
HAL Id: hal-02902566
https://hal.science/hal-02902566v2

Preprint submitted on 21 Dec 2020 (v2), last revised 8 Mar 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aircraft deconfliction via Mathematical Programming:
Review and insights

Mercedes Pelegrín, Claudia d’Ambrosio

To cite this version:
Mercedes Pelegrín, Claudia d’Ambrosio. Aircraft deconfliction via Mathematical Programming: Re-
view and insights. 2020. �hal-02902566v2�

https://hal.science/hal-02902566v2
https://hal.archives-ouvertes.fr


Aircraft deconfliction via Mathematical Programming:
Review and insights

Mercedes Pelegŕın1, Claudia D’Ambrosio1

Abstract

Computer-aided Air Traffic Management has increasingly attracted the in-
terest of the Operations Research community. This includes, among other
tasks, the design of decision support tools for detection and resolution of con-
flict situations on flight. Even if numerous optimization approaches have
been proposed, there has been little debate towards homogenization. We
synthesize the efforts made by the Operations Research community in the
past few decades to provide mathematical models to aid conflict detection
and resolution at tactical level. Different mathematical representations of
aircraft separation conditions are presented in a unifying analysis. The mod-
els, which hinge on these conditions, are then revisited, providing insight into
their computational performance.

Keywords: air traffic control; optimization; conflict detection and
resolution; separation conditions

1. Introduction

Air traffic control (ATC) is a challenging field where complex decisions
have to be made in short time. The increase of daily volume of flights
engenders the need of decision making tools to support manual control in
order to improve airspace capacity while ensuring safety. The urgency for
automation or support tools within ATC systems has been observed in a
number of corporate initiatives including the NextGen— Next Generation
Air Transportation System— project in the US (see Hansman 2012) and
the SESAR— Single European Sky Air Traffic Management Research—
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(see European Commission & EUROCONTROL 2009) and ERASMUS—
En Route Air traffic Soft Management Ultimate System— (see Brochard
2005) projects in Europe. On the other hand, flying vehicles daily volume
is expected to grow in the near future, especially due to the development of
technology and its emerging application in urban air mobility. As a result,
there is a growing interest in decision-making approaches for ATC, which is
being captured by the Operations Research (OR) community.

Congested airspace can lead to loss of separation between aircraft, which
has to be avoided to guarantee safety. Ensuring aircraft separation during
flight is one of the major tasks of ATC and is known as conflict detection
and resolution (CDR) or aircraft deconfliction. CDR takes place at different
stages. First, it is performed on the earliest planning of the flights. This is
known as strategic deconfliction and usually occurs before departure; how-
ever, it is not limited to a priori actions, in particular when the duration
of flights is long, see Rios (2018), Liang et al. (2014). The following stage
involves tactical deconfliction, which usually takes place during flight, gen-
erally from five to thirty minutes before conflicts occur. Finally, collision
avoidance stage is the latest avoidance of hazard, aimed at addressing im-
minent conflicts (in less than one minute). Congestion also affects other
segments of ATC, such as airport traffic, which is currently one of the bot-
tlenecks of ATM systems, see for example Wu & Caves (2002), Fairbrother
et al. (2020), Samà et al. (2017).

Tactical CDR has been typically modelled as an optimization problem
in which aircraft trajectories are corrected to ensure that a minimum sepa-
ration is maintained. At tactical level, specific operational aspects have to
be considered, which principally affect the changes allowed for trajectories.
Feasible maneuvers are typically classified into three types, namely: speed
changes (acceleration or deceleration), heading angle changes (right or left
bearing), and vertical changes (flight level reallocation). All of these ma-
neuvers are limited by some operational bounds. The goal of optimization
varies between works and includes maximizing the number of solved con-
flicts, having equally affected flights (fairness), minimizing deviation from
nominal aircraft trajectories and economic factors such as fuel consumption
or total delay.

According to the International Civil Aviation Organization (see ICAO
1996), aircraft must be separated by at least 5 NM horizontally and 1000 ft
vertically during the flight, which yields a safety cylinder as shown in Figure
1. A pair of aircraft violating at least one of these rules are said to be in
conflict; one can speak respectively of horizontal or vertical conflicts. At the
cruising phase, airspace is segregated in independent flight levels, see Mori
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Figure 1: Safety cylinder around aircraft

(2017). Therefore, tactical deconfliction usually assumes that all aircraft fly
at the same flight level, eliminating the need to address vertical conflicts.
Once the problem dimension is fixed (2D for horizontal conflicts and 3D
in the more general case), aircraft trajectories can be modelled by differ-
ent kinds of equations. In the most simple case, they are linear functions of
time, that is, aircraft motion is supposed to be rectilinear. Alternatively, if a
constant acceleration is assumed, aircraft position is a quadratic function of
time. Another common approach is to consider piece-wise linear functions to
represent trajectories. Regarding the modelling of aircraft maneuvers, there
also exists a range of possible choices. The most frequent assumption among
the approaches covered here is that all aircraft will execute maneuvers at
the beginning of the time horizon and instantaneously. On the contrary,
more complex models allow aircraft to change their trajectories at different
time instants and consider aircraft kinetics during maneuvers. Trajectory
recovery after conflict resolution is sometimes considered as well. The right
choice of modelling assumptions depends on the specific problem require-
ments and varies between applications. Also, it is important to look for a
trade-off between flexibility and tractability of the resulting optimization
problem.

Leaving aside technical modelling aspects and moving to an OR per-
spective, CDR involves two types of decisions. The first and most evident
is the modification of aircraft trajectories, which will be expressed in terms
of speed, heading or altitude changes, or a combination of them. Possible
variables such as the new kilometres or miles per hour or the bearing angle
take (in principle) their values in continuous domains. Therefore, they are
naturally modelled with continuous decision variables. The second type of
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decision is not obvious at first sight: one needs to investigate the problem
further to identify it. This will be extensively addressed in next sections, but
for the moment we just say that there are some combinatorial decisions char-
acterizing CDR and standing for the choice among possible scenarios. Such
combinatorial decisions are typically modelled in OR models with binary
variables. Therefore, a natural mathematical programming formulation for
CDR will be a Mixed Integer Linear Program (MILP) or a Mixed Integer
Nonlinear Program (MINLP)— constraints and objective function will be
linear or nonlinear depending on the modelling choices made.

Although CDR optimization was originally proposed in the context of
ATC, it is nowadays gaining importance in other arising domains. For in-
stance, urban shared mobility become popular in recent years (see Mourad
et al. 2019) and will soon be part of our skies, yielding a new layer of
air traffic. In addition, collision avoidance is a hot topic in the field of
autonomous vehicles, including unmanned aerial vehicles (UAVs), see, for
example, Huang et al. (2019). This interest is motivated by the potential
applications of these vehicles in commercial, military, or governmental con-
texts. Finally, algorithms and protocols for collision-free trajectories are
essential in the design of control architectures of robots, see Bareiss & den
Berg (2013). This includes, among others, material handling vehicles in
warehouses or production plants, which transport raw materials or perform
tasks in production processes.

This work aims at providing a unified mathematical framework for tacti-
cal CDR. Special emphasis is placed on the mathematical representation of
aircraft separation conditions. This has been represented through different
equations, which we revisit here. Existing alternative separation equations
are motivated, explained, and compared, showing the relation between them.
Mathematical Programming models for CDR are then revised, presenting a
total of 10 mathematical formulations under a unified notation. Even if
there exist other reviews on closely related topics (Barnhart et al. (2003)
presents a review on OR applications in air transport including scheduling,
routing, crew assignment and ATC, among other topics; Kuchar & Yang
(2000) gives an overview on CDR methods), to the best of our knowledge
this is the first work synthesizing Mathematical Programming approaches
for tactical CDR.

The rest of the paper is organized as follows. In Section 2, we formally
state the problem and fix some notation. Section 3 is devoted to present and
analyze the different mathematical representations of separation constraints.
An explanatory exposition of the different formulas and their interrelation
is also provided. Since separation constraints are the core of CDR, this
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analysis is essential for Section 4, where some mathematical programming
formulations are presented. Section 5 gives details about the performance
of the state-of-the-art approaches. Finally, Section 6 discusses current chal-
lenges in CDR and future research directions, and Section 7 closes the paper
with some conclusions.

2. Problem definition

In ATC for aircraft deconfliction, a particular sector of the airspace is
tracked during a given time horizon, [0, T ]. During this time window, a set
of aircraft, A, traverses the observed sector. We consider control actions
at a tactical level, that is, they are taken some minutes before potential
conflicts occur (values of T usually range between 10 and 20 minutes). Air-
craft nominal trajectories can be described through a family of functions,
p̂i(t) : [0, T ] → R3, which give the position of aircraft i ∈ A at instant t
of the time horizon according to a nominal plan. If we denote by d the
minimum separation distance required between aircraft, the CDR problem
can be stated as follows: “ find new trajectories pi(t) : [0, T ]→ R3 satisfying
operational restrictions and such that, for all pair of aircraft i, j ∈ A and
time instant t ∈ [0, T ], ‖pi(t)−pj(t)‖ ≥ d ”, where ‖·‖ denotes the Euclidean
norm.

As mentioned in the introduction, aircraft are usually assumed to have
either a rectilinear (null acceleration) or uniformly accelerated (constant
acceleration) motion. Most of the works covered in this review are of the
first type, but we also discuss examples of the second type such as Omer &
Farges (2013), and Omer (2015). In our analysis, in order to fix ideas and
given that this is the case of most of the approaches, we assume pi(t) to be
linear functions. Namely,

pi(t) = p̂i + Vit,

where p̂i := p̂i(0) is the initial position of aircraft i and Vi is its vector
of modified velocity. These equations of motion are the base upon which
most of the mathematical constraints for aircraft separation are built, as we
discuss in next section. This is the main reason for setting pi(t) as above,
although in general the reader can think on the CDR without restricting
aircraft position equations. Position vectors are very often assumed to be in
R2, which corresponds to aircraft flying at the same flight level. Therefore,
we denote initial position and vector of velocity components by p̂i = (x̂i, ŷi)
and Vi = (Vxi, Vyi), respectively. Similarly to new trajectories, nominal
ones are represented by p̂i(t) = p̂i + V̂it, where V̂i denotes aircraft nominal
velocity.
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Operational limitations typically result in mathematical constraints on
the vectors of aircraft velocities. Let us denote by vi the (scalar) speed of i
and by θi its heading angle. These variables are subject to lower and upper
bounds vi, v̄i and θi, θ̄i, respectively. Note that we save the term velocity
to refer a vector of velocity, which comprises information on the heading
angle and speed of the aircraft. The term speed is thus saved for a scalar
magnitude and corresponds to the Euclidean norm of the vector of velocity.
This way, speed vi and heading angle θi characterize the i-th velocity vector
as follows

Vi = (vi cos θi, vi sin θi).

However, the new speed and heading angle of an aircraft can be also repre-
sented by using decision variables corresponding to the relative modification
made to the nominal values. Typically,

vi = qiv̂i and θi = θ̂i + ωi,

where v̂i and θ̂i are the nominal speed and heading angle of i, qi ≥ 0 is a scale
factor (qi = 1 means no speed change) and ωi is the variation of the heading
angle i (ωi = 0 means no bearing). Scale factor qi is usually considered to
range between 0.94 and 1.03, which means modifying the speed between a
−6% and 3% of its nominal value. According to the European aeronautical
project ERASMUS (see Brochard 2005), this allows a subliminal control,
yielding modifications that are barely perceived by air traffic controllers.

Different versions of the CDR problem, which differ on the type of ma-
neuvers allowed, have been studied in the literature. The most prominent
ones, are those in which only speed changes (SC) are allowed, only head-
ing angle changes (HAC) are permitted and that in which both changes are
contemplated (SHAC). Since airspace is usually assumed to be divided into
flight levels, there is not a specific variant for altitude changes. One of the
previous configurations, namely SC, HAC, or SHAC, is supposed for each
flight level instead. The following definition uses the notation above to give
a mathematical statement of the CDR in its more general version.

Definition 1 (SHAC). Given a set of aircraft A and time horizon [0, T ],
suppose that each i ∈ A has initial position p̂i and nominal speed and heading
angle v̂i and θ̂i, respectively. The conflict detection and resolution problem
is to find new speeds and heading angles vi and θi such that

(i) ‖pi(t)−pj(t)‖ = ‖p̂i+Vit−(p̂j+Vjt)‖ ≥ d for all i, j ∈ A and t ∈ [0, T ],
where Vi = (vi cos θi, vi sin θi) for all i ∈ A;
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(ii) given the control bounds q
i
, q̄i and ωi, ω̄i for every i ∈ A, there is qi

and ωi such that

- vi = qiv̂i, θi = θ̂i + ωi,

- q
i
≤ qi ≤ q̄i, ωi ≤ ωi ≤ ω̄i.

In addition, a certain function of the changes made should be minimized.

Condition (i) in the previous definition is the core of the CDR problem,
and it is known as the separation condition. Two initial observations are
that it is nonlinear because of the Euclidean norm and that it depends on
time. Section 3 is entirely devoted to discuss the separation condition and
how it has been modelled in the literature using different approaches. Before
that, we summarize some useful notation.

2.1. Notation

In addition to the already introduced terminology, there are other ele-
ments characterizing the CDR problem that appear in the literature in a
recurring way. For instance, relative positions and velocity vectors of pairs
of aircraft are key for mathematical representation of separation, as well as
some relative angles. We have unified existing mathematical notation to
present the different approaches in the literature within a common working
framework. The mathematical notation of this paper can be summarized as
follows:

• Problem input

– A set of aircraft, i, j ∈ A
– d safety distance between aircraft, in NM

– p̂i = (x̂i, ŷi) initial position of aircraft i ∈ A
– v̂i magnitude of nominal speed of aircraft i ∈ A, in NM/h

– θ̂i nominal heading angle of aircraft i ∈ A, in radians

– V̂i = (v̂i cos θ̂i, v̂i sin θ̂i) nominal vector of velocity of i ∈ A
– p̂ij := p̂i − p̂j vector difference, p̂ij = (x̂ij , ŷij), with x̂ij := x̂i −
x̂j , ŷij := ŷi − ŷj , i, j ∈ A

– d̂ij initial distance between aircraft i and j (coincides with
‖p̂ij‖), i, j ∈ A

– βij slope of the line joining i and j (coincides with heading
angle of p̂ij), i, j ∈ A
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– αij := arcsin
(
d
d̂ij

)
, i, j ∈ A

• Variables

– vi magnitude of modified speed of aircraft i ∈ A
– θi modified heading angle of aircraft i ∈ A
– qi scale factor applied to nominal speed of aircraft i ∈ A, vi =
qiv̂i

– ωi bearing applied to nominal heading angle of aircraft i ∈ A,
θi = θ̂i + ωi

– Vi = (Vxi, Vyi) modified vector of velocity of i ∈ A. It can be
expressed in different forms:

Vi = (vi cos θi, vi sin θi)

Vi = (qiv̂i cos(θ̂i + ωi), qiv̂i sin(θ̂i + ωi))

– pi(t) := p̂i + tVi position of aircraft i ∈ A at instant t ∈ [0, T ]

– fij(t) := ‖pi(t) − pj(t)‖2 squared distance between i and j at
instant t ∈ [0, T ], i, j ∈ A

– Γ(vi, vj , γij) minimum difference between the instants in which
i and j traverse the crossing point of their trajectories, which
intersect with angle γij .

– Vij := Vi − Vj modified relative velocity. We will denote its
coordinates by (Vxij , Vyij). Alternatively, it can be expressed as
follows:

Vij = (vi cos θi − vj cos θj , vi sin θi − vj sin θj) or

Vij = (‖Vij‖ cosφij , ‖Vij‖ sinφij),

where φij is the heading angle of Vij (note φij 6= θi−θj in general).

• Bounds

– q
i
, q̄i ≥ 0 : q

i
≤ qi ≤ q̄i

– ωi, ω̄i such that [ωi, ω̄i] ⊆ [−π/2, π/2] : ωi ≤ ωi ≤ ω̄i
– vi, v̄i such that vi := q

i
v̂i, v̄i := q̄iv̂i : vi ≤ vi ≤ v̄i

– θi, θ̄i such that θi := θ̂i + ωi, θ̄i := θ̂i + ω̄i : θi ≤ θi ≤ θ̄i
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Figure 2: Geometrical analysis of conflict between two aircraft based on relative velocity

3. The separation condition

This section is devoted to the study of the so-called separation condition,
namely

‖pi(t)− pj(t)‖ ≥ d ∀t ∈ [0, T ], ∀i, j ∈ A : i < j. (1)

Such condition cannot be directly plugged-in a mathematical programming
solver, mainly because of the fact that one of its quantifiers is t, which ranges
on a continuous domain. A natural way of dealing with this is to consider
discrete time steps within [0, T ] at which (1) is then imposed, see Richards &
How (2002). If the lag between steps is sufficiently small, safety is ensured.
However, time discretization is not the only valid approach here. Many
authors used different versions of (1) that are not time dependent to write
their models. In the following, we revise the different ways of translating
(1) into mathematical programming constraints that have been proposed
in the literature. For these separation constraints that are not indexed by
a temporal component, T = +∞ is implicitly assumed. For the sake of
equations readability, we drop the condition i < j in our analysis.

3.1. Geometrical conditions

We start with the simple observation that

‖pi(t)−pj(t)‖ = ‖p̂i+tVi−(p̂j+tVj)‖ = ‖p̂i+t(Vi−Vj)−p̂j‖ ∀t ∈ [0, T ], ∀i, j ∈ A,
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provides an equivalent condition to (1). Namely, to ensure separation be-
tween i and j, one can consider that i flies at the relative velocity given by
Vij := Vi − Vj and that j remains still. That is, (1) can be rewritten into
the following equivalent condition:

‖p̂i + tVij − p̂j‖ ≥ d ∀t ∈ [0, T ], ∀i, j ∈ A. (2)

Figure 2 shows a geometrical analysis of the conflict between two aircraft i
and j based on (2). When Vij points somewhere inside the disk of radius
d and center p̂j , D(p̂j , d), (2) is not satisfied and vice versa. To avoid the
conflict, Vi and Vj must be adjusted so that the new relative vector, Vij , lies
outside the disk. The two tangents to D(p̂j , d) passing through p̂i, which
are depicted on dashed-dotted lines in the figure, mark the limits for such a
suitable vector Vij .

In order to give a mathematical expression of aircraft separation accord-
ing to this new interpretation, we will focus on the angles depicted on Figure
2. First, let us consider the segment joining p̂i and p̂j , whose slope, measured
from the x-axis and counter-clockwise, we denote by βij . Then, the slopes
of the mentioned tangents can be obtained by adding to and subtracting
from βij a same angle αij . If we call φij the heading angle of the relative
vector of velocity Vij , it is sufficient to impose that either φij is greater than
βij +αij or smaller than βij −αij to guarantee the desired separation. That
is, assuming that all angles belong to the interval [0, 2π] and are measured
counter-clockwise from the x-axis, the following constraint is equivalent to
(2)

∀i, j ∈ A : φij ≥ βij + αij or φij ≤ βij − αij . (3)

Note that both βij and αij only depend on the problem input, i.e., they
should be considered as problem data. The only variable in the new sep-
aration condition is then φij . In order to find a mathematical formula to
represent αij , we shall refer again to Figure 2. We observe here that each
tangent is the hypotenuse of a right triangle formed by the corresponding
perpendicular radial segment in D(p̂j , d) and the segment that links p̂i to
p̂j . Using then trigonometric relations, the following expression for αij is
obtained

αij := arcsin

(
d

d̂ij

)
,

where d̂ij is the distance between the initial positions p̂i and p̂j .
Several authors have used different versions of (3) in their models. In

the following, we describe their separation conditions by chronological order
of paper publication.
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3.1.1. Bilimoria’s equations.

To the best of our knowledge, Bilimoria was the first one to suggest this
geometrical interpretation of conflicts, see Bilimoria (2000). He proposed
closed-form expressions oriented to correct relative vectors heading so that
they satisfy (3). As starting point, he supposed that one of the constraints in
(3) was going to be satisfied as equality for every pair of aircraft in conflict.
That is, for i, j ∈ A in conflict, the author set φij = βij ± αij . This means
that such pairs attain horizontal separation equal to the safety distance d
in the solution. The author argued that other change in φij would not be
“efficient”, since the objective was to minimize deviation from nominal paths
(note that this approach is oriented to address single conflicts only). Once
φij was fixed, the following chain of identities helped the author to derived
his closed-form equations:

sin(φij)

cos(φij)
=

vi sin θi − vj sin θj
vi cos θi − vj cos θj

(4a)

sin(φij)(vi cos θi − vj cos θj) = cos(φij)(vi sin θi − vj sin θj) (4b)

vi sin(φij − θi) = vj sin(φij − θj). (4c)

Bilimoria addressed the three main variants of the CDR: SC, HAC, and
SHAC. In the first two cases, expressions for vi and θi were obtained respec-
tively from (4c), assuming that i is the only aircraft in the conflicting pair
that makes the correcting maneuvers:

vi = vj

(
sin(φij − θ̂j)
sin(φij − θ̂i)

)
, θi = φij − arcsin

(
v̂j
v̂i

sin(φij − θj)
)
. (5)

Some additional considerations that we omit here, such as the objective
function of the problem and some trigonometric relations, were used by the
author to derive the equations for the SHAC variant. For multiple-aircraft
conflicts the proposed approach was to perform several cycles to resolve
them sequentially by pairs. As the author reported himself, such strategy is
not optimal.

3.1.2. Pallottino et al.’s equations.

A second work that relied on the presented geometrical characterization
of conflicts is that of Pallottino et al. (2002). In this case, the authors
proposed two MILPs for SC and HAC, respectively. These were one of the
first mathematical programming formulations of the CDR in the literature.
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(a) If vi = vj : Yes (b) If vi 6= vj : No

Figure 3: Can be φij expressed in terms of θi and θj?

The authors introduced different separation conditions for each version of
the problem, which were linear respectively on aircraft speeds and heading
angles. The separation constraints for the SC variant read as follows

∀i, j ∈ A :
vi sin θi − vj sin θj
vi cos θi − vj cos θj

≥ tan(βij+αij) or
vi sin θi − vj sin θj
vi cos θi − vj cos θj

≤ tan(βij−αij).

(6)
Note that (6) is equivalent to taking tangents on the inequalities of (3).

The new inequalities were linearized by the authors by introducing binary
variables to indicate the sign of the denominators. Regarding HAC, Pallot-
tino et al. proposed a second approach to aircraft deconfliction. In their
framework, the authors do not only consider constant aircraft speed, but
also suppose speed to be the same for all aircraft. For a given pair i, j ∈ A,
they define the bisector of the sum of their heading angles, i.e., the line with
slope

θi+θj
2 , and the orthogonal to the bisector, with slope

θi+θj+π
2 . They

argue then that

∀i, j ∈ A :
θi + θj + π

2
≥ βij + αij or

θi + θj + π

2
≤ βij − αij (7)

is a separation condition for the HAC variant, where angles are taken in
[−π, π]. It is easy to see that (7) is equivalent to (3) if all aircraft fly at the
same speed. Indeed, the parallelogram representing the sum of the vectors
Vi and −Vj is a rhombus in such a case (see Figure 3a). As illustrated by
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the figure, a diagonal of the rhombus bisects its interior angle. It can be
proven that φij =

θi+θj+π
2 + π by using a basic geometrical argument on

the same figure (namely that φij = θj + π + σ and π = θj − θi + 2σ). The
shift π between the two formulas, (7) and (3), is due to a change in the
angles domain. Note that this equivalence only stands if the magnitude of
the velocity vectors coincide (see Figure 3b for a counter-example).

After conditions (6) and (7) were proposed in Pallottino et al. (2002),
they have been used by other authors, see, for instance, Alonso-Ayuso et al.
(2010, 2014, 2016).

3.1.3. Vela et al.’s equations.

Finally, Vela et al. (2010) derive their own separation conditions in a
similar way to Pallottino et al. (2002). We do not report here their equations
since they are indeed the same as (6), except that the tangent functions of
the right hand sides of the disjunctive constraints are substituted by their
values at the given angles. Indeed, this is proven in Section 3.4, where
tan(βij + αij) and tan(βij − αij) are explicitly calculated.

3.2. Analytical conditions

A different way of obtaining mathematical programming constraints for
separation is to apply some analytical calculus on (1). The idea is to find,
for each pair of aircraft, the critical time instant at which this constraint
has to be satisfied. Since distances are positive, we base our analysis on the
squared version of (1).

3.2.1. Minimum-distance time equations.

Given a pair of aircraft i, j ∈ A, let fij(t) := ‖pi(t) − pj(t)‖2 represent
the squared distance between them as a function of time. By assuming a
rectilinear motion of the aircraft, the following expression yields

fij(t) = ‖Vij‖2t2 + 2t〈p̂ij , Vij〉+ d̂2
ij ∀t ∈ [0, T ], (8)

where we have used the fact that d̂ij = ‖p̂ij‖. It is now possible to calculate
the time instant at which minimum separation between aircraft i and j is
attained, tminij . Indeed, by calculating the first and second order derivatives
of fij(t), it can be easily seen that

tminij =
−〈p̂ij , Vij〉
‖Vij‖2

. (9)
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If tminij < 0, the minimum separation between i and j was attained in the
past, and their trajectories are diverging in the given time horizon. Other-
wise, by substituting tminij in (8), we obtain the minimum squared distance
between i and j during their observed trajectories,

fminij =
−〈p̂ij , Vij〉2

‖Vij‖2
+ d̂2

ij . (10)

A new separation condition, also equivalent to (1), can be thus stated as
follows,

∀i, j ∈ A : tminij < 0 or fminij ≥ d2. (11)

Some authors used this alternative separation condition in their mathemat-
ical programming models for the CDR, see for instance Cafieri & Durand
(2014), Cafieri & D’Ambrosio (2018). As we discuss in Section 4, binary
variables are typically considered to model the disjunction in (11). Observe
that (11), unlike the original separation equation (1), does not depend on
time, which solves the main obstacle for mathematically formulating the
problem. The possibilities of analytical calculus on distance-related func-
tions, however, does not end here.

Before continuing, let us write an extended version of (11),

∀i, j ∈ A : tminij < 0 or ‖Vij‖2(d̂2
ij − d2)− 〈p̂ij , Vij〉2 ≥ 0, (12)

and consider the following function

g(Vxij , Vyij) := Vxij
2(ŷ2

ij − d2) + Vyij
2(x̂2

ij − d2)− 2VxijVyij x̂ij ŷij ,

which coincides with the scalar form of the left-hand side of the inequality
in the second disjunctive term in (12).

3.2.2. Rey & Hijazi ’s disjunctive equations.

Rey & Hijazi (2017b) studied the sign of g to characterize the regions
of the space of relative velocities (Vxij , Vyij) in which (12) was satisfied. To
that end, the authors study the roots of g by treating either Vyij or Vxij as
a constant. The discriminants of the resulting univariate quadratic function
are, respectively:

∆xij = 4d2Vyij
2(x̂2

ij + ŷ2
ij − d2) and ∆yij = 4d2Vxij

2(x̂2
ij + ŷ2

ij − d2),

and the roots are:

Vxij =
2x̂ij ŷij ±

√
∆xij

2(ŷ2
ij − d2)

and Vyij =
2x̂ij ŷij ±

√
∆yij

2(x̂2
ij − d2)

.
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(a) Sign of g(Vxij , Vyij) (b) Non-convex disjunctive feasible re-
gions

Figure 4: Regions of the space (Vxij , Vyij) delimited by (13), (14), Π and Π⊥

The authors noted that these roots always exist since the discriminants are
positive because x̂2

ij + ŷ2
ij − d2 ≥ 0 (aircraft are assumed to be initially

separated). Then, substituting the discriminants in the equations of the
roots, they conclude that the points satisfying g(Vxij , Vyij) = 0 satisfy one
of the following equations

(ŷ2
ij − d2)Vxij − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)Vyij = 0 (13)

(ŷ2
ij − d2)Vxij − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)Vyij = 0 (14)

(x̂2
ij − d2)Vyij − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)Vxij = 0 (15)

(x̂2
ij − d2)Vyij − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)Vxij = 0. (16)

It is easy to observe that (13) and (15) define an identical line in the space
(Vxij , Vyij) (their coefficients are proportional). Similarly, (14) and (16)
also stand for a same line. The problem remains then to identify in which
portions of the space delimited by those lines g(Vxij , Vyij) ≥ 0 holds.

Rey & Hijazi considered Π ≡ Vxij x̂ij +Vyij ŷij = 0, the plane equation of
the dot product 〈p̂ij , Vij〉. They defined two sub-spaces,

{(Vxij , Vyij) : Vyij x̂ij−Vxij ŷij ≤ 0} and {(Vxij , Vyij) : Vyij x̂ij−Vxij ŷij ≥ 0},

induced by the plane perpendicular to Π, Π⊥. As proven in Dias et al.
(2020), Π and Π⊥ are bisectors of the angles formed by lines (13) and (14).
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Moreover, Dias et al. proved that g is negative on the points of Π⊥, which
allowed them to classify the space as desired. Figure 4a gives an illustration
of the resulting partition in sub-spaces and the sign of g in each of them.
Dashed lines represent (13) and (14) and blue hashed sub-spaces define the
disjunctive region where g is positive. Grey hashed sub-space corresponds
to diverging trajectories, while the blank area matches the unfeasible ones.
Figure 4b illustrates the feasible region of the space of relative velocities,
i.e., the region in which either g is positive or the trajectories diverge. Rey
& Hijazi identified such non-convex region based on the sign of x̂ij and ŷij ,
as follows:

1. If Vyij x̂ij − Vxij ŷij ≥ 0, the formulas are derived from (13) and (15):

• Case x̂ij ≥ 0 and ŷij < 0: (x̂2
ij−d2)Vyij−(x̂ij ŷij−d

√
x̂2
ij + ŷ2

ij − d2)Vxij ≥
0

• Case x̂ij < 0 and ŷij ≥ 0: (x̂2
ij−d2)Vyij−(x̂ij ŷij−d

√
x̂2
ij + ŷ2

ij − d2)Vxij ≤
0

• Case x̂ij ≥ 0 and ŷij ≥ 0: (ŷ2
ij−d2)Vxij−(x̂ij ŷij+d

√
x̂2
ij + ŷ2

ij − d2)Vyij ≤
0

• Case x̂ij < 0 and ŷij < 0: (ŷ2
ij−d2)Vxij−(x̂ij ŷij+d

√
x̂2
ij + ŷ2

ij − d2)Vyij ≥
0

2. If Vyij x̂ij − Vxij ŷij ≤ 0, the formulas are obtained from (14) and (16):

• Case x̂ij ≥ 0 and ŷij < 0: (ŷ2
ij−d2)Vxij−(x̂ij ŷij−d

√
x̂2
ij + ŷ2

ij − d2)Vyij ≤
0

• Case x̂ij < 0 and ŷij ≥ 0: (ŷ2
ij−d2)Vxij−(x̂ij ŷij−d

√
x̂2
ij + ŷ2

ij − d2)Vyij ≥
0

• Case x̂ij ≥ 0 and ŷij ≥ 0: (x̂2
ij−d2)Vyij−(x̂ij ŷij+d

√
x̂2
ij + ŷ2

ij − d2)Vxij ≤
0

• Case x̂ij < 0 and ŷij < 0: (x̂2
ij−d2)Vyij−(x̂ij ŷij+d

√
x̂2
ij + ŷ2

ij − d2)Vxij ≥
0

Each of the descriptions 1 and 2 corresponds to one of the sub-spaces yellow
and blue in Figure 4b. To find the correct sign of the inequalities like in the
above case analysis, it is sufficient to evaluate (13)-(16) on a point of Π⊥,
for instance (−x̂ij ,−ŷij).

Now, separation condition (12) can be expressed based on the above
analysis. To this end, let us synthesize it by considering the separation
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inequalities h1(Vxij , Vyij) ≤ 0 and h2(Vxij , Vyij) ≤ 0, with h1 and h2 having
the right coefficients depending on the analysis made on cases 1 and 2 above.
The following is then a separation condition for the CDR,

∀i, j ∈ A : (Vyij x̂ij − Vxij ŷij ≥ 0 and h1(Vxij , Vyij) ≤ 0) or

(Vyij x̂ij − Vxij ŷij ≤ 0 and h2(Vxij , Vyij) ≤ 0) .
(17)

Rey & Hijazi and Dias et al. used these disjunctive conditions to build their
models. Note that the gain with respect to (12) is not negligible: the new
equations are linear in Vij .

3.3. Crossing point conditions

A third alternative to model aircraft separation (1) is to develop a ge-
ometrical analysis of conflicts based on aircraft encounter. This approach
builds on the fact that conflicts may only occur around the crossing points
of aircraft pairs trajectories. The main assumption so that separation is
ensured is that aircraft trajectories are straight within this region (although
they may include turns before and after it). Let i and j be two aircraft
with co-planar crossing trajectories, and let γij be their confluence angle,
γij ∈ [0, π]. After squaring condition (1), it can be rewritten as follows

‖pi(t)‖2 + ‖pj(t)‖2− 2‖pi(t)‖ · ‖pj(t)‖ · cos γij ≥ d2 ∀t ∈ [0, T ], ∀i, j ∈ A.
(18)

3.3.1. Irvine’s equations.

Equation (18) was first suggested in Irvine (2001, 2002). The author
considers the two dimensional space of aircraft positions to have its origin
at the crossing point of the trajectories of i and j. Then, (18) describes
an ellipse in the two dimensional space given by (‖pi(t)‖, ‖pj(t)‖), i.e., the
vector of distances between i and j and the crossing point of their trajecto-
ries, at time t. Whether or not a conflict will occur, depends upon whether
the line defined by the points (‖pi(t)‖, ‖pj(t)‖) passes through the ellipse.
According to Irvine, the tangents to the ellipse have equations

y =
vj
vi
x±

d

√
v2j
v2i
− 2

vj
vi

cos γij + 1

sin γij
,

thus being the following a separation condition

∣∣∣‖pj(t)‖ − vj
vi
‖pi(t)‖

∣∣∣ ≥ d

√
v2j
v2i
− 2

vj
vi

cos γij + 1

sin γij
∀t ∈ [0, T ]. (19)
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(a) ∆tij ≥ 0 (b) ∆tij ≤ 0

Figure 5: Trajectories meeting at the origin

The author then relies on (19) to discuss conflict probability estimation un-
der the so-called along-track and cross-track errors. We refer the interested
reader to Irvine (2002) for further details since the discussion on uncer-
tainty is out of the scope of this paper. However, we notice that the analysis
of Irvine of conflict probability inspired later works, including Vela et al.
(2009a), Lehouillier et al. (2017a), which are mentioned in Section 4.

3.3.2. Carlier et al.’s equations.

As for Irvine’s equations, we assume here that the trajectories of i and
j meet at the origin. In addition, supposing without loss of generality that
the trajectory of i coincides with the x-axis, the following equations describe
the motion of the aircraft,

pi(t) = t(vi, 0), pj(t) = (t−∆tij)(vj cos γij , vj sin γij), (20)

where ∆tij is the time difference between the crossing of the origin by i and
j. Figure 5 illustrates aircraft trajectories under this configuration. In prin-
ciple, one can think in ∆tij as a positive or negative value (see, respectively,
left and right hand sides of the figure). Note that motion equations (20)
involve a shift in the time horizon, which now start from negative instant
times. The following example further illustrates the equations.

Example 1. Figure 5 shows an example of two crossing trajectories illus-
trating equations (20). Marks on the axes stand for 0.5 units steps.

Figure 5a on the left shows the trajectories of aircraft i and j crossing
at the origin, being i the first one traversing the crossing point (∆tij ≥ 0).
Conversely, Figure 5b on the right shows a similar scenario where j traverses
the crossing point before i (∆tij ≤ 0).
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The equations of the trajectories depicted on Figure 5a are

pi(t) = t(1, 0), pj(t) = (t−0.5)(0.8 cos 0.54, 0.8 sin 0.54) t ∈ [−1.5, T−1.5].

Note that, due to the equation of pi in (20), this aircraft always traverses
the origin at t = 0, which yields a shift in the considered time horizon equal
to x̂i/vi. In the scenario depicted by Figure 5a, the resulting time window
is [−1.5, T − 1.5]. At the beginning of this time interval, the initial positions
of the aircraft are

pi(−1.5) = (−1.5, 0); and pj(−1.5) = −2(0.8 cos 0.54, 0.8 sin 0.54) = (−1.36,−0.83).

They cross the origin at time instants 0 and 0.5 respectively, being ∆tij =
0.5 ≥ 0.

On the other hand, the equations of aircraft trajectories of Figure 5b are

pi(t) = t(0.5, 0); and pj(t) = (t+1)(0.8 cos 0.54, 0.8 sin 0.54) t ∈ [−3, T−3].

In this case, the aircraft cross the origin at t = 0 and t = −1 respectively,
being ∆tij = −1 ≤ 0.

If we substitute the new motion equations (20) in the encounter separa-
tion condition (18), we obtain the following inequalities:

(v2
i +v

2
j−2vivj cos γij)t

2−2∆tijvj(vj−vi cos γij)t+v
2
j∆t

2
ij ≥ d2 ∀t ∈ [0, T ], ∀i, j ∈ A.

Following a similar argument than that of the beginning of Section 3.2, we
consider the function of the squared distance between i and j,

fij(t) = (v2
i +v

2
j−2vivj cos γij)t

2−2∆tijvj(vj−vi cos γij)t+v
2
j∆t

2
ij ∀t ∈ [0, T ].

(21)
It attains its minimum at

tminij =
∆tijvj(vj − vi cos γij)

v2
i + v2

j − 2vivj cos γij
,

which can be substituted in (21) to obtain the minimum squared distance

fminij =
−(∆tijvj(vj − vi cos γij))

2

v2
i + v2

j − 2vivj cos γij
+ v2

j∆t
2
ij .

Here, we leave aside the question of the sign of tminij , since we have shifted our
time horizon. Then, a conflict occur (ignoring if it is being observed in our
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time window or not) if and only if fminij ≤ d2. Doing a few calculations, it is
possible to isolate ∆tij in this expression to derive the following separation
condition:

∆t2ij ≥
d2(v2

i + v2
j − 2vivj cos γij)

v2
i v

2
j sin γ2

ij

. (22)

It can be easily seen that (22) is equivalent to (19) after taking squares.
Indeed, by multiplying (19) by 1/vj , we obtain that its left-hand side co-
incides with ∆tij (due to the basic law by which space equals speed times
time). On the other hand, the fact that the right-hand sides also match
after the transformation is trivial.

In conclusion, if the pair i, j satisfies condition (22), there is no con-
flict between them. But, what happens with multiple conflicts? We have
assumed that the trajectories of a given pair meet at the origin, but this
is surely not true when more than one conflicting aircraft are considered in
the same scenario. On the contrary, (22) does not depend on the coordi-
nate reference or time interval chosen at the beginning. Indeed, ∆t is an
absolute component in our analysis since it represents a time lag. On the
other hand, γij , the confluence angle between trajectories, is independent
from the coordinate axes chosen. Finally, since vi, vj , and d are just scalar
magnitudes, they are not affected by orientation. Consequently, (22) is a
valid separation condition also for the multiple conflicts case.

Let us now resume the question of the sign of ∆tij . According to the
equations in (20), if ∆tij ≥ 0, j traverses the origin (i.e., the crossing point
of the trajectories) after i. Conversely, if ∆tij ≤ 0, j is the first passing
through the origin. Then, to simplify (22) by eliminating the powers, it
is necessary to distinguish between two scenarios, namely, which aircraft
traverses first the intersection point of the trajectories. Let us define the
following function

Γ(vi, vj , γij) =
d ·
√
v2
i + v2

j − 2vivj cos γij

vivj |sin γij |
,

and denote with ti∩ji and ti∩jj the time instants in which i and j traverse the
crossing point of their trajectories, respectively. The following is a separation
condition for the CDR:

∀i, j ∈ A : ti∩ji − ti∩jj ≥ Γ(vi, vj , γij) or ti∩jj − ti∩ji ≥ Γ(vi, vj , γij).
(23)

The new separation condition does not seem particularly good. Like its
analogous (12), it is nonlinear on aircraft velocity and, moreover, it involves
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trigonometric functions on the confluence angle (which would be a problem
variable if heading angle changes are allowed). However, the potential of
(23) is that it allows a new interpretation of the problem, focusing on its
temporal component rather than on the spatial one.

Carlier et al. (2003) were the first to propose condition (23) and to
interpret aircraft conflict resolution as a scheduling problem. In their pro-
posed framework, aircraft trajectories were identified with jobs, and sub-
trajectories, which were determined by crossing points, were interpreted as
the tasks of classical scheduling. Aircraft speeds can be recovered from time
duration of tasks by using rectilinear motion laws. This pioneering work in-
spired other authors to develop their models, for instance, Vela et al. (2009b),
Rey et al. (2014), Omer (2015), Rey et al. (2016), Courchelle et al. (2019).
All of them approximate nonlinear expression in (23) by considering fixed
values of aircraft speeds. This type of work usually considers that aircraft
paths are sequences of waypoints, trajectories being piece-wise rectilinear.
Separation conditions (23) are then imposed at common waypoints, under
the assumption that the involved aircraft trajectories are rectilinear within
a neighborhood of the conflict region. These models typically treat parallel
trajectories separately, including the so-called trailing and frontal conflicts,
since they are excluded from the analysis made to arrive at (23).

3.4. Homogenizing separation

Up to this point we have presented different ways of interpreting and
representing the separation condition (1) with T = +∞. Each of them look
at the problem from a different perspective: some focus on its underlying
geometry and other take an analytic view to obtain some critical points (in
time or space) that characterize the conflicts. But, how are these approaches
related? Are there so many different ways of imposing aircraft separation
through mathematical equations? Or some of them are indeed the same?
In this section, we try to answer these questions.

Something that the readers might have found noticeable is that equations
in both (6) and (13)-(16) are linear functions of Vij . It seems reasonable
then to try to relate the coefficients in (13)-(16) to the tangent of the angles
βij +αij and βij−αij , which appeared in (6). Let us consider again i, j ∈ A
two aircraft in conflict, D(p̂j , d) the safety disk around j, and the tangents
to D(p̂j , d) that pass through p̂i. Any of these tangents, together with its
corresponding perpendicular radius in the disk and the segment joining p̂i
and p̂j , form a right triangle (see illustration on Figure 6). The tangent of
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Figure 6: Illustration of geometrical calculation of tan(αij)

αij can be then expressed as follows

tanαij =
d√

d̂2
ij − d2

≡ tanαij =
d√

x̂2
ij + ŷ2

ij − d2
.

On the other hand, the tangent of βij is, by definition,

tanβij =
ŷij
x̂ij

.

By using trigonometric relations and arithmetic calculus we obtain then:

tan(βij + αij) =
tanβij + tanαij

1− tanβij tanαij
=
ŷij
√
x̂2
ij + ŷ2

ij − d2 + dx̂ij

x̂ij
√
x̂2
ij + ŷ2

ij − d2 − dŷij
,

tan(βij − αij) =
tanβij − tanαij

1 + tanβij tanαij
=
ŷij
√
x̂2
ij + ŷ2

ij − d2 − dx̂ij

x̂ij
√
x̂2
ij + ŷ2

ij − d2 + dŷij
.

If we multiply numerator and denominator by the “conjugate” of the

denominator in each case, i.e., we multiply by x̂ij
√
x̂2
ij + ŷ2

ij − d2 ± dŷij , we
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obtain the following expressions:

tan(βij + αij) =
x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2

x̂2
ij − d2

, (24)

tan(βij − αij) =
x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2

x̂2
ij − d2

. (25)

While, if we multiply numerator and denominator by the “conjugate” of the

numerator in each case, i.e. ŷij
√
x̂2
ij + ŷ2

ij − d2 ∓ dx̂ij , we obtain:

tan(βij + αij) =
ŷ2
ij − d2

x̂ij ŷij − d
√
x̂2
ij + ŷ2

ij − d2
, (26)

tan(βij − αij) =
ŷ2
ij − d2

x̂ij ŷij + d
√
x̂2
ij + ŷ2

ij − d2
. (27)

Observe now that, if we substitute the value of the tangents in (6) by the
formulas in (24) and (25), we would obtain the same expressions as in (15)
and (16). Similarly, (26) and (27) combined with (6) will yield the formulas
in (13) and (14). As a consequence, the formulas yielding from the analytical
calculus presented by Rey & Hijazi are in essence equivalent reformulations
of those derived by Pallottino et al. following a geometrical reasoning.

To summarize, we now know different equivalent separation conditions,
namely six: (3), (6), (12), (17), (19) and (23)— (7) is excluded since it is only
valid when all aircraft fly at the same speed. Some of them can be directly
derived from each other, such as (3) and (6) (by taking tangents), (6) and
(17) (as just shown), (19) and (23) (as shown in the previous subsection) or
(12) and (23) (by changing spatial and temporal references). These equiv-
alent separation conditions are expressed as functions of different elements
of the problem such as aircraft velocities, angles, or even time. However, all
of them have one thing in common: they are disjunctive conditions. This
comes to show the combinatorial nature of the problem, which is not evident
at first. As a consequence, existing mathematical programming formulations
of the problem are for the most part mixed-integer, as we discuss in next
section.
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4. Mathematical programming formulations

The CDR has been addressed from wide ranging domains, such as Op-
timal Control (see, e.g. Tarnopolskaya & Fulton 2009), Simulation (see, e.g.
Alliot et al. 1997), Visual Analytics (see, e.g. Zohrevandi et al. 2020) or
Mathematical Programming (MP), in a heterogeneous effort to provide de-
cision support tools for ATCs. In this section, we review some of the MP
formulations proposed in the literature, aiming at providing an overview on
the different existing kind of approaches. We suggest survey Kuchar & Yang
(2000) for an extended reading on other CDR methods. A classifying tax-
onomy is proposed therein, which includes dimension (vertical, horizontal,
or 3D), trajectory propagation model (straight, worst case, or probabilis-
tic), conflict detection threshold (whether a model explicitly defines when a
conflict alert is issued), conflict resolution method (prescribed maneuvers,
optimization, force field, or manual), allowed maneuvers (speed, lateral, ver-
tical, or combined) and multiple conflicts management (pairwise or global).
To the best of our knowledge, there has not been a similar discussion fo-
cusing on comparison of MP approaches for CDR. In order to complete
our exposition, which only consider a selection from the existing MP for-
mulations, we have gathered those and other existing MP approaches on
Table 1. They are chronologically displayed and classified based on different
modelling aspects, which are described on the table foot. Our taxonomy
includes the separation condition according to Section 3, which, to the best
of our knowledge, has not been considered before to classify the models.

In MP formulations of CDR, the decision variables are usually the changes
on the trajectories allowed, namely heading angle and/or speed changes. We
focus on these two kinds of maneuvers. Other works also include variables to
represent different altitude levels, in order to model flight level reallocation.
This is frequently done with binary variables that activate or inactive sep-
aration constraints depending on whether a pair of aircraft fly at the same
altitude or not.

Some works consider trajectory recovery of aircraft. This is more com-
mon when models are based on heading angle maneuvers since aircraft have
to be returned to their original paths. There are roughly two kinds of strate-
gies to achieve trajectory recovery. One is to consider two optimization
steps, the first for CDR and the second for recovery. Alternatively, some
approaches consider both in the same optimization process, where maneu-
vers are considered to start and end at some time instants, and they finalize
by going back to the original configuration.

In the following, we introduce some of the MP formulations in the lit-
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erature, classified depending on the allowed maneuvers. Due to the nature
of the problem, many of them model logical constraints, for which binary
variables are used. Here, we define common notation for these constraints
for the sake of simplicity, which includes z-variables and big M . Of course,
depending on the formulation at hand, they acquire different meanings. We
also simplify constraints indexing by just considering pairs of aircraft as
i, j ∈ A, thus omitting condition i < j for readability.

4.1. Speed regulation

Pallottino et al. (2002) suggest the use of binary variables to model
their separation conditions (6) via MP. As a result, a MILP formulation of
CDR based on SC can be obtained, as the authors indicate in their paper.
Their decision variables are the increment or decrease of speeds q′i, where
vi = v̂i + q′i for each aircraft i ∈ A. Note that we use q′i here in order to
differentiate these variables from qi, which were defined in Section 2.1 as
the speed change ratio, vi = qiv̂i. Following the authors’ indications, we
reconstruct their formulation, where the short-hands ϑ+

ij := βij + αij and

ϑ−ij := βij − αij are used for readability:

min
q′,z

∑
i∈A
− q′i (28a)

s.t. q′
i
≤ q′i ≤ q̄′i ∀i ∈ A(28b)

(v̂j + q′j) cos θj − (v̂i + q′i) cos θi ≤M(1− z1
ij) ∀i, j ∈ A(28c)

(v̂j + q′j)(sin θj − tanϑ+
ij cos θj)− (v̂i + q′i)(sin θi − tanϑ+

ij cos θi) ≤M(1− z1
ij) ∀i, j ∈ A(28d)

(v̂j + q′j) cos θj − (v̂i + q′i) cos θi ≤M(1− z2
ij) ∀i, j ∈ A(28e)

(v̂i + q′i)(sin θi − tanϑ−ij cos θi)− (v̂j + q′j)(sin θj − tanϑ−ij cos θj) ≤M(1− z2
ij) ∀i, j ∈ A(28f)

(v̂i + q′i) cos θi − (v̂j + q′j) cos θj ≤M(1− z3
ij) ∀i, j ∈ A(28g)

(v̂i + q′i)(sin θi − tanϑ+
ij cos θi)− (v̂j + q′j)(sin θj − tanϑ+

ij cos θj) ≤M(1− z3
ij) ∀i, j ∈ A(28h)

(v̂i + q′i) cos θi − (v̂j + q′j) cos θj ≤M(1− z4
ij) ∀i, j ∈ A(28i)

(v̂j + q′j)(sin θj − tanϑ−ij cos θj)− (v̂i + q′i)(sin θi − tanϑ−ij cos θi) ≤M(1− z4
ij) ∀i, j ∈ A(28j)

z1
ij + z2

ij + z3
ij + z4

ij ≥ 1 ∀i, j ∈ A(28k)

z1
ij , z

2
ij , z

3
ij , z

4
ij ∈ {0, 1} ∀i, j ∈ A.(28l)
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The objective (28a) is to minimize the deceleration changes (i.e., negative
values q′i). Constraints (28b) state the bounds on continuous q′-variables.
On the other hand, (28c)-(28j) model the disjunctive equation (6). They
can be divided into two groups. Constraints (28c)-(28f) are a linearization
of (6) when the sign of the denominator vi cos θi − vj cos θj is positive (in
this case at least one variable z1

ij or z2
ij is one), while (28g)-(28j) model (6)

otherwise (in this case z3
ij or z4

ij is one). The constraints on these groups
can be active, when the corresponding binary z-variable on the right-hand
side takes value 1, or inactive, if it takes value 0. In the latter case, a
large enough value of M guarantees that the constraint does not modify
the feasible region of the problem. Note that the same M is used here in
(28c)-(28j) for simplicity, but a different large enough constant can be used
in each constraint. On the other hand, (28k) ensure that at least one pair of
the constraints among (28c)-(28j) is active. Finally, constraints (28l) state
the binarity of z-variables.

Alonso-Ayuso et al. (2010) extended (28) by considering additional as-
pects including altitude level reallocation, trajectory recovery, and mini-
mization of the number of maneuvers implemented per aircraft.

Cafieri & Durand (2014) propose a MINLP based on separation condi-
tion (12), where speed regulation is performed at different time instants.
While other models consider speed to be regulated at t = 0 and maintained
afterwards, Cafieri & Durand define two time instants for each aircraft at
which they start/end flying with modified speed. The result is a more flex-
ible but more complex model, including products of continuous variables in
the constraints. The objective function is to minimize deviation from the
nominal plan. We refer the interested reader to the original paper since
reproducing the formulation here would need from a significant amount of
additional notation.

Cafieri & Omheni (2017) present a MINLP, whose objective was to max-
imize the number of non-conflicting pairs via speed regulation. The authors
use the following variables for each pair of aircraft i, j ∈ A:

ηij =

{
1, if i and j are separated

0, otherwise.

At the beginning of the time horizon, aircraft are assumed to be separated.
Two cases are distinguished, namely whether aircraft trajectories are di-
vergent or not. The formulation, which is based on analytical separation
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conditions (12), reads

max
v,V,η,z

∑
i∈A

ηij

s.t. vi ≤ vi ≤ v̄i ∀i ∈ A (29a)

Vi = (vi cos θ̂i, vi sin θ̂i) ∀i ∈ A (29b)

Vij = Vi − Vj ∀i, j ∈ A (29c)

(2z1
ij − 1)(‖Vij‖2(d̂2

ij − d2)− 〈p̂ij , Vij〉2) ≥ 0 ∀i, j ∈ A (29d)

(2z2
ij − 1)〈p̂ij , Vij〉 ≥ 0 ∀i, j ∈ A (29e)

ηij ≥ z1
ij ∀i, j ∈ A (29f)

ηij ≥ z2
ij ∀i, j ∈ A (29g)

ηij ≤ z1
ij + z2

ij ∀i, j ∈ A (29h)

0 ≤ ηij ≤ 1 ∀i, j ∈ A (29i)

z1
ij , z

2
ij ∈ {0, 1} ∀i, j ∈ A.

Constraints (29a) limit velocity changes and (29b) and (29c) link scalar
speeds to vectors of relative velocity. Constraints (29d) and (29e) ensure
aircraft separation. When z1

ij = 1, (29d) coincides with the right-hand side
of disjunctive separation condition (12), and it ensures that i and j are
separated at least the safety distance d. When z2

ij = 1, (29e) stands for the

left-hand side of (12), i.e., tminij < 0, meaning that the trajectories of the
aircraft are divergent. Due to the objective function and constraints (29h),
for each pair of aircraft i and j, at least one of the binaries z1

ij or z2
ij will

take value one if feasible. At the same time, (29h) guarantees that ηij is
zero if both z1

ij and z2
ij are. On the other hand, (29f) and (29g) enforce ηij

to be one if either z1
ij or z2

ij are. Variables ηij will take values 0/1 in the
optimum, and that is why their binarity is relaxed in (29i).

Cafieri & D’Ambrosio (2018) propose a MINLP in a similar vein. In-
spired by Cafieri & Durand (2014), they draw on the same analytical sep-
aration conditions, but they reformulate the model in order to isolate non-
linearities in the same constraints. This is interesting for specific solving
techniques, such as the alternating heuristic they apply. Their reformula-
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tion reads

min
q,V,W,s,S,z

∑
i∈A

(qi − 1)2 (30a)

s.t. Vxij = V̂xiqi − V̂xjqj ; Vyij = V̂yiqi − V̂yjqj ∀i, j ∈ A (30b)

Wxij = V 2
xij ; Wyij = V 2

yij ∀i, j ∈ A (30c)

sij = x̂ijVxij + ŷijVyij ∀i, j ∈ A (30d)

Sij = s2
ij ∀i, j ∈ A (30e)

Xij = Wxij +Wyij ∀i, j ∈ A (30f)

sijzij ≤ sij ≤ s̄ij(1− zij) ∀i, j ∈ A (30g)

(d̂2
ij − d2)Xij − Sij ≥Mij(1− zij) ∀i, j ∈ A (30h)

zij ∈ {0, 1} ∀i, j ∈ A.

The objective (30a) is to minimize the changes made on speed. From con-
straints (30b)-(30f), variables sij stand for the scalar product 〈p̂ij , Vij〉, while
Xij represent the squared norm of the relative vector of velocity, Vij . When
zij = 1, (30h) guarantees aircraft separation; when zij = 0, (30g) states
that the trajectories have to be divergent. Therefore, in this case, all the
pairs have to be deconflicted: if this is not possible the problem becomes
unfeasible.

Rey et al. (2014) present a MINLP to maximize the number of conflicts
solved based on arrival times control. This represents the first stage of
their proposed equity-oriented conflict resolution model, which is followed
by two more, aimed at solving conflicts in the fairest way and reducing delay,
respectively. Time is considered a function of the scalar speed, which is
indirectly regulated by the model. Heading angle changes are not considered.
Their MINLP is based on separation conditions (23). Instead of non-convex
function Γ(vi, vj , γij), they use a linear approximation first introduced in
their previous work, Rey et al. (2012). There, they define the following
convex function

ϕij(r) :=
√
r2 − 2r cos γij + 1,

and noted that

Γ(vi, vj , γij) =
d

vi|sin γij |
ϕij(vi/vj) and Γ(vi, vj , γij) =

d

vj |sin γij |
ϕij(vj/vi).
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Maximum values of ϕij(r) are achieved for the maximum and minimum
values of r. Thus, the authors defined

ϕ̄ij := max{ϕ(vi/v̄j), ϕ(v̄i/vj)}, ϕ̄ji := max{ϕ(vj/v̄i), ϕ(v̄j/vi)}

(in the original paper only one value ϕ̄ij is defined, a formal typo also made
in Rey et al. (2016) that does not alter the final upper bound on Γ, Rey
(2020)), which yield the following upper bounds on Γ(vi, vj , γij):

d

vi|sin γij |
ϕ̄ij ,

d

vj |sin γij |
ϕ̄ji. (31)

The authors consider a path for each aircraft i ∈ A, denoted by P(i) and
made of a sequence of waypoints. Suppose that k is the crossing point
between the trajectories of i, j ∈ A, that is, P(i) = {. . . , k−i , k, . . .} and
P(j) = {. . . , k−j , k, . . .}. If we denote by tki (resp. tkj ) the time instant at

which i (resp. j) traverses the crossing point k, and by tk
−
i (resp. tk

−
j ) the

instant at which it traverses the preceding waypoint, the following upper
bound on Γ(vi, vj , γij) is obtained from (31):

Γ̄ij = min

{
(tki − tk

−
i )

dϕ̄ij

d(k, k−i )|sin γij |
, (tkj − tk

−
j )

dϕ̄ji

d(k, k−j )|sin γij |

}
.

With d(·, ·) we denote the Euclidean distance. This upper bound is a linear
function of the arrivals times, which are the only variables in the definition of
Γ̄ij . Rey et al. (2014) use binary variables to represent effective separation
between aircraft, an approach also adopted by Cafieri & Omheni (2017).
The definition changes slightly:

ηij =

{
1, if the conflict between i and j, with crossing trajectories, is solved

0, otherwise.

Using these variables, together with the arrival times to waypoints tki , for
each aircraft i ∈ A and waypoint k ∈ P(i), they proposed the following
MINLP for the CDR:

max
t,η,Ω

∑
i,j∈A

ηij (32a)

s.t. tki ≤ tki ≤ t̄ki ∀i ∈ A, ∀k ∈ P(i) (32b)

Ωi,j = max{0, Γ̄ij − |tki − tkj |} ∀i, j ∈ A, ∀k ∈ P(i) ∩ P(j)(32c)

ηij ≤ 1− Ωi,j

M ∀i, j ∈ A (32d)

ηij ∈ {0, 1} ∀i, j ∈ A.
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The objective, (32a), is to maximize the number of solved crossing conflicts.
Bounds on speed regulation are modelled in (32b) through linear transfor-
mation based on aircraft rectilinear motion. Constraints (32c) ensure that
Ωi,j = 0 if and only if the conflict between i and j is solved. Because of
(32d), if Ωi,j > 0, the binary variable ηij will take value zero (M has to be

large enough so that
Ωi,j

M < 1). Otherwise, it will take value one due to the
maximizing objective. Constraints (32c) can be linearized by considering
new binary variables and some additional constraints. For more details on
this linearization, see the Appendix in Rey et al. (2014).

Finally, Cerulli et al. (2020) interpret the CDR as a bilevel problem.
Their formulation has a lower level sub-problem for each pair of aircraft;
optimal solutions of sub-problems correspond to time instants at which air-
craft are closest. The constraints involving the lower levels ensure that the
distance at this time instant is at least d for each pair of aircraft. The pro-
posed model serves for more than two dimensions, but here we present it in
two to maintain our notation:

min
q,t

∑
i∈A

(qi − 1)2

s.t. q
i
≤ qi ≤ q̄i ∀i ∈ A

min
tij∈[0,T ]

[
(x̂i − x̂j) + tij(qiV̂xi − qj V̂xj)

]2

+
[
(ŷi − ŷj) + tij(qiV̂yi − qj V̂yj)

]2
≥ d2 ∀i, j ∈ A.

4.2. Heading angle changes

The models presented in the previous section can be adapted to address
CDR via HAC, for instance, by modifying the decision variables. Indeed, to
model HAC, Alonso-Ayuso et al. (2014) use a very similar formulation to
that proposed in Pallottino et al. (2002) based on SC. The resulting formu-
lation is a MINLP involving trigonometric functions of the variables, which
are the heading angle variations. Another example is Cafieri & Omheni
(2017), where a two-step algorithm is proposed for the CDR. In each step,
a MP formulation is solved: first, speed is regulated with model (29); then,
if there are unsolved conflicts a HAC model is applied. The ideas behind
the formulation considering HAC are pretty similar to that of SC, and also
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involves trigonometric formulas:

min
ω,V,tmin,z

∑
i∈A

ω2
i

s.t. ωi ≤ ωi ≤ ω̄i ∀i ∈ A

Vi = (v̂i cos(θ̂i + ωi), v̂i sin(θ̂i + ωi)) ∀i ∈ A

Vij = Vi − Vj ∀i, j ∈ A

zij(‖Vij‖2(d̂2
ij − d2)− 〈p̂ij , Vij〉2) ≥ 0 ∀i, j ∈ A

tminij =
−〈p̂ij ,Vij〉
‖Vij‖2 ∀i, j ∈ A

tminij (2zij − 1) ≥ 0 ∀i, j ∈ A

zij ∈ {0, 1} ∀i, j ∈ A.

Similarly, Cerulli et al. (2020) also propose a bilevel programming formula-
tion via HAC, which reads:

min
ω,t

∑
i∈A

ω2
i

s.t. ωi ≤ ωi ≤ ω̄i ∀i ∈ A

min
tij∈[0,T ]

[
(x̂i − x̂j) + tij(v̂i cos(θ̂i + ωi)− v̂j cos(θ̂j + ωj))

]2

+
[
(ŷi − ŷj) + tij(v̂i sin(θ̂i + ωi)− v̂j sin(θ̂j + ωj))

]2
≥ d2 ∀i, j ∈ A.

On the other hand, Pallottino et al. (2002) propose a completely dif-
ferent formulation for HAC. However, it is only valid when all the aircraft
fly at the same speed. The formulation, which is not explicitly written
in their paper, is based on equations (7), which are used for pairs of air-
craft with crossing trajectories, and another set of separation constraints,
which the authors propose for non-crossing trajectories in the direction of
motion (which might become crossing trajectories due to heading angle
changes). Here, for simplicity, we present a MILP based uniquely on (7),
which is enough to model CDR since these conditions are equivalent to (3),
as shown in Section 3.1. The authors distinguish three cases in order to
model (7), namely (i) (θi + θj + π)/2 ∈ [−π, π], (ii) (θi + θj + π)/2 > π and
(ii) (θi + θj +π)/2 < −π. The decision variables are the heading angle devi-

ations ωi for each i ∈ A, where θi = θ̂i + ωi. According to Pallottino et al.,
fourteen groups of linear constraints and six groups of binary variables are
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used to model (7). Here, we reconstruct the resulting formulation as follows:

min
ω,ν,z

∑
i∈A

νi (36a)

s.t. −νi ≤ ωi ≤ νi ∀i ∈ A (36b)

ωi ≤ ωi ≤ ω̄i ∀i ∈ A (36c)

ωi + ωj ≤ π − θ̂i − θ̂j +M(1− z1
ij) ∀i, j ∈ A(36d)

−ωi − ωj ≤ −3π + θ̂i + θ̂j +M(1− z1
ij) ∀i, j ∈ A(36e)

ωi + ωj ≤ 2 tanϑ−ij − π − θ̂i − θ̂j +M(1− z1
ij) ∀i, j ∈ A(36f)

ωi + ωj ≤ π − θ̂i − θ̂j +M(1− z2
ij) ∀i, j ∈ A(36g)

−ωi − ωj ≤ −3π + θ̂i + θ̂j +M(1− z2
ij) ∀i, j ∈ A(36h)

−ωi − ωj ≤ −2 tanϑ+
ij + π + θ̂i + θ̂j +M(1− z2

ij) ∀i, j ∈ A(36i)

−ωi − ωj ≤ −π + θ̂i + θ̂j +M(1− z3
ij) ∀i, j ∈ A(36j)

ωi + ωj ≤ 2 tanϑ−ij + π − θ̂i − θ̂j +M(1− z3
ij) ∀i, j ∈ A(36k)

−ωi − ωj ≤ −π + θ̂i + θ̂j +M(1− z4
ij) ∀i, j ∈ A(36l)

−ωi − ωj ≤ −2 tanϑ+
ij − π + θ̂i + θ̂j +M(1− z4

ij) ∀i, j ∈ A(36m)

ωi + ωj ≤ −3π − θ̂i − θ̂j +M(1− z5
ij) ∀i, j ∈ A(36n)

ωi + ωj ≤ 2 tanϑ−ij − 3π − θ̂i − θ̂j +M(1− z5
ij) ∀i, j ∈ A(36o)

ωi + ωj ≤ −3π − θ̂i − θ̂j +M(1− z6
ij) ∀i, j ∈ A(36p)

−ωi − ωj ≤ −2 tanϑ+
ij + 3π + θ̂i + θ̂j +M(1− z6

ij) ∀i, j ∈ A(36q)

z1
ij + z2

ij + z3
ij + z4

ij + z5
ij + z6

ij ≥ 1 ∀i, j ∈ A(36r)

z1
ij , z

2
ij , z

3
ij , z

4
ij , z

5
ij , z

6
ij ∈ {0, 1} ∀i, j ∈ A.

The objective function (36a) is to minimize de 1-norm of the vector of head-
ing angle deviations. Indeed, due to (36b), νi = |ωi| for all i ∈ A in any
optimal solution. The group of constraints (36d)-(36i), ensure aircraft sepa-
ration when (θi + θj + π)/2 ∈ [−π, π]; the group (36j)-(36m) is active when
(θi + θj + π)/2 > π, and impose condition (7) shifted in π units; finally,
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(36n)-(36q) stand for (7) shifted in −π units when (θi+θj +π)/2 < −π. Fi-
nally, (36r) ensure that at least one of the previous six groups of constraints
is active.

4.3. Speed and heading angle changes

Frazzoli et al. (2001) write the CDR as a quadratically constrained
quadratic program. Their decision variables represent the change made
to nominal velocity vectors. That is, they are defined as Ui such that
Vi = V̂i + Ui for all i ∈ A. Consequently, their model implicitly allows both
speed and heading angle changes. They consider given preferred deviations,
Ûi. The proposed MP formulation reads:

min
U,W

∑
i∈A
‖Ûi − Ui‖2 (37a)

s.t. ‖V̂i + Ui‖ ≤ v̄ ∀i ∈ A (37b)

〈(V̂i+Ui),V̂i〉
‖V̂i‖

≥ v ∀i ∈ A (37c)

〈(V̂ij + Uij), p̂ij〉+Wij

√
d̂2
ij − d2 ≥ 0 ∀i, j ∈ A (37d)

‖V̂ij + Uij‖2 ≥W 2
ij ∀i, j ∈ A (37e)

Wij ≥ 0 ∀i, j ∈ A.

The objective function (37a) is to minimize the differences between the ob-
tained deviations and the preferred ones. Constraints (37b) and (37c) stand
for maneuvers bounds. On the one hand, (37b) ensure that the maximum
speed is not exceeded. On the other hand, (37c) are a convex approximation
to minimum speed constraints ‖V̂i+Ui‖ ≥ v. Indeed, observe that (37c) are
equivalent to ‖V̂i + Ui‖ cos(∠(V̂i + Ui, V̂i)) ≥ v. Note that this also yields
bounds on admissible heading angle changes. Finally, (37d) and (37e) are
equivalent to separation constraints (12).

Omer & Farges (2013) proposed a hybridization of nonlinear and mixed
integer linear programming to tackle the SHAC version of the CDR. Their
models feature uniformly accelerated aircraft motion, trajectory recovery,
and obstacle avoidance. They first formulate the CDR as a Bolza problem,
with continuous variables and infinitely many constraints in the domain
of time. Then, time discretization is considered to build two alternative
formulations, namely a nonlinear program with only continuous variables
and a mixed integer linear program. The latter is a simplification of the

34



former in which: (i) a linear approximation of convex quadratic constraints
on maneuvers bounds is considered, and (ii) separation constraints (1) are
approximated through disjunctive half-planes. The authors propose to use
the optimal solution of the MILP as starting point when solving the NLP.

Omer (2015) develops a space-discretized model such as that in Vela
et al. (2009b), Rey et al. (2014), which are typically based on speed regula-
tion, that allows both speed and heading angle maneuvers. The author tries
to model trajectories in a realistic way by considering vectors of velocity that
are continuous with respect to time (instead of instantaneous maneuvers),
and additional bounds on acceleration and yaw rate. To model the prob-
lem, a conflict graph is used: nodes are the origin and destination of aircraft
plus the crossing points between trajectories, while edges link consecutive
nodes through which an aircraft is planned to fly. The author derives differ-
ent equations to account for the temporal and spatial shifts yielded by the
different types of maneuvers. To linearize some of the model equations, a
discrete set of possible heading changes is considered. The objective func-
tion takes into account both fuel consumption and time delay. Reproducing
the proposed MP formulation would need from more notation and formulas
than those already introduced, and is out of the scope of this survey. We
refer the interested reader to the original paper for more details.

Alonso-Ayuso et al. (2016) present a MINLP in the same vein of (28),
which is based on separation conditions (6). The authors use speed and
heading angle variations as decision variables; trigonometric functions of the
variables made their constraints highly nonlinear. Their model addresses the
more general scenario in which altitude level reallocation are allowed, and
it includes the SHAC variant as a particular case. As optimization goal,
they consider a multi-objective criteria in which priorities between the three
types of maneuvers are taken into account.

A different discrete optimization approach is presented by Lehouillier
et al. (2017b), who also propose to use a graph as modelling tool. In this
case, nodes stand for aircraft maneuvers, while edges connect those that are
conflict-free. The authors identify the CDR with a variant of the minimum-
weight maximum-clique problem. In doing so, they also propose a way
of computing maneuvers costs. To identify conflict-free maneuvers, they
use a time discretization and evaluate separation condition (1) either on the
extremes of the considered time intervals or on the time at which the aircraft
are closest (which can be analytically obtained). One of the advantages
of the proposed framework is that it is valid for any choice of available
maneuvers. The model is generalized to handle uncertainties in Lehouillier
et al. (2017a). The authors consider errors due to wind, imprecision on
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aircraft speeds, and delay in the execution of maneuvers.
Rey & Hijazi (2017b) proposed a MINLP with the following variables:

δxi := qi cosωi ∀i ∈ A, (38)

δyi := qi sinωi ∀i ∈ A. (39)

These variables allow to write the constraints of their model in complex
number notation. However, the formulation we present here has been taken
from their implementation available in GitHub (see Rey & Hijazi 2017a).
There, the following short-hands are used:

aij = ŷ2
ij − d2, bij = x̂2

ij − d2, cij = 2x̂ij ŷij .

Their formulation for CDR via SHAC is:

min
δ,V,z

∑
i∈A

δ2
yi + (1− δxi)2 (40a)

s.t. Vxij = δxiv̂i cos θ̂i − δyiv̂i sin θ̂i − δxj v̂j cos θ̂j + δyj v̂j sin θ̂j ∀i, j ∈ A (40b)

Vyij = δyiv̂i cos θ̂i + δxiv̂i sin θ̂i − δyj v̂j cos θ̂j − δxj v̂j sin θ̂j ∀i, j ∈ A (40c)

−zijMij ≤ Vyij x̂ij − Vxij ŷij ≤ (1− zij)Mij ∀i, j ∈ A (40d)

2aijVxij − Vyij(cij −
√
c2
ij − 4aijbij) ≤ (1− zij)Mij ∀i, j ∈ A : x̂ij ≥ 0, ŷij < 0(40e)

−2bijVyij + Vxij(cij −
√
c2
ij − 4aijbij) ≤ zijMij ∀i, j ∈ A : x̂ij ≥ 0, ŷij < 0(40f)

−2aijVxij + Vyij(cij −
√
c2
ij − 4aijbij) ≤ (1− zij)Mij ∀i, j ∈ A : x̂ij < 0, ŷij ≥ 0(40g)

2bijVyij − Vxij(cij −
√
c2
ij − 4aijbij) ≤ zijMij ∀i, j ∈ A : x̂ij < 0, ŷij ≥ 0(40h)

2bijVyij − Vxij(cij −
√
c2
ij − 4aijbij) ≤ (1− zij)Mij ∀i, j ∈ A : x̂ij ≥ 0, ŷij ≥ 0(40i)

2aijVxij − Vyij(cij −
√
c2
ij − 4aijbij) ≤ zijMij ∀i, j ∈ A : x̂ij ≥ 0, ŷij ≥ 0(40j)

−2bijVyij + Vxij(cij −
√
c2
ij − 4aijbij) ≤ (1− zij)Mij ∀i, j ∈ A : x̂ij < 0, ŷij < 0(40k)

−2aijVxij + Vyij(cij −
√
c2
ij − 4aijbij) ≤ zijMij ∀i, j ∈ A : x̂ij < 0, ŷij < 0(40l)

v2 ≤ δ2
xi + δ2

yi ≤ v̄2 ∀i ∈ A (40m)

δxi tanω ≤ δyi ≤ δxi tan ω̄ ∀i ∈ A (40n)

zij ∈ {0, 1} ∀i, j ∈ A

The authors propose to minimize (40a) since each term in the summation
is equal to q2

i − 2qi cosωi + 1, which is minimal when qi = 1 and ωi =
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0. Constraints (40b) and (40c) state the relation between the vector of
relative velocity and variables δ. On the other hand, (40d)-(40l) define
the different regions in the space (Vxij , Vyij) where aircraft separation is
maintain, which were described at the end of Section 3.2. Finally, (40m)
impose speed regulation bounds, while (40n) establish the limits on heading
angle variations. Note that the inequalities of the left-hand side of (40m)
define non-convex constraints and that the formulation is linear except for
the objective and the bounds on the speed.

Finally, Dias et al. (2020) adopt and extend (40) to derive non-convex
MIP formulations for the SHAC and to propose exact optimization ap-
proaches based on tightened convex relaxations. The authors address an
extended problem where flight level changes are considered as well.

5. Optimal solution computation

As we have seen, CDR is a complex task that, even after simplifications,
requires from nonlinear equations and binary variables to be modelled as
a mathematical program. Here, we try to give a general picture on how
far these models have gone when solving CDR instances. We do not aim at
comparison between different formulations or solving techniques. On the one
hand, few benchmarking instances have been shared across studies; on the
other hand, computational resources and configurations always vary. Instead
of that, we discuss on which types of CDR benchmarks have appeared on
existing literature, and we provide an idea of which are the limits of the
different MP approaches.

There are a few sets of instances that have been commonly used in pre-
vious works. They correspond either to predefined scenarios or just to ran-
domly generated configurations. Existing benchmarks of the CDR problem
in the literature include:

• Circle instances. Aircraft initial positions are arranged on a circum-
ference of a given radius, and they fly towards the center following
the rectilinear trajectory given by the corresponding diameter. The
circle radius is usually 100 NM or 200 NM and nominal speed is typi-
cally considered to be 400 NM/h for all aircraft. This scenario is widely
known as the circle problem, even though it has also been called round-
about, e.g. in Omer & Farges (2013) and Omer (2015), and symmet-
ric encounter pattern, see Frazzoli et al. (2001). Aircraft are usually
distributed on the circumference in a uniform way, as illustrated by
Figure 7a. This is the case of the instances considered by Rey et al.
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(a) Circle with 10 aircraft (b) Circle, one quarter vari-
ant

(c) Random circle with 10
aircraft

Figure 7: Circle instances
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(a) Scenario types used by Omer
(2015)

(b) Five scenarios used by Cafieri & Durand
(2014)

Figure 8: Grid/Rhomboidal instances

Figure 9: Random instance
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(2014, 2016), Cafieri & Rey (2017), Rey & Hijazi (2017b), Dias et al.
(2020). In other works, such as Cafieri & Durand (2014), Rey et al.
(2016), Cafieri & D’Ambrosio (2018), Cerulli et al. (2020), aircraft are
distributed on a quarter of the circumference and their trajectories
can be slightly deviated (a random quantity between -5◦ and 5◦) from
the center, see Figure 7b. Note that in the latter configuration frontal
conflicts are neglected.

• Random circle instances. The previous family gathers very unrealistic
scenarios. In order to obtain more realistic configurations, they have
been modified by considering a random deviation between -30◦ and 30◦

from diametrical trajectories. An example of a random circle instance
with 10 aircraft is given by Figure 7c. This kind of instance has been
used in works such as Rey et al. (2014, 2016), Cafieri & Rey (2017),
Rey & Hijazi (2017b), Dias et al. (2020). There are circle and random
circle instances publicly available at the GitHub repository Rey &
Hijazi (2017a).

• Grid/Rhomboidal instances. In these scenarios, aircraft fly on rec-
tilinear trajectories crossing at different points of the space. When
the trajectories cross at right angles, the scenario is called grid. Some-
times, several aircraft are flying on a trail configuration, following each
other on a same stream. This is the case for instance in Frazzoli et al.
(2001), Omer & Farges (2013), Omer (2015), Dias et al. (2020), which
include aircraft displayed on two or four streams in their studies (see
Figure 8a). Other times, each aircraft follows an independent tra-
jectory, like in the five scenarios depicted by Figure 8b. These were
introduced as opposed to circle instances in Cafieri & Durand (2014),
and then used in Cafieri & D’Ambrosio (2018), Cerulli et al. (2020).
The figure shows rectilinear trajectories crossing at different points
and corresponding to different aircraft, ranging between 6 and 10.

• Random trajectory instances. In this case both initial positions and
aircraft velocity vectors are randomly generated, see Frazzoli et al.
(2001), Alonso-Ayuso et al. (2016), Cafieri & Rey (2017). These bench-
marks are designed to represent random configurations where some
aircraft may be diverging and/or initially violating the 5 NM separa-
tion standard. Figure 9 illustrates a random trajectory instance. The
airspace is frequently considered to be a square, with 100 NM each
side and aircraft flying at same speed, 400 NM/h.
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In order to give an idea of the state-of-the-art models performances on
the above-mentioned instances, we focus on most recent approaches. Our
exposition is organized based on the variant addressed by the models, namely
SC, HAC or SHAC.

Cafieri & Durand (2014) propose to solve their formulation for the SC
problem with the global solver Couenne or, alternatively, with a tailored
heuristic algorithm. Their heuristic decomposes the SC problem into smaller
sub-problems. The exact solutions of the sub-problems are then combined
to form a globally feasible but possibly sub-optimal solution of the original
problem. They could solve circle instances of the type depicted on Figure
7b with up to 10 aircraft in 759.40 seconds; and the grid and rhomboidal
benchmarks depicted on Figure 8b in 3731.43 seconds at most. A different
heuristic for SC namely to solve the formulation (30), is proposed in Cafieri
& D’Ambrosio (2018). In this case, the authors propose a feasibility pump
heuristic that builds two sequences of solutions: ones that are feasible with
respect to nonlinear constraints, and other satisfying the integrality condi-
tions. The algorithm iterates until the two sequences converge to a feasible
solution of (30). The authors used the same benchmarks as Cafieri & Du-
rand to test their heuristic. CPU time is less than 640 seconds for circle
instances and 200 seconds for non-circle ones.

Instead of minimizing deviation, there are other approaches based on
SC that aim at minimizing conflicts. This is the case of Rey et al. (2014)
and Rey et al. (2016). The first test their equity-oriented conflict resolution
model on circle and random circle instances having up to 11 and 30 aircraft
respectively. They use Cplex to solve the MP formulations at the three
stages of their model. Solving one stage took on average 35 seconds for the
biggest circle instance and 25 seconds for the random circle with 30 aircraft.
On the other hand, Rey et al. (2016) propose two formulations to maximize
the conflicts solved and minimize total conflicts duration, which were solved
using Cplex. Tests on circle and random circle instances show that the
performance of both formulations is comparable, solving the circle instance
of size 10 in less than 250.50 seconds and a random circle with 30 aircraft
in less than 42.9.

In the same vein, Cafieri & Rey (2017) propose several MINLP formu-
lations to reduce the number of conflicts via SC. They consider two mod-
els, one aiming at maximizing the number of conflicts solved and another
to identify the largest conflict-free set of aircraft. For each of them, they
present two formulations, which differ in whether diverging trajectories are
considered or not. Random trajectory instances are used to test the former,
while random circle scenarios are considered for the latter since they do not
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include diverging trajectories. When the objective is to maximize the con-
flicts solved, they solve 7 out of 20 random circle instances of size 10 within a
time limit of 300 seconds, and 2 out of 20 when the size is incremented to 20
aircraft. For random trajectory instances they use formulation (29), which
solves the 20 instances of 10 aircraft tested in less than 5 seconds, and 9 out
of 20 instances of size 20 within the time limit. In the case of the model that
maximizes the size of the conflict-free set, they solved 5 out of 20 random
circle instances of size 10 and 3 out of 20 with 20 aircraft, within the time
limit. In this case the authors also propose a heuristic, which finds equally
good or better solutions than Couenne, the solver chosen to solve the MP
formulations. In the case of random trajectory instances, they can solve
the 20 instances of size 10 tested in less than 33 seconds, while when size
is increased to 20 aircraft they can only solve 2 out of 20 instances within
the time limit. For these instances, the heuristic does not improve solution
quality in general. Conversely, for 10 aircraft the optimal is found for 11
instances and for 20 aircraft the heuristic usually finds worse solutions, and
only represents an improvement in three cases, for which the MP cannot
find a feasible solution.

Cafieri & Omheni (2017) propose a model to address both SC and HAC.
Their procedure is made of two steps: first formulation (29) is used as a
preprocessing to adjust aircraft speeds; then, the remaining conflicts are
solved via HAC with formulation (34) and the speeds resulting from the
previous step. Both MP formulations are solved with Couenne. Cafieri &
Omheni test their model also on circle instances. They report CPU times of
2819.51 seconds at most for the circle problem with 6 aircraft and 2561.98
seconds at most for random circle instances with 8 aircraft.

Omer (2015) used Gurobi to solved its space-discretized MILP, which
models the CDR problem with SHAC. He solved circle scenarios with 6
aircraft in 124.4 seconds on average; grid configurations with 12 aircraft
in 148.4 seconds on average; and rhomboidal scenarios with two crossing
streams and 12 aircraft (see Figure 8a) in 142.2 seconds on average.

Alonso-Ayuso et al. (2016) propose three variants of a conflict resolution
model based on SHAC. In order to prioritize the different maneuvers, each
variant uses a different criterion for multi-objective optimization, namely
lexicographic, compromise, and a mixture of minimizing the largest maneu-
ver and the compromise criterion. The models were solved using Minotaur
and tested on circle and random instances. For circle instances with up to 7
aircraft, largest CPU times range from 452.63 to 2200.77 seconds depending
on the multiobjective criteria used (pre-calculation of so-called ideal values
included). Similarly, for random trajectory instances up to 20 aircraft, worst

42



CPU times range from 27.69 to 35.48 seconds.
Rey & Hijazi (2017b) propose an algorithm that solves different relax-

ations of their complex number formulation (40) to obtain lower bounds and
fix binary variables in (40) to obtain upper bounds. The algorithm is tested
on circle instances with up to 20 aircraft and random circle ones having up
to 40 aircraft. Circle instances with 4 to 10 aircraft are solved to global op-
timality within 73.36 seconds. In particular, instances with up to 7 aircraft
are solved in less than a second. On the other hand, circle instances with
11 to 17 aircraft are solved to local optimality within the time limit of 300
seconds whereas feasible solutions for those of size 18, 19, and 20 needed
300 seconds more. To evaluate the performance of their approach on ran-
dom circle instances, the authors generate 100 instances for each scenario
size, i.e. 10, 20, 30, and 40 aircraft. All instances of size 10 and 20 are
solved to global optimality in less than a second. For 30-aircraft instances,
83 are solved to global optimality, 71 in 4.35 seconds on average and 12 in
35.58 seconds on average. The remaining 17 instances are solved to local
optimality. In the case of 40 aircraft, only 17 instances can be solved to
optimality. The CPU time needed increases to 99.05 seconds on average
for 16 of them. Local optimal solutions are found for 75 instances in 261.6
seconds on average, while no solution is found for the remaining 8.

In summary, current approaches limits are around 20 aircraft for circle
instances and 40 for random circle, whereas it is not clear for non-circle ones.
Regarding circle instances, optimal solutions are known up to 10 aircraft,
while instances from 11 to 20 aircraft remain open and only local optima
are known. In the case of random circle, 100 instances of each size 10 and
20 are solved to optimality. The scenario becomes more challenging with
the increase of aircraft. With 30, most of the instances can be solved in less
than one minute, whereas with 40 we need more than 4 minutes to obtain a
local solution in most cases. Finally, non-circle instances have not been so
extensively used for testing. We know that random trajectory instances of
20 aircraft can be solved in less than one minute. On the other hand, specific
grid and rhomboidal configurations of Figure 8 with up to 12 aircraft have
been solved in 3.3 minutes at most.

6. Future research directions

Despite the fact that CDR optimization methods emerged to answer a
need from real application, many of the key features for obtaining operationally-
useful solutions have not been still addressed. The methods described herein
rely on simplifying assumptions that include co-planar motion, rectilinear
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trajectories, and perfect information. This limits their interest to the aca-
demic context rather than real ATC, which requires more flexible assump-
tions.

One of the features that should be improved is aircraft motion. Rec-
tilinear trajectory assumption might hold often at cruising level, but also
excludes other particular scenarios. Something similar happens with co-
planarity: most challenging CDR often involve aircraft converging in both
the vertical and horizontal dimensions. In addition, aircraft position has
been treated as perfect information, while it is actually uncertain. Future
developments should allow for curving and accelerating trajectories under
uncertainty due to track falloff or sensor errors. Also linked to uncertainty,
weather conditions should not be excluded from models. Indeed, these rep-
resent external conditions such as wind that affect aircraft motion. Consid-
ering such conditions sums an extra degree of complexity to models, which
have to deal with a random component and provide robust solutions.

Regarding maneuvering, oversimplifications are also a significant short-
coming of current studies. First, maneuvers are frequently assumed to be
performed at the beginning of the time horizon. This does not answer a
real operational need and, moreover, it constitutes an important limitation
of the feasible set of solutions. Modelling of trajectory recovery is another
aspect that is still unsatisfying. Trajectory recovery responds to the opera-
tional concept of 4D contract, according to which trajectories must satisfy
certain time and space requirements on a sequence of 4D points. After
conflicts are avoided, aircraft must return to their original trajectories as
soon as possible. Current models either rely on time discretization to ad-
dress recovery at the end of the time horizon, or add penalizing terms in
the objective for space and time shifts with respect to the nominal plan.
However, time-discretized models require a granularity that is prohibitive in
terms of performance, while penalizing terms do not effectively address the
problem. Recovery is indeed not trivial since trajectories must be tracked
for potential conflicts during this phase as well. At the same time, recovery
implies the introduction of “breaking points” in the trajectories, which are
usually assumed to be straight as was already discussed. This evidences the
flaws of current assumptions, which are too tight to handle situations that
constantly occur in real world.

Finally, automation of traffic control in emerging domains such as urban
air mobility and autonomous vehicles is certainly a promising future research
direction. In these envisioned air transportation concepts, innovative air-
craft could safely and efficiently transport passengers and goods within and
around dense urban areas. There is a consensus to deem scaled operations
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issued by automated traffic management systems backed by human-in-the-
loop supervision. Integration of urban air mobility operations in existing
ATM systems is one of the hot topic of today’s aviation. Conflict detec-
tion and resolution must consider here additional elements, such as obstacle
avoidance, specific vehicle profiles, vertical climbing, noise impact, stricter
time constraints, or aircraft power limitations.

7. Concluding remarks

This review evidences that Mathematical Programming has a lot to say
in the development of decision support tools for ATM, and, in particular,
for aircraft deconfliction. However, after several decades of effort, current
approaches still suffer form important limitations when it comes to their real
application.

One of the contributions of this analysis is the derivation of the aircraft
pairwise separation conditions, for which we show the links and equiva-
lency across six different equations. These conditions, which most natural
modelling corresponds to non-convex quadratic mathematical constraints,
are key for CDR formulations. Their direct application gives nonlinear
non-convex models, while alternatives include simplifications that affect
model reliability and/or disjunctive mathematical constraints. The mod-
elling choice for aircraft separation conditions makes a significant difference
between approaches. Thus, showing the mathematical relation among the
alternative separation conditions in the literature can bring new light into
the problem. On the other hand, we revisit CDR mathematical formulations
across the last few decades, providing a cohesive discussion on the different
approaches. A taxonomy has been proposed to compare them, which in-
cludes the type of separation condition as one of the classifying features.
The analysis made on several MP approaches illustrates the variety of mod-
elling choices and how they affect the resulting formulations. We hope it
can inspire new proposals from the field in near future. Regarding solution
computation, state-of-the-art approaches are able to solve hard symmetric
instances in a few seconds, although the number of aircraft is still limited
to several dozens.

Future approaches, other than meeting computational requirements due
to the online nature of the problem, would need to consider a larger set
of features than those of the models discussed here. These include, among
others, the ability to handle uncertainty, accurate modelling of objectives
such as energy consumption, robustness of the solution against failure and
integration with weather conditions. On the other hand, a larger variety of
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reference benchmark sets is needed, which includes synthetic and realistic
instances, in order to validate and compare approaches.
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