
HAL Id: hal-02902427
https://hal.science/hal-02902427

Submitted on 19 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Agent-based management of support systems for
distributed brainstorming

Yuki Kaeri, Kenji Sugawara, Claude Moulin, Thierry Gidel

To cite this version:
Yuki Kaeri, Kenji Sugawara, Claude Moulin, Thierry Gidel. Agent-based management of support
systems for distributed brainstorming. Advanced Engineering Informatics, 2020, 44, pp.101050.
�10.1016/j.aei.2020.101050�. �hal-02902427�

https://hal.science/hal-02902427
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

Agent-based management of support systems for distributed brainstorming
Yuki Kaeria,⁎, Kenji Sugawarab, Claude Moulinc, Thierry Gideld
a Faculty of Media Studies, Department of Media Studies, Mejiro University, Japan
b Faculty of Information and Network Science Chiba Institute of Technology, Japan
c Sorbonne Universités, Université de Technologie de Compiègne, JR Unit CNRS 7253, Heudiasyc, France
d Sorbonne Universités, Université de Technologie de Compiègne, COSTECH EA 2223, Centre de Recherche, France

A R T I C L E I N F O

Keywords:
Multi-agent system
Resource-oriented architecture
Distributed brainstorming
Flexibility
Usability

A B S T R A C T

In this paper, we describe the design and the management of an agent-based system that supports distributed
brainstorming activities. The support system is a highly coordinated IoT application composed of many locally
installed interface devices, multimedia communication functions, and cloud functions that process application
logic and store meeting data. The system is designed to support a variety of brainstorming sessions, so its
functionalities must be modifiable and enable the system to be adapted to different environments and user
requirements without any loss of performance. System accessibility should be also ensured from any location for
any user. These constraints require a flexible and usable support system.

We further discuss the aspects of flexibility and usability that are important in a support system for distributed
brainstorming, from which we propose a conceptual schema for flexible and usable support systems. To realize
this schema, we present a resource-oriented architecture that can modify the brainstorming support system’s
structure and functions. Flexibility is achieved thanks to an agent-based system that manages resources and
operates on them according to users’ requests.

We also describe the system architecture, which is organized around a set of channels dedicated to different
services proposed to the users. We present in detail a video channel that ensures user awareness during syn-
chronized activities. We then conduct several experiments verifying the usability of important channels in the
architecture and present the results of these experiments.

Finally, we discuss experimental scenarios that show how the system owes its adaptability to management
based on an agent organization that supports distributed brainstorming and other activities.

1. Introduction

In the architectural reference model (ARM) defined in the Internet
of Things Architecture (IoT-A) European Research Project, “things”
consist of three types of devices—sensors, tags, and actuators—that can
provide data to different external systems [1]. According to these re-
ference models [2], an IoT application is largely composed of three
elements: cloud resources, network resources, and edge resources [3].
Since edge resources depend on physical installation conditions and
geographical constraints, IoT applications require connections between
the edge, network, and cloud resources whose runtime matches the
operation conditions. In order to build a complex IoT application, re-
source-oriented architecture (ROA) has been studied [4]. For example,
Dar et al. proposed an ROA to connect front-end IoT devices with back-
end business process applications, promising programmer-friendly ac-
cess to IoT devices [5].

Agent-based development also provides a suitable and effective
modeling method and programming paradigm for IoT systems [6,7].
For example, an agent-based cooperating smart object (ACOSO) ap-
proach—based on metamodels and exploitable at the system analysis,
design, and implementation levels—has been studied for building and
managing IoT systems [8,9].

On the other hand, collaborative work between distributed sites
over the Internet has become important for companies and universities
in the world. Brainstorming sessions are a good example of collabora-
tive methods used for new product design and software development at
different stages, such as planning or defining requirements. Our support
system is based on the KJ method [10], developed by Jiro Kawakita, in
which ideas are presented as Post-it notes and can be manipulated using
large multitouch multi-user tabletop displays [11]. The results of
meetings using such collaborative work methods are saved in a data-
base and may be shared between participants located in the same place

https://doi.org/10.1016/j.aei.2020.101050
Received 29 December 2018; Received in revised form 7 September 2019; Accepted 28 October 2019

⁎ Corresponding author at: Mejiro University, 4-31-1 Nakaochiai, Shinjuku-ku, Tokyo, Japan.
E-mail addresses: yk.kaeri@gmail.com (Y. Kaeri), suga@net.it-chiba.ac.jp (K. Sugawara), claude.moulin@utc.fr (C. Moulin), thierry.gidel@utc.fr (T. Gidel).

Advanced Engineering Informatics 44 (2020) 101050

1474-0346/ © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/14740346
https://www.elsevier.com/locate/aei
https://doi.org/10.1016/j.aei.2020.101050
https://doi.org/10.1016/j.aei.2020.101050
mailto:yk.kaeri@gmail.com
mailto:suga@net.it-chiba.ac.jp
mailto:claude.moulin@utc.fr
mailto:thierry.gidel@utc.fr
https://doi.org/10.1016/j.aei.2020.101050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2020.101050&domain=pdf

on a shared screen, but also between participants at different sites. The
use of various devices with rich functions deployed within the system
allow it to capture, capitalize on, and treat useful information [12].

In summary, a support system for distributed brainstorming is a
highly coordinated IoT application composed of many locally installed
interface devices, synchronous multimedia communication functions,
and cloud functions that rapidly process and store meeting data. The
functionality and performance of the support system must be change-
able across sessions to adapt to various kinds of brainstorming, and
within a session to adhere to the various environments and user re-
quirements during each brainstorming session. Accessibility to the
support system should be also ensured for any user from any location.

Operating a support system and adapting its structure according to
the evolution of a session is a challenging topic. In order to easily use
such a complex support system for brainstorming sessions, users should
be supported by intelligent functions. In this paper, we discuss the
flexibility and a usability of support systems for distributed brain-
storming and propose a conceptual schema of flexible and usable sup-
port systems for distributed brainstorming (FUSSDBs). To realize this
schema, we further propose an ROA and an agent-based system for
managing resources.

In Section 2, we investigate the key concepts of “flexibility,” “us-
ability,” and “ROA.” In Section 3, we define the problem we aim to
solve in this paper and provide an overview of our FUSSDB as well as an
architecture for agent-based resource management. The FUSSDB is
composed of a usability-aware service orchestration system (USOS) and
a flexible support system (FSS) for distributed brainstorming. In Section
4, we describe the FSS’s ROA-based design. In Section 5, we detail the
design of the USOS, a multi-agent system that is composed of user
agents and orchestration agents (OAs). In Section 6, we implement the
FSS and USOS and conduct experiments aiming to validate their flex-
ibility and usability. Finally, in Section 7, we discuss the flexibility and
usability of the proposed system considering the experimental results.

2. Related work

2.1. Brainstorming support from multimedia devices

Brainstorming is a meeting facilitation technique that improves
creative efficiency by sharing opinions among participants, allowing
them to seek solutions to problems and generate ideas. Existing brain-
storming support systems, such as TATIN-PIC [13], Groupgarden [14],
GKJ [15], and ScriptStorm [16], mainly support design and project
management processes. These systems assume that such processes can

be improved if all users can simultaneously submit ideas via Post-it
note, and then discuss, enrich, and organize these ideas (Fig. 1).

2.2. Distributed brainstorming support system

Distributed brainstorming exists as a method of brainstorming be-
tween distributed sites [17]. In a survey of distributed collaboration,
Marlow found that “current tools and approaches are inadequate for
meeting scenarios that require participants to not only converse but
also to share and co-reference different types of multimedia content
across distance,” and that, “Participants use a mixed set of tools to
support different needs within different types of meetings, as no single
video conferencing tool includes sufficient functionality to address all
their demands” [18].

Tools for brainstorming include those that support media with dif-
ferent functions (Skype, Google Hangouts, Google Docs1, etc.) and must
be accessed by users at the same time [19]. However, many audiovisual
conference support applications often do not permit data accumulation
and reuse, leading to insufficient asynchronous brainstorming support.
Current research and Web services that support distributed brain-
storming include IdeaStream [20], Bubbl.us2, MindMeister3 , Storm-
board4, XMind5, and Mindomo6.

2.3. Capitalizing on distributed brainstorming meeting resources

A meeting resource is defined as an object or information used or
generated during brainstorming, including documents, video streams,
sensor signals, and meeting records. In distributed brainstorming, users
want to share meeting resources by activating applications necessary
for sharing information [19]. However, it is difficult for users to launch
these applications on demand during brainstorming.

Additionally, although Skype for Business7 and Google Hangouts8

can store meeting video on a local or cloud server, these applications
were not intended to relate the video streams to other media or in-
formation generated during the meeting. If it could be combined with

Fig. 1. TATIN: Brainstorming support system using a multitouch interface.

1 https://docs.google.com/.
2 https://bubbl.us/.
3 https://www.mindmeister.com.
4 https://stormboard.com/.
5 http://xmind.net/.
6 https://www.mindomo.com/.
7 https://www.skype.com/business/.
8 https://hangouts.google.com/.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

2

https://docs.google.com/
https://bubbl.us/
https://www.mindmeister.com
https://stormboard.com/
http://xmind.net/
https://www.mindomo.com/
https://www.skype.com/business/
https://hangouts.google.com/

this additional information, the video information would be rendered
more useful and reusable.

The concept of capitalizing on, accumulating, and using the results
of brainstorming asynchronously is not new [12], but no operational
system for reusing these data has yet been realized.

2.4. System flexibility

Flexibility is important for systems working in today’s ever-chan-
ging, complex, dynamic, and global environment [21]. Software system
flexibility can be understood in two contexts: structural flexibility and
process flexibility. Structural flexibility is the capacity of the design and
organization of a software application to be adapted to business
changes. Process flexibility is the ability of users to make changes to the
technology using management processes that support business changes
[22].

Flexibility is judged using metrics such as the range of supportable
changes, response time, sustainable duration of a stable state, and
margin to the following change anticipated. Agent-based approaches
have been explored for realizing system flexibility by calculating these
metrics and changing the system structure and functions [23].

2.5. System usability

Usability is defined as the ease of use and acceptability of a system
for a class of users carrying out specific tasks in a specific environment
[24]. Ease of use affects user performance and satisfaction, whereas
acceptability affects whether the product is used [25]. Heuristic eva-
luation (HE) is the most common informal method for inspecting
system usability; disadvantages of HE include separation from the end
user and an inability to identify or allow for unknown users’ needs [25].

A collaborative usability inspection is a systematic examination of a
finished system by a team of developers, users, domain experts, and
usability specialists. One advantage of a collaborative usability in-
spection is that is allows developers to build skills and knowledge about
the usability of developing systems [24]. Usability can be assessed by
metrics, such as the usability metric for user experience, that are con-
cerned with improving user experiences [26]. It is a challenging study
to acquire these skills, know-how and metrics from interacting systems
with people because it may be able to contribute building intelligent
user interfaces.

2.6. Resource-oriented architecture

A service is a discrete unit of functionality that can be accessed

remotely over the Internet. A service-oriented architecture (SOA) is a
style of software design in which services are provided to users or other
system components. In contrast, resource-oriented architecture (ROA)
has been studied to provide an end-to-end integration architecture of
front-end IoT devices with Web applications [27]. A system resource is
any physical or virtual component that is deployed in an Internet en-
vironment. A virtual component is a discrete piece of code and/or data
structure. An ROA is a style of software design where resources are
connected using common application programming interfaces (APIs),
such as REST, to reuse them for different purposes. The resources can be
identified by universal resource identifiers on the World Wide Web.

Although the merits of SOAs and ROA have been debated, efforts
have been made to unify their dominant implementations in cloud
computing [4]. An ROA for the Web of Things (WoT) is designed as a
refinement of the IoT by integrating smart things not only into the IoT
but into the Web using a RESTful API [27].

An estimated 50 billion smart objects will be connected to the
Internet by 2020. To provide value-added services to end users through
IoT platforms, these devices must be discovered by resources in the
cloud and by other devices. Services for resource discovery in the IoT
are generally proposed using RESTful web services [28].

2.7. Agent-based system resource management

An agent is an object or a program that involves features of au-
tonomy, reactivity, social ability, and pro-activeness [29]. An agent
framework provides a working environment and development tools as
well as an agent model for agent developers [30].

Agent-based computing (ABC) is suitable for implementing robust
scalable systems and interoperable and virtualizable “things.” ABC is
suitable for supporting the design and implementation of autonomous
IoT systems[31].

The agent-based distributed information processing system (ADIPS)
framework is an agent framework developed to design and implement
agent-based flexible systems based on a repository of agents, as shown
in Fig. 2[32]. A repository of agents defined by the ADIPS framework
stores a set of classes of agents (class agents) developed by agent pro-
viders using design support tools on the designer’s platform.

The framework provides an ADIPS organization/reorganization
protocol to generate a multi-agent system consisting of instantiated
agents on a user’s platform by class agents and an ADIPS communica-
tion/cooperation protocol to send and receive agent messages based on
the knowledge query and manipulation language agent communication
protocol [33]. Based on user requests, a multi-agent system is in-
stantiated from the repository using the ADIPS organization/

Fig. 2. The architecture of the ADIPS framework.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

3

reorganization protocol and ADIPS communication/cooperation pro-
tocol.

3. Approach to usable support systems for distributed
brainstorming

3.1. Problems in developing support systems for distributed brainstorming

Marlow’s statements regarding the inadequacies of current tools and
approaches highlights the complexity of developing an IoT support
system that realizes many different functions and can be used anytime,
anywhere, and easily. If the support system can be developed to
meet all requirements and adapt to all situations, it can become too
difficult to use in typical work situation environments.

Usability is defined as the ease of use and acceptability of a system
for a class of users carrying out specific tasks in a specific environment
[24]. The problem explored in this paper is to create a usable archi-
tecture for support systems for distributed brainstorming.

3.2. Overview of a support system for distributed brainstorming

An overview of our proposed support system for distributed brain-
storming is shown in Fig. 3. A distributed brainstorming environment
consists of distributed sites …s s s N[1], [2], , [] and a cloud support
system consisting of cloud support functions and a meeting resource
storage. The cloud support functions that provide services, such as
video conferencing, affinity diagrams for organizing ideas using notes,
and document sharing for each site, are discussed in Section 4. A cloud
support function also stores participant activities as data streams, such
as video streams captured by cameras, into meeting resource storage.
These functions help participants to use meeting records during or after
a brainstorming session.

A local site consists of brainstorming participants and a local sup-
port system that is composed of interface devices and local support
functions that brings services to the participants. The local support
systems are connected to the cloud support system via the Internet. The
cloud and the local support systems are explained in Section 4.

3.3. Conceptual schema of a flexible and usable support system for
distributed brainstorming

A distributed brainstorming session (DBS) is a meeting for brain-
storming conducted by users at different locations using an Internet-
connected system. In this section, we formalize a model to define the

flexibility and usability of a DBS support system.
Let i be a DBS identifier; then, DBS i() is denoted as follows:

=DBS i S i F i U i() (), (), () . (1)

S i() is a set of places = …s i j j n(,), (1, ,), where j identifies the place
at which a user participates in the DBS i(). F i() is a set of functions
f i j m(, ,) that provide services for users at site i j(,), where m identifies a
function. U i() is a set of user properties up i p(,), where p identifies a
user who participates in the DBS i().

To introduce usability to our support system, as in Fig. 3, we pro-
pose a conceptual FUSSDB schema in Fig. 4. The FUSSDB is composed
of usability-aware service orchestration system (USOS) and flexible
support system (FSS) for distributed brainstorming. We assume that
many sensor devices are deployed at any site DBS i() and data from the
sensors are captured by the USOS as meeting resources.

An FSS for DBS i() gives services provided by the functions F i() to
S i(). An FSS is flexible for a DBS i() if the S i() and F i() can be modified
by operations performed by the USOS. The two kinds of flexibility
(structural and functional) of an FSS are defined as follows, according
to Nelson and Cooprider [22]: structural flexibility is defined by the
ability to change the number of connected places and participating
users during DBS(i) and process flexibility is defined by the ability of
users to change the structures and functions of support systems to adapt
to evolving brainstorming sessions.

A USOS is defined by its ability to orchestrate a series of operations
to change the structure and functions of an FSS according to changes in
user requirements, as shown in Fig. 4. A USOS supports unskilled users
in operating an FSS during evolving brainstorming sessions. The USOS
acquires users’ requirements through a user interface or by analyzing
user activity stored in meeting resource storage, as in Fig. 3; then, it
orchestrates a series of FSS operations.

3.4. Agent-based management of a flexible and usable distributed
brainstorming support system

A new FUSSDB conceptual schema is proposed in Section 3.3. To
develop a FUSSDB based on the schema in Fig. 4, we designed a
FUSSDB architecture (Fig. 5), which is composed of an agent subsystem
(AS) to develop the USOS and a resource subsystem (RS) to develop the
FSS, based on the ROA explained in Section 2.6.

The RS is a subsystem consisting of physical and virtual compo-
nents, where virtual components are discrete pieces of code and/or data
structures, as stated in Section 2.6. There are four categories of RS re-
sources:

Fig. 3. Overview of a proposed support system for distributed brainstorming.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

4

• A cloud resource is a piece of code or data in the cloud used to
process application logic directed to edge resources.

• A network resource provides communication and networking ser-
vices for cloud and edge resources

• An edge resource is a device that interacts with a user and its en-
vironment and the set of programs that control it and communicate
with other edge resources

• A meeting resource is a collection of data and streams acquired by
sensors in a DBS, used by AS agents to analyze user activity, and
capitalized for future exploitation

A Linux operating system is used for the cloud resources. Network
resources are services that may use different networks, such as the
Internet, LANs, Wi-Fi, or 5G. Edge resources run on a PC or small de-
vices and benefit from communication services provided by the net-
work resources.

The AS is a subsystem consisting of agents to develop the USOS in
the FUSSDB conceptual schema (Section 3.3). The AS is composed of
the following types of agents:

• A user agent interacts with a user to acquire his/her requests
• An OA organizes and communicates with a collection of RS re-

sources
• A resource connector directly controls an assigned resource from OA

messages
• A meeting resource analysis agent extracts explicit/implicit user

requests from meeting resources

More precisely, a resource connector (see Fig. 6) is an agent that
controls a device and uses network resources to send and receive data
from other cloud and edge resources. A resource connector also sends
and receives agent messages in agent communication language. We
assume that the API for any resource is prepared by the provider who
installs the resource in a DBS environment. We also assume that a re-
source connector is installed on any edge resource.

A user agent requests an OA to launch an application system to
support brainstorming activities. The OA invokes an organization of
agents, including resource connector agents, and cooperates with it

Fig. 4. Conceptual schema of a FUSSDB.

Fig. 5. Agent-based and resource-oriented FUSSDB architecture.

Fig. 6. Agent-based resource management in FSS for usable FUSSDB.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

5

using the ADIPS protocol [32] (see Fig. 6).

4. Channel-based system architecture of a flexible support system
for distributed brainstorming

4.1. System architecture of a multimedia support system for distributed
brainstorming

In this paper, we propose an innovative system architecture for
multimedia systems, composed of an FSS and a USOS, to support dis-
tributed brainstorming. In this section, we present an FSS design that
uses the concept of a channel that is composed of a cloud resources,
network resources, edge resources, and meeting resources, as shown in
Fig. 5. Each channel, depicted in Fig. 7, is an autonomous application

that allows people at distributed sites to either discuss and exchange
ideas (via a video channel) or perform specific activities (via the note
and document channels) during brainstorming.

Each channel stores the data that crosses over it in a cloud database.
The video channel stores the video streams captured by cameras in-
stalled at each site. The note channel stores notes containing ideas
written down during a session. Meeting data can easily be consulted
after the session by participants and other project members. The FSS in
Fig. 7, consisting of channels that connect resources in local support
systems via resources in a cloud support system, supports several ac-
tivities occurring during distributed meetings.

Another advantage of this architecture is that it allows for analysis
of the captured data by programs during or after a meeting and can
produce meeting records for participants. As mentioned in Section 2.3,
the concept of capitalization[12] is important for brainstorming. In
such a system, data from channels can be transformed by artificial in-
telligence-based programs into high-level knowledge.

4.2. Primitive channel design

A primitive channel is defined by a system of devices and cloud
programs for sending and receiving data or streams among distributed
clients, such as cameras and displays. We refer to the set of devices,
cloud programs, and middleware that connects devices and programs
involved in this application as primitive channel resources; we refer to
the collection of resources that works on the resource platform as an
flexible support system [34]. A primitive channel is designed and im-
plemented as a system that works autonomously after it is launched on
a resource platform; we provide an API to reconfigure these channels in
this paper.

The primitive channel is based on the publish/subscribe model [35],
as shown in Fig. 8. In this model, a sender transmits data for a publish
operation to a server program called a broker, which broker transmits
data to clients that have performed subscribe operations. Using these
operations, clients of a primitive channel can transmit meeting data
from a sender to receivers and, with the same principles, save data into
cloud storage.

One advantage of this model is that it enables the design and im-
plementation of a primitive channel that serves distributed clients and
records data in the cloud. Another advantage is in the flexibility to add
and remove clients dynamically [36] to and from the primitive channel.
These modifications change the structure and function of the commu-
nication middleware. Obviously, it would be complicated for users who
are not familiar with Internet middleware operations to operate the
primitive channel. To overcome this challenge, our architecture

Fig. 7. Channel-based FSS architecture consisting of resources in local support systems and in a cloud support system.

Fig. 8. Structure of a primitive channel based on the publish/subscribe model.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

6

proposes a transparent agent-based support for users, which is pre-
sented in Section 5.

Fig. 9 shows a sequence diagram that details the publish/subscribe
mechanism of a primitive channel. It is composed of three clients, a
broker, and a “storage” program that saves data in a cloud database.
When a primitive channel is launched, the storage program first sends a
“subscribe” message to a broker. For example, as shown in Fig. 9, Site A
sends a “subscribe” message to a broker upon launching. Site A then
sends a “publish” message to the broker; the published message is sent
to the storage program only because it is the unique subscriber at this
point. After the event, suppose that Site B and Site C send a “subscribe”
message to the broker. When a publish message is sent to the broker
from the Site B, the message can be received by Site A, Site C, and the
storage client. When a new client sends a subscribe message to the
broker, it is accessible and involved in the primitive channel and will
automatically publish new data.

4.3. Note channel design

A note channel supports idea generation during brainstorming ses-
sions. A multitouch display device is used at each site and a specific
program has been developed to capture users’ gestures on this device.
Fig. 10 shows the multitouch tabletop used at the University of Tech-
nology of Compiègne, in France (Fig. 10b), where some notes are

displayed. On such a device, it is necessary to use a virtual keyboard to
edit notes and virtual menus to select actions (Fig. 10a). Created objects
are graphically represented as virtual Post-it notes and clusters on the
multitouch display.

The program on the device sends events (“create note,” “move
note,” etc.) resulting from user’s actions, associated with time stamps,
to a broker. In another site, the same kind of program, which has
subscribed as a data recipient, receives the events and can display ob-
jects on the multitouch surface, reproducing the original actions.
Locking events prevents moving the same object in two different sites.
The MQTT9 protocol is used to transfer events between sites.

4.4. Video channel design

A video channel is a synchronous video distribution application that
delivers a video stream captured from a camera at one site to be dis-
played at distributed sites. Such channels aim to improve the awareness
of distributed teams during brainstorming sessions by dynamically
setting cameras and displaying and storing video streams. The WebRTC
selective forwarding unit (SFU)10 protocol is used for synchronous
video stream delivery.

Fig. 9. Sequence diagram of the publish/subscribe model.

Fig. 10. Note channel viewer.

9 https://www.iso.org/standard/69466.html.
10 https://www.w3.org/TR/webrtc/.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

7

https://www.iso.org/standard/69466.html
https://www.w3.org/TR/webrtc/

4.5. Document channel design

A document channel is an application that ensures a synchronous
delivery method for exchanging documents useful for discussion and
presentation during brainstorming. The system posts document files in
the cloud and can refer to them at any time according to the needs of
participants. Events (“change page,” etc.) are sent by the application
and received at other sites to reproduce the original actions. The
WebSocket11 protocol is used as a network resource.

5. Agent-based management of FSS resources by the USOS

5.1. Architecture of an agent-based support system

The proposed FSS architecture is a channel-based system, as shown
in Section 4 is complicated because each channel in the system consists
of various kinds and versions of resources provided by different pro-
ducers, as shown in Figs. 11 and 17. For example, if a meeting site
involves several participants who play important roles in a distributed
brainstorming session, many cameras and an interaction tool such as a
big multitouch table should be launched and connected to other sites. A
fully integrated support system at a primary meeting site generally
consists of many channels to exchange information with many sites. On
the other hand, a mobile participant of distributed brainstorming may
need a compact system to join in using a mobile phone or small PC.

Therefore, unskilled users feel burdened if they must set up channels
by themselves according to their own situations and requirements. The
burden of launching the system can be reduced if an operator helps
users set it up before they begin and while they use the system.

We proposed a USOS in Section 3.3. The USOS supports unskilled
users in operating the FSS throughout the evolution of brainstorming
sessions. We use an agent-based architecture to develop the FSS and
USOS because the ADIPS framework, explained in Section 2.7, is ex-
pected to be suitable for promoting flexibility and orchestration ability.

5.2. Agent-based design for a channel-based support system

A primitive channel is designed and implemented as a system that
works autonomously after it is launched on a resource platform, and
that provides a reconfiguration API, as described in Section 4.2. A
primitive channel is also a communication system among clients at
distributed sites via a broker in the cloud. For example, a video channel
in the FSS is composed of a sender program, a broker, and a receiver
program. A sender program controls a camera device and publishes the
captured data to a broker, and a receiver program subscribes to the
service of the broker to receive the published data, as shown in Fig. 8.

A collection of resources that work on a computer or a device such
as a smart phone is wrapped into a module using a resource connector.
Resources in a resource connector provide APIs for the resource con-
nector and for other resources in other resource connectors. A resource
connector is a wrapper program that translates an agent message to a
command for a resource and translates a series of data to inform agents
in the USOS of the working state of a device, such as whether it is
available for agents.

A primitive channel agent is an agent that directly controls some
resource connectors by sending agent messages. By using resource
connectors, a primitive channel agent in the USOS can use resources in
the FSS, as shown in Fig. 12. A primitive channel agent is an autono-
mous system because a primitive channel of the agent is implemented
as an autonomous and reconfigurable system. A channel agent controls
some primitive agents and channel agents by sending messages. For
example, a video channel agent can set up an identifier for a broker to
subscribe and publish data for a sender resource and a receiver resource

to build a channel service for a video channel, as shown in Fig. 12. A
channel agent is an autonomous system if primitive channel agents of
the multi-agent system are autonomous. Channel agents and primitive
channel agents are OAs in the USOS, as shown in Fig. 5. The OAs are
reusable components that constitute channel-based support systems
using the ADIPS framework.

A primitive channel is a component that provides a communication
service among sites that is controlled by a primitive channel agent. For
example, a video sender agent sends video streams from one site to
other sites. Two video sender agents send video streams to each other. A
channel agent, as in Fig. 13, can be dynamically composed of different
primitive agents, based on the distributed meeting environment, by
changing the structure of OAs in the USOS.

Channel agents can also be organized hierarchically according to
service structure. The top agent in this hierarchy is called a system
agent. For example, a Distributed Brainstorming Support System Agent
in Fig. 13 is a system agent. A system agent includes a collection of user
agents normally corresponding to registered users. A user agent sends
the user’s requirements to a system agent that retrieves organizations of
agents by cooperating with orchestration agents in USOS. System
agents and user agents are the OAs in the USOS in Fig. 5.

5.3. Agent-based management of system structures by channel activation
and deactivation

A channel agent is a multi-agent system that is presented by an
organization of channel agents and primitive channel agents, as shown
in Fig. 13. If a system agent invokes a new channel agent as per a user’s
request, a new service for the user is added to the system. In a similar
way, a system agent can remove an unneeded channel from the system
or replace an inadequate channel with an adequate one. We propose a
mechanism for managing channel agents to restructure an agent-based
system, as shown in Fig. 14, which we call a channel repository.

The channel repository is a collection of channel agents that can be
reused by agent-based systems working in the USOS. Every channel
agent has a state—either “active” or “inactive”—and the respective
replacement operations of the states are called “activation” and “de-
activation.”

The channel repository is a collection of channel agents and pri-
mitive channel agents whose state is “inactive.” A resource manage-
ment agent (see Fig. 14) manages the profiles of the agents in the
channel repository. A profile is a set containing an identifier, functions,
performance values, a structure, and other features. The resource
management agent performs “activation” and “deactivation” operations
on channel agents working in the USOS to control resources. It retrieves
the proper channel agent via usability-aware service orchestration
using agent rules, according to system agent and user requests. The
protocol between the resource management agent and agents in the
channel repository is based on the ADIPS framework [32], which pro-
vides an agent repository and cooperation protocols for reusing the
services realized by multi-agent systems according to requests sent by
the user agents.

To meet these user requirements, the proposed agent-based archi-
tecture is composed of different spaces for local and cloud resource
management and for system function orchestration by agents. The FSS
of an agent-based channel contains modules with rich graphical user
interfaces that fit the participants’ tasks and support distributed
brainstorming activities.

Thanks to the user interface and transparency, when people want to
launch a new channel to support an activity, they can activate a re-
source connector that is kept ready for user agents and future opera-
tions generated by primitive channel agents. This functionality is made
possible because we maintain the elements necessary for activating a
new channel in a channel repository (shown in Fig. 14); the channel
repository is a cloud database that manages unused resource con-
nectors, primitive agents, and channel agents. An application agent11 https://html.spec.whatwg.org/multipage/web-sockets.html.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

8

https://html.spec.whatwg.org/multipage/web-sockets.html

Fig. 11. Video channel viewer.

Fig. 12. Channel design consisting of an FSS and a USOS.

Fig. 13. Distributed brainstorming support system agent and resources.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

9

goes into the channel repository to retrieve the components for acti-
vating a channel, i.e., the components for its FSS and USOS.

6. Implementation and experiments

In order to test the proposed concept, we conducted the following
two experiments: (1) We implemented the whole system according to
the design proposed in this paper and confirmed whether the whole
system works properly. (2) We checked whether each channel started
up normally and if the operation succeeded. Moreover, we checked the
system’s flexibility and usability by testing the channel’s operation.

In the first experiment, we tested several prototypes of the dis-
tributed brainstorming support systems proposed in this paper. The
experiments involved a site at the University of Technology of
Compiègne, France (UTC) and a site at the Chiba Institute of
Technology, Japan (CIT). The experimental system is composed of
several video channels and a note channel. Fig. 15 shows a snapshot of
a small multitouch display and a large multitouch display at one CIT

site. The small display shows a note channel that serves as a common
interface between the two sites, used to exchange ideas via notes and
clusters. The large multitouch display is composed of six video chan-
nels. In that display, each pane shows video streams captured by a
camera installed at a site.

At the beginning of the experiment, we started with two video
channels, in order to make both sites visible during work. Then, the
distributed meeting’s mediator, a human participant located at CIT, added
new channels one by one to the experimental system via a user agent. All
six video channels were successfully launched while the system was
running. A note channel also worked as a bidirectional channel. We ex-
perimented with a note channel and connected it to three sites (two sites
at CIT and one at UTC). The common view of the note channel was visible
at each site by subscribing via a common broker.

The components of resources in the FSS in Fig. 8 were implemented
using C# and the .Net Framework. Resource connectors were developed
in C#. A video channel broker was implemented in C using Janus12.
Cloud storage was implemented in Python and C (using Redis13 and a
MariaDB14 server). The WebRTC SFU protocol was used to implement
connections between senders and receivers in the FSS to realize syn-
chronous communication for video channels. Note channel commu-
nication was performed with the MQTT protocol. A note channel broker
was implemented using VerneMQ15.

The agents in the USOS were implemented using Python, based on
the OMAS agent model [30,37]. The agents work and communicate in
coteries connected by OMAS X-agents. Their skills were programmed in
Python and activated by agent messages described in JSON form, which
can handle FIPA-compatible [38] messages and can be saved in and
used as agent knowledge. Communication between agents was im-
plemented using the MQTT protocol.

In the second experiment, we confirmed that the system could dy-
namically add a new video channel simply by an unskilled user clicking
on the Add Video Channel button. In this experiment, the USOS and FSS
must work together to activate a new video channel.

Therefore, each agent has implemented rules for acquiring the

Fig. 14. Agent architecture of activation and deactivation of agent-based channels.

Fig. 15. Multichannel experiment.

12 https://janus.conf.meetecho.com/.
13 https://redis.io/.
14 https://mariadb.org/.
15 https://vernemq.com/.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

10

https://janus.conf.meetecho.com/
https://redis.io/
https://mariadb.org/
https://vernemq.com/

status of the video channel and each resource (camera, display, and
connection) and orchestrating them according to the user’s requests.

Rule 1 shows an example of a rule of resource management agent,
an orchestration agent that controls channel agents. This rule describes
the state of each resource and the action to be taken when the user’s
request changes.

Next, Fig. 16 shows the experiment’s result. Triggered by a GUI re-
quest from the user, the system was able to add a new video channel using
cameras and displays existing at each site (without the user indicating the
connection destination, etc.). The left shows the result before adding a
channel, and the right shows the result of adding a new video channel via
orchestration. At this time, agents work cooperatively. In addition, the
agents could cooperate through the network, even at remote sites, to
acquire and control data from resources. In addition, the user could
simply request with a simple GUI to add channels, and the system can
easily and dynamically add the necessary video channels.

7. Discussion

Generally, IoT applications are huge open systems that are affected
by factors such as Internet connections, devices and PCs at each local
site, and user mobility. These applications may be changeable and thus
adapted to support users. A distributed brainstorming support system is
a complex IoT application that uses the Internet to combine cloud re-
sources such as web service components and databases, edge resources
such as cameras, multitouch displays, and sensors.

During brainstorming sessions, the number of participants and dis-
tributed teams can change at each meeting. Further, the number and
performance of video channels added to the system depend heavily on
the objectives and types of meetings, from small or large groups.
Alternatively, during a meeting, it may become necessary for partici-
pants to activate new video channels, activate new note views, or to
bring new documents into the meeting support system.

Fig. 16. Experiment demonstrating the “Add Channel” action.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

11

During experiments, the imperceptibly short delay between sites
was appreciated by users; channel manipulation was simple and could
be performed spontaneously. It was easy to determine how to access the
functionalities of each channel via appropriate menus.

During brainstorming meetings, we believe that no more than three
channel interfaces need to be accessed simultaneously by users: a video
channel for people awareness, a note channel for producing ideas, and a
document channel for presenting documents. What devices can be used
to best support user interactions? We recommend two devices: a large
tabletop device for the note channel and a large board device for the
two other channels.

It is possible to add new channels to our system to support activities
outside the scope of brainstorming, such as simulation or risk analysis.
In this case, people would switch from one activity to another, which
would not necessitate other devices.

This paper aimed to describe the architecture for supporting syn-
chronous activities. Since data produced or consulted during meetings
are stored in the cloud database, it is easy to reuse these data for other
activities. For project members who cannot attend group meetings, it
would be easy to access the meeting results. However, several appli-
cations should be added to our system in order to provide useful
summaries of what happened during meetings.

Channels presented in this paper are essentially used in a symmetric
way, i.e., people in each location have the same activities and the same
role in performing them, and they also benefit from the same types of
devices. Teams are in similar rooms and do not move from these rooms
during the meeting. However, the architecture we designed also allows
for asymmetric activities, which are slightly different from brain-
storming. For example, as the video channel can be accessed from any
device, including mobile devices, scenarios in which one team moves to
show real situations to the static teams are possible without any mod-
ification of the architecture. Fig. 17 shows a team using a mobile phone
to film a scene and the corresponding video channel view of the other
teams.

In the same vein, it is possible for a meeting participant to connect
to the video channel with a smartphone and produce a short video for
the group. For example, somebody may record a short video summary
at the end of a meeting.

In the second experiment, we confirmed that this system can or-
chestrate the necessary services and resources according to user re-
quests and dynamically add the necessary channels, which provides
flexibility.

Additionally, when the user clicks a button on the GUI, a request is
transmitted and the necessary video channels can be activated by the
collaboration of many agents. Therefore, even for an unskilled user, the
system dynamically changes the environment based on a simple re-
quest, thereby facilitating information sharing between sites and
achieving better communication. This result indicates the usability of
the system.

8. Conclusion

Collaborative work between overseas organizations has become
common and is mainly supported with video chat and information
sharing tools. Because meeting requirements may vary (in the number
of participants or quality of supporting functions, for example), users
should be able to modify these tools as needed.

In this paper, we have proposed a distributed brainstorming support
system that can be altered in structure and quality based on users’ re-
quests. In Section 3, we proposed a conceptual FUSSDB schema that is
composed of an FSS and a USOS. The FSS, designed using channel-
based architecture, was presented in Section 4; the USOS, designed
using agent-based architecture, was described in Section 5. Then, ex-
periments were conducted among distributed sites, as explained in
Section 6.

When distributed teams collaborate, having a good video con-
ference system that allows awareness between participants is crucial.
The video channel we presented consists of several streams that can be
easily activated and deactivated on demand. In the discussion, we also
showed that the video channel may have uses beyond communication
support. For example, it allows live transmissions during meetings and
personal short sequences that are useful for data capitalization.

Each application is distributed because its elements physically be-
long to different computers, installed in the teams’ locations and in the
cloud. It consists of two logical spaces: USOS and FSS. FSS is an IoT
environment consisting of devices, local control programs, cloud pro-
grams, and Internet communication services for distributed activity
support. Agents in USOS manage components of FSS to launch, activate,
deactivate, and modify channels according to users’ requests during
brainstorming meetings.

Declaration of Competing Interest

None.

References

[1] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): a vision,
architectural elements, and future directions, Future Gener. Comput. Syst. 29 (7)
(2013) 1645–1660, https://doi.org/10.1016/j.future.2013.01.010.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of
things: a survey on enabling technologies, protocols, and applications, IEEE
Commun. Surv. Tutor. 17 (4) (2015) 2347–2376, https://doi.org/10.1109/COMST.
2015.2444095.

[3] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, E. Riviere, Edge-centric computing: vision and challenges,
SIGCOMM Comput. Commun. Rev. 45 (5) (2015) 37–42, https://doi.org/10.1145/
2831347.2831354.

[4] H. Overdick, The resource-oriented architecture, in: 2007 IEEE Congress on
Services (Services 2007), 2007, pp. 340–347. https://doi.org/10.1109/SERVICES.
2007.66.

[5] K. Dar, A. Taherkordi, H. Baraki, F. Eliassen, K. Geihs, A resource oriented

Fig. 17. Asymmetric scenario.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

12

https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1109/SERVICES.2007.66
https://doi.org/10.1109/SERVICES.2007.66

integration architecture for the internet of things: a business process perspective,
Pervas. Mobile Comput. 20 (2015) 145–159, https://doi.org/10.1016/j.pmcj.2014.
11.005.

[6] Y. Kaeri, C. Moulin, K. Sugawara, Y. Manabe, Agent-based system architecture
supporting remote collaboration via an internet of multimedia things approach,
IEEE Access 6 (2018) 17067–17079, https://doi.org/10.1109/ACCESS.2018.
2796307.

[7] C. Savaglio, G. Fortino, M. Ganzha, M. Paprzycki, C. Badica, M. Ivanovic, Agent-
based computing in the internet of things: a survey, IDC (2017) 307–320.

[8] G. Fortino, A. Guerrieri, W. Russo, C. Savaglio, Towards a development metho-
dology for smart object-oriented iot systems: a metamodel approach, 2015 IEEE
International Conference on Systems, Man, and Cybernetics, 2015, pp. 1297–1302, ,
https://doi.org/10.1109/SMC.2015.231.

[9] G. Fortino, W. Russo, C. Savaglio, W. Shen, M. Zhou, Agent-oriented cooperative
smart objects: from iot system design to implementation, IEEE Trans. Syst., Man,
Cybernet.: Syst. 48 (11) (2018) 1939–1956, https://doi.org/10.1109/TSMC.2017.
2780618.

[10] J. Kawakita, The Original KJ Method, Kawakita Research Institute, 1991.
[11] A. Jones, A. Kendira, D. Lenne, T. Gidel, C. Moulin, The TATIN-PIC Project, A Multi-

modal Collaborative Work Environment for Preliminary Design, in: 15th
International Conference on Computer Supported Cooperative Work in Design,
CSCWD 2011, June 8–10, 2011, pp. 154–161.

[12] C. Moulin, Y. Kaeri, K. Sugawara, M.-H. Abel, Capitalization of remote collaborative
brainstorming activities, Comput. Stand. Interfaces (Elsevier) 48 (C) (2016)
217–224.

[13] A. Jones, C. Moulin, L.-P. Barthes, D. Lenne, A. Kendira, T. Gidel, Personal assistant
agents and multi-agent middleware for cscw, in: Computer Supported Cooperative
Work in Design (CSCWD), 2012 IEEE 16th International Conference on, IEEE, 2012,
pp. 72–79.

[14] S. Tausch, D. Hausen, I. Kosan, A. Raltchev, H. Hussmann, Groupgarden: supporting
brainstorming through a metaphorical group mirror on table or wall, in:
Proceedings of the 8th Nordic Conference on Human-Computer Interaction Fun,
Fast, Foundational - NordiCHI ’14, ACM Press, 2014, pp. 541–550.

[15] M. Miura, T. Sugihara, S. Kunifuji, GKJ: Group KJ Method Support System Utilizing
Digital Pens, IEICE Transactions on Information and Systems E94-D (3) (2011)
456–464.

[16] A. Clayphan, J. Kay, A. Weinberger, ScriptStorm: scripting to enhance tabletop
brainstorming, Pers. Ubiquit. Comput. 18 (6) (2014) 1433–1453.

[17] K. Fujita, S. Kunifuji, A realization of a reflection of personal information on dis-
tributed brainstorming environment, in: T. Masuda, Y. Masunaga, M. Tsukamoto
(Eds.), Worldwide Computing and Its Applications, Springer, Berlin Heidelberg,
Berlin, Heidelberg, 1997, pp. 166–181.

[18] J. Marlow, S.A. Carter, N. Good, J.-W. Chen, Beyond Talking Heads: Multimedia
Artifact Creation, Use, and Sharing in Distributed Meetings, in: Proceedings of the
19th ACM Conference on Computer-Supported Cooperative Work & Social
Computing - CSCW ’16, ACM Press, 2016, pp. 1701–1713.

[19] C. Wilson, Brainstorming and Beyond: A User-Centered Design Method, Morgan
Kaufmann, 2013.

[20] F. Forster, Improving creative thinking abilities using a generic collaborative
creativity support system, Res., Reflect. Innov. Integr. ICT Educ. 1 (2009) 539–543.

[21] A. Gorod, S.J. Gandhi, B. Sauser, J. Boardman, Flexibility of system of systems,
Global J. Flexible Syst. Manage. 9 (4) (2008) 21–31, https://doi.org/10.1007/

BF03396548.
[22] K. Nelson, J. Cooprider, The relationship of software system flexibility to software

system and team performance, ICIS 2001 Proceedings, 2001, p. 4.
[23] T. Suganuma, T. Oide, S. Kitagami, K. Sugawara, N. Shiratori, Multiagent-based

flexible edge computing architecture for iot, IEEE Network 32 (1) (2018) 16–23,
https://doi.org/10.1109/MNET.2018.1700201.

[24] X. Ferré, N. Juristo, H. Windl, L. Constantine, Usability basics for software devel-
opers, IEEE Softw. 18 (1) (2001) 22–29, https://doi.org/10.1109/52.903160.

[25] A. Holzinger, Usability engineering methods for software developers, Commun.
ACM 48 (1) (2005) 71–74, https://doi.org/10.1145/1039539.1039541 URL:
http://doi.acm.org/10.1145/1039539.1039541.

[26] K. Finstad, The usability metric for user experience, Interacting with Computers 22
(5) (2010) 323–327, modelling user experience - An agenda for research and
practice. https://doi.org/10.1016/j.intcom.2010.04.004. URL: <http://www.
sciencedirect.com/science/article/pii/S095354381000038X>.

[27] D. Guinard, V. Trifa, E. Wilde, A resource oriented architecture for the web of
things, Internet of Things (IOT) 2010 (2010) 1–8, https://doi.org/10.1109/IOT.
2010.5678452.

[28] S.K. Datta, R.P.F. Da Costa, C. Bonnet, Resource discovery in internet of things:
Current trends and future standardization aspects, in: Proceedings of the 2015 IEEE
2Nd World Forum on Internet of Things (WF-IoT), WF-IOT ’15, IEEE Computer
Society, Washington, DC, USA, 2015, pp. 542–547. https://doi.org/10.1109/WF-
IoT.2015.7389112.

[29] M. Wooldridge, N.R. Jennings, Intelligent agents: theory and practice, Knowledge
Eng. Rev. 10 (2) (1995) 115–152, https://doi.org/10.1017/S0269888900008122.

[30] J.-P.A. Barthès, Omas — a flexible multi-agent environment for cscwd, Future
Gener. Comput. Syst. 27 (1) (2011) 78–87.

[31] G. Fortino, R. Gravina, W. Russo, C. Savaglio, Modeling and simulating internet-of-
things systems: a hybrid agent-oriented approach, Comput. Sci. Eng. 19 (5) (2017)
68–76, https://doi.org/10.1109/MCSE.2017.3421541.

[32] T. Kinoshita, K. Sugawara, Adips framework for flexible distributed systems, in:
T. Ishida (Ed.), Multiagent Platforms, Springer, Berlin Heidelberg, Berlin,
Heidelberg, 1999, pp. 18–32.

[33] T. Finin, R. Fritzson, D. McKay, R. McEntire, Kqml as an agent communication
language, Proceedings of the Third International Conference on Information and
Knowledge Management, CIKM ’94, ACM, New York, NY, USA, 1994, pp. 456–463,
, https://doi.org/10.1145/191246.191322.

[34] Y. Kaeri, Y. Manabe, K. Sugawara, A platform for prototyping an agent space in-
teracting with real space and digital space, in: The 2nd International Workshop on
Smart Technologies for Energy, Information and Communication (IW-STEIC), 2013,
pp. 113–120.

[35] P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces of pub-
lish/subscribe, ACM Comput. Surv. 35 (2) (2003) 114–131.

[36] N. Shiratori, K. Takahashi, K. Sugawara, T. Kinoshita, Using artificial intelligence in
communication system design, IEEE Softw. 9 (1) (1992) 38–46, https://doi.org/10.
1109/52.108779.

[37] A. Jones, A. Kendira, T. Gidel, C. Moulin, D. Lenne, J.-P. Barthès, Personal assistant
agents and multi-agent middleware for cscw, 16th IEEE International Conference on
Computer Supported Cooperative Work in Design (CSCWD), Wuhan, China, 2012,
pp. 72–79.

[38] P.D. O’Brien, R.C. Nicol, Fipa—towards a standard for software agents, BT Technol.
J. 16 (3) (1998) 51–59.

Y. Kaeri, et al. Advanced Engineering Informatics 44 (2020) 101050

13

https://doi.org/10.1016/j.pmcj.2014.11.005
https://doi.org/10.1016/j.pmcj.2014.11.005
https://doi.org/10.1109/ACCESS.2018.2796307
https://doi.org/10.1109/ACCESS.2018.2796307
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0035
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0035
https://doi.org/10.1109/SMC.2015.231
https://doi.org/10.1109/TSMC.2017.2780618
https://doi.org/10.1109/TSMC.2017.2780618
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0050
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0060
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0060
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0060
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0080
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0080
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0085
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0085
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0085
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0085
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0095
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0095
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0100
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0100
https://doi.org/10.1007/BF03396548
https://doi.org/10.1007/BF03396548
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0110
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0110
https://doi.org/10.1109/MNET.2018.1700201
https://doi.org/10.1109/52.903160
https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1016/j.intcom.2010.04.004
http://www.sciencedirect.com/science/article/pii/S095354381000038X
http://www.sciencedirect.com/science/article/pii/S095354381000038X
https://doi.org/10.1109/IOT.2010.5678452
https://doi.org/10.1109/IOT.2010.5678452
https://doi.org/10.1109/WF-IoT.2015.7389112
https://doi.org/10.1109/WF-IoT.2015.7389112
https://doi.org/10.1017/S0269888900008122
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0150
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0150
https://doi.org/10.1109/MCSE.2017.3421541
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0160
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0160
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0160
https://doi.org/10.1145/191246.191322
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0175
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0175
https://doi.org/10.1109/52.108779
https://doi.org/10.1109/52.108779
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0185
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0185
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0185
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0185
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0190
http://refhub.elsevier.com/S1474-0346(20)30019-7/h0190

	Agent-based management of support systems for distributed brainstorming
	Introduction
	Related work
	Brainstorming support from multimedia devices
	Distributed brainstorming support system
	Capitalizing on distributed brainstorming meeting resources
	System flexibility
	System usability
	Resource-oriented architecture
	Agent-based system resource management

	Approach to usable support systems for distributed brainstorming
	Problems in developing support systems for distributed brainstorming
	Overview of a support system for distributed brainstorming
	Conceptual schema of a flexible and usable support system for distributed brainstorming
	Agent-based management of a flexible and usable distributed brainstorming support system

	Channel-based system architecture of a flexible support system for distributed brainstorming
	System architecture of a multimedia support system for distributed brainstorming
	Primitive channel design
	Note channel design
	Video channel design
	Document channel design

	Agent-based management of FSS resources by the USOS
	Architecture of an agent-based support system
	Agent-based design for a channel-based support system
	Agent-based management of system structures by channel activation and deactivation

	Implementation and experiments
	Discussion
	Conclusion
	Declaration of Competing Interest
	References

