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Abstract

In this paper an audio coding scheme based on the empirical mode decomposi-

tion in association with a psychoacoustic model is presented. The principle of

the method consists in breaking down adaptively the audio signal into intrinsic

oscillatory components, called Intrinsic Mode Functions (IMFs), that are fully

described by their local extrema. These extrema are encoded. The coding is

carried out frame by frame and no assumption is made upon the signal to be

coded. The number of allocated bits varies from mode to mode and obeys to

the coding error inaudibility constraint. Due to the symmetry of an IMF, only

the extrema (maxima or minima) of one of its interpolating envelopes are per-

ceptually coded. In addition, to deal with rapidly changing audio signals, a

stationarity index is used and when a transient is detected, the frame is split

into two overlapping sub-frames. At the decoder side, the IMFs are recovered

using the associated coded maxima, and the original signal is reconstructed by

IMFs summation. Performance of the proposed coding is analyzed and com-

pared to that of MP3 and AAC codecs, and the wavelet-based coding approach.

Based on the analyzed mono audio signals, the obtained results show that the

proposed coding scheme outperforms the MP3 and the wavelet-based coding

methods and performs slightly better than the AAC codec, showing thus the
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potential of the EMD for data-driven audio coding.

Keywords: Empirical mode decomposition, Empirical mode compression,

Audio coding, Sub-band coding, Stationarity index, Psychoacoustic model.

1. Introduction

Signal coding is a central topic in signal and images processing [1]-[2] and

particularly in speech domain where different strategies have been proposed

[3]-[4]. In many applications such as digital audio broadcasting or multimedia,

low Bit Rate (BR) and high fidelity are required. To reduce the BR, sub-band

coding and transform coding approaches have been used to design efficient cod-

ing algorithms [5]-[12]. These methods use pre-determined basis functions and

perceptual encoding of the significant transform coefficients, following the prin-

ciple: ”do not code what the ear cannot listen”. Applying this principle enables

good results at low BR. Unfortunately, using fixed basis functions prevents the

decomposition from being sparse for a large class of audio signals. As a matter

of fact, even if a basis is well suited for a class of audio signals, in the sense

that it yields compact descriptions with only a few significant terms, generally

there exist other audio signals for which the basis under consideration performs

poorly. Thus, there is a need for data driven coding strategies. In [13], an ex-

pansion method, referred to as Empirical Mode Decomposition (EMD) has been

introduced for analyzing non-stationary data derived from linear or non-linear

systems in a totally adaptive way. The EMD has found many applications in au-

dio and speech processing such as audio watermarking [14], speech enhancement

[15] and speech classification [16]. The main interest of such decomposition relies

on the fact that it involves no prior choice of filters or basis functions. Compared

to the classical kernel based approaches, the EMD is a fully data driven tech-

nique that recursively breaks down any signal into a reduced set of zero-mean

Amplitude Modulated and Frequency Modulated (AM-FM) components called

Intrinsic Mode Functions (IMFs). The decomposition starts from finer tempo-

ral scales (high frequency IMFs) to coarser ones (low frequency IMFs) where
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the IMFs are very well described by their local extrema [13]. Furthermore, the

extracted IMFs are almost orthogonal and summing all these IMFs with the

residue recovers the original signal, within machine precision [13].

An IMF is an oscillating function that can be fully described by its extrema.

So, the IMF can be recovered easily from its extrema by using spline interpola-

tion. Thus, a salient property of the IMF is that it can be fully described by its

extrema and representing a signal with these extrema (amplitude and location)

can be used for signal and images coding purposes [17],[18]. In particular, this

EMD-based strategy can be considered to encode audio signals. The idea is to

use signal-adaptive IMFs to replace de facto modified discrete cosine transform

(MDCT), that has been used extensively for modern audio codecs. Since the

number of extrema decreases from one IMF to the next one, IMFs encodings are

not all equally demanding and the number of bits needed to code each IMF will

vary, depending whether they represent low or high frequencies of the signal.

According to the kind of signal to be processed, the number of extrema to be

coded can be reduced using an appropriate thresholding. In this way, for audio

signals, extrema can be thresholded using a psychoacoustic model [19] and the

IMFs are recovered using these coded extrema. The reduction of the number

of extrema encoded, controlled by the perceptual masking curve, yields inter-

esting improvement in compression gain while preserving the listening quality.

In addition, in this paper we show that performance can be more improved by

taking into account the symmetry of the IMFs and the transient detection in

the case of rapidly changing input signals. The main contributions of this paper

are described as follows:

• Unlike the approach developed in [19], the symmetry of the envelopes

defined by the local maxima and the local minima is exploited. Only

the extrema of one envelope are perceptually encoded. At the decoder

side, the envelope of maxima (or minima) is reconstructed and the other

envelope is deduced by symmetry. Consequently, the BR is approximately
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halved.

• For ensuring encoding effectiveness, rapid changes (transients) that may

occur inside frames are detected by using a stationarity index. Then, a

frame showing sudden change is split into two overlapping sub-frames to

reduce the effect of the transition in the associated IMFs.

• Both extrema selection and their quantization are based on a psychoa-

coustic model. The number of bits used to encode each IMF is adjusted

so that the Power Spectral Density (PSD) of the reconstruction error of

the IMF remains below the perceptual masking threshold of the audio

signal frame.

The proposed coding strategy, referred to as Empirical Mode Compression

(EMC), is applied to real mono audio signals, and the results are compared to

those of MP3 (ISO/IEC 11172-3 MPEG Layer 3) [20], AAC (ISO/IEC 13818-7

Advanced Audio Coding) [21] codecs and the wavelet-based coding.

2. EMD principle

Unlike standard decomposition methods that project data onto a predefined

basis function (harmonic, wavelet), bases of the EMD are derived from the

data in a nonlinear and non-stationary way. The EMD decomposes univari-

ate data into slow and fast oscillations. More precisely, the EMD expands, in

adaptive way, any real-valued signal x(t) into a limited number of oscillating

components, IMFs. Being fully data driven, the IMFs represent the inherent

temporal modes (scales) that characterizes x(t). The decomposition yields sig-

nal adapted orthogonal basis functions. The EMD can be seen as a type of

wavelet decomposition, the sub-bands of which automatically adapt to split the

different components of x(t). The IMFs are extracted from x(t) by means of

an iterative algorithm called the sifting process [13]. These IMFs are designed

to be narrow-band (single-scale). By construction, each IMF is a zero-mean
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waveform, number of zero-crossings of which differ at most by one from the

number of its extrema. By definition, an IMF satisfies two conditions: (i) the

number of extrema and the number of zero crossings may differ by no more

than one and (ii) the mean value at each point of the envelope defined by the

local maxima, and the envelope defined by the local minima, is zero. Each IMF

contains lower frequency oscillations than the ones just extracted before. To

be successfully decomposed into IMFs, a signal x(t) of length Ls must have at

least two extrema, one minimum and one maximum. The EMD ends up with

an expansion of x(t) into IMFs of the form:

x(t) =

C∑
j=1

IMFj(t) + rC(t) (1)

where C is number of IMFs. The component rC(t) is called the residual of

the decomposition and cannot contain a full oscillation. It represents the trend

within x(t) [13]. The modes {IMFj(t)}Cj=1 in equation (1) represent the bases of

x(t), and are sparse in the sens that C is much lower than the signal length Ls

and template free. To guarantee that the IMFs retain enough physical sense of

both amplitude and frequency modulations, a stopping criterion is determined

by using a convergence test of Cauchy type. Specifically, the test requires the

normalized squared difference between two successive siftings, noted SD (stan-

dard deviation), to be small. If SD is smaller than a predetermined value ε,

usually set between 0.2 and 0.3, the sifting will be stopped [13]. The sifting

process of the EMD is summarized in the Algorithm 1:

3. EMD-based coder

In this section, we first describe the structure of the proposed coder. Issues

such as the bit allocation, the IMF symmetry and the detection of the non-

stationarity of the frame are described in the following subsections.

3.1. Coder principle

The proposed coder is based on the encoding of the IMFs extrema. But, due

to the symmetry of the IMFs, only their minima or maxima need to be encoded.
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Algorithm 1: Sifting process of EMD, j ∈ {1, 2, . . . , C}.

Input: x(t).

Outputs: {IMFj(t)}Cj=1, rC(t).

1. Initialize x0(t) = x(t).

2. Find the instants of location of all extrema of x0(t).

3. Interpolate (local spline interpolation) between maxima (minima)

to obtain the upper (lower) envelope connecting the maxima, emax(t)

(emin(t)).

4. Compute the local mean mean(t) = (emin(t) + emax(t))/2.

5. Subtract the local mean from the signal to obtain

the oscillatory mode, d(t) = x0(t)−mean(t).

6. If d(t) satisfies the stopping criterion, set

IMFj(t) = d(t) else set x0(t) := x0(t)− IMFj(t).

If x0(t) becomes a monotonic function, or does not contain enough

extrema to form meaningful envelope, stop the sifting process with

rC(t) = x0(t). Otherwise, go to step 2.

Without loss of generality, in the rest of this paper we focus on the coding of

the maxima.

Maxima coding

Let j and k be the index of the IMF and of the frame respectively. We denote by

l the index of a maximum of the IMF and we refer by Nk
j the number of maxima

of this IMF. For jth IMF of the kth frame, the lth maximum, l ∈ {1, 2, . . . , Nk
j },

is represented by its amplitude mk
jl and its time index tkjl (position). Values mk

jl

are scaled by a factor equal to γkj = max
l

(mk
jl). In practice the sifted IMF is not

truly symmetric and thus some amplitude offset, αkj , may appear in the jth IMF

of the kth frame IMFkj (t). Thus we account for it in the encoding process. In
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addition, the audio signal is decomposed into overlapping frames of equal length

and abrupt changes in signal statistics may occur inside a frame. To account

for such events, we possibly split frames into 2 sub-frames.

For bit allocation, the number of bits allocated to the jth IMF of the kth

frame is adjusted so that the PSD, Γkj (f), of the reconstruction error εkj (t) =

IMFkj (t)− ˜IMF
k
j (t) does not exceed the associated perceptual masking threshold

TMk(f), where ˜IMF
k
j (t) is the jth reconstructed IMF of the kth frame (Fig. 6).

There is one psychoacoustic evaluation per frame. The encoding process applied

frame by frame is summarized as follows:

The EMC scheme

The block diagram of the proposed coding scheme is presented in figure 1. The

EMC is given by the following steps.

1. Segment the original audio signal into N frames,

2. Split the frame into two overlapping sub-frames if a transient is detected,

3. Extract using EMD, the modes IMFkj (t) and the residual rkC(t) of the kth

frame or sub-frame,

4. Determine the values mk
jl, t

k
jl, γ

k
j and αkj of the jth IMF in the kth frame,

5. Quantize and Encode these values.

3.2. Windowing process

In speech processing the input signal is usually segmented into quasi-stationary

overlapping frames. Many audio codecs operate on frames, and for comparison

purpose, the proposed coding is also carried out frame by frame, and no as-

sumption is made on the length of the signal to be coded. For codecs like AAC,

smaller frame size is used for transient detection. Indeed for rapidly changing

input signals long frames are unfavorable because the temporal spread quanti-

zations will lead to so-called ”pre-echoes”. However, in practice applying the

EMD to frame of very short length can induce end effects problem. Thus, we

increase the length of the frame and the detection of the transient is based on
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the computation of a stationarity index. When a transient is detected the frame

is subdivided into two overlapping sub-frames.

3.3. Transient detection

The concept of transient is not easy to describe precisely [22]. The transient

component comes from unwanted measurement artefacts and from instruments

that are played very impulsively such as piano, xylophone, or castanet. For

example, drums and percussions both have strong transients. More precisely,

in the case of acoustic instruments, the transient often corresponds to the pe-

riod during which the excitation (e.g., a hammer strike) is applied and then

damped, leaving only the slow decay at the resonance frequencies of the body

[22]. An extensive amount of research has already focused on transient detec-

tion [22],[23][24],[25]. To detect the instants of such abrupt changes, spectral

properties of the signal can be measured over the time by using a Stationar-

ity Index (SI). Based on the SI tracking, a frame showing sudden change can

be split into two adjacent sub-frames. In this work the SI is derived from the

representation of a Time-Frequency Distribution (TFD), say ρ(t, f), of the an-

alyzed audio signal [26]. The transient detector does not use prior knowledge

of the input signal. As illustrated in figure 2, at each time instant, the index is

calculated as a distance between two TFDs, calculated on the right and the left

sub-images on both sides of that instant. The measured distance is sensitive

to abrupt changes in the spectral characteristics of the signal [26]. The TFD

is computed over the audio frame duration. If there is no significant change,

the distance remains quite constant, while it shows peaks if a change occurs.

For transient signals, the SI has a distinguishable maximum, located where sig-

nal change occurred [26]. To measure the difference between two time-shifted

sub-images in the TF plane, different distances such as Kullback divergence,

Kolgomorov distance, Bhattacharyya distance or ”Jensen-like” divergence can

be used. In particular, the Bhattacharyya distance is known to be sensitive to

abrupt changes of signals in the TF plane [26] and is used as a SI.

Let I1(t; τ, f) and I2(t; τ, f) be two sub-images (Fig. 2), computed at each in-
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Figure 1: Synopsis of the EMC.
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Figure 2: Domains NI1 and NI2 domains where SI(t) is calculated.

stant t and extracted from ρ(t, f):

I1(t; τ, f) = ρ(t− L+ τ, f) (2)

I2(t; τ, f) = ρ(t+ τ, f) (3)

where L is the time width of the sub-images and τ ∈ [0, L]. The SI is obtained by

computing the Bhattacharyya distance between the two sub-images as follows:

SI(t) = − log
(∫ L

τ=0

∫ +∞

−∞

√
NI1(t; τ, f)NI2(t; τ, f)dfdτ

)
(4)

where NIk (k = 1, 2) is the normalized version of the sub-image Ik:

NIk(t; τ, f) =
| Ik(t; τ, f) |∫ L

τ=0

∫ +∞
−∞ | Ik(t; τ, f) | dfdτ

(5)

In this work the spectrogram is used as a TFD due to its very simple use and

the absence of cross-terms. A peak in SI(t) shows rapid or abrupt change in

the signal spectrum and thus indicates the presence of a transition zone. For

the SI evaluation (Eq. 4), we work with sampled signals and for the numerical

integration, Newton integration is used. Figure 3 shows an example of the

variations of SI(t) for a ”song” audio frame for different values of L in Eq. 5.

This figure also shows that, for L = 64, the main transition is well evidenced

by the SI. In practice, signals are split into overlapping frames of constant

length. Figure 4 shows an example of a transient detection evidenced in an

audio frame by the SI followed by the splitting (segmentation) of the frame into

two overlapping sub-frames.
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Figure 3: Stationarity index of an audio frame ”song” [27].

Figure 4: Example of segmentation for an audio frame ”song” [27].

3.4. IMFs symmetry

One of the goals of the sifting process is to remove the asymmetry between

the upper (maxima) and lower (minima) envelopes in order to transform the in-

put signal into an AM-FM component. However, the EMD sifting is a numerical

approach that may prevent the IMFs to be truly zero mean. This can be caused
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Figure 5: Example of IMF mean envelope offset.

by edge effects due to the construction of the envelopes through interpolation.

The stopping criterion SD prevents from over decomposing the input signal but

can also lead to the presence of offsets in IMFs. Thus, in general, the sifted

IMFs are not truly symmetric with respect to the time axis (αkj=0) but they

are symmetric about a shifted time axis, say y = αkj . This fact is illustrated

in figure 5 where the envelopes are symmetric with respect to line y = 0.05.

Thus, provided the offset αkj is encoded, at the decoder the upper (resp. lower)

envelope can be reconstructed and the lower (resp. upper) envelope determined

by symmetry about the line y = αkj . An example of offset values of five IMFs

extracted from an audio frame signal are presented in Table 1. Note that the

offset values depend on the amplitudes of the extracted IMFs. As expected, the

IMFs are not all truly symmetric with respect to y = 0.
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Table 1: Offset values of the IMFs extracted from an audio frame.

IMFj 1 2 3 4 5

αk
j 0.05 0.02 0 0 0.006

3.5. Bit-allocation

A great attention has been paid to the problem of bit-allocation, where a

given quota of bits is needed to efficiently allocate a certain number of bits

to encode each audio frame [28],[29],[30]. A bit-allocation strategy consists

in distributing, in a dynamic way, this fixed pool of bits over a number of

signal components quantizers so that the audibility of the quantization process

is minimized [29]. This results in an optimized audio quality for a given number

of bits. The proposed bit-allocation strategy used to encode the maxima of the

sifted IMFs and the residual, is subject to the following constraints:

1. The number of bits used to encode the maxima must be as small as pos-

sible.

2. The distortion between the true IMF and the reconstructed one must be

as inaudible as possible.

To reduce the BR, a perceptual coding controlled by a psychoacoustic model is

used to encode the amplitudes of the scaled maxima. The same psychoacoustic

model as in MPEG-1 audio coder, involving the signal to Noise Mask Ratio

(NMR) [4], is used. Initially, the number of allocated bits is fixed according to

the BR coding. The number of bits allocated to each IMF is adjusted in order

to ensure that Γkj (f) < TMk(f) [31]. Since each IMF contains less frequency

oscillations (extrema) than each previously sifted ones, we start by quantizing

the last IMF, which has the smallest number of extrema and therefore requires

the fewer bits. Note that in general the first IMF (high frequency component)

is not particularly smooth and its number of extrema is very large.
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The way of distributing bits

Let N be the number of frames of constant duration. Each frame is broken

down into Ck IMFs where k is the frame index. Let BT be the total number

of bits allocated for data compression. In practice, some frames require more

or less bits than the average number of bits, BF = BT /N , for their encoding.

Indeed, the number of IMFs is frame dependent and thus the number of al-

located bits is adjusted to the number of extracted IMFs of each frame. We

first start with an equal bit-allocation, where each frame is assigned the same

number of bits, BF . If there are surplus bits in a given frame (these bits are

put into the reservoir bits), the amount of pre-allocated bits is updated for the

next one. The coder can only borrow additional bits donated from past frames

and not from future frames. Since low frequencies of each frame are embedded

in the last IMF, less bits are required for encoding its associated maxima and

their positions. Sampled maxima mk
jl and time positions tkjl represent a cer-

tain amount of data that must be encoded so as to fit within the target BR.

Let bkj be the number of bits allocated to the jth IMF of the kth frame. The

number of bits assigned to each maximum (mk
jl, t

k
jl) is equal to (bkj − 8)/Nk

j ,

because 8 bits are reserved for encoding the offset αkj . Since a direct optimiza-

tion is infeasible, bit-allocation is done in an iterative way. A loop is intended

to quantize the amplitudes of the scaled maxima, to reconstruct the IMF, and

then to compare the PSD Γkj (f) to TMk(f): if Γkj (f) < TMk(f), the quantization

is updated with an increased number of bits, until the masking constraint is

satisfied. The bit-allocation strategy is shown in figure 7 where, for each IMF,

the process starts by allocating one bit to each maximum of the IMF (i = 1).

This is followed by the inaudibility evaluation. At each iteration of the process

for IMFkj the number of bits is increased by one (i = i + 1) for each maximum

(mk
jl, t

k
jl) and the bit-allocation loop is stopped when the reconstruction error

for the IMF respects the inaudibility constraint. Finally, the classical uniform

scalar quantization is used, followed by the Huffman coding.
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Figure 6: PSD of an audio frame and the associated masking threshold.

Note that the EMD method that decomposes a signal into a small number of

narrow-band components (IMFs) which admit physically meaningful decompo-

sition in terms of both instantaneous frequency and amplitude via the Hilbert

transform or energy separation algorithm [32]. The term narrow-band refers

both to the global signal properties, as defined in [33], and to the local sig-

nal requirements, as defined in [13]. This is consistent with the definition of

a mono-component IMF. Applying the EMD to a frame (time-limited signals),

the sifted IMFs might have infinite bandwidth. However, experiments carried

out on a large class of signals, show that the power spectral densities of the

obtained modes decrease fast outside a limited bandwidth [34]. In addition, it

has been shown, based on extensive and controlled simulations, that the EMD

exhibits dyadic filter bank properties when it is applied to the versatile class of

fractional Gaussian noise processes (including white Gaussian noise) [35],[36].

As the MPEG-1 coder, there is one psychoacoustic evaluation per frame. Since

the IMFs of a given frame have spectra with little overlap, the error spectrum

for each frame can efficiently be compared directly to the threshold curve. The

quality of real data experiments strengthens this analysis.
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Figure 7: Bit-allocation strategy.

3.6. EMD decoder

The encoder gives a compact representation of the input audio signal that re-

quires lower BR. For the EMC, this representation is given in terms of extrema

of the IMFs. Coded extrema (mk
jl and tkjl) of this compact representation are

delivered to the decoder, which then recovers the original audio signal from

the received compact representation. In conjunction with these extrema, the

decoder uses side information such as the offset αkj and scale factor γkj . To syn-

thesize the audio signal x̃(t), which is an approximation of the source x(t), the

decoder first reconstructs the upper envelope using γkj and the encoded max-

ima mk
jl and tkjl. Then the lower envelope of the jth IMF is determined from

the upper envelope by symmetry, with respect to the axis time, and using the

decoded offset αkj (see subsection 3.4). Finally, the IMFs are recovered thanks

to a spline interpolation between the extrema [19]. The audio frame is con-

structed by superposition of the estimated IMFs [13], and the decoded audio

signal is obtained by frames concatenation. To hide the discontinuities at frame

boundaries and for smooth transition, a cross-fading operation is included in

the reconstruction step.

4. Results

4.1. Configuration parameters of the EMC

We begin by fixing the parameters of the EMC. The frame size is set to 512

with an overlapping of 64 samples. For the transient detection, the size L of

sub-images, NIk, is set to 64. To best of our knowledge, there is no criterion
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for optimum selection of L parameter [26]. This value is application dependent.

Based on extensive simulations (large classes of audio signals) we found that, for

frames of length 512, L = 64 is a good choice for change detection, as illustrated

in figure 3 that shows the variations of the SI across the time for different values

of L. To decide whether there is a non-stationarity a threshold (ThNS), set to

10% of the highest peak of the SI, is used. Time index tkjl, scaling factor γkj and

offset value αkj are coded over 8 bits.

4.2. Measurement scores

In addition to listening tests, performance is analyzed using the BR, the

NMR, the Subjective Difference Grade (SDG) [37], and the Objective Differ-

ence Grade (ODG) [38], which is a perceptual criterion. The SDG is the differ-

ence grade between listener’s rating of the coded signal and the reference signal

[39],[40]:

SDG = Grade(coded)−Grade(reference)

Values of the SDG range from -4 to 0 with the following interpretation, (-4)

unsatisfactory (or) very annoying, (-3) poor (or) annoying, (-2) fair (or) slightly

annoying, (-1) good (or) perceptible but not annoying, and (0) excellent (or)

imperceptible. A group of seven listeners (randomly selected) have evaluated

the analyzed audio coders. The average SDG was computed for each of the

audio signals. The NMR is an objective measure of the perceptual quality of

a compressed signal which measures the relative level of the quantization noise

compared to the masking threshold [41]. Lower coding errors are indicated by

larger negative values of the NMR. It has been shown that the NMR is a useful

tool in the development and comparison of perceptual coding schemes. The

NMR of a given sub-band is calculated for b-bit quantization as the difference

in dB by,

NMR(b) = SMR− SNR(b)

where SMR is the signal-to-mask ratio calculated with the psychoacoustic model

and SNR(b) is the signal-to-noise ratio, resulting from b-bits quantization, esti-
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mated from a table lookup based on the number of bits allocated to the sub-

band. Thus the NMR(b) value corresponds to the difference between the level

of quantization noise (SMR) and the level (SNR(b)) where a distortion may just

become audible in the given sub-band. The MPEG/audio standard provides

tables that give estimates for the SNR, resulting from quantizing at a given

number of quantization levels. For the psychoacoustic model, the same model

as in MPEG-1 audio coder [4] is used. The ODG represents the expected hu-

man perceptual quality of the degraded signal. It is generated by a procedure

designed to be comparable to the SDG judged by human ears. This score is

calculated based on the difference between the quality rating of the reference

signal and the test signal. This score takes its values from -4 to 0 where -4

stands for very significant difference and 0 stands for imperceptible difference

between the reference and the test signal [42],[43],[44]. More precisely, values of

0,-1,-2,-3,-4 correspond to a subjective audio quality of ”indistinguishable from

original”, ”perceptible but not annoying”, slightly annoying”, annoying” and

”very annoying” respectively.

4.3. Application to real signals

We present some experiments to assess the performance of the EMC method.

The EMC is tested on six audio signals (gspi=Glockenspiel, harp=Harpsichord,

quar=Quarter, song, Violin, trpt=Trumpet and violin) sampled at 44.1kHz.

In particular, gspi, harp, quar and trpt recordings are taken from the SQAM

database [47]. Listening tests required to ascertain the quality of the recon-

structed audio relative to state-of-the art codecs and prove the relevance of

the EMC are provided with the paper. Also, results are compared to those of

MP3 (ISO/IEC 11172-3 MPEG Layer 3) [20],[45] and AAC (ISO/IEC 13818-

7 Advanced Audio Coding) [46],[21], and to the wavelet-based coding [48].

Daubechies wavelets that are, widely used in solving a broad range of problems,

are compactly supported orthonormal wavelets and provide accurate signal de-

composition; hence they are good candidates for signals coding. In general,

they achieve good results in audio coding compared to other wavelets [48]. In
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this work, Daubechies wavelet Db8 is used as mother wavelet which yields or-

thogonal decomposition of the signal. For each frame a perceptual masking

threshold is calculated. Spectrograms of the tested audio signals are depicted in

figure 8. This figure shows that the audio signals exhibit varying and complex

time-frequency structures. Based on the analyzed audio signals, the extracted

residues of the decompositions (rC(t)) are of very small amplitudes (tend to

zero) and thus have not been coded. Figure 9 illustrates the sifting of an audio

signal frame. According to this decomposition and as expected [13]-[19] the

number of maxima decreases from one IMF to IMF. Values of the NMR, the

BR, the ODG and the SDG obtained at BR=64 kb/s with the four compression

methods are summarized in Table 2.

A careful examination of these results shows that for a constant BR, the EMC

outperforms the MP3 and the wavelet-based coding, and on the average, per-

forms better than the AAC codec in terms of ODG, SDG and NMR. Compared

to the wavelet-based coding and the MP3 codec, for all signals both the proposed

coding and the AAC codec have the ODG values between -1 (not annoying) and

0 (not perceptible). These results show that, for the tested signals, the coding

performance of the EMC does not show significant perceptual distortion. In

terms of NMR, it can be observed from Table 2, that on the average, larger

negative values are obtained with the EMC, leading to lower coding errors and

less audible noise. Audio quality of the coding is also assessed in term of im-

pairment using SDG scores. Compared to other three codecs, the SDG values

of the EMC are near zero, showing the high quality of the decoded signals that

are indistinguishable from the original signals. We observe that the EMC and

the AAC perform better than the MP3 and the wavelet-based coding methods

in terms of SDG. We report in Table 3 a result showing the interest of encoding

the offset values. This result shows that the ODG is improved when the offset

is coded. Overall, when compared to the MP3, the AAC and the wavelet-based

coding, there is a preference toward the EMC for the six tested audio signals.

The good behavior of the EMC compared to these coding techniques lies in the

fact that, although they can be compressed at low BR expense, the IMFs are
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(e) (f)

Figure 8: Original audio signals (Glockenspiel, Harpsichord, Quarter, song, Violin, Trumpet

and violin).
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Figure 9: Example of decomposition of an audio signal frame.

able to catch easily some non-stationary behavior as well as several harmonics

of the signal that require more complexity with approaches focused on harmonic

retrieval or other fixed bases decomposition. For instance, in figure 9, we see

that the first IMF catches several stationary periodicities while the 4th IMF

catches a single harmonic with slowly varying period (the first period is about

175 samples long and the second 190). This frequency variation is even more

clearer in 5th IMF.

The high compression achieved by the EMC is mainly attributed to data-driven

nature of the EMD, to the use of a psychoacoustic model and to the exploitation

the symmetry property of the IMF, which enable good audio quality at low BR.

Although the processed test signals have different and varying time-frequency

structures (Fig. 8), the sifting is performed without any prior choice of basis

functions and the number of extracted IMFs is also adaptively driven. Based

on a psychoacoustic model, the aim of this new coding is to keep the listening
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Table 2: Compression results for audio signals (gspi, harp, quar,song, trpt and violin) by the

proposed EMC approach, AAC, MP3 and wavelet compression.

Signal gspi harp quar song trpt violin

BR [kb/s] 64 64 64 64 64 64

EMC NMR -5.37 -5.65 -5.47 -5.13 -5.32 -5.04

ODG -0.82 -0.73 -0.74 -0.79 -0.84 -0.83

SDG -0.71 -0.91 -0.86 -0.75 -0.87 -0.78

BR [kb/s] 64 64 64 64 64 64

AAC NMR -3.43 -6.46 -4.78 -4.23 -6.15 -4.59

ODG -0.85 -0.73 -0.75 -0.89 -0.88 -0.86

SDG -0.77 -0.85 -0.88 -0.82 -0.87 -0.81

BR [kb/s] 64 64 64 64 64 64

MP3 NMR 1.42 1.21 1.27 1.23 2.68 1.86

ODG -1.12 -1.87 -1.91 -1.09 -1.27 -1.34

SDG -1.08 -1.22 -1.52 -0.96 -1.08 -1.21

BR [kb/s] 65 67 64 65 66 64

Wavelets NMR -2.30 -3.67 1.64 -3.40 -1.35 -2.52

ODG -0.86 -1.27 -1.74 -0.98 -0.97 -1.08

SDG -0.93 -1.13 -1.40 -0.93 -0.97 -1.03

Table 3: EMC with and without offsets coding.

EMC ODG

With offset coding -0.82

Without offset coding -0.97

quality of the signal at a consistent level. Performance of the EMC depends on

the quality of the sifting which in turns depends on the way the interpolation

of the envelopes is performed. Thus, utilizing an inappropriate interpolating
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function can limit the performances of the EMD-based coding scheme. Note

that the spline interpolation of the extrema can introduce errors in the recon-

structed signal. This is particularly true for the first IMF which holds the most

non-smooth part of the signal [18]. The EMC is based on the EMD which is

essentially defined by the sifting procedure and involves four main steps: Ex-

trema detection, Interpolation, Sifting and Reconstruction. Extrema detection

and interpolation requires, on average, about 50% of the computational time.

The computational complexity of the EMD depends on the data (signal) to be

sifted, the chosen interpolation scheme, and the stopping criterion. For exam-

ple, the distribution of local maxima becomes more dense when the number of

samples of the analyzed signal increases. Since the EMD is lacking an analytical

definition, algorithmic complexity of both the EMD and the EMC are difficult

to evaluate.

The present version of the EMC is limited to BR greater than 64 kb/s since the

bit-allocation is based on the comparison to the perceptual masking threshold

(inaudibility constraint). For BR ≥ 64 kb/s, the encoder does not run out of

bits. There are enough bits to encode all the maxima. Based on the EMD, the

EMC is data driven approach and thus the BR allocation is signal dependent. It

is important de keep in mind that before coding, the number of IMFs per frame

and the associated number of maxima are unknown. As the EMD, the bit-

allocation is also, in big part, a data driven process. For significantly lower BR

(≤ 64 kb/s) the iterations are stopped and the EMC does not give the expected

coding results. Since the sifting depends on the SD value, it is expected that

for some frames few IMFs of no zero-mean would be extracted. An example of

such IMFs is illustrated in Table 1. However, the BR is improved for the IMFs

of zero-mean because the offset is null and thus it is not coded (the residual is

inaudible). To support very low BRs, an improvement of the EMC is necessary

while keeping a good listening quality of audio signals.
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5. Conclusion

This paper presents a new approach for audio coding based on the EMD.

Experimental results demonstrate the effectiveness of such a framework com-

pared to classical approaches. We have compared the EMC with the MP3,

the AAC and the wavelet-based coding. Overall, based on the analyzed mono

audio signals, the EMC performs better than these methods for the tested sig-

nals: ODG values obtained for the EMC method are better than with the three

codecs without significant perceptual distortion, and large negative values of the

NMR obtained with the EMC lead to lower coding errors and less audible noise.

SDG scores near to zero obtained for the EMC indicate the high quality of the

decoded signals, that are indistinguishable from the original ones. The coding

results of the EMC are not dependent on predetermined basis and/or sub-band

filtering processes. Furthermore, it does not require any user parameters, ex-

cept the window size and the threshold for the stationarity index calculation. In

future work, we plan to design a strategy to optimize the selection of these pa-

rameters. Simulations presented here are restricted to BR greater than 64kb/s

and in future work we also plan to extend the EMC for operation at lower BR

like 48-32 kbits/s, while keeping a good listening quality of audio signals. Prac-

tical experiments carried out here on different kinds of audio sources should

be extended by considering larger classes of audio signals as well as varied ex-

perimental conditions such as different sampling rates or frame size for further

performance improvement. Since it is based on the EMD, the EMC shares the

same limits: it is only defined by an algorithm (sifting) and lacks clear math-

ematical framework (with the notable exception of [49]) and further work in

this direction would be welcome. Future works should also compare the perfor-

mance of the EMC to other coding methods involving MDCT basis functions.

Since the EMC is a mono coding approach, investigations are required for its

extension to stereo audio signals.
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