solution consists in re-estimating some of these errors (namely the 2 state components (∆ ̂𝐼𝑆𝐴 , 𝑧̂𝐶)) to account for potential discrepancies. Thus, the ISA modeling states that:

if 𝑧 𝐺 < 𝑧 𝑇𝑃 𝑇 𝑠 = 𝑇 0 -𝐺 𝑍 𝑧 𝐺 + ∆ 𝐼𝑆𝐴 𝑃 𝑠 = 𝑃 0 (1 -𝐺 𝑍 𝑧 𝑃 𝑇 0 ⁄ ) 𝑔 (𝑅𝐺 𝑧 ) ⁄ else 𝑇 𝑠 = 𝑇 𝑇𝑃 + ∆ 𝐼𝑆𝐴 𝑃 𝑠 = 𝑃 𝑠 𝑇𝑃 exp( -𝑔(𝑧 𝑃 -𝑧 𝑇𝑃 ) (𝑅𝑇 0 ) ⁄ ) (3) 
where 𝑇 0 = 288.15 K (resp. 𝑃 0 = 101325 Pa) and 𝑇 𝑇𝑃 = 216.65 K (resp. 𝑃 𝑠 𝑇𝑃 = 22632 Pa) are the standard temperatures (resp. pressures) at ground and tropopause altitudes (𝑧 𝑇𝑃 ≈ 11km) ; 𝐺 𝑍 = 6.5.10 -3 K/m is the temperature gradient, 𝑔 is the acceleration of gravity, 𝑅 = 287.053 N.m/Kg.K is the specific gas constant for air. In (3), the altitude pressure 𝑧 𝑃 is calculated as follows:

if 𝑧 𝐺 < 𝑧 𝑇𝑃 , 𝑧 𝑃 = 𝑧 𝐺 (1 + ∆ 𝐼𝑆𝐴 𝑇 0 ⁄ ) -𝑧 𝐶 ⁄ else 𝑧 𝑃 = 𝑧 𝐺 (1 + ∆ 𝐼𝑆𝐴 𝑇 𝑇𝑃 ⁄ ) -𝑧 𝐶 ⁄ (4)
i.e., is directly deduced from the measured geopotential altitude 𝑧 𝑔 and the predicted state ∆ 𝐼𝑆𝐴 [START_REF] Esdu | Equations for calculation of International Standard Atmosphere and associated off-standard atmospheres[END_REF][START_REF] Esdu | Equations for calculation of International Standard Atmosphere and associated off-standard atmospheres[END_REF](ESDU , 1996)). This result is then corrected by the 𝑧 𝐶 term, as depicted on Figure 1. The measurements used for data fusion include the AoA and the sideslip (𝛽) angle, the vertical load factor (𝑛 𝑍 ), both static (𝑃 𝑠 ) and total (𝑃 𝑡 ) pressures (from the Pitot tubes), and the total air temperature (𝑇 𝑡 ). Besides, it is noteworthy that some additional information coming from the engine nacelle permits 2 extra pseudo-measurements of the static pressure (denoted by 𝑃 𝑠 𝑒𝑛𝑔 ) and of the Mach number (𝑀 𝑒𝑛𝑔 ) to be reconstructed. This also provides a direct, and hence redundant, measurement of the total air temperature denoted by 𝑇 𝑡 𝑒𝑛𝑔 . However, all this redundant information is not used for state and output estimation but only for FDI. The whole set of measured data provide enough information for the observability condition to be held. The observation equations denoted by ℎ read:

ℎ(𝑋, 𝑍) = ( 𝛼 = atan (𝑤 𝑢 ⁄ ) 𝛽 = atan(𝑣 √𝑢 2 + 𝑤 2 ⁄ ) 𝑛 𝑍 = 𝛾𝑆𝑃 𝑠 𝑀 2 (𝐶 𝐿 + 𝑏 𝐶 𝐿 ) 2𝑚𝑔 cos 𝛼 + 𝑛 𝑋 tan 𝛼 𝑃 𝑠 = ℱ(𝑧 𝑃 (𝑧 𝐺 , 𝑧 𝐶 ), ∆ 𝐼𝑆𝐴 ) 𝑃 𝑡 = 𝑃 𝑠 (1 + 𝛾̅ 𝑀 2 ) 𝛾 (𝛾-1) ⁄ 𝑇 𝑡 = 𝑇 𝑠 (1 + 𝛾̅ 𝑀 2 ) ) (5) 
where γ = 1.4, 𝛾̅ = (𝛾 -1)/2, 𝑆 is the A/C reference surface, 𝑚 its weight, and 𝐶 𝐿 depends on 𝑋 and 𝑍. Once an anemometric measurement (𝑃 𝑠 , 𝑃 𝑡 or 𝑇 𝑡 ) becomes faulty and is isolated thanks to a simple FDI logic (Alcalay 2017), the estimation scheme is updated to make use of the engine measurements (𝑃 𝑡 𝑒𝑛𝑔 = ℊ(𝑃 𝑠 𝑒𝑛𝑔 , 𝑀 𝑒𝑛𝑔 ), 𝑃 𝑠 𝑒𝑛𝑔 , 𝑇 𝑡 𝑒𝑛𝑔 ) instead. In (5), the dependency of the static pressure 𝑃 𝑠 w.r.t. 𝑧 𝐺 , 𝑧 𝐶 and Δ 𝐼𝑆𝐴 reveals that this output is actually calculated by using (3) with the corrected altitude pressure 𝑧 𝑃 drawn from (4). (𝑢, 𝑣, 𝑤) are the airspeed components expressed in the reference body frame. They are deduced from (6) where 𝑅(𝜃, 𝜑, 𝜓) represents the usual rotation matrix from the reference Earth frame to the A/C body one:

( 𝑢 𝑣 𝑤 ) = 𝑅(𝜃, 𝜑, 𝜓) • ( 𝑉 𝑋0 -𝑊 𝑋0 𝑉 𝑌0 -𝑊 𝑌0 𝑉 𝑍0 -𝑊 𝑍0 ) (6) 
Then, the Mach number 𝑀 is computed s.t.:

𝑀 = 𝑉 √𝛾𝑅𝑇 𝑠 ⁄ = √𝑢 2 + 𝑣 2 + 𝑤 2 √𝛾𝑅𝑇 𝑠 ⁄ (7)
Finally, the CAS value is determined according to the following expression (ESDU 1992):

𝑉 𝐶 = √ 𝛾𝑅𝑇 0 𝛾̅ ((1 + 𝑃 𝑡 -𝑃 𝑠 𝑃 0 ) (𝛾-1) 𝛾 ⁄ -1) 0.5 (8) 
Thanks to model equations ( 2)-( 8) and available measurement data, the key flight parameters (𝛼, 𝑉 𝐶 ) can be estimated through time, while the FDI algorithm detailed in (Alcalay 2017) and section 3 monitors the possibly faulty information. In case of sensor failures or erroneous weight data capture by the pilot (Alcalay 2017), a reconfiguration of the estimation scheme is required in order to deliver reliable estimates (𝛼 ̂, 𝑉 ̂𝐶) continuously. Moreover, it has to be noticed that the linearized matrices (𝜕𝑓 𝜕𝑋 ⁄ , 𝜕ℎ 𝜕𝑋 ⁄ ) required in the standard EKF algorithm can be easily computed analytically in our case. Indeed, the main computational effort lies in the derivation of the 𝜕𝐶 𝐿 𝜕𝑋 ⁄ term, for which an analytical expression can be obtained thanks to the use of surrogate models. This significantly reduces both the computational time and the complexity of the proposed method. A sequential processing of the measurements during the correction stage has also been implemented to avoid any matrix inversion [START_REF] Zhou | Sequential processing of integrated measurements in tighly-coupled INS/GPS integrated navigation system[END_REF] whose complexity is not compliant with the available embedded CPU on Airbus A/C. Beyond its computational efficiency, this procedure permits also any detected faulty measurements to be skipped very easily.

The next section describes the FDI algorithm which has been developed to confer a self-adaptive capability on the proposed estimation scheme in case of sensor faults. The ultimate goal is to deliver reliable estimates (𝛼 ̂, 𝑉 ̂𝐶) for the rest of the flight, even in faulty situations.

MONITORING AND FAULT DETECTION

The proposed EKF-based estimation scheme acts as a virtual clinometric and anemometric sensor by providing dissimilar AoA and CAS information. However, any EKF needs healthy measurements as inputs to work properly. Consequently, if a fault occurs on one or several measurements used for data fusion, a reconfiguration is required to prevent them from degrading estimation process. This permits reliable flight parameter estimates to be provided to the FCS, namely AoA and CAS, even in degraded situations when sensor faults occur. Hence, an efficient and fast detection and isolation of the fault is mandatory. The inertial and A/C ground speed measurements, provided by the IRS and GPS, are already monitored by several dedicated systems, as explained in section 2, and only the faults on the AoA, 𝑃 𝑡 , 𝑃 𝑠 and 𝑇 𝑡 probes are considered in the sequel.

An EKF-based fault detection procedure

To perform the detection, the EKF delivers some crucial information through the modeling bias estimate 𝑏 ̂𝐶𝐿 . In case of faulty AoA, 𝑃 𝑡 , 𝑃 𝑠 probes, the existing relation between the flight parameters through the vertical load factor output equation ( 5) and the computed lift force coefficient 𝐶 𝐿 (𝑋, 𝑍) affects 𝑏 ̂𝐶𝐿 during the transient stage, when the fault is not yet isolated and the filter not reconfigured. This is a direct consequence of the EKF tuning, leading the estimated state 𝑏 ̂𝐶𝐿 to be sensitive to several disturbances such as sensor delays, biases and failures. However, this has two advantages. Firstly, an adaptive threshold 𝐽 𝐶 𝐿 can be tuned to detect the occurrence of some faults, as depicted in Figure 2. It shows the evolution of the modeling bias depending on the Mach number and the A/C aerodynamic configuration (i.e., slats/flaps positions) after a take-off. A Monte Carlo validation has been performed on real flight data to define this threshold regarding the modeling accuracy and the flight conditions. Several realistic defects such as small delays or biases on the measurements, as well as small weight errors, have been simulated and added to the flight data during the validation process. Secondly, the type of fault occurring is identified through a pseudo-derivative filter applied to 𝑏 ̂𝐶𝐿 . The resulting slope and its dynamics is used as a global indicator of the fault type. This characterization stage is particularly important to detect slow drifts since they cannot be isolated by the scheme as presented further in 3.3. Consequently, a dedicated indicator 𝐼 𝑆𝐿 is computed to point out that an unidentified fault has occurred (𝐼 𝑆𝐿 = 1), as depicted in Figure 2. The other elements of this figure are explained further in this section. 

Standard isolation based on dissimilar equation errors

A usual approach to perform the isolation procedure is to use redundant measurement data by comparing them two by two in order to isolate the faulty information. Considering the four parameters to be monitored (AoA, 𝑃 𝑡 , 𝑃 𝑠 and 𝑇 𝑡 ), three dissimilar values of 𝑀 squared can be derived from equation ( 5): where the subscript 𝑚 refers to measurement values. 𝑇 𝑠 is the static temperature computed from (3) with Δ 𝐼𝑆𝐴 and 𝑧 𝑐 values fixed at previous estimated values provided by the EKF in healthy conditions. 𝐶 𝐿 is the lift force coefficient computed by the surrogate model with measured flight parameters as inputs. From ( 9), three residuals can be derived:

𝑀 𝑃 2 = 1 𝛾̅ ⁄ [(𝑃 𝑡 𝑚 𝑃 𝑆 𝑚 ⁄ ) (𝛾-1) 𝛾 ⁄ -1] 𝑀 𝑇 2 = 1 𝛾̅ ⁄ (𝑇 𝑡 𝑚 𝑇 𝑆 ⁄ -1) 𝑀 𝐿 2 = 2𝑚𝑔
𝜀 𝑃𝑇 = 𝑀 𝑃 2 -𝑀 𝑇 2 𝜀 𝑃𝐿 = 𝑀 𝑃 2 -𝑀 𝐿 2 𝜀 𝑇𝐿 = 𝑀 𝑇 2 -𝑀 𝐿 2 (10)
Each of them can be associated to a corresponding threshold, denoted by 𝐽 𝑃𝑇 , 𝐽 𝑃𝐿 and 𝐽 𝑇𝐿 respectively. From ( 9)-( 10), a single common mode failure (for instance simultaneous and coherent failures occurring on the AoA probes) would impact several residuals and the isolation would be performed thanks to the logical Table 1. 1 means that, for instance, once 𝐽 𝑃𝐿 and 𝐽 𝑇𝐿 are exceeded by their corresponding residual, a fault can be identified on the AoA measurement. This comes from the fact that the Mach number computed from (9.3) is erroneous, due to the injection of faulty AoA values in its computation.

On the contrary, the Mach numbers from both (9.1) and (9.2) are still consistent since the 𝑃 𝑡 , 𝑃 𝑠 and 𝑇 𝑡 measurements are valid. Consequently, the computed residual 𝜖 𝑃𝑇 is not going to exceed its threshold 𝐽 𝑃𝑇 . However, the solution described yields good results with simulated data but when applied to real flight data, even with perfectly tuned thresholds, the local atmospheric fluctuations on Δ 𝐼𝑆𝐴 and 𝑧 𝐶 raise too many false alarms and result in poor isolation performances. Besides, performing the distinction between two or three exceeded thresholds (to distinguish a fault between the static pressure and the other measurements) is almost impossible in strong atmospheric fluctuation.

A signal-based isolation approach

An alternative solution for the isolation procedure is to take advantage of simple signal processing methods, such as filtering operations and signal comparisons. First, a dedicated monitoring on the 𝑇 𝑡 is possible, by comparing its value with the one delivered by the engine temperature sensor. In addition, two new indicators are introduced in the subsection 3.3 to perform the isolation between a fault on the AoA, 𝑃 𝑡 and 𝑃 𝑠 probes. They are derived from specific signals chosen for their dependency to a maximum of 2 among the 3 parameters.

In order to perform the distinction of a fault between the AoA and the pressure measurements (𝑃 𝑡 , 𝑃 𝑠 ), a first monitoring signal is based on the variation of the computed Mach number using (9.1) depending on the pressure measurements.

Any variation on the Mach number can result from pilot orders or atmospheric parameter variations, especially the wind. Hence, a high pass filter is applied to the signal with a cut-off frequency beyond the ones associated to the typical A/C dynamics. The resulting signal includes high frequency (HF defined as the frequencies beyond the usual A/C bandwidth) local atmospheric variations and wind gradients as well as potential faults. Figure 4 shows that the resulting signal variations in nominal conditions mainly depends on two parameters: 1/ the ground speed module variation Δ𝑉 𝑔 , reflecting the remaining medium-high frequency pilot orders; 2/ the ground speed vertical component 𝑉 𝑔 𝑧 , reflecting the flight level variations and so the possible resulting HF variation in the atmospheric parameters. Figure 4 illustrates the effects of these two parameters on the HF Mach variations, using 20 hours' flight records, through a scatter plot where the color of each point is related to its corresponding 𝑉 𝑔 𝑧 value. As depicted in Figure 4, an adaptive threshold can be defined depending on those two parameters.

Once exceeded, the unusual event can be interpreted as a fault on one of the pressure sensors used to compute the Mach number. Consequently, a first indicator (denoted 𝐼 𝑃𝑇 in Figure 3) is defined, pointing the suspicious probes out between the AoA and pressures measurements. The proposed Adaptive Extended Kalman Filter (AEKF) was evaluated from multiple simulations (using the high fidelity AIRBUS tool) and real intercontinental flight test data coming from a generic civil transport A/C, including atmosphere disturbances, strong winds, and variations of both temperature and pressure gradients. The results displayed in section 4 are obtained after post-processing the real data recorded during a flight between Iqaluit (Canada) and Toulouse (France). These data span the first 50 minutes of the flight, starting from the take-off until the beginning of the cruise phase. An analysis of the data has shown that, during the climb phase, the airplane came across a ∆ 𝐼𝑆𝐴 around 40 𝐾, a 𝑧 𝐶 greater than 900 𝑚 and a 3-axis wind with wind speed values up to 30 𝑘𝑡𝑠. The time history of these variables is plotted in Figures 89.

In order to evaluate the whole process, simulated sensor faults have been added to the real flight data. Accordingly, the full scenario is the following: the take-off is at 𝑡 = 80𝑠, a common drift (slope 60mbar/s) is superimposed to the Ps probes #1 and #2 at 𝑡 = 115𝑠, then a drift (100mbar/s) on the 𝑃 𝑡 probes is generated at 𝑡 = 250𝑠. At 𝑡 = 2115𝑠, the 𝑃 𝑡 measurement is available again with a small bias. It is worth noting that a triplex-based voting mechanism is used onboard to deliver consolidated measurements. Hence, for each measured parameter, 3 probes are respectively available and should be monitored by the FDI scheme. This makes sure that any valid information is used to feed the EKF, as it would be the case in this example for the 𝑃 𝑠 probes #3. The time variation of the normalized 𝑏 ̂𝐶𝐿 is plotted in Figure 11, with the associated thresholds (dashed red lines). It can be noticed that 𝑏 ̂𝐶𝐿 is sensitive to all sensors faults (regardless of Once the error is between 15kts and 50kts, depending on the flight phase, a fault is detected, the isolation is performed and the missing flight parameters are estimated. In this example, the 𝑃 𝑠 drift fault is detected and isolated at 𝑡 = 135𝑠 (𝐼 𝑆𝐿 = 0, 𝐼 𝑃 𝑇 = 0 and 𝐼 𝑃 𝑆 = 1). Then, the filter is firstly reconfigured by removing the faulty 𝑃 𝑆 measurements. An estimation of its value is performed up to 𝑡 = 150𝑠, when the 𝑃 𝑠 measurement delivered by probe #3 is declared healthy. As a result, the filter is again reconfigured to use the valid remaining 𝑃 𝑆 information and the FDI scheme is deactivated briefly while the filter is converging (< 5s). This evaluation proves that a so-called common mode failure can be properly detected and isolated by the proposed scheme. Then, the drift on the 𝑃 𝑡 probes are detected at 𝑡 = 272𝑠 (𝐼 𝑆𝐿 = 0, 𝐼 𝑃 𝑇 = 1 and 𝐼 𝑃 𝑆 = 0) and the three probes are rejected up to their validation around 𝑡 = 2120𝑠. Between those time instants, 𝑏 ̂𝐶𝐿 is no longer estimated (figure 11) hence 𝑃 ̂𝑡 strongly depends on the internal model which also results from a trade-off between the model accuracy and the implementation constraints. Nevertheless, the estimated flight parameters appear accurate enough to be used as inputs for the FCS during the remaining part of the flight.

CONCLUSIONS

The proposed AEKF algorithm offers some very interesting capabilities to detect sensor faults and to estimate key longitudinal flight parameters in degraded conditions with a limited complexity. The approach is based on an original formulation including states such as wind components, atmospheric perturbations, and some modeling biases.

Besides, the algorithm combines simple signal processing methods with the estimated states of the EKF to perform the fault isolation. Finally, the performances are closely linked to the estimator model accuracy, only involving the lift force coefficient. That is why a surrogate model was developed to fit the onboard computational constraints while keeping a satisfying accuracy. Nevertheless, some prospects arise from the present choice of introducing a barometric correction term 𝑧𝐶, which absorbs additional atmospheric effects such as the temperature gradient fluctuation, hence loosing part of its real physical meaning. Instead, an additional module could be used to estimate the temperature gradient and to remove its effect from 𝑧𝐶. The current choice has been made to minimize the number of states, and consequently the computation burden of the algorithm.
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 2 Fig. 2. High frequency normalized 𝐛 𝐂 𝐋 function of the Mach number and the A/C aerodynamic configuration with its related adaptive threshold
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 4 Fig. 4. ΔM HF = f(ΔV g , V g z ) and its related adaptive threshold on 20h flight recordsA second indicator 𝐼 𝑃𝑆 can be derived with the same approach, to help make a decision between a fault on the static pressure and the other sensors.(3) gives a direct relation between the 𝑃 𝑠 measurement and the pressure altitude 𝑧 𝑝 . Besides, (4) links the geometric altitude 𝑧 𝐺 with 𝑧 𝑃 thanks to the atmospheric parameters, essentially characterized by low frequency variations at a constant flight level with possible abrupt changes with altitude variations. In order to isolate a fault on the static pressure probes, we choose to monitor the HF component of 𝑧 𝑃 -𝑧 𝐺 .
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 5 Fig. 5. (z P -z G ) HF = f(V g z ) and its related adaptive threshold on 20h flight records
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 67 Fig. 6. Normalized maximum CAS errors function of the Mach number and the A/C aerodynamic configuration
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 10 Fig. 10. CAS estimated, true and measured in case of multiple pressure sensor faults Figure 10 compares the time history of the estimated CAS (green line) with those of the CAS measurements (blue line) computed from 𝑃 𝑡 and 𝑃 𝑠 measurements and with the true CAS (red line). Several reconfigurations are performed throughout this scenario. They consist in selecting which among the triplex sensors are still unfaulty, by relying on a direct comparison of the 3 measured values with the estimated one. The scenario illustrates the capability of the proposed approach for 1/ detecting and isolating sensors faults, 2/ delivering reliable estimates over a long time horizon despite degraded flight conditions.
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  their type). Lower and upper threshold adaptations with the flight point can also be observed on this plot.

Fig. 11 .

 11 Fig. 11. Estimated b ̂CL in case of multiple pressure sensor faults

Table 1 : Fault signatures on residuals

 1 

		𝜖 𝑃𝑇 > 𝐽 𝑃𝑇	𝜖 𝑃𝐿 > 𝐽 𝑃𝐿	𝜖 𝑇𝐿 > 𝐽 𝑇𝐿
	𝑃 𝑡	Yes	Yes	No
	𝑃 𝑆	Yes	Yes	Yes
	𝛼	No	Yes	Yes
	𝑃 𝑆 𝑜𝑟 𝑇 𝑡	Yes	No	Yes

Table

  

Adaptive ThresholdAdaptive Threshold