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A CHARACTERIZATION OF COMPLEX QUASI-PROJECTIVE
MANIFOLDS UNIFORMIZED BY UNIT BALLS

YA DENG

With an appendix written jointly with BENoiT CADOREL

ABSTRACT. In 1988 Simpson extended the Donaldson-Uhlenbeck-Yau theorem to the
context of Higgs bundles, and as an application he proved a uniformization theorem
which characterizes complex projective manifolds and quasi-projective curves whose
universal coverings are complex unit balls. In this paper we give a necessary and
sufficient condition for quasi-projective manifolds to be uniformized by complex unit
balls. This generalizes the uniformization theorem by Simpson. Several byproducts
are also obtained in this paper.
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0. INTRODUCTION

0.1. Mainresult. The main goal of this paper is to characterize complex quasi-projective
manifolds whose universal coverings are complex unit balls.

Theorem A (=Theorem 4.8.(i)). Let X be an n-dimensional complex projective manifold
and let D be a smooth divisor on X (which might contain several disjoint components).
Let L be an ample polarization on X. For the log Higgs bundle (Q} (log D) @ Ox, 0) on
(X, D) with the Higgs field 0 defined by

(0.1.1) 0 : Qy(log D) ® Ox — (Qy(log D) ® Ox) ® Q}(log D)
(a,b) = (0, ),
if it is pp-polystable (see § 1.4 for the definition), then one has the following inequality

(0.1.2) (2c2(Qx(log D)) ~ - Z ]

c1(Qx(log D))?) - e1(L)" % > 0.
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2 YA DENG

When the equality holds, then X — D =~ Bn/r for some torsion free latticeI' C PU(n, 1)

acting on B™. Moreover, X is the (unique) toroidal compactification Oan/r, and each
connected component of D is the smooth quotient of an Abelian variety A by a finite
group acting freely on A.

Let us stress here that the smoothness of D in Theorem A is indeed necessary if one
would like to characterize non-compact ball quotients: in Theorem 4.8.(ii) we prove
that the universal cover of X — D is not the complex unit ball B" if D is assumed to
be simple normal crossing but not smooth, leaving other conditions in Theorem A
unchanged. Thus, it might be more appropriate to say that in this paper we give a
characterization of smooth toroidal compactification of non-compact ball quotients.

Note that when D is empty or when dim X = 1, Theorem A has already been
proved by Simpson [Sim88, Proposition 9.8]. As we will see later, we follow his strat-
egy closely to prove the above theorem. Let us also mention that the inequality (0.1.2)
is a direct consequence of Mochizuki’s deep work on the Bogomolov-Gieseker in-
equality for parabolic Higgs bundles [Moc06, Theorem 6.5]. Our main contribution
is the uniformization result when the equality in (0.1.2) is achieved. The proof builds
on Simpson’s ingenious ideas [Sim88] on characterizations of complete varieties uni-
formized by Hermitian symmetric spaces, as well as Mochizuki’s celebrated work on
Simpson correspondence for tame harmonic bundles [Moc06]. Since the Kobayashi-
Hitchin correspondence for general slope polystable parabolic Higgs bundles is still
unproven, we need some additional methods to prove the above uniformization result
(see § 0.3 for rough ideas).

We will show that the conditions in Theorem A is indeed necessary, by proving the
following slope stability (with respect to a more general polarization) result for the
natural log Higgs bundles associated to toroidal compactification of non-compact ball
quotient by torsion free lattice.

Theorem B (=§ 5.4). Let ' ¢ PU(n,1) be a torsion free lattice with only unipotent
parabolic elements. Let X be the (smooth) toroidal compactification of the ball quotient
Bn/r. Write D := X — Bn/r for the boundary divisor, which is a disjoint union of Abelian
varieties. Let « € H"}(X,R) be a big and nef cohomology (1, 1)-class on X containing
a positive closed (1,1)-current T € a so that T|x_p is a smooth Kdhler form and has at
most Poincaré growth near D (for example, & = ¢1(Kx + D) or a contains a Kihler form
®). Then one has the following equality for Chern classes

n

(0.1.3) ZCZ(Qg((log D)) — cl(Q)ﬂ(log D))* = 0.

n+1
The log Higgs bundle (Q} (log D)® O, 0) defined in (0.1.1) is j1, -polystable for the above
big and nef polarization a. In particular, it is slope polystable with respect to any Kdhler
polarization and the polarization by the big and nef class c;(Kx + D).

As a consequence of Theorems A and B, following [Sim88, Corollary 9.5] in the
compact setting, we give a new proof for the following rigidity result of ball quotient
under the automorphism of complex number field C to its coefficients of defining
equations.

Corollary C (=§ 6). LetT' ¢ PU(n,1) be a torsion free lattice, and let X := Bn/r be
the ball quotient, which carries a unique algebraic structure, denoted by X,;. For any
automorphism o € Aut(C), let X;’lg := Xalg Xo Spec(C) be the conjugate variety of X
under the automorphism o, and denote by X° the analytification ofX;’lg. Then X° is
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also a ball quotient, namely there is another torsion free lattice T° c PU(n, 1) so that
X° = n/ro‘.

When T is arithmetic, Corollary C has been proved by Kazhdan [Kaz83]. When
I' is non-arithmetic, it was proved by Mok-Yeung [MY93, Theorem 1] and by Baldi-
Ullmo [BU20, Theorem 8.4.2]. Based on Theorem A, we indeed proved a bit more
than Corollary C: the toroidal compactification of non-compact ball quotient is also
preserved under conjugation of any automorphism o € Aut(C).

Corollary D (=§ 6). Let ' c PU(n, 1) be a torsion free lattice with only unipotent
parabolic elements. Let X be the toroidal compactification of the ball quotient Bn/r,
which is a smooth projective variety. For any automorphism ¢ € Aut(C), let X’ =
X X, Spec(C) be the conjugate variety of X under o. Then there is another torsion free
latticeT° € PU(n, 1) so that X is the toroidal compactification of the non-compact ball
quotient Bn/ra.

In this paper we obtain some byproducts, and let us mention a few. We prove the
Simpson-Mochizuki correspondence for principal system of log Hodge bundles over
projective log pairs (see Theorem 3.1). We give a characterization of slope stability
with respect to big and nef classes for log Higgs bundles on Kahler log pairs (see
Theorem 5.7). We also give a very simple proof of the negativity of kernels of Higgs
fields of tame harmonic bundles by Brunebarbe [Bru17] (originally by Zuo [Zu000] for
system of log Hodge bundles), using some extension theorems of plurisubharmonic
functions in complex analysis (see Theorem 4.6). In the appendix written jointly with
Benoit Cadorel, we prove a metric rigidity result for toroidal compactification of non-
compact ball quotients (see Theorem A.8).

0.2. Afew histories. Since the main purpose of this paper is to prove the uniformiza-
tion result rather than the Miyaoka-Yau type inequality (0.1.2), we shall only recall
some earlier work related to the characterization of ball quotient, and we refer the
readers to [GKT16,GT16] for more references on the Miyaoka-Yau type inequalities.

Based on his proof of the Calabi conjecture [Yau78], Yau established the inequality
(0.1.2) when X is a projective manifold and D = @ with Kx ample. He proved that X is
uniformized by the complex unit ball in case of equality. Miyaoka-Yau inequality and
uniformization result were extended to the context of compact Kahler varieties with
quotient singularities by Cheng-Yau [CY86] using orbifold Kahler-Einstein metrics. A
partial uniformization result for smooth minimal models of general type have been
obtained by Zhang [Zha09]. More recently, uniformization result has been extended
to projective varieties with klt singularities in the series of work [GKPT19b, GKPT19a]
by Greb-Kebekus-Peternell-Taji.

All the above works dealt with compact varieties. A strong uniformization result
was established by Kobayashi [Kob84,Kob85] in the case of open orbifold surfaces (see
also [CY86]). In [CY86] Cheng-Yau also gave a differential geometric characterization
of quasi-projective ball quotients of any dimensions using the method of bounded
geometry in [CY80]. At almost the same time, based on [CY86], Tian-Yau [TY87] and
Tsuji [Tsu88] independently established similar algebraic geometric characterizations
of non-compact ball quotient of any dimension. To the best of author’s knowledge,
[TY87, Tsu88] are the only known works of algebraic geometric characterization of
high dimensional quasi-projective manifolds whose universal covers are unit balls.
See also [Yau93] for more details.
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All these aforementioned uniformization results are built on the positivity of the
(log) canonical sheaf of the varieties together with existence of Kahler-Einstein met-
rics. In [Sim88], Simpson established a remarkable uniformization result in terms of
stability of Higgs bundles. We essentially follow his approaches in this paper. In next
subsection, we shall recall his ideas and discuss main difficulties in generalizing his
methods to the context of non-compact varieties.

0.3. Main strategy. Let us briefly recall Simpson’s strategy for the proof of Theo-
rem A when D = @. In [Sim88, Theorem 1], Simpson proved that Higgs bundles over
compact Kihler manifolds are polystable if and only if they admit Hermitian-Yang-
Mills metrics. He then introduced the important notion of principal system of Hodge
bundles, which is closed related to principal variation of Hodge structures. Based on the
Donaldson heat flow methods in his proof of [Sim88, Theorem 1], in [Sim88, Proposi-
tion 8.2] he proved that a principal system of Hodge bundles with vanishing second
Chern classes gives rise to a principal variation of Hodge structures, and vice versa.
Assume now the boundary divisor D of X in Theorem A is empty. In [Sim88, p. 901]
Simpson defined a principal system of Hodge bundles associated to (Q;,®Ox, 0) whose
second Chern class vanishes by [Sim88, Proposition 9.8]. By [Sim88, Proposition 8.2],
this gives rise to a principal variation of Hodge structures on the universal covering
of X, whose period map is biholomorphic to the complex unit ball of dim X since X is
compact. This is the rough idea of Simpson’s proof for Theorem A when D = @.

Let us explain our rough ideas in the proof of Theorem A when the equality in
(0.1.2) holds.

Step 1: Following Simpson in the compact setting, we first define systems of log Hodge
bundles over log pairs. We prove that, a system of log Hodge bundles on a pro-
jective with vanishing first and second Chern classes admits a Hodge metric,
which is adapted to the trivial parabolic structure (see Proposition 1.16). The
proof is different from Simpson’s method since its is not clear for us that Don-
aldson’s heat flow can give the desired Hermitian-Yang-Mills metric in the log
setting. Instead, we first apply Mochizuki’s celebrated theorem [Moc06, The-
orem 9.4] to show the existence of harmonic metric, and we then use some
C*-action invariant property of log Hodge bundles to show that this harmonic
metric is moreover a Hodge metric.

Step 2: We generalize the result in Step 1 to the context of principal bundles. Fix a
Hodge group Gy. Following Simpson again, we define a principal system of
log Hodge bundles (P, 7) on log pairs (X, D) with the structure group K C G,
where G is the complexification of Gy. Based on the result in Step 1 together
with some similar Tannakian arguments in [Sim90], in Theorem 3.1 we prove
that if there is a faithful Hodge representation p : G — GL(V) for some polar-
ized Hodge structure (V = @;4j=,,V'/, hy) so that the system of log Hodge bun-
dles (P xx V,dp(r)) is p-polystable with /X chy(Pxg V) - ¢y (L)imX=2 = 0, then
there is a metric reduction Py for P|x_p so that the triple (P|x-p, 7|x-p, Px)
gives rise to a principal variation of Hodge structures on X — D.

Step 3: For the system of log Hodge bundles (E := Q} (log D) ® Ox, ) in Theorem A,
we first associate it a principal system of log Hodge bundles (P, 7) in Propo-
sition 2.11, whose Hodge group Gy = PU(n, 1) is of Hermitian type (see Defi-
nition 2.5). One can easily show that c¢;(P Xx g) = c2(End(E)*) = 0 when the
equality in (0.1.2) holds, where End(E)* denotes the trace free part of End(E).
By a theorem of Mochizuki in Theorem 1.11, the system of log Hodge bun-
dles (P Xk 8,d(Ad)(r)) = (End(E)", Ognace)+) is also slope polystable if (E, 6)
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is slope polystable. Since the adjoint representation G — GL(g) is a faithful
Hodge representation, by the result in Step 2, there is a metric reduction Py
for P|x_p so that the triple (P|x-p, T|x-p, Py) gives rise to a principal variation
of Hodge structures on X — D. Since 7 : Tx(—log D) — P Xx ¢~"! is an isomor-

phism, this implies that the period mapp: X - D — PU(n, 1)/U(n) associated
to (P|x—-p, T|x-p, Py) from the universal cover X — D of X — D to the period

domain GO/KO = PU(n, 1)/U(n) is locally biholomorphic. For more details, see

Step one of the proof of Theorem 4.8

Step 4: We have to prove that the period map p in Step 3 is moreover a biholomor-
phism. Note that when D = @, this step is quite easy. In Remark 2.7 we show
that it suffices to prove that the hermitian metric 7*hy on X — D is complete,
where hy is the hermitian metric on P Xx g~ !|x_p induced by the metric re-
duction Py together with the Killing form of g. This step is slightly involved
and the readers can find it in Step two of the proof of Theorem 4.8. To be
brief, we establish a precise model metric (ansatz) for (E, 6) ® (E*, 6%) locally
around D with at most log growth, and we prove that this local metric is in-
deed mutually bounded with hy using similar ideas in [Sim90, §4]. Based on
this model metric, we obtain a precise norm estimates for hy near D, so that
we can prove that 7*hy is a complete metric on X — D. This concludes that the

universal cover of X — D is the unit ball PU(n, 1)/U(n)'

0.4. Further perspectives. In this paper we only consider log Higgs bundles, namely
parabolic Higgs bundles with trivial parabolic structures. If one allows non-trivial
parabolic structures in Theorem A, we expect that there is a ramified covering of X
by the complex unit ball which is only ramified over D.

Theorem A gives a characterizations for ball quotients admitting a smooth toroidal
compactification. It is certainly an interesting question to extend this characterization
for ball quotients whose toroidal compactification is only an orbifold or even for sin-
gular ball quotients. The first step towards this question is to extend Theorem 3.1 to
the stacky setting as [Sim11].

In Theorem A, we consider the ample polarization for log Higgs bundles. In the last
decades, after the sequel work by Campana-Peternell [CP11], Greb-Kebekus-Peternell
[GKP16] and Campana-Paun [CP19], for applications in birational geometry it is quite
important to consider more general polarization by big and nef line bundles or even
movable curves. In Theorem B we establish such generalization for log Higgs bundles
associated to toroidal compactifications of ball quotients. In a future project we would
like to extend Theorem A to this context.

In [Sim88, Theorem 2], Simpson established a characterization of hermitian sym-
metric spaces of non-compact type. In Corollary 3.2 we only partially generalize his
result to the log setting. The missing point is the precise norm estimate of the Hodge
metric as Step 4 in § 0.3. We will consider this problem in a future work.

0.5. Acknowledgments. This work owes a lot to the deep work [Sim88,5im90,Sim92,
Moc06], to which I express my deepest gratitude. I sincerely thank Professor Carlos
Simpson for answering my questions, as well as his suggestions and encouragements.
I thank Professor Takuro Mochizuki for sending me his personal notes on the proof
of Theorem 1.11. I also thank Professors Jean-Pierre Demailly, Henri Guenancia, Em-
manuel Ullmo, Shing-Tung Yau, and Gregorio Baldi, Jiaming Chen, Chen Jiang, Jie
Liu, Mingchen Xia for very helpful discussions and their remarks on this paper. My
special thanks go to Benoit Cadorel for his very fruitful discussions on the toroidal



6 YA DENG

compactification, which lead to a joint appendix with him in this paper. This work is
supported by “le fond Chern” a 'THES.

NOTATIONS AND CONVENTIONS

A couple (E, h) is a Hermitian vector bundle on a complex manifold X if E a holomor-
phic vector bundle on X equipped with a smooth hermitian metric k. d; denotes the
complex structure of E, and we sometimes simply write 8 if no confusion arises.
Two hermitian metrics h and A of a holomorphic vector bundle on X are mutually
bounded if C"'h < h < Ch for some constant C > 0, and we shall denote by h ~ A’.
For a hermitian vector bundle (E, h) on a complex manifold, d, = dy + Or denotes its
Chern connection and Ry(E) = d}zl denotes its Chern curvature.

For a Higgs bundle (E, 6, h) with a smooth metric # on a complex manifold, Fy(E) :=
Riw(E) +[0, 03], where 6}, is the adjoint of 6 with respect to h. We denote by Fj(E)* the
trace free part of Fy(E).

Let (E, 0) be a log Higgs bundle on a log pair (X, D). For a,b € Zs,, we denote by
T%b(E, ) the tensor product of (E, §) with T%’E := Hom(E®%, E®?), and T%"@ the in-
duced Higgs field.

A denotes the unit disk in C, and A* denotes the punctured unit disk.

The complex manifold X in this paper is always assumed to be connected and of di-
mension n.

A log pair (X, D) consists of a (possibly non-compact) complex manifold X and simple
normal crossing divisor D on X. Such a log pair is called projective (resp. Kahler) if X
is a projective (resp. compact Kahler) manifold.

P denotes the holomorphic principal K-fiber bundle on a complex manifold or log
pairs, and Py C P denotes its metric reduction with the structure group K, C K.

For a cohomology big (1, 1)-class a on a compact Kahler manifold, &(«) denotes the
set of closed positive (1, 1)-currents in a with full Monge-Ampére mass.

For a closed positive (1, 1)-current T on a complex manifold, locally it can be written
as T = Y=189¢ with ¢ some plurisubharmonic function. Such ¢ is called the local
potential of T.

Throughout the paper we always work over the complex number field C.

1. LoG HIGGS BUNDLES AND SYSTEM OF LOG HODGE BUNDLES

1.1. Higgs bundles and tame harmonic bundles. In this section we recall the
definition of Higgs bundles and tame harmonic bundles. We refer the readers to
[Sim88,Sim90, Sim92, Moc02, Moc07] for further details.

Definition 1.1. Let X be a complex manifold. A Higgs bundle on X is a pair (E, 0)
where E is a holomorphic vector bundle with 9 its complex structure, and 8 : E —
E® Q)1< is a holomorphic one form with value in End(E), say Higgs field, satisfying
ONO=0.

Let (E, 0) be a Higgs bundle over a complex manifold X. Write D" := g + 6. Then
D2 = 0. Suppose h is a smooth hermitian metric of E. Denote by dj, := 8, + 9 the

Chern connection with respect to h, and by 0, the adjoint of 6 with respect to h. Write
D;l := Op + Op. The metric h is harmonic if the operator Dy, := D;l + D” is integrable,
that is, if D? = Ry, + [0, 04] = 0.

Definition 1.2 (Harmonic bundle). A harmonic bundle on a complex manifold X is
triple (E, 0, h) where (E, 0) is a Higgs bundle and h is a harmonic metric for (E, 6).
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Let X be an n-dimensional complex manifold, and let D be a simple normal crossing
divisor.

Definition 1.3. (Admissible coordinate) Let p be a point of X, and assume that {D; };—;
be components of D containing p. An admissible coordinate around p is the tuple
(U; z1, . . ., zn; @) (or simply (U; z1, . . ., z,) if no confusion arises) where

e U is an open subset of X containing p.

e there is a holomorphic isomorphism ¢ : U — A" so that ¢(D;) = (z; = 0) for

anyj=1,...,¢.

We shall write U* := U - D, U(r) :={z € U | |zj| <r,Vi=1,...,n}and U'(r) :=
Ur)nU*.

Recall that the Poincaré metric wp on (A*)¢ x A" is described as

1dz; A dzZ 1
Zlv_ GRE + > Vldz A dz

zj|*(log |[?)?

k=C+1
Note that
f n
op = —\/Iaalog(ﬂ(—log|zj|2) cexp () 1al?).
j=1 k=(+1

Definition 1.4 (Poincaré growth). For a hermitian metric w on (A*)¢ x A", we say
it has at most (resp. the same) Poincaré growth if there is C > 0 so that w < Cwp (resp.
w ~ wp). Let (X, D) be a log pair. A hermitian metric  on X — D has at most (resp. the
same) Poincaré growth near D if for any point x € D, there is an admissible coordinate
(U; z1, .. .,2y) centered at x and a constant Cy > 0 so that w < Cywp (resp. © ~ wp)
for the Poincaré metric wp on U*.

Remark 1.5 (Global Kahler metric with Poincaré growth). Let (X, w) be a compact Kéh-
ler manifold and D = Zle D; is a simple normal crossing divisor on X. By Cornalba-
Griffiths [CG75], one can construct a Kdhler current T over X, whose restriction on
X — D is a complete Kdhler form, which has the same Poincaré growth near D as
follows.

Let o; be the section H(X, Ox(D;)) defining D;, and we pick any smooth metric h;
for the line bundle Ox(D;). One can prove that the closed (1,, 1)-current

{
(1.1.1) T:=0- V=100 log(~ [ |logle - ail2),
i=1

the desired Kahler current when 0 < ¢ < 1.

For any harmonic bundle (E, 0, h), let p be any point of X, and (U; z1, . . ., z,) be an
admissible coordinate around p. On U, we have the description:

(1.1.2) 0= ijdlogz]+ Z gdz

k=(+1

Definition 1.6 (Tameness). Let t be a formal variable. We have the polynomials
det(f; — t), and det(gx — t), whose coefficients are holomorphic functions defined over
U*. When the functions can be extended to the holomorphic functions over U, the
harmonic bundle is called tame at p. A harmonic bundle is tame if it is tame at each
point.
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1.2. Parabolic Higgs bundle. In this section, we recall the notions of parabolic Higgs
bundles. For more details refer to [Moc07]. Let X be a complex manifold, D = Zle D;
be a reduced simple normal crossing divisor and U = X — D be the complement of D.

Definition 1.7. A parabolic sheaf (E, 4E, 0) on (X, D) is a torsion free Oy-module E,

together with an R'-indexed filtration 4E (parabolic structure) by coherent subsheaves

such that

(1) a € Rl and 4E|y = E.

(2) For 1 <i <1, 441,E = E ® Ox(D;), where 1; = (0,...,0,1,0,...,0) with 1 in the
i-th component.

(3) a+eE = 4E for any vector € = (¢, ...,e) with 0 < € < 1.
(4) The set of weights a such that ,E/,_¢E # 0 is discrete in R/ for any vector € =
(6,...,e)with0 < e < 1.

A weight is normalized if it lies in [0, 1)'. Denote (E by ‘E, where 0 = (0,...,0) .
Note that the parabolic structure of (E, 4E, 0) is uniquely determined by the filtration
for weights lying in [0, 1)". A parabolic bundle on (X, D) consists of a vector bundle
E on X with a parabolic structure, such that as a filtered bundle. When the parabolic
sheaf only has a single weight 0, we say that it has trivial parabolic structure.

Definition 1.8. A parabolic Higgs bundle on (X, D) is a parabolic bundle (E, 4E, 0)
together with Oy linear map

0:E — Qy(logD) ® E
such that
ONO=0
and
0(.E) € Qy(log D) ® 4F,
for a € [0, 1)

Throughout this paper, we mainly consider parabolic Higgs bundles with trivial
parabolic structures on log pairs (X, D). In this case, it is equivalent to consider log
Higgs bundles (E, 0) over (X, D), namely, E is a holomorphic vector bundle on X, and
0:E— E® Q(logD) with 6 A 6 = 0.

A natural class of parabolic Higgs bundles comes from prolongations of tame har-
monic bundle, which is discussed in the following section.

1.3. Prolongation by an increased order. By the work of Simpson [Sim90] and
Mochizuki [Moc02, Moc07], there is a natural parabolic Higgs bundle induced by a
tame harmonic bundle (E, 6, h). Let us recall their constructions.

We recall some notions in [Moc07, §2.2.1]. Let (X, D) be the pair in subsection 1.2.
Let E be a holomorphic vector bundle with a ¢’* hermitian metric h over X — D.

Let U be an open subset of X, which is admissible with respect to D. For any section
o € I'(U - D, E|y-p), let |c|, denote the norm function of ¢ with respect to the metric
h. We denote |o|, € O(]_[f:1 |zi| %) if there exists a positive number C such that
lolp < C- Hle |zi| 7% For any b € R’, say —ord(c) < b means the following:

4
ol = O(] | 12177
i=1

for any real number ¢ > 0. For any b, the sheaf ,E is defined as follows:
(1.3.1) I'U - D, pE) := {0 € (U = D, E|y-p) | —ord(c) < b}.
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The sheaf ,E is called the prolongment of E by an increasing order b. In particular,we
use the notation °E in the case b = (0, ..., 0).

According to Simpson [Sim90, Theorem 2] and Mochizuki [Moc07, Theorem 8.58],
the above prolongation gives a parabolic Higgs bundles, especially 8 preserves the
filtration.

Theorem 1.9 (Simpson, Mochizuki). Let (X, D) be a complex manifold X with a simple
normal crossing divisor D. If (E, 0, h) is a tame harmonic bundle on X — D, then the
corresponding filtration ,E according to the increasing order in the prolongment of E
defines a parabolic bundle (E, ,E, 0) on (X, D). O

In this case, we say the harmonic metric is adapted to the parabolic structure of
(E, pE, 0).

1.4. Slope stability. Let (X, w) be a compact Kéhler manifold of dimension n and let
D be a simple normal crossing divisor on X. Let (E, 0) be a log Higgs bundle on (X, D).
Let a be a big and nef cohomology (1, 1)-class on X. For any torsion free coherent
sheaf F, its degree with respect to a is defined by deg, (F) := ¢;(F) - @™}, and its slope
with respect to « is defined by

Consider alog Higgs bundle (E, ) on (X, D). A Higgs sub-sheaf is a saturated coherent
torsion free subsheaf E’ C E so that 8(E’) C E' ® Qx(log D). We say (E, 0) is p,-stable
if for Higgs sub-sheaf E’ of E, with 0 < rank E’ < rank E, the condition

pa(E') < pia(E)

is satisfied. (E, 6) is pg-polystable if it is a direct sum of y,-stable log Higgs bundles
with the same slope.

When o = {w} where w is a Kéhler form on X, we write y, instead of y,. When
a = c¢1(L) for some ample line bundle L on X, we use the notation y; instead of p,.

By Simpson [Sim90], there is a C*-action on log Higgs bundles (E, 6) defined by
(E, t0) for any t € C*. It follows from the definition that, if (E, 6) is p,,-stable, then
(E, t0) is also p,,-stable for any t € C*.

The following celebrated Simpson correspondence for tame harmonic bundles proved
by Mochizuki [Moc06] is a crucial ingredient in this paper.

Theorem 1.10 (Mochizuki). Let (X, D) be a projective log pair endowed with an am-
ple polarization L. A log Higgs bundle (E, 0) on (X, D) is u-polystable with /X c1(E) -
ey (L)dimX-1 = /X chy(E) - ¢y(L)™X=2 = 0 if and only if there is a harmonic metric
h for (E|x-p, 0lx-p) which is adapted to the trivial parabolic structure. When (E, 0) is
moreover stable, such a harmonic metric h is unique up to some positive constant multi-
plication.

Let us mention that in [Biq97] Biquard has proved a stronger theorem when the
divisor D in Theorem 1.10 is smooth.

The poly-stability is also preserved under tensor product and dual by Mochizuki
[Moc19, Proposition 4.10].

Theorem 1.11 (Mochizuki). Let (X, D) be a projective log pair endowed with an am-
ple polarization L. Let (E, 0) be a up-polystable log Higgs bundle on (X, D). Then the
tensor product T**(E, 0) is still a i -polystable log Higgs bundle for a,b € Zs,. Here
T**(E, 0) := (Hom(E®?, E®%),0,}) is the induced log Higgs bundle by taking the tensor
product.
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Since [Moc19, Proposition 4.10] worked with the much more general case than what
we need, we shall provide a quick proof for Theorem 1.11 for completeness sake. The
idea essentially follows [Sim92, Corollary 3.8] in the compact setting.

Proof of Theorem 1.11. By the Mehta-Ramanathan type theorem proved by Mochizuki
[Moc06, Proposition 3.29], T**(E, ) is j;-polystable if and only if T**(E, 0)|y is ;-
polystable, where Y denotes a complete intersection of sufficiently ample general hy-
persurfaces in X. This enables us to reduce the desired statement to the case of curves.
Assume now that dim X = 1. By [Sim90] or [Biq97, Théoréme 8.1], (E, 0)|x—_p admits
a Hermitian-Yang-Mills metric h:

A,Fr(E) = A ® T,

where w is some Kéahler form in ¢;(L), and A is some topological constant. Moreover,
h is adapted to the trivial parabolic structure of (E, 0), and is adapted to log order in
the sense of Definition 4.1. Hence (h*)®? ® h®’ is the Hermitian-Yang-Mills metric for
T%b(E, 0)|x_p, which is adapted to the trivial parabolic structure of T%*(E, ), and is
adapted to log order. It follows from Theorem 5.7 that T%%(E, 6) is also y; -polystable.

O

1.5. Simpson-Mochizuki correspondence for systems of log Hodge bundles.
A typical and important class of log Higgs bundle is the system of log Hodge bundles.
In this subsection, we shall apply Theorem 1.10 to prove the Simpson-Mochizuki cor-
respondence for systems of log Hodge bundles.

Definition 1.12 (System of log Hodge bundles). Let (E, 0) be a log Higgs bundle on
a log pair (X, D). We say that (E, 0) is a system of log Hodge bundles if there is a
decomposition of E into holomorphic vector bundles E := &, 4-,,EP? such that

0 : E1 — EP~191 @ Q) (log D).

When D = @, such (E, 0) is called a system of Hodge bundles. A system of log Hodge
bundles is y,,-(poly)stable if it is y,-(poly)stable in the sense of log Higgs bundles.

Definition 1.13 (Hodge metric). Let (E := @p14=,,E9, 0) be a system of Hodge bun-
dles on a complex manifold X. A hermitian metric h for E is called a Hodge metric if h
is harmonic, and it is a direct sum of metrics on the bundles EP*9.

By Simpson [Sim88], a system of Hodge bundles equipped with a Hodge metric is
equivalent to a complex variation of Hodge structures. He then established his corre-
spondence for Hodge bundles over compact Kahler manifolds as follows.

Theorem 1.14 ([Sim88, Proposition 8.1]). Suppose (X, w) is a compact Kéihler manifold.
A Hodge bundle (E := ®,4¢=wEP9, 0) with c(E) = 0 and c,(E) - [w]T™X=2 = 0 s p,,-
polystable if and only if it admits a Hodge metric.

In the rest of this subsection, we will extend Theorem 1.14 to the log setting.

Let us first recall that, by Simpson [Sim90], a characterization of log Hodge bundles
is the fixed point of C*-action. The automorphism of E obtained by multiplication
by t? on EPY gives an isomorphism between (E, 0) and (E, tf). The converse holds as
follows.

Lemma 1.15 ([Sim90, Lemma 4.1] & [Sim92, Theorem 8]). Let (E, 0) be a log Higgs
bundle on a log pair (X, D). If (E,0) ~ (E,t0) for some t € C* which is not a root of
unity, then (E, 0) has a structure of system of log Hodge bundles.

Let us state and prove the main result in this subsection.
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Proposition 1.16. Let (X, D) be a projective log pair. Let (E, 0) = (®p+q=wE9,0) be a
system of log Hodge bundles on (X, D) which is pr -polystable with fX c1(E)-cq(L)3mX-1 =
fX chy(E) - ¢y(L)¥™X=2 = 0. Then there is a decomposition (E,0) = ®;c;(E;, 0;) where
each (E;, 0;) is pp-stable system of log Hodge bundles so that there is a Hodge metric h;
(unique up to a positive multiplication) for (E;|x_p, 0i|x-p) which is adapted to the trivial
parabolic structure of (E;, 0;).

Proof. Let us first prove the proposition when (E, 0) is stable. By [Moc06, Theorem
9.1 & Propositions 5.1-5.3], there is a harmonic metrics h for (E|x-p, 8|x-p) which is
adapted to the trivial parabolic structure, and such a harmonic metric is unique up
to a positive constant multiplication. We introduce automorphism f; : E — E of E
parametrized by ¢ € U(1), defined by

(1.5.1) £i( Z el q) = Z theP .

pHg=w ptrq=w
for every 1 € EP4. Then f; : (E, 0) — (E, t0) is an isomorphism since t6 o f; = f; 0 6.
Hence by the uniqueness of harmonic metrics, there is a function A(t) : U(1) —» R*
such that

fith=At) - h.
For every e?? € EP4, one has
At) - h(eP9, ePT) = f¥h(eP9, &) = h(f(eP9), f;(eP9)) = |t|*h(eP9, ePT) = h(eP9, ePT)
Hence A(t) = 1 for t € U(1), namely f;"h = h. On the other hand,
BP9, &) = £ R, &) = h(fi(e). fi(e™)) = /1 (e, &™)

for any t € U(1). Therefore, h(ef9,e™°) = 0 if p # r. Hence h is a direct sum of
hermitian metrics for EP9, namely h is a Hodge metric. The proposition is proved if
(E, 0) is stable.

Let us prove the general cases. By [Moc06, Corollary 3.11 & Theorem 9.1 & Proposi-
tions 5.1-5.3], there is a canonical and unique decomposition (E, ) = ®;¢;(E;, 0;) ® CP:
where I is a finite set and harmonic metrics h; for (E;|x_p, 0i|x-p) which is adapted
to the trivial parabolic structure so that (E;, 6;) is a pi-stable log Higgs bundle. By the
above arguments, it suffices to prove that each (E;, 6;) is system of log Hodge bundles.
Since (E, 0) is a system of log Hodge bundles, (E, t0) is isomorphic to (E, #) for any
t € U(1). We have the following decomposition (E, t0) = &;(E;, t0;) ® CPi. Note that
(E;i, t0;) is still pp-stable. By the uniqueness of the decomposition, (E;, t0;) = (E;,, 0;,)
for some i; € I. Since I is a finite set, there exists ty, t, so that t;/t, is not a root of
unity and i, = i;,. In other words, (E;, t16;) ~ (E;, t20;). By Lemma 1.15, (E;, t16;) is a
system of log Hodge bundles, and so is (E;, 8;). Hence (E, 0) is a direct sum of yp -stable
system of log Hodge bundles (E;, 6;), and each (E;|x_p, 0;|x—p) admits a Hodge metric
h; adapted to the trivial parabolic structure. The proposition is proved. m]

2. PRINCIPAL SYSTEM OF LOG HODGE BUNDLES

In this section, we will extend Simpson’s principal system of log Hodge bundles in
[Sim88, §8] to the log setting. We will provide all necessary proofs for the claims
for completeness sake. Let us mention that most results in this section follows from
[Sim88, §8 & §9] with minor changes.

Let Gy be a real connected algebraic group which is semi-simple with its Lie algebra
denoted by gy. Let G be its complexification with its Lie algebra denoted by g. Then
g = go + V=1g0. Gy is called a Hodge group if the following conditions hold.



12 YA DENG

e The Lie algebra g of G admits a Hodge structure of weight 0, namely, one has a
decomposition
g =g
SO that [gpv—p, gqv_q] - gp+qv_p_q.
e If'e denotes the complex conjugation with respect to gy, then oPP = g PP,
e The form

(2.0.1) hy(U,V) := (=1)"*'Tr(adyady) for U,V €gl?

is a positively definite hermitian metric for g.
let Ky C G, be the Lie subgroup of G, so that its Lie algebra j is go N g*°. Let K ¢ G
(resp. t) be the complexification of Ky (resp. ¥p), and thus the Lie algebra of K is f.
Then the restriction of the Killing form of g, on {j is positively definite, and thus K
is a compact real Lie group.

In the rest of the paper, we shall use the above notations without recalling their
meanings.

The following concrete example of the Hodge group will be used in this paper,
especially in the proof of Theorem A.

Example 2.1. Consider the a direct sum of C-vector spaces
V = @ VY

Denote by r; := rankV™, and r := rank V. Fix a hermitian metric h = ®itj=whi
for V where h; is a hermitian metric for VY. We take a sesquilinear form Q(u, v) :=
(V=-1)"7h(u,v) for u,v € V. Define G, := PU(V,Q) = PU(py,qo), where py :=
i odd 7i @nd qo := Xj even 1i- We shall show that Gy is a Hodge group.

First we note that the complexification of Gy is G := PGL(V) ~ PGL(r, C). Then the
Lie algebra of G is g = sl(V) ~ sl(r, C), and the Lie algebra of Gy is gg = su(po, qo). Let
us define the Hodge decomposition as follows:

6P = @;Hom(V™, VI*PIP) N s|(V).

Then g = @a”. One can check that g7 = g™”?, where the conjugate is taken with
respect to the real form g, of g.

Let K be the subgroup of G which fix each V*/. Then K = P([],=,, GL(V"/)), and
its Lie algebra is = ¢®°. Define K, := K N Gy = P(ITi4j=w U(V', h;)), whose Lie
algebra is f, = g®° N go.

More precisely, if we fix a unitary frame ey, ..., e, for (®ioaaV", ®; oqahi) and a
unitary frame fi,. .., fg, for (& cvenV, ®ioqqhi), elements in gy can be expressed as
the ones in M(r X r, C) with the form

A C
C* B

where A € u(py) and B € u(qo) so that Tr(A) + Tr(B) = 0. Note that the Killing form
Tr(adyady) = 2rTr(uv),
if we consider u, v as elements in sl(r, C). Moreover, for u € g7, one can show that
_ |-u" ifpiseven
‘e {u* if p is odd.
where u* denotes the conjugate transpose of u. Hence the hermitian metric h4 defined
in (2.0.1) can be simply expressed as
hy(u,v) = 2rTr(uv®)
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once we consider u, v as elements in sl(r, C). In other words, for the natural inclusion
1 : g <> gl(V), one has hy = 2r - 1"hgpq(v), Where hgpq(v) is the hermitian metric on
End(V) induced by hy. This fact is an important ingredient in the proof of Theorem A.

Let us generalize Simpson’s definition of principal system of Hodge bundlesin [Sim88,
§8] to the log setting as follows.

Definition 2.2 (Principal system of log Hodge bundles). A principal system of log
Hodge bundles on a log pair (X, D) is a pair (P, 7), where P is a holomorphic K-fiber
bundle endowed with a holomorphic map

T: Tx(— logD) — P Xy g_“

such that [z(u), 7(v)] = 0. A metric for P|x_p is a reduction Py C P|x_p whose struc-
ture group is Ky. Let dy be the Chern connection for Py. Define Ty to be the complex
conjugate of 7|x_p with respect to the reduction Py. Then

T € €°(X = D, (P Xk, 671 ® QL ).
Set
(2.0.2) Dy = dH + TlX—D + 7Ty,

which is a connection on the smooth Gy-bundle Py X, Gy. Such triple (P|x—_p, 7|x-p, Pr)
is called a principal variation of Hodge structures over X — D of Hodge group Gy, if the
induced connection Dy in (2.0.2) is flat, namely the curvature of Dy is zero.

Remark 2.3. Note that the metric reduction Py for a principal system of Hodge bundles
(P, 7) on a complex manifold X induces a hermitian metric hy on P Xg g =~ Py Xk, g
defined by

(2.0.3) hH((p, u), (p, v)) = hg(u, v)

for any p € Py and u,v € g. Here hg is the hermitian metric defined in (2.0.1). Note
that K, preserves the decomposition g = @p+q:wg_p’f’ . It thus also preserves hy. Indeed,
for u,v € g P? and k € K,, one has

—~1)P* hy(Adyu, Adyv) = Tr(adag,y © ad;;-)
= Tr(adad,u © adad,s)
= Tr(Ady o ad, o Adj-1 o Ady o ady o Ady-1)
= (—1)P+1hg(u’ v).
By the equivalence relation (p, u) ~ (pk™!, Adyu), the metric hy is thus well-defined.

Remark 2.4 (Period map of principal variation of Hodge structures). By Simpson [Sim88,
p- 900], for a principal variation of Hodge structures (P, 7, Py) on a complex manifold

X, one can also define its period map as follows. Denote by 7 : X — X the universal

cover of X. Set (P := n*P,% := n*r, Py := n*Py), which is a principal variation of

Hodge structures on the simply connected complex manifold X. The flat connection

Dy thus induces a flat trivialization Py Xk, Go = X X G,. Denote by ¢ : PH — Gy the

composition of the inclusion Py C Pyx k, Go = X xG, and the prOJectlonX XGo — Gy.

It induces a map

(2.0.4) fiX-0yg =2
X Pex) - Ky Vex € PHx
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Alternatively, we view Gy — < as a principal Ky-fiber bundle over &, and its pull-
back on X via f is nothing but the principal Ky-fiber bundle Py by our definition of
f. Hence the complexified differential of f is

dfc : T)(? — f*Tg ~ f*(Gy Xk, @p;eog”’_p) =Py XKo 69p;togp’_p

One can prove that df€ = 7 + 7y, where 7y is the conjugate of 7 with respect to Py.
Hence the restriction of df* to the holomorphic tangent bundle Ty is 7, which is a
holomorphic map since the holomorphic tangent bundle of 7 is Ty ~ Gy X, ®p<oa? 7.
In conclusion, f is a holomorphic map, which is called the period map associated to
the principal variation of Hodge structures (P, 7, Py), whose differential is given by
df =1.

The uniformization is related by Hodge group of Hermitian type.

Definition 2.5 ([Sim88, §9]). A Hodge group Gy is called Hermitian type if the Hodge
decomposition g of the Lie algebra of G is

g = g—l,l ® g0,0 @ g1,—1

and that G, has no compact factor. In this case, Ky, C Gy is the maximal compact
subgroup and ¥ := GO/KO is a Hermitian symmetric space of non-compact type.

Let us generalize the definition of uniformizing bundle by Simpson [Sim88, §9] to
the log setting.

Definition 2.6 (Uniformizing bundle). Let Gy be a Hodge group of Hermitian type.
A uniformizing bundle on a log pair (X, D) is a principal system of log Hodge bundles
(P, 1) such that 7 : Tx(—log D) — P Xg ¢~"! is an isomorphism. A uniformizing vari-
ation of Hodge structures is a uniformizing bundle on a complex manifold X together
with a flat metric Py C P.

Remark 2.7 (Uniformization via uniformizing bundles). It follows from Definition 2.6
that, for a uniformizing variation of Hodge structures (P, 7, Py) over a complex man-
ifold X, the period map f : X — & defined in (2.0.4) is locally biholomorphic. This
follows from the fact that df = 7, which is isomorphic at any point of X by the defi-
nition. Recall that in Remark 2.3 the metric reduction Py together with the positively
definite form h, for g in (2.0.1) induce a metric hyy for Pxx g~ For the period domain
2 which is a hermitian symmetric space, one can also define the hermitian metric hy
for Ty =~ Gy Xk, g~ 1! in a similar way. By Remark 2.4, 15H = f*Gy when we consider
Gy — Z as a principal Ky-fiber bundle over Z. One thus has

(2.0.5) ' t*hy = f*hy.

In other words, f : (X, hg = n°t*hy) — (2, hg) is a local isometry. Hence for the
action of 7;(X) on X, the metric hy is invariant under this m(X)-action. If 7*hy is
a complete metric, so is 7*7*hy, and by [Cha06, Theorem IV.1.2], f : X > Jisa
Riemannian covering map, which is thus a biholomorphism since X and 2 are both
simply connected. In other words, X is uniformized by the hermitian symmetric space
2 when the metric 7°hy on X is complete.

One can construct systems of log Hodge bundles from principal ones via Hodge
representations.

Definition 2.8 ([Sim88, p. 900]). Let (V = @p14=,,V?9, hy) be a polarized Hodge
structure. A Hodge representation of Gy is a complex representation p : G — GL(V)
satisfying the following conditions.



CHARACTERIZATION OF NON-COMPACT BALL QUOTIENTS 15

e The action of g is compatible with Hodge type, and such that K, preserves Hodge
type. In other words,
dp(g""")(VP) c yPrraTT
and p(Ky)(VP9) c VP4 !
e The sesquilinear form Q defined by

(2.0.6) O(u,v) :== (V=1"hy(u,v) for u,ve VP9
is Gy invariant. Namely, one has p(Gy) c U(V, Q).

Example 2.9. For the Hodge group Gy, (3 = ®,a7, hy) is a polarized Hodge structure
of weight 0, where h, is the polarization defined in (2.0.1) via the Killing form. One can
easily check that the adjoint representation Ad : G — GL(g) is a Hodge representation
for this polarized Hodge structure. Since G is a semi-simple Lie group, the differential
d(Ad) : g — gl(g) is injective. When the center of G is trivial, then Ad : G — GL(g) is
faithful.

A principal system of log Hodge bundles together with a Hodge representation
induces a system of log Hodge bundles as follows.

Lemma 2.10. If p : G — GL(V) is a Hodge representation of the Hodge group Gy,
and (P, 7) is a principal system of log Hodge bundles on the log pair (X, D), then (E :=
P xx V,0 :=dp(r)) is a system of log Hodge bundles. A polarization hy for V together
with a metric Py for P|x_p give a metric hg on the system of Hodge bundles (E, 0)|x_p
over X — D. When (P|x-p, t|x-p, Pr) is a principal variation of Hodge structures over
X — D, (E|x-p, 0|x-p, hg) gives rise to a complex variation of Hodge structures.

Proof. By Definition 2.8, one has p(K)(V??) c VP4. Hence E := P Xg V admits a
decomposition of holomorphic vector bundles E = & 4-,,EP'? with EP9 := P xg VP4,
Let us define 6 := dp(). Since 7 : Tx(—log D) — P Xx ¢~ 1! satisfies [z(u), 7(v)] = 0,
and dp(g~"")(VP49) c VP~4*1 one thus has 0 : EP? — EF~14* @ Q) (log D), with
0 A 0 = 0. Hence (E, 0) is a system of log Hodge bundles.

Let us now prove that plk, : Ko — GL(V') hasimage on U(V, hy). Since p(K)(V#9) C
VP4, one thus has

p(K) C 1_[ GL(VP9).
prq=w

Since the sesquilinear form Q in (2.0.6) is G, invariant, one thus has

p(Go) =U(V, Q).

Hence
(2.0.7) p(Koy) € p(Go NK) C ]_[ U(VP4, hyy) € UV, hy).
ptrq=w
Note that E = P Xg V =~ Py Xk, V. We define the hermitian metric hg for E by setting
(208) he((p ). (9. 0)) = hy(, 0)

for any p € Py and for any u,v € V. Since p(Ky) € U(V, hy), one can check as
Remark 2.3 that hg is well-defined.

If (P|x-p, T|x—-p, Py) is a principal variation of Hodge structures on X — D, the con-
nection Dy := dy + 7 + T is flat. By construction, the connection Dy, := dj, + 0 + 0y,
for E|x_p is also flat, where dj,, is the Chern connection for the metrized vector bundle

1 As remarked by Simpson [Sim88], this is not automatic if Kj is not connected. However, in Exam-
ple 2.1, Ky is always connected, and thus such condition will be superfluous in that case.
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(E, hg), and 5/’15 is the conjugate of  with respect to hg. Indeed, it can be seen from that
dp, is naturally induced by dy, 0 := dp(7), and 0y, = dp(Ty) by (2.0.8). By [Sim88, p.
898], the triple (E|x—p, 0|x-p, hg) gives rise to a complex variation of Hodge structures
on X —D. O

Conversely, one can associate a system of log Hodge bundles with a principal one
as follows. The following result shall be applied in the proof of Theorem A.

Proposition 2.11. Let (E, 0) = (®p1q=wE"1, 0) be a system of log Hodge bundles on a
log pair (X, D). Then there is a principal system of log Hodge bundles (P, t) with the
structure group K associated to (E, 0), where K is the semi-simple Lie group in Exam-
ple 2.1. Moreover, any hermitian metric h := ®,+q=wh, for E|x_p gives rise to a metric
reduction Py for P|x_p with the structure group K, defined in Example 2.1.

Proof. We shall adopt the same notions as those in Example 2.1. Denote by r, :=
rank BP9, r = 3 0, 1p and set €; := ) ,5; ri. We consider the following frame bun-
dle P. The fiber of P over a point x is the set of all ordered bases e, ..., e, (or say
frames) for E, such that €,—r,+1s - - -» €L, 1S @ basis for qu. The structure group of P
is thus [], GL(ry, C), which is the subgroup of GL(r, C). P can be equipped with the
holomorphic structure induced by E. Consider the homomorphism f : GL(r,C) —
PGL(r,C) =: G, and set K = P( [1, GL(rp, C)) to be the image of [1, GL(rp, C) under
f. Set P to be the holomorphic K-fiber bundle obtained by extending the structure
group of [], GL(r, C) using f.

Note that P Xg g = @y j=,Hom(E"/, E""1/*1). Let us define 7 := 6. The pair (P, 7)
is a principal system of log Hodge bundles on the log pair (X, D).

Recall that the metric h for the Hodge bundle (E, 0)|x—p is a direct sum h = @ 4= p.
We take a sesquilinear form Q of E defined by Q(u, v) := (V=1)P"%h(u, v) foru, v € EP4.
We take Py to be a reduction of P|x_p consisting of unitary frames with respect to Q.
In other words, The fiber of P over a point x is the set of frames ey, . . ., e, for Ey such
that €ly=rp+1s - - -5 €L, is an orthonormal basis for (Ep & , hy). Hence the structure group
of Pyis Ky := [1p+q=w U(rp). Define K, := P( [1prg=w U(rp)) which is the image f(KO)
Set Py to be the smooth principal Ky-fiber bundle on X — D obtained by extending the
structure group of Py using f : K — K. Then Py C Px_p is also a metric reduction.
The Hodge group Gy will be PU(po, qo) where po := 3., cpen Tp @and qo := X, 444 Tp» and
G := PGL(r,C) is the complexification of Gy. The proposition is proved. m|

3. TANNAKIAN CONSIDERATION

In this section, we shall state and prove the Simpson-Mochizuki correspondence for
principal systems of log Hodge bundles over projective log pairs. Its proof is based
on Proposition 1.16 together with some Tannakian considerations in [Sim90, Moc06,
Maul5s].

Theorem 3.1. Let (X, D) be a projective log pair endowed with an ample polarization
L. Let (P, ) be a principal system of log Hodge bundles on (X, D), and let p be any
faithful Hodge representation p : G < GL(V') for some polarized Hodge structure (V =
Ditj=w V™, hy). If the system of log Hodge bundles (E := P xx V, 0 := dp(r)) defined in
Lemma 2.10 is pur -polystable with fX chy(E) - ¢ (L)H™X=2 = 0, then there exists a metric
reduction Py for P|x_p so that the triple (P|x_p, 7|x-p, Pr) is a principal variation of
Hodge structures on X — D. Moreover, such Py together with the polarization hy for V
gives rise to a Hodge metric h for (E, 0)|x_p (defined in Lemma 2.10) which is adapted to
the trivial parabolic structure of (E, 0).
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Proof. We first prove that (E, 0)|x_p admits a Hodge metric h over (E, 6)|x_p which is
adapted to the trivial parabolic structure of (E, ). Since K is a complex semi-simple
Lie group, the Hodge representation p’ : K — GL(det V) induced by p has image con-
tained in SL(det V) = 1. Hence p’ is trivial. Note that det E = P Xg det V, which is thus
a trivial line bundle on X. Hence c;(E) = 0. Since we assume that (E, ) is p-polystable
with fX chy(E) - ¢y (L)3™X=2 = 0, it follows from Proposition 1.16 that (E, 8)|x_p admits
a Hodge metric h over (E, 0)|x_p which is adapted to the trivial parabolic structure of
(E, 0).

Let us now recall some Tannakian arguments. The representation p induces a rep-
resentation p,p : G — GL(T*’V) for any a,b € N, where T**V := Hom(V®¢, V®),
Since p is faithful, we can consider K as a reductive algebraic subgroup of GL(V).
There is a one dimensional complex subspace V; € T%*V for some (a, b) € N? so that

(3.0.1) K =1{g9 € GL(V) | pap(9)(V1) = V1}.

Since K is reductive, there is a complementary subspace V; of T**V for V; which is
invariant under K.

By Lemma 2.10, the Hodge representation p,; and (P, ) gives rise to a system of
log Hodge bundles (P xx T**V,0%" := dp, (1)) over (X, D), which is nothing but
T%b(E, 0). Recall that p,,(K)(Vy) = V; and p,(K)(V3) = V,. Consider the log Higgs
bundles (E1, 0;) := (P Xk Vi,dp,p(7)) and (Ez, 0;) := (P Xg V2, dp,p(7)) over (X, D).

Note that T**(E, 6) = (E;, 6;) ® (E,, 6,). By Theorem 1.10, T**(E, 6) is yi;-polystable
with /X c1(T*P(E)) - ¢y (L)™X~1 = 0 with respect to an arbitrary polarization L. Since
c1(T**(E)) = ¢1(Ey) + ¢1(Ey), by the polystability of T%b(E, 6), we conclude that (E;, 6;)
and (E,, 0,) are both p;-polystable. By Proposition 1.16, each (E;|x-p, 6;|x-p) admits
a harmonic metric h; which is adapted to the trivial parabolic structure of (E;, 6;).
Moreover, h coincides with h; @ h, up to some obvious ambiguity.

In the rest of the proof, any object which appears is restricted over X — D. Let
us first enlarge the structure group of P by defining Psrvy := P Xg GL(V) via the
faithful representation p|x : K — GL(V). This is the holomorphic principal (frame)
bundle associated to E. We can consider P = P Xg K C Pgy(v) as a reduction of Pgr(v).
The metric h for E gives rise to a reduction Py g ) of Pgr(v) with the structure group
U(V, hy). Indeed, note that

E = Pgrv) Xgriv) V

and thus the metric h for E induces a family of hermitian metrics h, for V parametrized
by e € Psr(v). It has the obvious relation h,.; = g*h, for any g € GL(V). We define

(3.0.2) Py = {e € Pgrwy | he = hy}

and it is obvious that if e € Py ), then e - g € Py if and only if g € U(V, hy).
Hence the structure group of Py g p) is U(V, hy).

Let us define Py := PN Py(g,n) whose structure group is U(V, hy)NK D K, by (2.0.7).
Since p is faithful, one has moreover U(V, hy) N K = Kj. Indeed, this easily follows
from that

K = {exp(N=1n)k | k € Ko, 5 € ¥y C Lie(U(h, hy))}
and that
V=1t N Lie(U(h, hy)) = {0}.

Obviously, if we follow Lemma 2.10 to define a new metric b’ for E by setting

K ((p,u), (p,v)) := hy(u, v)
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for any p € Py and for any u, v € V, then
(3.0.3) W =h

by (3.0.2). We shall prove that (P|x_p, 7|x-p, Pr) is a principal variation of Hodge
structures on X — D following the elegant arguments in [Maul5, Proposition 3.7].
Let A € €% (PoLv), T;GL(V) ®gl(V)) be the Chern connection 1-form for the principal

bundle Pgy(v) induced by the Chern connection dj, for (E, h). Fix a base point p € P C
P:sr(v), and we denote by 7 : P — X the projection map. Recall that

T*(E, h) = (Ex, hy) @ (Eq, hy),

and

E,=Pxg V.
Hence the holonomy Hol(p,y) € GL(V) with respect to the connection A along any
smooth loop y based at 7(p) satisfies that

Pa,b (HOI(P’ }/))(Vl) cV

for i = 1,2. By (3.0.1), one has Hol(p, y) € K. Hence the restriction of A to P is 1-form
with values in f. In other words, A is induced by a connection on P.

On the other hand, by the definition of the Chern connection, A is also induced
by a connection on Pyg,p); in other words, the restriction of A to Py is 1-form
with values in Lie(U(V, hy)), where Lie(U(V, hy)) denotes the Lie algebra of U(V, hy).
Since f, = t N Lie(U(V, hy)), there is a connection Ay € % *(Py, T;H ® ty) for the
smooth principal Ko-fiber bundle Py := Pygpry N P which induces the connection
A. Ay is moreover the Chern connection with respect to the reduction Py of P by our
construction, where 7y is the adjoint of 7 with respect to the metric reduction Py C P.
Let us define Fy € .« 1}(P Xk g) to be the curvature form of the connection Ay + 7 +7g
over the smooth principal Ky-bundle Py Xk, Go. Recall that 6 := dp(r). By (3.0.3), one

has 6, = dp(Ty). Hence
(3.0.4) dp(Fir) = (dy + 0 + 04)% = Fy(E) = 0

where dj, is the Chern connection for (E, h). Since p : G — GL(V) is faithful, dp :
g — End(V) is thus injective. By (3.0.4) this implies that Fy = 0. In conclusion,
(P|x-p, T|x—p, Py) is a principal variation of Hodge structures on X — D. O

As a consequence of Theorem 3.1, we can give a partial characterization of hermit-
ian symmetric spaces, which partially extends Simpson’s characterization of hermit-
ian symmetric spaces [Sim88, Theorem 2] to the log setting.

Corollary 3.2. Let (X, D) be a projective log pair endowed with an ample polarization
L. Let (P,t) be a principal system of log Hodge bundles on (X, D) with G centerless.
Assume that the system of log Hodge bundle (P Xk g, d(Ad)(7)) via the faithful Hodge
representation Ad : G — GL(g) in Example 2.9 is uyp-polystable with c,(P Xk g) = 0.
Then there is a metric reduction Py for P|x_p so that the triple (P|x—p, T|x-p, Py) is a
principal variation of Hodge structures on X — D. When (P, 7) is further assumed to

be a uniformizing bundle, the period map f : X - D — G(VKO defined in (2.0.4) from

the universal cover X — D of X — D to the hermitian symmetric space G(VKO is locally
biholomorphic.

We further conjecture that the above period map is moreover an isomorphism when
(P, 7) is the uniformizing bundle, namely, the universal cover of X — D is the hermitian

symmetric space G, Ko
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4. UNIFORMIZATION OF QUASI-PROJECTIVE MANIFOLDS BY UNIT BALLS

This section is devoted to the proof of Theorem A. In § 4.2 we shall prove a basic
result for the extension of plurisubharmonic functions. This lemma will be used in the
proof of Theorem A. We shall also give an application of this fact in Hodge theory:
we can give a much simpler proof of the negativity of kernel of Higgs fields for tame
harmonic bundles originally proven by Brunebarbe [Bru17] (see also [Zuo00] for sys-
tems of log Hodge bundles). With all the tools developed above, we are able to prove
Theorem A in § 4.3.

4.1. Adaptedness to log order and acceptable metrics. We recall some notions
in [Moc07, §2.2.2]. Let X be a € *°-manifold, and E be a ¥ *-vector bundle with a
hermitian metric h. Let v = (vy,...,v,) be a €-frame of E. We obtain the H(r)-
valued function H(h, v),whose (i, j)-component is given by h(v;, v;).

Let us consider the case X = A", and D = Zle D; with D; = (z; = 0). We have the
coordinate (z1, ..., z,). Let h, E and v be as above.

A frame v is called adapted up to log order, if the following inequalities hold over
X—-D

4 4
C(= > loglzi)™ < H(h,v) < C(= ) log |z
i=1 i=1

for some positive numbers M and C.

Definition 4.1. Let (X, D) be a log pair, and let E be a holomorphic vector bundle
on X. A hermitian metric h for E|x_p is adapted to log order if for any point x € D,
there is an admissible coordinate (U; z4, . . ., 2,), a holomorphic frame v for E|y which
is adapted up to log order.

Definition 4.2 (Acceptable metric). Let (X, D) be alog pair and let (E 6) be alog Higgs
bundle over (X, D). We say that the metric h for E|x_p is acceptable at p € D, if the
following holds: there is an admissible coordinate (U; zy, . . ., z,) around p, so that the
norm |Fp|p,, < C for some C > 0 over U — D. When (E, 0, h) is acceptable at any
point p of D, it is called acceptable. Such triple (E, 6, h) is called an acceptable bundle
on (X, D).

One can easily check that acceptable metrics and adaptedness to log order defined
above are invariant under bimeromorphic transformations.

Lemma 4.3. Let (X, D) be a log pair, and let j : X — X be a bimeromorphic morphism
S0 that,u_l(ND) = D. For a log Higgs bundle (E, 0) over (X, D), one can define a log Higgs
bundle (E, 0) on (X, D) by setting E = u*E and 0 to be the composition
*9 .
H'E “— i*(E® Qk(log D)) — 4i"E ® QL (log D).
If the metric h for (E, 0)|x-p is acceptable or adapt to log order, so is the metric y*h for
(E,0)|_p-

Proof. Since this is a local statement, we work on the local models. Pick a point ¥ € D

with an admissible coordinate (U; zy, . . ., z,) with D = (2; - - - z; = 0) locally and take
an admissible coordinate (V;y,...,y,) for p(x) with D = (y; - - -y = 0) such that
u(U) € V. Thenfori=1,...,m, u*y; = Hle z;.lij with a;; € Z5( and Zle ajj > 0. One
has

{
i log(lyil) = ) 2a;;log(z;[?).
j=1
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Therefore, if h is adapted to log order, so is y*h.
Let w; and w, be Poincaré metrics on U and V. One can easily show that
(4.1.1) Cwy = [ w,y
for some constant C > 0. Note that
1" Fy(E) = F;(E)

Hence

O * 1 * * 1
FR(E); = W FR By, < S FRE) oy, = 1 I ER(E) g,
In conlusion, if the metric h for (E, )|x_p is acceptable, so is the metric y*h for (E, é) l%_p-

O

4.2. Extension of psh functions and negativity of kernel of Higgs fields. In
this subsection we shall prove a result on the extension of plurisubharmonic (psh for
short) functions, which will be used in the proof of Theorem A and Proposition 5.6. As
a byproduct, we give a very simple proof of the negativity of kernels of Higgs fields of
tame harmonic bundles by Brunebarbe [Brul7, Theorem 1.3], which generalizes the
earlier work by Zuo [Zuo00] for system of log Hodge bundles.

Lemma 4.4. Let X = A", and D = Zle D; with D; = (z; = 0). Let ¢ be a psh function
on X*. We assume that for any § > 0, there is a positive constant Cs so that

14
p(2) <6 ) (~log |z;|) + Cs

j=1
on X*. Then ¢ extends uniquely to a psh function on X.

Proof. Define ¢, := ¢+¢ Zle(log |z|%) for any ¢ > 0. Then for each ¢ > 0, ¢, is locally
bounded from above, which thus extends to a psh ¢, on the whole X by the well-
known fact in pluripotential theory. By the maximum principle, for any 0 < r < 1,
there is a point &, € S(0,r) X - --5(0,7) so that
sup 0e(2) < @e(&) < @(&)
zeA(0,r)x---xA(0,r)
where S(0,r) := {z € A | |z| = r}. Note that the compact set S(0,7) X ---5(0,r) is
contained in X — D. Since ¢ is psh on X — D, there exists zo € S(0,r) X ---S(0,r) so
that
sup  p(2) < plz0) < +oo.
z€S(0,r)x---5(0,r)
Hence ¢, is uniformly locally bounded from above.
We define the upper envelope
¢ = sup @,
>0
and define the upper semicontinuous regularization of ¢ by
¢*(x) := lim sup ¢(z).
620" B(x,5)
where B(x, §) is the unit ball of radius § centered at x. Then by the well-known result
in pluripotential theory [Dem12b, Chapter 1, Theorme 5.7], ¢* is a psh function on X.
By our construction, $*(z) = ¢(z) on X — D. This proves our result. O

A direct consequence of the above lemma is the following extension theorem of
positive currents.
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Lemma 4.5. Let (X, D) be a log pair and let L be a line bundle on X. Assume that h is
a smooth hermitian metric for L|x_p, which is adapted to log order. Assume further that
the curvature form V=1Ry(L|x_p) > 0. Then h extends to a singular hermitian metric
h for L with zero Lelong numbers so that the curvature current \/—_IR;I(L) is closed and
positive. In particular, L is a nef line bundle.

Let us show how to apply Lemma 4.4 to reprove the negativity of kernels of Higgs
fields of tame harmonic bundles.

Theorem 4.6 (Brunebarbe). Let X be a compact Kihler manifold and let D be a simple
normal crossing divisor on X. Let (E, 0, h) be a tame harmonic bundle on X — D, and let
(°E, 0) be the prolongation defined in § 1.3. Let ¥ be any coherent torsion free subsheaf of
°E which lies in the kernel of the Higgs field 6 : °E — °E ® Q; (log D), namely 6(F) = 0.
Then

(i) the singular hermitian metric h|F for ¥, is semi-negatively curved in the sense
of [PT18, Definition 2.4.1].

(ii) The dual ¥~ of ¥ is weakly positive over X° — D in the sense of Viehweg, where
X° C X is the Zariski open set so that ¥ |xo — °E|x- is a subbundle.

(iii) If the harmonic metric h is adapted to log order and ¥ is a subbundle of °E so that
O(F) = 0, then the line bundle Ops+(1) admits a singular hermitian metric g

with zero Lelong numbers so that the curvature current V=1Ry(Op(#+)(1)) = 0; in
particular, ¥ is a nef vector bundle.

Proof. By [PT18, Definition 2.4.1], it suffices to prove that for any open set U and any
s € F(U), log |s|,21 extends to a psh function on U. Pick any point x € D. By the defi-
nition of °E in (1.3.1), for any § > 0, there are an admissible coordinate (U; z1, . . ., z,)
centered at x, and a positive constant Cs so that

4
log |sl} < & ) (= log |z[") + Cs

=1
on U — D. Recall that Ry(E) + [0, 04] = F4(E) = 0. We have
V163 log sl2 = _\/—_I{Rh(zE)S,S} N \/—_1{5;12, Ons} \/—_1{8"3’23} N {s, 323}
Isl, sl Isl, sl
V=1{Ru(E)s, s}
sl
_ N-1{0s,0s}  V=1{0ys,0ps}

sl sl

_ V1O Ons)

Isl} -

over X —D. Hence log |s|}21 is a psh function on X — D. By Lemma 4.4, we conclude that
log |s|i extends to a psh function on U. This proves that (', h) is negatively curved in
the sense of Paun-Takayama.

The metric h induces a negatively curved singular hermitian metric A, (in the sense
of [PT18, Definition 2.2.1]) on the subbundle 7 |x-. By Lemma 4.5, h; induces a singular
metric g for the line bundle Op(#+|,.)(1) so that V—_le(OP(r,r* lxo)(1)) = 0. Note that
X — X° is a codimension at least two subvariety. The second statement then follows
from Hérmander’s L2-techniques in [PT18, Proof of Theorem 2.5.2].
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Let us prove the last statement. Since ¥ is a subbundle of °E, one has X° = X. Since
h is assumed to be adapted to log order, the singular hermitian metric g for Op(#+)(1)
thus has zero Lelong numbers everywhere. This implies the nefness of the vector

bundle F*. O

Remark 4.7. In [Zuo00] Zuo proved the above statement when (E, 8, h) is moreover a
system of log Hodge bundles with unipotent monodromies around the boundary (see
also [FF17] for a refined result). Theorem 4.6 is proved by Brunebarbe in [Bru17]. Both
their proofs made use of the monodromy filtration to obtain a precise estimate of the
Hodge metric so that they can show that log |s|}21 is locally bounded from above near
D. Here we give a much more simplified proof which uses the very definitions of tame
harmonic bundles and the prolongation of the tame harmonic bundles.

A special case of Theorem 4.6.(iii) comes from the complex variation of Hodge struc-
tures. For the complex variation of Hodge structures defined over X—D with unipotent
monodromies around D, the Hodge metric for the associated system of Hodge bun-
dles is a harmonic metric which is adapted to log order by [CKS86] or [Moc02, Lemma
4.15]. Hence Theorem 4.6.(iii) also generalizes [FF17, Corollary 1.6], whose proofrelies
on the very delicate analysis by Kollar [Kol87].

4.3. Characterization of non-compact ball quotient. Let us state and prove our
first main theorem in this paper.

Theorem 4.8. Let X be an n-dimensional complex projective manifold and let D be a
simple normal crossing divisor on X. Let L be an ample polarization on X. For the log
Hodge bundle (Q} (log D) @ Ox, 0) on (X, D) with 0 defined in (0.1.1), we assume that it
is pi -polystable. Then one has the following inequality

(4.3.1) (25(QL (log D)) - — ~a1(Q(log D)) - (L)' > 0.

n+
When the above equality holds,

(i) if D is smooth, then X — D =~ Bn/r for some torsion free latticeI' C PU(n, 1) acting
on B". Moreover, X is the (unique) toroidal compactification oan/r, and each
connected component of D is the smooth quotient of an Abelian variety A by a
finite group acting freely on A.

(ii) If D is not smooth, then the universal cover X — D of X — D is not biholomorphic
toB", though there exists a holomorphic map X — D — B" which is locally biholo-
morphic.

In both cases, Kx + D is big, nef and ample over X — D.

Proof. Denote the log Hodge bundle (E, 0) = (E° @ E*!, 0) by

E" = Q) (logD), E™ :=Ox.

By [Moc06, Theorem 6.5] we have the following Bogomolov-Gieseker inequality for
(E. 0)

(4.3.2) (2¢2(Qy (log X)) — - Z 1cl(Q§((log D))?) - e)(L)" % =
(260(E) - P2XE 10 (B) - ey(my? 2 0

ank E

This shows the desired inequality (4.3.1).
The rest of the proof will be divided into three steps. In Step 1, we shall construct a
uniformizing variation of Hodge structures on X — D so that the corresponding period
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map defined in (2.0.4) induces a holomorphic map (so-called period map in Remark 2.7)
from the universal cover of X — D to B" which is locally biholomorphic. By (2.0.5), this
period map is moreover an isometry if we equip X — D with hermitian metric induced
by the Hodge metric. This proves Theorem 4.8.(ii). In Step two we will prove that,
when D is smooth, the hermitian metric on X — D induced by the Hodge metric is
complete. Together with arguments in Remark 2.7, this proves that the above period
map is indeed a biholomorphism. In Step three we shall prove Theorem 4.8.(ii) and
the positivity of Kx + D.
Step 1. By Proposition 2.11, there is a canonical principal system of log Hodge bundles
(P, 1) on (X, D) with the structure group K = P(GL(V!?) x GL(V®1)), and the Hodge
group Gy = PU(n, 1). Here (V = V1% @ V%1 hy) is a polarized Hodge structure with
rank V1* = n and rank V%! = 1. For the complexified group G = PGL(V) of G,, there
is a faithful representation p : G — GL(V ® V™), which is moreover a Hodge repre-
sentation in the sense of Definition 2.8 when we equip V ® V* the induced polarized
Hodge structure from (V = V10 @ V01, hy).

By Lemma 2.10, such Hodge representation p induces a system of log Hodge bundles
(PX,(VeV*),dp(r)) over (X, D). By our construction, this system of log Hodge bundle
is nothing but (End(E), Og,4(k)). An easy computation shows that ¢;(End(E)) = 0, and

chy(End(E)) = —2rank E - cz(E) + (rank E — 1)c1(E)*
= nc?(Kx + D) — 2(n + l)cz(Qk(log D) =0

since the equality in (4.3.2) holds by our assumption. Since we assume that (E, 0) is
pr-polystable, by Theorem 1.11, (End(E), Opnq(r)) is also pr-polystable. We now ap-

ply Proposition 1.16 to find a Hodge metric h for the system of log Hodge bundle
(End(E)|x-p> Opnd(r)lx-p) which is adapted to the trivial parabolic structure of (End(E), Ognq(g))-
Using the Tannakian arguments in Theorem 3.1, we conclude that h induces a reduc-

tion Py for P|x_p with the structure group K, = P(U(n) X U(1)) =~ U(n), which is
compatible with h such that (P|x_p, 7|x—p, Py) is a principal variation of Hodge struc-

tures on X — D. Note that

Tx(~log D) 5 P xx g7 = Hom(E"?, E®') ~ Hom(QL (log D), Ox)

is an isomorphism. Hence (P|x_p, 7|x-p, Py) is moreover a uniformizing variation of
Hodge structures over X — D in the sense of Definition 2.6. By Remark 2.7, it gives rise
to a holomorphic map, the so-called period map,

(4.3.3) X-D— GO/KO — PU(n, 1)/U(n) ~ B"

defined in (2.0.4), which is locally biholomorphic. Here X — D is the universal cover of
X —D.

Note that the reduction Py together with the hermitian metric hy in (2.0.1) gives
rise to a natural metric hy over P Xx g 1!|x_p defined in (2.0.3). By Remark 2.7 again,
if the pull back 7*hy is a complete metric on X — D, then X — D is uniformized by
GO/KO = PU(n, 1)/U(n) which is the complex unit ball of dimension n, denoted by B".

The rest of the proof is devoted to show the completeness of 7*hy.
From the following commutative diagram

G = PGL(V)

T~

GL(V) —24 " GL(a1(V))
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and the fact that sI(V) is invariant under Ad, for any g € GL(V), we conclude that
g = sl(V) is an invariant subspace under p(g) for any g € G. Hence for the adjoint
representation

G 2 GL(g) = GL(sI(V)),

one has
p(g)ly = Ady € GL(g).

Therefore, we have the following commutative diagram

J

Hom(E'’, E%!) <% End(E)* «—— End(E)
(4.3.4) H H H

Pxgg ™t —— Pxgg <> Px,gl(V)

where End(E)* is the trace-free subbundle of End(E).

It follows from (3.0.3) that the Hodge metric h for (End(E)|x—p, Opna(g)lx-p) = (P X,
(V ® V*),dp(r)) can be redefined via the reduction Py together with the hermitian
metric hgpqv) of End(V) induced by (V, hy) as in (2.0.3). Recall that in Example 2.1, for
the natural inclusion ¢ : g < gl(V), one has hy = 2(n+1) - 1" hgnq(v). By (4.3.4), one has

2(n+1)j"h = hy,

where we recall that hy is the metric over P Xx g~ !|x_p induced by the reduction
Py together with the hermitian metric A in (2.0.1). It now suffices to show that 7*h is
complete if we want to prove that X — D is uniformized by B". In next step, we will
apply similar ideas by Simpson [Sim90, Corollary 4.2] to prove this. Note that until
now we made no assumption on the smoothness of D.

Step 2. Throughout Step 2, we will assume that D is smooth. Consider now the
log Higgs bundle (&, 7) := (End(E), Ogacr)). We first mention that the above Hodge
metric h for (&, n)|x—p is adapted to log order in the sense of Definition 4.1. Indeed, it
follows from [Moc02, Corollary 4.9] that the eigenvalues of monodromies of the flat
connection D := 8, + d + n + 7, around the divisor D are 1. By the “weak” norm
estimate in [Moc02, Lemma 4.15], we conclude that A is adapted to log order?.

We first give an estimate for 7*h. For any point x € D, consider an admissible
coordinates (U; zy, . . ., z,) centered at x as Definition 1.3 so that DN U = (z; = 0). To
distinguish the sections of Higgs bundles and log forms, we write e; := dlogz; and
e; = dz;fori =2,...,n. Denote by ¢y = 1 the constant section of Oy. Let us introduce

a new metric h on (E, 0)|y+ as follows.

|6’1|,2~1 = (—log|z1]*)
(ei,ej); =0 for i+#j;
|e,~|}2~l =1 for i=2,...,n;
|€o|g = (=log|z1|*)~"
’Indeed, a strong norm estimate has already been obtained by Cattani-Kaplan-Schmid in [CKS86].

Here we only need to know that A is adapted to log order, which is a bit easier to obtain using Andreotti-
Vesentini type results by Simpson [Sim90] and Mochizuki [Moc02, Lemma 4.15].
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Within this basis {ej, . .., e, €}, € can be expressed as

dlogz; --- dz, 0

Denote by H := (hjj)o<i,j<n the metric matrix of h with respect to the above basis. One
has

_ dz
0 -+ 0 hythoS
(4.3.5) 0,=H @H=|' S
0 -+ 0 hy hydz,
Hence for 2 < i < j < n, one has
- _ dz dz
[0,0h]11 = hlllhoo_—l gt
21 21
[0, 04]i; = i hoodZ; A dz;
- d
[0, Onlin = i hoodZzi A =
<1
_ dz
[0, 8l1i = hilhoy == A dz;
21
— d dzi -
[0, 0nloo = hfllhooﬁ A ﬁ + Z hi;' hoodzi A dz;.
1 1 i=2

Write F;(E) := F;(E)x; ® e;f ® er. Then for i,j = 2,...,n, one has
Fi(E)11 = F;(E)10 = F;(E)o1 = F;(E)oi = F;(E)jo =0
F};(E)U = (- log |21|2)_1d2,' A de
1
F:(E)y = ————————dz; Ndz;
A= Cagla Pz, 41
1
F;(E)yy = ——————dz; A d
A= Coglays, 4 "

Fi(E)oo = Z(—log |z1|%) " Ydz; A dz;.

i=2
In conclusion, there is a constant C; > 0 so that one has

C
. 2 _ . . * 2 1
436) B, = > IFEyeedal, < Clog BT

0<jk<n

over U*(%) (notation defined in Definition 1.3), where w, = V-1 2, dzi Adz; denotes
the Euclidean metric on U*.

We abusively denote by h the induced metric on (&, n)|y+ = (End(E), Ognace)) v+
which is adapted to log order on (U,D N U) in the sense of Definition 4.1 by our
construction. Then

FE(S) = FB(E) QT+ 1g® Fﬁ*(E*)
= F;(E)® 1p — 1p ® F;(E)'
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where F;I(E)T is the transpose of F;(E). Hence
Fi(E)ei ® €)= > (8;eF;(B)ik — SuFy(Eej)(ex ® €])
k,l

for 0 < i,j,k,{ < n. It then follows from (4.3.6) that

Cy
437 F: (&) <
(43.7) FiOlhoe = Trog o PRIl

over U*(%) for some constant C, > 0. Consider the identity map s for &, which can be
seen as a holomorphic section of End(E, &). We denote by (7, @) := (End(E, &), ngna(s))
the induced Higgs bundle by (&, n). Note that for any section e of &, one has

0 = (Jg + n)(s(e) = s((Fe + n)(e))
= (07 +@)(s))(e)
= O(s)(e).
Hence

(4.3.8) ®(s) = 0.

We equip ¥ |y+ with the metric hg := h ® h*, where h is the harmonic metric con-
structed in Step one. Note that

Fp (F) = F;(E) ® 1g- + 1g ® Fy(E7)
= FE(S) ® g
By (4.3.6), there is a constant Cy > 0 so that one has
Co

(4.3.9) IFh (7:)|h e S
T T (“loglz P2z

over U*(%) Then

_ —1{Ry.s, —1{0h.s, 0 Op..s, .0
VCiTog sl = Y Rarss) | VO 8Os) ) )

2 2 2 2
|55, 1517, 515, 1517,
. V=1{Rp;s, s}
- 2
Isl7.,
V—l{(I)S, (I)S} V_l{q)hgrsa q>hgrs} V_I{Fh;r(?)s’ S}
TTTBE T B e
sl sl sl
V=UPpn.s, Pnyst  V=1{Fn(F)s, s}
- 2 + 2
|s|h7. |S|hg¢'
. V=1{F(F)s, s}
a |S|i21¢ .

Here the second inequality is due to Cauchy-Schwarz inequality, and the fourth one
follows from (4.3.8). For any & = (&,...,&) with 0 < &,...,&, < %, we define a
smooth function f; over A* parametrized by & by

fe(z1) = loglsl (21,82, .- .. n)-
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Then the above inequality together with (4.3.9) implies that
Co 3
— =
(=log|z1]?)?]z1]

where Cy is some uniform constant which does not depend on &. Note that

Afy > —|Fp (F)| = —

‘e

(43.10) loll = [ lptefdzdz <,

0< Zl|<%
for some constant C;, > 0. For any fixed 0 < &,...,&, < %, consider the Dirichlet
problem

@) {sf):fg on {1 | |z1] = 3}

Ap=¢ on {z1|0<]|z|<3}
By (4.3.10) and the elliptic estimate, one has
(4.3.12) sup [¢(z1)] < Cs(llgllrz + sup fi).

0<|z1|<3 |z11=3
over {z; | 0 < |z¢| < %} for some uniform constant Cs which does not depending on

¢. Hence A(fz —¢) > 0 over {z; | 0 < [z < %} Since both h and h are adapted to log
order, so is h#. Hence there is a constant Cs > 0 so that

{
log|slf < Cglog(~ ) log|zil)

i=1

over U*(%) By Lemma 4.4, we conclude that f; — ¢ extends to a subharmonic function
on {z; | |z1| < %} Note that fi(z1) — ¢(z1) = 0 when |z;| = % Hence by maximum
principle,

fe(z1) < ¢(z1)

for any 0 < |z1] < % Let

Cr = Sup Je(z1)
|z1]=3,0<8,,... .60 <3

which is finite. By (4.3.10) and (4.3.12), we have

sup log |s|ﬁ¢(zl, ooy Zn) < C5(Cy + C).
O<|z1|<%,OSzz,...,z,,S%
This implies that h > Cg - h over U*(%) for some constant Cg > 0. By (4.3.7), one has
2 < Co )
"o = (= log |z1[2)* |2

IF;.(E)

Hence if we use the metric h ® h* for ¥ and do the same proof, we can prove that
h < Cy - h over U*(%) for some constant Cy > 0. Therefore, h and h are mutually
bounded on U*(%) By
0 .
(4313) T(Zl—) =€ ® e
(921

0
(4.3.14) (--)=¢®e for j=2,...,n,
HZJ'
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we obtain the norm estimate for the metric

V=1dz; A dz; Z V=1dz;. A dzx

+
|21|2(10g|21|2)2 —10g|21|2

(4.3.15) T*h~ t*h =
k=2

Though 7*h is strictly less than the Poincaré metric near D, one can easily prove that it
is still a complete metric. Therefore, the hermitian metric 7*hy = 2(n + 1)-7*hon X —-D
is also complete. Based on Remark 2.7, we conclude that X — D is uniformized by the
complex unit ball of dimension n, namely, there is a torsion free lattice I' ¢ PU(n, 1)

sothat X — D ~ Bn/r. Since h is adapted to log order, by (4.3.13) and (4.3.14), the
canonical Kahler-Einstein metric w := t*h for Tx(—log D)|y is also adapted to log
order. It follows from Theorem A.8 that X is the unique toroidal compactification for

the non-compact ball quotient Bn/r. We accomplish the proof of Theorem 4.8.(i).

Step 3. Assume now D is not smooth. By (4.3.3), the period map X-D — B"is lo-
cally biholomorphic. Assume by contradiction that it is an isomorphism. As discussed
above, the canonical Kahler-Einstein metric w := t*h for Tx(—log D)|y is adapted to
log order. It follows from Theorem A.8 that D cannot be singular. The contradic-
tion is obtained, and thus the period map is not a uniformizing mapping. We proved
Theorem 4.8.(ii).

Let us show that Kx + D is big, nef and ample over X — D. Note that the metric
det w™! for (Kx + D)|y is adapted to log order, and that

Rget o1 (Kx + D)lv) = (n + Do.

By Lemma 4.5, the hermitian metric det w™! extends to a singular hermitian metric
hx+p for Kx+D with zero Lelong numbers. Hence Kx+D is nef. Since \/—_thKXw (Kx+
D) > 0 on X — D, Kx + D is thus big and ample over X — D. We finish the proof of the
theorem. O

Remark 4.9. Note that the asymptotic behavior of the metric (4.3.15) is exactly the
same as that of the Kahler-Einstein metric for the ball quotient near the boundary of
its toroidal compactification (see [Mok12, eq. (8) on p. 338]). This is indeed the hint
for our construction of h.

Remark 4.10. We expect that Theorem 4.8.(ii) cannot happen. This is the case when
dimX = 2. Indeed, when the Miyaoka-Yau type equality in (0.1.2) holds, together
with the conclusion that Kx + D is big, nef and ample over X — D in Theorem 4.8,
it follows from [Kob85] that X — D is uniformized by B?, which is a contradiction to
Theorem 4.8.(ii).

5. HIGGS BUNDLES ASSOCIATED TO NON-COMPACT BALL QUOTIENTS

In this section, we will prove Theorem B. §§ 5.1 and 5.2 are technical preliminaries.
In § 5.3 we prove that a log Higgs bundle (E, 8) on a compact Kahler log pair is slope
polystable with respect to some polarization by big and nef cohomology (1, 1)-class, if
(E, 0) admits a Hermitian-Yang-Mills metric with “mild singularity” near the bound-
ary divisor. In § 5.4 we use the Bergman metric for quotients of complex unit balls
by torsion free lattices to construct such Hermitian-Yang-Mills metric. This proves
Theorem B.
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5.1. Notions of positivity for curvature tensors. We recall some notions of posi-
tivity for Higgs bundles in [DH19, §1.3].

Let (E, 0) be a Higgs bundle endowed with a smooth metric h. For any x € X, let
ey, ...,e. be aframe of E at x, and let e, ..., e" be its dual in E*. Let z1,...,2, be a
local coordinate centered at x. We write

Fy(E) = Ry(E) + [0, Eh] = Rf]%adzj ANdz ®@ e ® ep

Set Ry = hyﬁR)‘/‘a’ where h 5 = h(ey, eg). Fy(E) is called Nakano semi-positive at x if

jk
Z Rj,;a[;ujauTﬁ >0
Jk.a.p
forany u = ;, uj“aizj ® ey € (T;(’O ® E)x. (E, 0, h) is called Nakano semipositive if
Fn(E) is Nakano semi-positive at every x € X. When 6 = 0, this reduces to the same
positivity concepts in [Dem12b, Chapter VII, §6] for vector bundles.
We write
Fh(E) 2Nk Mo ® 1g)  for A e R
if i
Z (RanB - /lwﬂ;hal;)(x)u”ukﬁ >0
Jk.a.p
forany x € X andanyu = }};, uj“aizj ®e, € (T;gO ® E)y.
Let us recall the following lemma in [DH19, Lemma 1.8].

Lemma 5.1. Let (E, 0, h) be a Higgs bundle on a Kdhler manifold (X, ). If there is a
positive constant C so that |Fp(x)|p, < C for any x € X, then

Cow ®Tg >nak Fr 2nak —Co ® 1g
The following easy fact in [DH19, Lemma 1.9] will be useful in this paper.

Lemma 5.2. Let (E;, 0,, hy) and (Ez, 05, hy) are two metrized Higgs bundles over a Kihler
manifold (X, w) such that |Fp,(x)|n, » < C1 and |Fp,(x)|n,» < Co for all x € X. Then for
the hermitian vector bundle (E, ® E,, h1h,), one has

| Fhyihy, () Iy@hy.o < 4272CF + 211G

for all x € X. Here r; := rankE;.

5.2. Some pluripotential theories. In this subsection we recall some results of deep
pluripotential theories in [BEGZ10,Gue14]. The results in this subsection will be used
in the proof of Proposition 5.6. Let us first recall the definitions of big or nef cohomol-
ogy (1, 1)-classes in [Dem12a, §6].

Definition 5.3. Let (X, ») be a compact Kihler manifold. Let « € H"!(X,R) be a
cohomology (1, 1)-class of X. The class « is nef (numerically eventual free) if for any
¢ > 0, there is a smooth closed (1, 1)-form 75, € « so that . > —¢w. The class « is big

if there is a closed positive (1, 1)-current T € « so that T > §w for some § > 0. Such a
current T will be called a Kdéhler current.

Let X be a complex manifold of dimension n and let U C X be a Zariski open set
of X. Pick a smooth hermitian form @ on X. For any smooth differential form 7 of

degree p on U so that
/ Inlo A @™ < +00,
U
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one can trivially extend n to a current T, on X of degree n — p by setting

(5.2.1) (Ty,u) := '/Ury Au

where u is the any test form of degree p which has compact support. In general, T,
might not be closed even if 7 is closed.

Let (X, ) be a compact Kéhler manifold of dimension n. Let ay, . . ., a, be big co-
homology classes. Let T; € a; be positive closed (1, 1)-currents whose local potential
is locally bounded outside a closed analytic subvariety of X (a particular case of small
unbounded locus of [BEGZ10, Definition 1.2]). In this celebrated work by Boucksom-
Eyssidieux-Guedj-Zariahi [BEGZ10], they defined non-pluripolar product for these
currents

<T1A...ATP>

which is a closed positive (p, p)-current, and does not charge on any closed proper
analytic subsets. Therefore, if we assume further that T; is smooth over X — A where
Ais a closed analytic subvariety of X, then (T; A --- A T,,) is nothing but the trivial
extension of the (p, p)-form (Ty A -+ A T},)[x-a to X.

Following [BEGZ10, Definition 1.21], for a big class &, a positive (1, 1)-current T € «
has full Monge-Ampére mass if

/}ﬁ):w«@.
X

The set of such positive currents in « with full Monge-Ampére mass is denoted by
E(a). We will not recall the definition of the volume of big classes by Boucksom in
[Bou02]. We just mention that when the class « is big and nef, one has

Vol(a) = a".
The following lemma will be used in § 5.3.

Lemma 5.4. Let (X, w) be a compact Kihler manifold and let D be a simple normal
crossing divisor on X. Let S be a closed positive (1,1)-current on X so that S|x_p is a
smooth (1, 1)-form over X — D which is strictly positive at one point and has at most
Poincaré growth near D. Then the cohomology class a := {S} is big and nef, and S €
E(a).

Proof. Let T be the Kahler current on X constructed in Remark 1.5. Since T|x_p has at
most Poincaré growth near D, there exists a constant C; > 0 so that

C,T-S>0.

Pick any point x € D. Then there exists some admissible coordinates (U; zy, . . ., 2,)
centered at x so that the local potential ¢ of S satisfies that

{
¢ > —Cilog(- | [loglz) - G,

i=1

for some constant C; > 0. Hence S has zero Lelong numbers everywhere and thus «
is nef. Since S is strictly positive at one point on X — D, it is big by [Bou02]. It follows
from [Guel4, Proposition 2.3] that S € &(«). The lemma is proved. O

Let us recall an important theorem in [BEGZ10].
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Theorem 5.5 ((BEGZ10, Corollary 2.15]). Let (X, w) be a compact Kihler manifold of
dimension n. Let aq, . ..,a, be big and nef classes on X. For T; € &(a;) which are all
smooth outside a closed proper analytic subset A, one has

/ Tl/\---/\T,,:/(Tl/\---/\Tn):al---an.
X-A X

5.3. Hermitian-Yang-Mills metric and stability. Let (X, w) be a compact Kéhler
manifold and let D be a simple normal crossing divisor on X. As we mentioned in § 0.4,
for applications of birational geometry, one usually considers more general polariza-
tion by big and nef line bundles. In this subsection, we will prove that a log Higgs
bundle (E, 0) on (X, D) is p,-polystable if (E, 0)|x_p admits a Hermitian-Yang-Mills
metric whose growth at infinity is “mild”, where « is certain big and nef cohomology
class. When dim X = 1 or D = @ and the polarization is Kahler, this has been proved
by Simpson [Sim88,Sim90]. As we have seen in Theorem 1.10, when X is projective
and both the first and second Chern classes of E vanish and the polarization is an
ample line bundle, this result has been proved by Mochizuki.

We start with the following technical result, which is strongly inspired by the deep
result of Guenancia [Guel6, Proposition 3.8].

Proposition 5.6. Let (X, wg) be a compact Kihler manifold and let D be a simple nor-
mal crossing divisor on X. Let (E, ) be a log Higgs bundle on (X, D). Let a be a big
and nef cohomology (1, 1)-class containing a positive closed (1, 1)-current w € a so that
w|x-p is a smooth Kihler form and has at most Poincaré growth near D. Assume that
there is a hermitian metric h for (E, 0)|x_p which is adapted to log order (in the sense of
Definition 4.1) and is acceptable (in the sense of Definition 4.2). Then for any saturated
Higgs subsheaf G C E, one has

(5.3.1) c1(G)-a" ! = /X_D_Z Tr(\/—_thG(G)) A" !

where Z is the analytic subvariety of codimension at least two so that G|x_; C E|x_z is
a subbundle, and hg is the metric on G induced by h.

Proof. By Remark 1.5, one can construct a Kdhler current
_ ¢
(5.3.2) T =y — V=100 log(~ | |logle - ail?),
i=1

over X, whose restriction on X — D is a complete Kéhler form wp, which has the same
Poincaré growth near D. Here o; is the section H*(X, Ox(D;)) defining D;, and h; is
some smooth metric for the line bundle Ox(D;). Since we assume that h is acceptable,
(after rescaling T by multiplying a constant) one thus has

|Fh(E)|h,wP <1
By Lemma 5.1, one has
—1 ® wp <Nak Fr(E) <nak 1 ® wp

over X — D.

We first consider the case that G is an invertible saturated subsheaf of E which is
invariant under 6. Then the metric h of E induces a singular hermitian metric hg for
G defined on the whole X, which is smooth on on X° := X — D — Z. The curvature
current \/—_1RhG(G) is a closed (1, 1)-current on X — D, which is a smooth (1, 1)-form
on X°. Define by 7 : E|xc — Glx- the orthogonal projection with respect to h and
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7+ i Elx» — G*|x- the projection to its orthogonal complement. By the Chern-Weil
formula (see for example [Sim88, Lemma 2.3]), over X°, we have

(53.3) Rig(G) = Fig(G) = Fu(E)lG + By A — 0 Ay
where Fj(E)|c is the orthogonal projection of Fy(E) on Hom(G, G)|x> = Ox-, and f €
2/ 0(X°, Hom(G, G1)) is the second fundamental form, and ¢ € 27%(X°, Hom(G*, G))
is equal to 0|g:. Hence V-1Rp,(G) < V=1F4(E)|c.
For any local frame e of G|x-, note that
leli - V=1Fu(E)lc = (V=1Fu(E)(e), e)n < (1 ® wpe, e}y, = |e} - wp
Hence V—1F(E)|g — wp is a semi-negative (1, 1)-form on X°, and thus over X° one has

—V=1Ry,(G) + T > wp — V=1F4y(E)|g = 0

Since we assume that (E, h) is adapted to log order, (G™!|x_z, ! ¢ |x-z) is thus adapted

to log order for the log pair (X —Z, D —Z). By Lemma 4.5 and ( 5 3.2), \/_RhG(G) +T
extends to a closed positive (1, 1)-current on X — Z. Since Z is of codlmensmn at least
two, a standard fact in pluripotential theory shows that —\/—_1RhG(G) + T extends to a
positive closed (1, 1)-current on the whole X.

Denote by s € H'(X, E ® G!) the section defining the inclusion G — E. We fix a
smooth hermitian metric hy for G and we define a function H := |s|? _, = hg - hy L on

X — D. Then
(5.3.4) V=188 log H = V=1Ry,(G) — V=1R;,,(G).
Hence there is a constant Cy > 0 so that

(5.3.5) V-18d1logH + CoT > T.

h-hy?!

By Lemma 5.4, o € &(a). Since V=1Ry (G) is a smooth (1, 1)-form on X, it follows
from Theorem 5.5 that

/ V=1Ry,(G) A 0" = ¢1(G) - "L,
o

To prove (5.3.1), by (5.3.4) and the above equality it suffices to prove that
(5.3.6) / V-18dlog H A 0"! = 0.
XO

We will pursue the ideas in [Guel6, Proposition 3.8] to prove this equality.

Let us take a log resolution y1 : X — X of the ideal sheaf .# defined by s € H(X, E®

G™1), with OX(—A) p*# and D := y~}(D) a simple normal crossing divisor. Let us
denote by (E, ) the induced log Higgs bundle on (X, D) by pulling back (E, ) via p.
Then the metric h := y*h for (E, 0)|¢ %_p is also adapted to log order and acceptable by
Lemma 4.3.

Note that Supp(Ox/.#) = Z. Write G := ;*G. There is a nowhere vanishing section

§e H'X,E® G ® Ogx(-A))

so that s = § - o, where o is the canonical section in H*(X, O4;(A)) which defines
the effective exceptional divisor A.
Fix a Kahler form @ on X, as Remark 1.5 we construct another Kahler current

m
(5.3.7) T = & — V=189 log(- ]—[ log e - Gif? ),
i=1 '
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over X, whose restriction on X — D is a complete Kéhler form, which has the same
Poincaré growth near D. Here §&; is the section H*(X, Ox(D;)) defining D;, and h; is
some smooth metric for the line bundle OX(DI)

|2 Sinceh
by hol,hAl

is adapted to log order and § is nowhere vanishing, there is a constant C;,C; > 0 so
that

(5.3.8) logH > Cypp — Gy,

Let us fix a smooth hermitian metric h4 for O (A). Write H:=§

where we denote by
¢
op = —log(~ ]_[ log e - &if} ).
i=1

Since h = p*h for (E, é)lX—f) is acceptable, by same arguments as those for (5.3.5), one
can show that

V-100logH + CsT > T
over X—D for some constant C; > 0. Note that the local potential of V=198 log H+C5T
is bounded from below by (C; +Cs)@p according to (5.3.8). By [Gue14, Proposition 2.3],
one has _ i i i
V=100 IOgH + C3T € 8({C3T})
It follows from (4.1.1) that y*w < C,T for some constant C4; > 0. By Lemma 5.4 again,
W € E(u*a). Hence by Theorem 5.5 one has

/ (V=188 log H + CsT) A p* ™' = {CsT} - p*a L.
HHX°)
Recall that T € E({T}) by Lemma 5.4. Hence
/ CsT A ™™ = {CsT} - a2,
pHXO)
One thus has
(5.3.9) V=18dlogH A p* ™! = 0.
pHXE)
Note that over X — D, one has
V=188 1og H + [A] = V=1Ry,(A) = p"V-189 log H
where [A] is the current of integration of A. Hence over p~'(X°) = X°, one has
(5.3.10) V=188 log H — V=1Ry,(A) = y*V-180 log H.
By Theorem 5.5 again,
(5.3.11) V=1Ry, (A) A "t = ¢1(A) - pfa™ ! = 0,
pH(X0)
where the last equality follows from the fact that A is y-exceptional. (5.3.9), (5.3.10)
together with (5.3.11) shows the desired equality (5.3.6). We finish the proof of (5.3.1)
when rank G = 1. o
Assume that rank G = r. We replace (E, 0, h) by the wedge product (E, 0, h) :=

N'(E, 0, h). By Lemma 5.2, the induced metric h is also acceptable and one can easily

check that it is also adapted to log order. Note that det G is also invariant under 0, and
that
detG — A'E.
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We then reduce the general cases to rank 1 cases. The proposition is thus proved. O
Let us state and prove the main result in this section.

Theorem 5.7. Let X be a compact Kdhler manifold and let D be a simple normal cross-
ing divisor on X. Let a be a big and nef cohomology (1, 1)-class containing a positive
closed (1,1)-current @ € a so that w|x_p is a smooth Kdhler form and has at most
Poincaré growth near D. Let (E, 6) be a log Higgs bundle on (X, D). Assume that there is
a hermitian metric h on (E, 0)|x_p such that
e it is adapted to log order (in the sense of Definition 4.1);
e it is acceptable (in the sense of Definition 4.2);
e it is Hermitian-Yang-Mills:

A Fr(E)" = 0.
Then (E, 0) is py-polystable.

Proof. We shall use the same notations as those in Proposition 5.6. Let G be any satu-
rated Higgs-subsheaf G C E, and denote by Z the analytic subvariety of codimension
at least two so that G|x_z C E|x_ is a subbundle. By the Chern-Weil formula again,
over X° := X — Z — D we have

AuFng(G) = ApFa(E)lg + Au(By A B — ¢ ABp)

A TrFy(E)
= ApFir (B)lg + —————

rank E

A, Tr(Fy(E)) — _

== 71 o - .
—E ® G+ Au(BpyAB—0Nop)

where f € &/1%(X°, Hom(G, G1)) is the second fundamental form of G in E with re-
spect to the metric h, and ¢ € &/°(X°, Hom(G*, G)) is equal to 0]s-.
Hence

/ Tr(N=1F,,(G) A 0"t = / Tr(Aw\/—_thG(G))w—n
X° X° n

n
- / ankG o (VIIRL(E)
xo rank E n

® I+ Au(ByAB— 0 NP

+ TrA,(V=1B, A B— V=19 A %)%
rank G _ w"
- / - Tr(V=1Fy(E)) A 0" = (1B + |ol2)—
xo rank E n

By Proposition 5.6 together with the above inequality, one concludes the slope in-
equality

Ha(G) < pa(E)
and the equality holds if and only if f = 0 and ¢ = 0. We shall prove that if the above
slope equality holds, G is a sub-Higgs bundle of E, and we have the decomposition

(E,0) = (G, 0lc) @ (F, OF)

where (F, OF) is another sub-Higgs bundle of E.

Set rank E = r and rank G = m. We first prove that G is a subbundle of E. It is
equivalent to show that det G — A"E is a subbundle, and we thus reduce the problem
to the case that rank G = 1. Assume that y,(G) = p,(E) and thus f = 0 and ¢ = 0. By
(5.3.3), over X° one has

(5.3.12) V=1Ry(G) = V=1F,(E)lg = —Tlxe»
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where T is the Kahler current defined in (5.3.2). By Lemma 4.5, V=1R,(G) +T extends
to a closed positive (1, 1)-current on t X — Z, and thus to the whole X.
Assume now xp, € X is a point where (E/G)y, is not locally free. Take a local

holomorphic frame e of G on some open neighborhood (U;z,...,z,) of x, and a
holomorphic frame ey, ..., e, of E. Then e = })}_; fi(x)e;, where f; € O(U;) so that
filxo) = -+ = fi(xo) = 0. By the asssumption that h is adapted to log order, one

concludes that
€
(53.13) log [ef? < Cylog([z1|* + -+ + |z]%) + C; log(~ Log([ | 121"))
i=1

for some positive constants C; and C,. On the other hand, by (5.3.12) on U we have
V=190 log le|? = ~V=1R;,(G) < T.

By the construction of T, we conclude that

{
log le|? > Cs 1og(—1og(]_[ 121)) + Cu,
i=1
for some C3 > 0 and C; < 0. This contradicts with (5.3.13). Hence we conclude that
when the slope equality holds, G is a subbundle of E.

We now find the desired decomposition of (E, 0). By the above argument, when the
slope equality holds, (G, 0|¢) is a Higgs subbundle of (E, 8) (not assumed to be rank 1
now), and f = 0 and ¢ = 0. This means that the orthogonal projection 7 : E|x_p —
Glx-p is holomorphic, that G* is a holomorphic subbundle of E|x_p, and that

(5.3.14) (E, 0)lx-p = (G, 0lc)Ix-p & (G*, ).

We shall prove that 7 extends to a morphism 7 : E — G so that 7 o1 = 1. For
any point xy € D, we pick an admissible coordinate (U; zy, . . ., z,) centered at x, and
a holomorphic fame (ey, . . ., e,) for E|y adapted to log order so that (eq,...,ey) is a
holomorphic fame for G|y. Write 7(ej|x-p) = Xi_; fi(x)e;, where fi(x) € O(U — D).
For j = 1,...,m, one has n(ejlx_-p) = e; and it extends naturally. For j > m, over

U* = U — D one has
l
C(=log([ | 1210™ = lejl} = |m(e)lZ > Hyl fll
i=1

for some C,M > 0, where H;; := h(e;, e;) with (H;j)1<; j<- adapted to log order. Hence
each |f;| is locally bounded from above on U, and it thus extends to a holomorphic
function on U. We conclude that 7 extends to a morphism 7 : E — G, whose rank
is constant and 7 o1 = 1, where ¢ : G — E denotes the inclusion. Let us define by
F := ker 7, which is a subbundle of E so that E = G & F. Note that F|x_p = G*. By
(5.3.14) together with the continuity propery we conclude that F is a sub-Higgs bundle
of (E, 0), and that (E, 0) = (G, 0|g) & (F, 0|r). Since h|g (resp. h|r) is a Hermitian-Yang-
Mills metric for (G, 0|c) (resp. (F, 0|r)) satisfying the three conditions in the theorem,
we can argue in the same way as above to decompose (G, 0|g) and (F, 6|r) further to
show that (E, 0) is a direct sum of p,-stable log Higgs bundles with the same slope.
Hence (E, 0) is p,-polystable. We prove the theorem. O

5.4. Application to toroidal compactification of ball quotient. LetI' € PU(n, 1)

be a torsion free lattice, and let Bn/r be the associated ball quotient. By the work

of Baily-Borel, Siu-Yau and Mok [Mok12], Bn/r has a unique structure of a quasi-
projective complex algebraic variety (see for example [BU20, Theorem 3.1.12]). When
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the parabolic subgroups of I' are unipotent, by the work of Ash et al. [AMRT10] and
Mok [Mok12, Theorem 1], Bn/r admits a unique smooth toroidal compactification,

which we denote by X. Let us denote by D := X — Bn/r the boundary divisor, which
is a disjoint union of abelian varieties. Let gg be the Bergman metric for B", which is
complete, invariant under PU(n, 1) and has constant holomorphic sectional curvature
—1. Hence it descends to a metric w on X — D. If we consider w as a metric for
Tx(—log D)|x-p, by [To93, Proposition 2.1] it is good in the sense of Mumford [Mum?77,
Section 1]. Therefore, by for any k > 1, it follows from [Mum77, Theorem 1.4] that
the trivial extension of the Chern form ci(Tx_p, w) onto X defines a (k, k)-current
[cx(Tx_p, )] on X, which represents the cohomology class cx(Tx (- log D)) € H**(X).
Let us first prove (0.1.3), which is indeed an easy computation.

For any xy € X — D, we take a normal coordinate system (zy, . . ., z,) centered at x
so that
w=V-1 Z Semdze A dZp — Z CikemziZzk + O(2]%)
1<¢,m<n J.k,tm

where cji¢m, is the coeflicients of the Chern curvature tensor

_ 0 0
R,(Tx) = Z Cjkfmdzj ANdzZr ® (5_25) ® E
J.k,tm
By [Mok8&9, p. 177], one has
(5.4.1) Cikem(x0) = —(Sjkbem + SjmOke)-
Hence
i
c1(Tx-p, ®)lx, = —%(n + Dowly,
_ tr(Ry(Tx_p) A Ry(Tx-p)) — tr(Ry(Tx_p))*
c2(Tx-p, ®)lx, = >
81
_(mt+tDoAwly,—(n+ D0 A 0y,
B 82
This implies that

ney(Tx—p, w)? = 2(n + Dea(Tx—p, ©) = 0.
We thus conclude that the Chern classes ¢ (Qy (log D)) satisfies
nei(Qy(log D))? —2(n+ 1)02(Q§<(log D)) = 0.

Hence (0.1.3) in Theorem B holds.
For the log Hodge bundle (E, 0) = (E"* @ E*!, 0), given by

EY = Q) (logD), E*' :=0x

with the Higgs field 6 defined in (0.1.1), we shall prove that it is y,-polystable for the
big and nef polarization & in Theorem 5.7. We equipped (E}® @ E*!)|x_p with the
metric

(5.4.2) h:=w'®h,

where h, is the canonical metric on Ox_p so that |1|,, = 1. Recall that the curvature
Fy(E) of the connection Dy, := dj, + 0 + 0}, is

Fi(E) = Ru(E) + [0, 04,

where Ry(E) is the Chern curvature of (E, h). Let us now compute F;(E), which is also
an easy exercise.
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To distinguish the sections of Higgs bundles and forms, we write e; := dz;, and
denote by ey = 1 the constant section of Ox. Hence (e, €1, . . ., ;) is an orthonormal
basis at xy with respect to the metric h, and

O(eg) =0, 6O(e))=e®dz; for i=1,...,n.

Moreover,

n

Eh(eo|x0) = Z ejlx, ® dz;; On(e)=0 for i=1,...,n
j=1

Then one has
Ry(E) = —Cjkmedzj A dZ ® (er)" ® ep.
By (5.4.1),fori=1,...,n,

\/_Fh(E)(e, |x0) = Z \/_cjkmldz} ANdzZr ® emlxo + Z \/_dzk ANdz; ® eklxo

J.k,m

= Z V—lej A dfj ® ei|x0 + Z V—1dz; Adz; ® €k|x0
J k

+ Z V=1dzZr N dz; ® ely, = © ® ejly,.
k

Also,
V=1Fy(E)eolx,) = V=18 A Bp(eolx,) = © ® eols,
In conclusion, one has
V-1F(E) = 0 ® 1,

In particular, h is a Hermitian-Yang-Mills metric for (E, 0)|x_p. We shall show that it
satisfies the three conditions in Theorem 5.7. Indeed, we only have to check the first
two conditions since V—1F,(E)* = 0.

We first note that » has at most Poincaré growth near D in the sense of Defini-
tion 1.4. Indeed, this follows easily from the Ahlfors-Schwarz lemma (see for ex-
ample [Nad89, Lemma 2.1]) since the holomorphic sectional curvature of w is —1.
Hence for any admissible coordinate system (U; zy, . . ., z,) as in Definition 1.3, one
has |Fp(E)|pp, < C, where wp is the Poincaré metric on U*.

By the following result, we see that h is adapted to log order.

Lemma 5.8 ( [Mok12, eq. (8) on p. 338]). Let (X, D) be as above. Then for any x € D
there is an admissible coordinate(U; z1, . . ., z,) at x so that the frame z; 82 , 622 . 6zn -, 6;2,1
is adapted to log order (in the sense of § 4. 1) with respect to the above metric w.

Therefore, the metric h for (E, 0)|x_p satisfies the three conditions in Theorem 5.7.
In conclusion, (E, 0) is u,-polystable for the big and nef class « in Theorem 5.7

To finish the proof of Theorem B, we have to show that ¢;(Kx + D) can be made as
a polarization in Theorem 5.7, which follows from the following result.

Lemma 5.9 ( [Mok12, Proposition 1]). The Kdhler form %a) on X — D defined above
extends to a closed positive (1, 1)-current @ € c¢1(Kx + D) with zero Lelong numbers. In
particular, Kx + D is big and nef.

Let us provide a quick proof here for completeness sake.
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Proof of Lemma 5.9. Note that the volume form " defined a metric h,, for (Kx+D)|x_p,
which is adapted to log order by Lemma 5.8. By (5.4.1), one has

Ric(w) = =(n + Vw.

Hence V-1Rp ((Kx + D)|x-p) = (n + 1)w. By Lemma 4.5, h, extends to a singular
metric h, for Kx + D so that its curvature current V_lRBU (Kx + D) is positive. The

Lelong number of V-1R; (Kx +D) is zero everywhere since h, is adapted to log order.
This shows that Kx + D is big and nef, which is ample over X — D. O

6. CONJUGATE NON-COMPACT BALL QUOTIENT

As an application of Theorems A and B, we shall prove that the conjugate of non-
compact ball quotient under an automorphism of Cis still a ball quotient. It was proved
by Kazhdan [Kaz83] for arithmetic lattice, and by Mok-Yeung [MY93] and Baldi-Ullmo
[BU20] for non-arithmetic lattice. The cocompact case can be easily proved using the
Miyaoka-Yau inequality in [Yau78].

Let us make the following conventions for this section. Let X be a complex projec-
tive variety with X,), the corresponding algebraic variety over C. For any coherent
sheaf & on X, denote by &g, the corresponding coherent sheaf on X,,. Conversely,
for any coherent sheaf &, on X5, we denote by & the corresponding coherent sheaf
on X.

Proof of Corollaries C and D. Let us first prove Corollary C, and Corollary D follows
from the proof. We first assume that parabolic subgroups of I' are unipotent. By
[Mok12, Theorem 1], there is a toroidal compactification X for the ball quotient X :=
Bn/r, so that D := X —X is a smooth divisor. Moreover, X is projective, whose algebraic

structure is unique, denoted by )_(alg- By Grothendieck’s comparison theorem (see
e.g. [CS14, Theorem 11.1.2]), there is a canonical isomorphism

(6.0.1) ¢ H(Xag) — H'(X,C).

Consider the conjugate variety X Zlg by the Cartesian diagram

— o1 —
X alg > X alg

l l

Spec(C) T Spec(C)

Then D;’lg := 0~ !(Dylg) is also a smooth divisor on the smooth projective variety X :lg'

Denote by (X ’, D?) the analytification of (X D:Ig). We are going to show that the

(o}
alg®
projective log pair (X ?,D°) satisfies all the conditions in Theorem A.

We set up the notations in what follows. For a coherent sheaf %, on X, alg, We
denote by ¥ ‘l’g := (071)*Falg, whose analytification is denoted by F°.

Fix an ample line bundle L., on X alg- Then L7 is an ample line bundle over X°.
By [CS14, p. 473] o™! induces natural isomorphism

(6.0.2) (0™ H' (Xag) = H'(Xg,).
and

(6.0.3) (o 1y Q%alg(log Dyg) — Q;_(:lg(log Dglg).
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Moreover, for any vector bundle E,; on X, alg> one has

(6.0.4) @(ck(Eag)) = ck(E)
and
(07)" (ck(Eatg)) = cr(Egyy)-
By (0.1.3) in Theorem B, one has
n
n+1
It then follows from (6.0.3) and (6.0.4) that

(6.0.5) ZCZ(QIY(log D)) — cl(Q)l_((log D))? = 0.

n

(6.0.6) 2c2(§2;_((, (log D%)) — cl(Q)l_(g (log D?))* = 0.

n+1
By Theorem B, the log Higgs bundle (E, 0) := (Q)l_<(log D) & O, 0) defined as (0.1.1)
is pr-polystable. By (6.0.3), its conjugate via o is the log Higgs bundle (E?, 67) :=
(Q;_((, (log D?) ® O, 0°), where 07 is defined as (0.1.1). Let # C E? be any saturated

coherent Higgs sub-sheaf. Then Fois a Higgs subsheaf of (E, ). Note that we
always have the slope inequality yL(T”_I) < pr(E), and the equality holds if and only

if (T"_l, 0]4o-1) is a direct summand of (E, 6). It then follows from (6.0.3) and (6.0.4)
that

(6.0.7) pre(F) = p(F° ) < pr(E) = o (E°).

Note that the conjugate of (F° )° = ¥ for o 0 6~ = 1. We thus conclude that, when
the equality (6.0.7) holds, (¥, 07|#) is a direct summand of (E?, ). Hence the log
Higgs bundle (E?, 69) is ppo-polystable.

In conclusion, the projective log pair (X ?,D°) satisfies all the conditions in The-
orem A. Applying Theorem A, we conclude that there is another torsion free lattice

[° c PU(n, 1) so that X _D° = Bn/ra. Moreover, X is the toroidal compactification

of Bn/rcr. This proves Corollary D, as well as Corollary C when parabolic subgroups
of I are unipotent.

For a general torsion free lattice I' € PU(n, 1), there is a finite index subgroupI" c T
so that parabolic subgroups of I are unipotent (see for example [BU20, §3.3]). Denote

by X := Bn/r and Y := Bn/r/. Recall that there are unique algbraic varieties X,; and
Yag whose analytifications are X and Y. The finite cover Y — X induces a finite étale
surjective morphism Yz, — Xjg. Since the base change of an étale morphism is étale,
we conclude that Yzﬁg — X;g is also a finite étale surjective morphism. By the above

result, Y is the ball quotient. Since Y° — X¢ is a finite cover, X7 is also the ball
quotient. Corollary C is proved. O

APPENDIX A. METRIC RIGIDITY FOR TOROIDAL COMPACTIFICATION OF NON-COMPACT
BALL QUOTIENTS

by BENoiT CADOREL AND YA DENG

The main motivation of this appendix is to provide one building block for Theo-
rem A. Our main result, Theorem A.8, says that there is no other smooth compactifi-
cation for non-compact ball quotient than the toroidal one, so that the Bergman metric
grows “mildly” near the boundary. Besides its own interests, this result is applied in
this paper to show that
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e the smoothness of D in Theorem A is necessary if one would like to characterize
non-compact ball quotients;

e the “moreover”-statement of Theorem A: the projective log pair (X, D) is the toroidal
compactification of a non-compact ball quotient.

A.1. Toroidal compactifications of quotients by non-neat lattices. In this sec-
tion, we recall a well known way of constructing the toroidal compactifications of ball
quotients in the case where the lattice has torsion at infinity. The reader will find more
details about the natural orbifold structure on these compactifications in [Eys18]. For
our purposes, the basic result given in Proposition A.1 will be sufficient.

Recall that we say that a lattice I' ¢ PU(n, 1) is neat (cf. [Bor69]) if for any g € T,
the subgroup of C* generated by the eigenvalues of g is torsion free. This implies
that T is torsion free and that all parabolic elements of I" are unipotent, so that the
toroidal compactifications of Bn/r provided by [AMRT10,Mok12] are smooth (there is
no "torsion at infinity").

Proposition A.1. LetI' ¢ PU(n,1) be a torsion free lattice, and let I” C T be a finite
index normal neat sublattice. Let U = Bn/r, U = Bn/p, and denote by X’ the smooth
toroidal compactification of U’ = Bn/r/ as constructed in [AMRT10, Mok12].

Then the natural action of the finite group G = r/r/ on U’ extends to X', and the

quotient X = X,/G is a normal projective space, with boundary X — U made of quotient
of abelian varieties by finite groups. Moreover, when I is arithmetic, X coincides with
the toroidal compactification of U constructed in [AMRT10].

Remark A.2. By [Bor69, Proposition 17.4] in the arithmetic case, and [Bor63], or [Rag72,
Theorem 6.11] in the general case, any lattice in PU(n, 1) admits a finite index neat
sublattice.

Before explaining how to prove Proposition A.1, let us recall the construction of X’
as it is defined in [Mok12] (see also [Cad16] for a similar discussion).

Each component D of X’ — U’ is associated to a certain I'"-orbit of points of dB",
whose points are called the I'-rational boundary components of 0B" (cf. [AMRT10,
Chapter 3] or [Mok12, §1.3]). Let b € dB" be such a point, and let N, ¢ PU(n, 1) the
stabilizer of b. This is a maximal parabolic real subgroup of PU(n, 1) ; let us denote
by W, its unipotent radical. This group can be written as an extension 1 — U, —
Wy 5 Ay — 1, where A, = C"!, and U, = R is the center of W},. Let L, = Nb/Wb.
This reductive group can be embedded as a Levi subgroup in Nj, so that N, = W, - L.
Moreover, we have a decomposition L, = U(n—1) xR, where the factor U(n—1) corre-
sponds to complex rotations around the axis Cb, and R corresponds to transvections
of B" along the axis Rb (this description of W}, can be obtained e.g. by specializing the
discussion of [BB66, Section 1.3] or [AMRT10, Section 4.2] to the case of the ball).

This Lie theoretic description of N, can be understood more easily by expressing
the action of the previous groups on the horoballs tangent to b. Let (S[(,N))NZO be the

family of these horoballs. Each SISN) C B" can be described as an open subset in a
Siegel domain of the third kind, as follows:

(A1.1) SN~ {(2,2,) € "I X C | Imz, > ||Z]]2 + N}
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We have 51(70) = B", and when b = (0, ..., 0, 1), the change of coordinates between the
two descriptions of the ball is given by the Cayley transform

w Wy 1+w
1 n—1 i n S(O)

Wi, ey Wye1, Wp) € B" > (7, 2,) = s ey , )
(w1 n—1» Wn) (2’ zn) (1_Wn 1= w, 1_Wn) 0,...,0,1)

The previous expression for SZ(JN) can be used to give explicit formulas for the action
of W, and Ly, on the ball. If g € W}, we can write g = (s, a) accordingly to the decom-

position W, sgs Uy X Ap (Up = R, A, = C*1), and we have, for any (w', w,) € SZ(JN):
(A.1.2) g-(Z,2,) = (2 +a,z, +il|a||* + 2ia - Z +5s).

We check easily that SéN) is preserved by Wj. Also, for any g € L, ~U(n— 1) X R, we
can write g = (r, t), and we then have

(A.1.3) g-(Z,zy) = (e'(r - 7)), e”' zp).

Note that the element g above sends S;N) onto S;eZtN).

We are now ready to describe the quotients of SZ(JN) by the action of I” N N,. Note
first that since I" is neat, we have I‘ N Np C W;. Then, by the discussion above, we

obtain a decomposition as sets Ny = (C" IxR)x(U(n—1)xR), in which the elements
of I” N N, can be written as (a, t, 1d, 0). It also follows from [Mok12] that "N U, = Z7

(N)
for some 7 € U, ~ R. This last fact permits to form the quotient G( ) =5 U, N T

using (A.1.1), we can also express the latter quotient as an open subset of C" 1 x C*:

G(N) {(W Wn) e C 1 x C* | |W |€ . | |w’||2 < o2 N}
i i ' ’ (N) y Hz, (N)
and the quotient is then realized by the map (z/, z,) € S, — (2, e ) € G, .

The group Ap := (I’ N W,) C C*! is an abelian lattice of rank 2(n — 1), which acts
on GEN) CcC"!xC*as

a-(Z,zy)=(Z +a,e - ”“”2__“2,,),

Clearly, the closure GIEN) in C" is an open neighborhood of C"~! x {0}. We can form
the quotient

)
W) _ Gy
Q) v Ap
which is then isomorphic to a tubular neighborhood of the abelian variety c /A, I

some negative line bundle. Finally, the toroidal compactification X’ can be obtalned

by glueing the open varieties QIEN) to U’ (as b runs among a system of representatives
of the rational boundary components, and N is chosen large enough for each cusp).

Our claims about X can be derived from the following lemma.
Lemma A.3. Let b € 0B" be a I’-rational boundary component, and let g € I'. Then
the pointb’ = g - b is also ['-rational, and there exists N, N’ > 0, for which g induces

an isomorphism S(N) — S(N ), yielding in turn a unique compatible biholomorphism

oM — o,
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Proof. AsT” is torsion free, a point z € dB" is I'-rational if and only if W, N T" # {e}
(see [Mok12, §1.3]). Since g normalizes I, we have g(W, NT")g™! C Wy N T’ so b’ is
IV-rational if b is.

As for our second claim, since the set of horoballs is preserved by the action of
PU(n, 1), we may find N, N’ such that g induces a isomorphism SEN) — SS,V). Let

(x’,x,) (resp. (y',yn)) be standard coordinates on S;N) (resp. S;N’)) as in (A.1.1). It
is always possible to choose the coordinates so that (y',y,) = (x’,x,) o u for some
u € U(n) satisfying u - b’ = b. Then ug € N, and the formulas (A.1.2) and (A.1.3)
imply that (x’, x,,) o (ug) is an affine function of (x’, x,,). Thus (v, y,) o g = f(x’, xp)
for some affine map f.

Since g normalizes I, we have g(I" N U,)g~! = I" N Uy, so the map SIEN) =N SI(QN/)

passes to the quotient to give a map g : GZN)—>GI(QJ,V/). Using an explicit expression for
the affine map f, we find an (a priori multivaluate) expression for g as

(,zn) € GIEN) s (A-Z +ulogz, +2), Czeb™) e GZI,\]’)
for some A € M,_1(C), some vectors u, b, z;, € C" ! and C,a € C. Since the for-

mula above must yield a well-defined, invertible map GgN) — G;f,v,), we must have

u = 0,a = 1. This shows that g has unique holomorphic extension GgN) — Gl(f,w).
Finally, as g normalizes I”, this map passes to the quotient by A, = 7(I' N W) (resp.
A} = (T N W), which gives a uniquely defined biholomorphism QéN) — QS,V ). o

Remark A.4. Note that it is easy to describe the action of the stabilizers of the boundary
components of X’ — U’. Assume indeed that g € T preserves one of the I''-rational
boundary components b € 9B". Then we can write g = u-d, in the Levi decomposition
Ny = W, - Ly, and further decompose u = (s, a) (in W, =y Uy X Ap), and d = (r,t) (in
L, = U(n — 1) X R). Now, since I'" C T is of finite index, and since I" N N, C W}, the
element d has finite order. This implies that ¢t = 0, so d is simply a unitary rotation
around the complex axis Cb.

It is now clear from the explicit formulas (A.1.2) and (A.1.3) that the action of g on
GIEN) can be described as

2 2_4m— 2im
Z|lall —7(1'(72')+T$Zn)’

g-(Z,zy)=(r +a,e”

and this formula induces in turn a natural action on QEN). We see in particular that

Cn—l

g acts on the abelian variety /A, Viaan affine map, with linear part belonging to

Un-1).

Going back to the proof of Proposition A.1, we see that Lemma A.3 permits to define
a unique action of the quotient G = lﬂ/r/ on X’ compatible with its natural action on
U’. The complex projective space X can be defined as the quotient X //G' The following

lemma ends the proof of Proposition A.1, and clarifies the link with the construction
of [AMRT10].

Lemma A.5. The variety X defined above does not depend on the choice of I”. When the
lattice ' is arithmetic, X coincides with the toroidal compactification of U as constructed
in [AMRT10].

Proof. Let I, I c T be two neat lattices of finite index. We want to show that the
varieties constructed from I'” and I are the same. Since I' N I’ also has finite index
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inI', we may assume I'” C I". The previous discussion shows that the action of two

lattices I'” c I are compatible with each other on each open set Gl(yN), which suffices
to prove the first point. In general, we can also argue as follows.

For any arithmetic quotient of a hermitian symmetric space Q/r, the construction of
a toroidal compactification of [AMRT10] depends on a certain choice of I'-admissible
polyhedra for each rational boundary component (see [AMRT10, Definition 5.1]). In
the case where Q = B", since dimg U, = 1 for any b € dB", there is only one such
possible choice (cf. [loc. cit, Theorem 4.1.(2)]). Both claims then follow from the
functoriality of toroidal compactifications (see [Har89, Lemma 2.6]), since “choices”
of polyhedra admissible for two lattices I’ C T are thus automatically compatible
with each other. O

Note that even though this construction of X is well adapted to our purposes, it
should not be used to define X as an orbifold, as it has the drawback of producing artifi-
cial ramification orders along the boundary components of X. As explained in [Eys18],
a better way of proceeding would be to construct directly open neighborhoods of the
components of X — U as stacks, before glueing them to U.

A.2. Main results. Let us first begin with the following lemma.

Lemma A.6. Let Y be the toroidal compactification of the ball quotient U := Bn/p bya
torsion free lattice ' C PU(n, 1) whose parabolic isometries are all unipotent. Let X be
another projective compactification of U, and assume one of the following:

(a) X has at most quotient singularities,
(b) or, more generally, X has at most kit singularities.

Then the identity map of U extends to a birational morphism f : X — Y.

Proof. The identity map of U extends to a birational map f : X --» Y. It suffices to
show that f is regular. Assume by contradiction that f is not regular. One can take
a resolution of indeterminacy y : X — X for f so that K@y pY(U) = U is an
isomorphism and

By the rigidity result (see [Deb01, Chapter 3, Lemma 1.15]), there is at least one fiber
u~1(z) with z € D which cannot be contracted by f . Clearly, we have f (1 Y(z)) C
Y-U.
(1) If X has quotient singularities, [Kol93, Theorem 7.5] implies that every fiber
of y is simply connected. As Y — U is a disjoint union of Abelian varieties A
by [AMRT10, Mok12], the image of f : p~'(z) — Y — U must be a point.
(2) If we assume only that X has kit singularities, we can use the work of Hacon-
McKernan [HMO07] which implies that every fiber of p is rationally connected.
In this case, ]?(,u'l(z)) is also a point since abelian varieties do not contain
rational curves.

This is a contradiction in both cases. m]
Let us introduce a natural class of pairs under which our rigidity theorem will hold.

Definition A.7. Let (X, D) be a pair consisting of normal algebraic variety and a
reduced divisor. We say that the pair (X, D) has algebraic quotient singularities if it
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admits a finite affine cover (X;);es, such that each (X;, D N X;) is the quotient of a
smooth SNC pair (U;, D;) by a finite group G; leaving D; invariant.

We can now state our main result as follows.

Theorem A.8. LetU := Bn/r be an n-dimensional ball quotient by a torsion free lattice
I' € PU(n, 1). Let X be a normal compactification of U, and let D := X —U. Assume one
of the following:
(1) D is a reduced divisor, and the pair (X, D) has algebraic quotient singularities;
(2) the variety X has at most klt singularities.

Let DY ¢ D be the divisorial part of D. If the Kihler-Einstein metric o for Tx(—log DV)|yy
is adapted to log order near the generic point of any component of DI, then (X, D) iden-
tifies with the toroidal compactification of U.

Remark A.9. (1) Note that if (X, D) has algebraic quotient singularities, then X is klt;
however the proof in case (a) will not appeal to the difficult result of [HMO07]
which was used in Lemma A.6. Note also that for any lattice I' ¢ Aut(B"), if X is
the toroidal compactification of U = Bn/r described in Section A.1, then the pair
(X, X — U) has algebraic quotient singularities. This class of pairs seems then to
be a natural setting for Theorem A.8 to hold.

(2) As an easy consequence of the case (b) above, we can remark that there is no kit
compactification X of U such that X — U has codimension > 2.

Corollary A.10. With the same assumptions as in Theorem A.8, if X is smooth and D
has simple normal crossings, then D is in fact smooth, and each component is a smooth
quotient of an abelian variety A by some finite group acting freely on A.

Let us prove Theorem A.8. For the time being, we do not distinguish between our
two hypotheses on X. Let I” c T be a subgroup of finite index so that all parabolic
elements of I are unipotent. Writing U’ := Bn/r/, this gives a finite étale surjective
morphism y : U" — U.

Let X’ be the normalization of X in the function field of U’: this is a normal pro-
jective variety X’ compactifying U’ so that yy extends to a (unique) finite surjective
morphism p : X’ — X (see e.g. [AHCG11, Chapter 12, §9]). Let us recall how to con-
struct X’ . We first take an arbitrary smooth projective compactification X of U’ so
that y1y extends to a rational map i : X --» X. We then take a further blow-up X’ — X
so that its composition with fi, denoted by i’ : X’ — X, is a generically finite surjec-

tive morphism. Take a Stein factorization X’ — X’ 5 X for f. Thenp : X' — X
is a finite surjective morphism with X’ normal projective variety. One can check that
such a morphism p does not depend on the choice of X and X’.

Lemma A.11. The variety X" has one of the following types of singularities:
(a) if the pair (X, D) has algebraic quotient singularities, then X’ has algebraic quo-
tient singularities ;
(b) if X has klt singularities, then X’ also has kit singularities.

Proof. The case (b) is easy to settle, since klt singularities are preserved under finite
surjective morphisms (see [KM98, Corollary 5.20]). Let us now deal with the case (a).
Note that the statement is local on X, so since (X, D) has algebraic quotient singular-
ities, we can assume that there exists a finite cover 7 : Z — X such that E = t71(D)
has simple normal crossings. In this setting, (X, D) is the quotient of (Z, E) by a fi-
nite groupoid G leaving E invariant. Let Z’ be the normalization of the fiber product
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Z xXx X'. We get a commutative diagram:

zZ — X

b

Z —— X
The map q : Z' — Z is a finite dominant morphism between normal varieties, with
Z smooth. Moreover, it is étale above Z — E, where E is SNC. Hence, [Kol07, Theo-
rem 2.23] implies that Z” has abelian quotient singularities. To conclude, remark that
Lemma A.12 below implies that X’ is the finite quotient of Z’ by the groupoid G. In-
deed, with the notations of this lemma, it suffices to check that R(Z’)9 = R(X’). This
can be seen easily from the identifications R(Z)Y = R(X) and R(Z’) = R(Z) ®R(x)
R(X). O

In the above proof, we made use of the following simple lemma, that we include for
completeness.

Lemma A.12. Let f : M — N be a finite surjective morphism between two normal
reduced schemes. Assume that M is acted upon by a finite groupoid G, and that f is
G-invariant. Suppose in addition that RIM)9 = R(N), where R(M), R(N) are the rings
of rational functions on M, N. Then N is the quotient of M by G.

Proof. It suffices to show that £,(Op)¢ = Oy. This is a local statement on the base, so
we may assume that N = Spec A, M = Spec B, and A is integral. We then have a finite
extension A C B. Let s € BY. Then s € R(B)Y = R(A) by assumption. As the element s
is finite over A, and A is integrally closed, this implies s € A. This gives the result. O

Let Y’ be the toroidal compactification of U’, so that the boundary A:=Y" - U’ is a
smooth divisor.

Lemma A.13. The identity map on U’ extends as an isomorphism f : X’ — Y.

Proof. By Lemma A.6 and Lemma A.11, the identity map of U’ extends to a birational
morphism f : X’ — Y’ in case (a), or in the more general case (b). From now on, we
will not distinguish between these two cases anymore.

Assume by contradiction that f is not an isomorphism. As Y’ is smooth, it follows
from [KM98, Corollary 2.63] that the exceptional set Ex( f) is of pure codimension one.
Thus, the birational morphism f must contract at least one irreducible divisor, denoted
by E, which must be an irreducible divisorial component of the boundary D’ := X'-U".
Denote by D8 the singular locus of D. Pick any point x’ € p~}(D — D) N E.
Note that x := p(x’) belongs to the divisorial part DV, Let us take an admissible
coordinate chart (V; xy, . . ., x,) centered at x with (x; = 0) = V N D so that the frame
(dlogxy,dxs, . . ., dxy) for Q;(log DW)|q, is adapted to log order with respect to the
metric w™!. Let o’ := y*w, be the canonical Kihler Einstein metric on U’.

Lemma A.14 below shows that «’ is adapted to log-order for Tx~ (- log E°), where
X" = p~ (X — D), and E° := X”° N E. We are going to derive a contradiction
with the fact the E is contracted. Denote by A; a component of A so that f(E) C A;.
We can take admissible coordinates (‘W;zy,...,z,) and (U; w1, ..., w,) centered at
some well-chosen x” € EN X" and y := f(x’) € A; respectively so that f(‘W) c U,
and f|g : E — f(E) is smooth at x’. Moreover, within these coordinates, E N W =
DNW ={z; =0},and Ay N U = ANU = {w; = 0}. Denote by (fi(2),..., fu(2))
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the expression of f within these coordinates. Then if the admissible coordinates are
chosen properly, one has

(fi(@), .. .. fo(2) = (2" 91(2) - - .. 2] Gr(2)s Gks1s - - -+ Gn)

where ¢1(2), . . ., gk(z) are holomorphic functions defined on W so that g;(z) # 0 and
m; > 1fori=1,...,k. Since E is exceptional, one has k > 2. By the norm estimate
in [Mok12, eq. (8) on p. 338], the Kéhler-Einstein metric w for Ty(—log A)|y is adapted
to log order. More precisely, one has
|dw, |, ~ (=log |wi[).
Since
f*dlogwy; = madlog z; + dlog ga(w),

one thus has the following norm estimate

49:
g2
for some constants C > 0. Since dlogz; is a local nowhere vanishing section for
Q3. (log D’), we conclude that the metric ! for Q},.(—log D’) is not adapted to log
order, and so is o’ for Tx~(—log D").

The contradiction is obtained, which ends the proof of the lemma. m]

C(=log |z1]*)

|§)‘1 2 2m
|z |22

1,
|d10g21|5),_1 > ?,U |d10g W2|§)—1 -

— 1|
2
2 m,

Lemma A.14. With the notations of the proof of Lemma A.13, the metric ' is adapted
to log-order for Tx~(—log E°).

Proof. Write W := p~1(V). Since plqyy_p : W — D' — V — D is a finite unramified
cover, the image of (u|w_p/): (71(‘W — D’)) is a subgroup of 7;(‘W — D) =~ Z index m.
Set

v:A" — A"
(Zl"--’zn) = (ZT’ZZ’---’ZTI)

One thus has the following commutative diagram
A x ATy qy
\Lle*xA”‘l \LWW
A" % zv
so that h$

Aeseant ©ATX A"! — W N U’ is an isomorphism. By the Riemann re-
movable singularities theorem, h extends to a holomorphic map h : A" — “‘W. One
can easily check that h is surjective with finite fibers. Hence h is moreover biholo-
morphic. (W;zi,...,z,; h) is therefore an admissible coordinate centered at x” with
(z1 = 0) = W N D’ so that u is expressed as v within the admissible coordinates of
(W;z,...,z5) and (V;x1, ..., xy,). . Since

pidlogx; = mdlog zy, p'dxy = dzy, . . ., " dx, = dz,,

the frame (d log z1, dz,, . . ., dz,) for Q,(log D’)|4y is adapted to log order. This shows
that the metric «’ is adapted to log order for Tx~(—log D’°). ]

We have shown that there is a finite surjective morphism

g:Y’—>X,

which identifies with the étale and surjective map U" — U over X — D.
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We can now conclude the case discussed in Corollary A.10, where (X, D) is assumed
to be a smooth log-pair. Since the irreducible components of Y'—U" are connected, this
implies right away that D must be smooth. Moreover, for each connected component
A; of A, there is a connected component D; of D so that g|s, : A; — Dj is a finite
surjective morphism, which is also étale by the local description of y given in the
proof of Lemma A.14. Hence in this case, D; is a smooth quotient of an abelian variety
by the free action of some finite group G;. This suffices to establish Corollary A.10.

The proof of Theorem A.8 will be complete with the following lemma.

Lemma A.15. The variety X identifies with the quotient of Y’ by the natural action of
G= I_‘/1'*1

This result comes right away from Lemma A.12, taking M = Y/, N = X, and G = G.
Remark that we have R(Y’) = R(U")® = R(U) = R(X) since U = U /5.

To conclude, it suffices to remark that Proposition A.1 claims that the toroidal com-

pactification Y of U also identifies with the quotient Y,/G. Thus, there is an isomor-
phism Y = X compatible with the identity on U. Theorem A.8 is proved.
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