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1 ENSTA Bretagne and Lab-STICC UMR 6285, F-29200, Brest, France
2 Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, USA
3 Univ Lyon, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, Creatis UMR 5220, U1206, F-69601, Lyon, France

4 IMT-Atlantique and Lab-STICC UMR 6285, F-29200, Brest, France

ABSTRACT

Considering low-frequency acoustic sources, shallow-
water environments act as modal dispersive waveguides.
In this context, the signal can be described as a sum of a
few modal components, each of them propagating with its
own wavenumber. When dealing with broadband sources,
wavenumber-frequency (f-k) diagrams constitute popular
representations naturally enabling modal separation. Based
on a Fourier transform, they require however a large number
of sensors to resolve wavenumbers with a high-resolution.
This limitation can be overcame by adding some physical pri-
ors to the processing method. In the continuation of previous
works, we propose here a new grid-free algorithm allowing
a super-resolution of the (f-k) diagram by benifiting from
the sparse nature of the wavenumber spectrum and embed-
ding the broadband behavior of the wavenumbers within the
algorithm. The method is validated on simulated data.

Index Terms— Wavenumbers estimation, sparse repre-
sentation, grid-free algorithms, greedy algorithms

1. INTRODUCTION

In shallow-water environments, propagation of acoustic low
frequency signals is ruled by the modal theory: it can be
described as the sum of few dispersive modes, each being
defined by its own wavenumber and amplitude. Estimating
them is of crucial importance to understand the propagating
environment as well as the emitting source [1]. In particular,
modes parameters are involved in matched mode processing
[2] that constitutes a common approach to infer the properties
of the environment [3]. The method consists firstly of de-
composing the measured fields to obtain the excitations, that
is, amplitudes of the constituent propagating modes. Then
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Fig. 1. (f-k) diagram based on data obtained by a Pekeris guide

the source location can be estimated by matching these ex-
citations with modeled replica excitations. A common ap-
proach to recover modes is the use of Fourier transform (FT).
Indeed, as long as the acoustic field can be sampled in the
range dimension, the mode estimation procedure is equiva-
lent to a spectral estimation problem. As a result, consider-
ing a long horizontal line array (HLA) and a monochromatic
source at the endfire position, the wavenumber spectrum can
be obtained by applying a Fourier transform in the array di-
mension [4, 5]. When considering a broadband source, spatial
wavenumber spectra can be estimated for each of the source
frequencies. Stacking these spectra results in a frequency-
wavenumber (f-k) diagram representative of the waveguide
dispersion [4, 5, 6]. A disadvantage of the standard discrete
Fourier transform is that it assumes regular sampling, result-
ing in low resolution of spatial wavenumbers when the HLA
has few sensors. The resulting (f-k) diagram is then of poor
quality. To overcome this problem, we propose to account for
the sparsity of the contribution of modes in the spatial spec-
tra. In addition, based on ideas introduced in previous works
[7, 8], which explicit prior information on both the number
of modes expected to propagate at each frequency and their
links from one frequency to another, we address mode track-
ing among spatial spectra at successive time frequencies. Our
contribution goes beyond these works : in addition to taking



into account physical priors, we propose an algorithm that is
free of the constraint of grid search for the wavenumber esti-
mation. The paper is organized as follows. The second sec-
tion recalls physical principles of modal propagation that will
be exploited as prior knowledge to build up the (f-k) diagram.
The third section is dedicated to the explanation of the grid-
free utility and the proposed algorithm. Finally, in section 4,
we present metrics adapted to our grid-free problem and the
method is applied to synthetic simulations.

2. ACOUSTIC PROPAGATION IN DISPERSIVE
SHALLOW WATER ENVIRONMENTS

When considering an emitting source s(f) at depth zs and
frequency f , the received signal on a sensor located at the
distance r and depth z can be written as [9] :

y(f, r, z, zs) ' QS(f)

M(f)∑
m=1

Am(f, z, zs)e
−jrkrm(f), (1)

where Q is a constant factor, M(f) is the number of prop-
agating modes at frequency f , krm(f) (resp. Am(f, z, zs))
is the horizontal wavenumber (resp. modal amplitude) of the
mth mode. In modal theory, the horizontal wavenumbers as-
sociated to the propagating modes are linked to their vertical
counter-parts by the dispersion relation, that is, for a given f ,(

2πf

c

)2

= krm(f)2 + kzm(f)2, (2)

with c the sound speed in the medium. Discretizing the fre-
quency axis (with f=ν∆f , ν∈{0, ..., F}, ∆f the frequency
spacing) and denoting krm[ν] , krm(ν∆f ), the wavenum-
bers attached to two successive indices are linked as [7] :

krm[ν + 1]2 = krm[ν]2 + (2ν + 1)

(
2π∆f

c

)2

+ ε[ν], (3)

where ε[ν] , kzm[ν]2 − kzm[ν + 1]2. In shallow-water envi-
ronments, the vertical wavenumbers kzm weakly depend on
the frequency [9]; the quantity ε is thus smaller than the other
terms of the equation and can be neglected. Dispersive rela-
tion has been exploited to track the propagating wavenumbers
in the (f-k) diagram in [7] and [8]. We place this work in the
continuation of these previous contributions, but in contrast to
them, we propose here a method where wavenumbers are not
constrained to lie on a discrete grid and that does not require
prior knowledge of the modal cut-off frequencies (as in [7]).

3. GRID-FREE COMPRESSED SENSING

For a HLA with L regularly-spaced sensors, Eq. (1) can be
rewritten under the following matrix discretized formula for a

frequency ν1:
yν = Daν + nν , (4)

where the elements in aν are proportional to the modal
amplitudes (Am in Eq. (1)), nν is an additive noise and
D ∈ CL×N is a dictionary made up of Fourier atoms,
that is dκrn , [1, . . . , e−j(L−1)∆rκrn ]T , where ∆r is the
inter-sensor distance and the {κrn}n∈{1,...,N} constitutes a
N -point discretization of the possible values for the krm[ν].
Then performing a (spatial) FT of the received signal yν
basically amounts to a least-square estimation of aν .

Since only a few modes are expected to propagate in the
medium, sparse representations (SR) come as a natural and
intuitive model for the search over a large (possibly infinite)
set of wavenumbers. Under this assumption, D is seen as an
overcomplete dictionary (i.e. L � N ) while aν is assumed
to contain many zeros. Integrating the sparsity of aν into the
estimation procedure can be expressed as follows:

âν = argmin
aν

‖yν −Daν‖22, subject to ‖aν‖0 ≤Mν , (5)

with ‖aν‖0 the `0 pseudo-norm which counts the numbers
of non-zero entries of aν and Mν the maximum number of
wavenumbers expected to propagate at frequency bin ν.

There are several classical algorithms dealing with the
previous equation (see e.g. [10] for a review). Among the
most popular ones, we can mention orthogonal matching pur-
suit (OMP, [11]) which builds up the solution of (5) by mak-
ing a succession of greedy decisions, or basis pursuit (BP,
[12]) which replaces the `0 norm by an `1 norm leading to a
released version of (5) and then resorts to standard optimiza-
tion procedure. Both of them have been used in the particular
case of wavenumbers estimation in [13],[14].

As implied in the matrix formulations (4)–(5), these al-
gorithms classically exploit a discretized grid to recover the
non-zero coefficients of aν . This can result in a lack of preci-
sion which can be prejudicial for a fine characterization of the
underlying physics. These limitations can be somehow allevi-
ated by considering a grid-free setting. Practically, a grid-free
version of the relaxation of (5) can be obtained by replacing
the `1 norm (only valid in a finite dimensional setting) by the
total variation norm. The solution of the sparse reconstruc-
tion problem can then be obtained by using the CVX software
[15]. This is the approach considered in [16] for the problem
of wavenumber estimation with vertical line arrays. A main
drawback of such procedure is its high complexity and con-
sequently computational time. Simultaneously, a continuous
(or grid-free) version of OMP has been proposed in [17]. The
approach makes use of a dictionary augmented with shifted
copies of each atom’s derivative. Then a continuous sparse
representation of y can be estimated through the formalism
of a Taylor development. Following this idea, we propose to

1For the sake of clarity we omit the dependence in z since we consider
HLA, i.e. sensors at constant depth.



resort to another intuitive mathematical operation by adding a
gradient-descent step into the classical OMP procedure.

4. PROPOSED PROCEDURE

4.1. Grid-free OMP

The grid-free procedure that we propose for OMP is de-
scribed in Algorithm 1. As such, it can be applied to estimate
wavenumbers from each frequency line of the (f-k) diagram
independently from each other.

Algorithm 1 Grid-free Orthogonal Matching Pursuit
0. Initialization : rν = yν , Sν = ∅
While stopping criterium is not reached, repeat
1. Find new propagating wavenumber

κ̂rn = argmax
κrn

|〈rν ,dκrn〉|, (6)

where dκrn is the n-th column of D.
2. Apply gradient-descent algorithm to refine previous
estimate and get k̂rm[ν]. Set Sν = Sν ∪ k̂rm[ν].
3. Compute corresponding coefficients

âν,Sν = D+
Sνyν (7)

with D+
Sν the Moore-Penrose pseudo-inverse matrix of DSν

made up of Fourier atoms specified by Sν .
4. Update residual : rν = yν −DSν âν,Sν

Algorithm 1 can be stopped when a prescribed number of
modes is obtained or when the energy of the residual rν is low
enough. As in practice, the precise number of propagating
modes is often unknown, the energy-based stopping criterium
can be applied, based on an estimation of the noise power.

4.2. Tracking modes

In the continuation of [8], we propose to additionally integrate
the information brought by the dispersion relation (3). In
other words, the non-zero components of aν can no longer be
chosen independently from each other but must follow some
physics-driven inter-rules when ν is changed. To this end, we
put the physical dependency of the modes among time fre-
quencies into the line-by-line processing of the (f-k) diagram.

More precisely, the resulting algorithm starts at the first
frequency line and estimates the most correlated atom of D
with respect to the data. If the scalar product between this
atom and the data is higher than a specific threshold, the al-
gorithm considers it as a propagating mode and estimates a
predicted interval for the wavenumber of this mode for the
next frequency. At the next frequency, existing modes are
searched in their predicted intervals of the space spectrum us-
ing simple gradient-descent procedures. They are retained if
their amplitudes are “large enough”.

Algorithm 2 Grid-free Orthogonal Matching Pursuit consid-
ering dispersive relation
0. Initialization :∀ν∈{1, .., F}, rν=yν , Sν=∅, I0,ν=∅, M=0.
For ν = 1 : F
1. Find new propagating wavenumber

κ̂rn = argmax
κrn

|〈rν , d̃κrn〉|, (8)

where d̃κrn is the n-th column of D∪̄m∈{0,...,M}Im,ν made up of
Fourier atoms not in ∪m∈{0,...,M}Im,ν .
If |〈rν , d̃κ̂rn〉| ≥ T0

– Set M =M + 1.
– Apply gradient-descent algorithm to refine previous estimate
and get k̂rm[ν]. Set Sν = Sν ∪ k̂rm[ν].
– Compute corresponding coefficients and update residual :
rν = yν −DSν âν,Sν with âν,Sν = D+

Sνyν .
2. If M > 1, propagate existing modes
For m = 1 :M − 1
– Apply gradient-descent on interval Im,ν and get k̂rm[ν]. If
|〈rν ,dk̂rm[ν]〉| ≥ Tm,ν , set Sν = Sν ∪ k̂rm[ν].
– Compute corresponding coefficients and update residual :
rν = yν −DSν âν,Sν with âν,Sν = D+

Sνyν .
3. Predict propagating intervals for next frequency
For all m ∈ {1, . . . ,M}, define

Im,ν+1 =
[
k̃rm[ν + 1]− ε[ν]; k̃rm[ν + 1] + ε[ν]

]
(9)

where k̃rm[ν+1] = k̂rm[ν]+(2ν+1)(
2π∆f
c

)2 and ε is arbitrarily
set to 10−3.

In the targeted applications, mode wavenumbers are well-
enough separated and modes possibly appearing at this new
frequency can be searched among wavenumbers outside the
predicted intervals. Note also that a mode that appeared at
a given frequency will continue to exist at higher frequen-
cies. All of these properties can be used to design an adapta-
tive strategy for detection thresholds. Letting T0 the thresh-
old for detecting a new mode, and νc,m the frequency in-
dex at which the m-th mode appeared, for ν ≥ νc,m, we
set a threshold Tm,ν = λν−νc,mT0. The interest of Tm,ν is
to prevent us from propagating false detections among fre-
quencies by checking that the amplitudes of the modes found
in the predicted wavenumber intervals are not “too low”. It
is natural to decrease Tm,ν with ν as a mode already de-
tected for a large number of frequency lines will probably
represent a true detection. However, adjusting λ may not be
straightforward. Alternatively, we propose to choose Tm,ν =

T0 −
∑ν−νc,m
i=1 λiT0. Letting T∞ a desired limit threshold, a

straightforward calculation shows that we should have λ =
1−T∞/T0

2−T∞/T0
. Then it is interesting to note that 1 − 2λ = (1 −

λ)T∞
T0
≥ 0, hence λ ∈ [0, 1/2]. We can choose λ = 1/2

as it corresponds to the choice T∞ = 0. Alternatively, we
can set an asymptotic false alarm probability α∞ that we ac-
cept for propagating modes. Under Gaussian complex cir-
cular noise assumption with total variance σ2, we then get



Fig. 2. Impact of sensors number for Jaccard’s distance.

T∞ = σ
√
−2 logα∞. Note that, we propose a similar defi-

nition for T0, that is T0 = σ
√
−2 logα0, where α0 is a given

initial false alarm probability. Algorithm 2 resumes the pro-
posed procedure.

5. EXPERIMENTS

In this section, we present the experiments led on simulated
data to assess the performance of the proposed method. The
data were simulated by using a Pekeris waveguide [9]. The
water column is assumed to be D = 130 m deep with a con-
stant sound speed cwater = 1500 m/s and a density ρwater =
1 kg/m3. The seabed is a semi-finite fluid layer with a sound
speed of cseabed = 2000 m/s and a density ρseabed = 2
kg/m3. The sensors array is composed of 240 hydrophones
setting on the seabed and regularly spaced of ∆r = 25 m re-
sulting in a 6000 m long synthetic antenna. The source emits
a broadband signal between 0 and 50 Hz. The frequency res-
olution is ∆f = 0.2 Hz. The source is placed at the depth
of D = 130 m to avoid nodes of the modal functions. At
50 Hz we consider that five modes are propagating. We com-
pare 5 algorithms: i) the well-known least-square approach
(LS), ii) a basic use of OMP with a stopping criterium con-
sidering the number of propagating modes at each frequency
(OMP), iii) a continuous version of OMP with the same stop-
ping criterium (COMP), iv) the SoBaP algorithm [8] in its
propagated version (SoBaP), and v) the proposed method us-
ing the dispersive relation with α0 = 0.001 and α∞ = 0.5
(CPOMP). It should be noted that the choice of the number of
propagating modes as stopping criterium can be considered
as advantageous for OMP and COMP. This is to highlight the
good performance of the proposed approach.

We consider two figures of merit: performance of the al-
gorithms is assessed on one hand as a function of the SNR
(taken between -10 dB and 30 dB) and on the other, as a func-
tion of the number of sensors (randomly chosen among the
240 sensors of the “entire” antenna). Performance is evalu-
ated using the Jaccard’s metric [18, 19] which is well-suited to
quantitatively assess the detection performance of continuous
algorithms. This metric is relevant for our study case since a
good estimation of the propagating wavenumbers would lead

Fig. 3. Impact of SNR and sensors number for Jaccard’s distance.

to a good estimation of the environment parameters.
In Fig. 2 (with a SNR set to 12 dB), we can observe the

limitations of the LS algorithm, this algorithm builds up a co-
efficient for each point of the research grid. That means that
the number of false alarms is huge and leads to a Jaccard’s dis-
tance close to 1. We can see the upgrade of the performance
by using an algorithm taking into account the sparsity of the
problem. This version of OMP stops when it finds the right
number of wavenumbers. Nevertheless the performance of
this algorithm reaches an asymptote due to the no-recovery of
one or more wavenumbers associated to small modal ampli-
tudes. By taking into account the dispersive relation (SoBaP)
or the add of an off-grid step (COMP), the performance of the
algorithm can be improved. Note that the difference of per-
formance for the SoBaP algorithm is due to the propagation
of false alarms. As our algorithm combines both the disper-
sive relation and the off-grid step, it seems reasonable to see
it outperforming the other approaches, explaining the perfor-
mance of this algorithm over the others for every number of
sensors selected. Figure 3 presents a general overview of the
performance achieved by the different algorithms for different
experimental setups (SNR vs number of sensors). We glob-
ally observe a similar behavior as the one illustrated in Fig.
2 on the particular case SNR=12 dB. Hence, OMP (top-left)
never seems to achieve perfect detection (Jaccard’s distance
equal to 0), while COMP (top-right) and CPOMP (bottom-
left) present clear transition phases. A more precise compar-
ison between both COMP and CPOMP graphs highlights the
contribution of the dispersion relationship in the detection of
wavenumbers : the red and light blue zones are much smaller,
the dark blue one is much bigger.

6. CONCLUSION

We proposed here a new acoustic array processing to perform
high resolution estimation of wavenumbers in shallow-water
environments. The method exploits both sparsity and physics
in a grid-free setting. Its simple structure (combining OMP
and gradient-descent) makes it an intuitive and easy-to-use
tool while achieving robust performance in comparison with
other (grid-free) sparsity- and/or physics-aware algorithms.
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